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1. Introduction

A compact real homogeneous manifold M = G/H is called a solvmanifold if G is solvable and H
is discrete. Here, we always assume that G is simply connected. If Ad(G) has the same real algebraic
closure as that of Ad(H), we say that M has the Mostow condition with respect to G and H. When M
is a solvmanifold and satisfies the Mostow condition, the cohomology of M can be calculated by the
cohomology of the Lie algebra [1] (see also [2]). But, in general, it is very difficult to calculate the
cohomology for a general compact solvmanifold. In 2006, we proved the following in [3]:

Proposition 1. If M = G/H is a compact real homogeneous solvmanifold, there is a finite covering
space M′ = G/H′, i.e., H/H′ is a finite group, such that there is another simply connected solvable real
Lie group G′ which contains H′ and is diffeomorphic to G such that (1) M′ = G′/H′, (2) M′ satisfies
the Mostow condition with respect to G′ and H′.

In particular, we have:

Proposition 2.: If G is solvable and H is discrete, M = G/H is compact, and then we have
H∗(M′,R) = H∗(G′), where G′ is the Lie algebra of the Lie group G′ in Proposition 1.

In [4], the last paragraph of the second section, we also gave a result on the cohomology group of
the manifold M. In this paper, we will prove following Theorems 1, 2 and 3.
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Instead of using an algebraic closure, we use the imaginary semisimple representation. We further
use a simple twisted product on the original Lie group induced from the rotation part of the semisimple
part of the inner automorphism to obtain the new modified Lie group. An application of this result is
a simple way to calculate the cohomology groups of compact quotients of a real solvable Lie group
over a cocompact discrete subgroup, which we stated in an earlier paper [4] on compact pseudo-
kählerian complex solvmanifolds. The latter takes care of finite covering with a Lie algebra level
method instead of the topological method. We also apply these results to the compact solvmanifolds
with symplectic structure, including the equivalence to the almost symplectic property and extending
the Benson-Gordon theorem on the 1-Lefschetz compact solvmanifolds by removing the completely
real condition as we promised earlier, which also classifies these manifolds.

Before we state our new results, we give some construction first. Let G be a simply connected
solvable Lie group. Then G can be realized as an upper triangular linear group over a linear space
V such that its nilradical consists of upper triangle matrices with 1’s on the diagonal (see [5]). There
is a natural homomorphism of Lie groups which sends the upper triangle matrices to their diagonals
D : g → D(g). The images D(g) induce automorphisms on the Lie algebra, as a subspace of V ⊗ V∗,
and are also semisimple, which are called the semisimple parts S (Ad(g)). We simply denote it by S . S
is a product of two diagonal matrices, where one is positive and the other is a rotation. We denote the
first by R and the latter by I. We shall see that G, Γ satisfies the Mostow condition if and only if the
algebraic closure I = A(I(Γ)) of I(Γ) is the same as that of I(G). Let IΓ,0 be the identity component of
I. Then G is Mostow if and only if IΓ,0 is the identity component of the algebraic closure A of I(G).
Therefore, there is a sub-torus T in A such that A is locally a product of T and IΓ,0. There is a Lie
algebra morphism from G to the Lie algebra of T induced by the morphism I and the projection A to
T . We denote it by iT . This morphism induces a Lie group morphism IT from G to T .

There is a cofinite subgroup Γ1 of Γ such that its image under I is in IΓ,0. That is, let π be the
morphism from I to I/IΓ,0. Then (π · I)(Γ1) = 1. We can simply take Γ1 to be the kernel of π · I. We
also let Γ′ be the kernel of IT on Γ. Then Γ′ is cofinite in Γ1 and Γ. Let i be the endomorphism iT of the
Lie algebras. Then IT = exp(i), and [A, B]i = [A, B]− i(A)B+ i(B)A induces a new Lie structure on the
Lie algebra and so on for the Lie group. We denote the new Lie group by Gi.

Thereom 1.: Gi is a Lie group such that its image under I is in IΓ,0. Moreover, Γ′ is a subgroup of
Gi and G/Γ′ = Gi/Γ′.

In particular, if we denote the new Lie algebra by Gi, using Mostow’s result on the cohomology
group on a real compact solvmanifold in [1], we have the following theorem.

Theorem 2.: Let M′ = G/Γ′, then H∗(M′,R) = H∗(Gi).

In an earlier version of this paper, we consider the special case in which IΓ,0 is an identity. In that
case, we could just apply [6] instead. But, in general, IΓ,0 is not necessary the identity as we shall see
later on.

Now we consider the linear action of IT (Γ/Γ′) on the Lie algebra. We have the following theorem.

Theorem 3.: H∗(M,R) = H∗IT (Γ/Γ′)(Gi).

We are also interested in the structure of compact homogeneous manifolds with symplectic
structure (which might not be invariant under the group action). With Propositions 1 and 2 we
successfully treated the compact complex pseudo-kähler solvmanifolds in [4]. See [7] for the
difficulties of classifying such manifolds. With Proposition 2, one can reduce the classification of
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compact solvmanifolds with real symplectic structures to a finite covering. With Theorem 3, we have
further results in [8]. Here, we just give some of direct applications of our results, which we did not
state earlier since they are quite clear from our results and we were concerned with other more
difficult questions.

Corollary 1.: We denote ρIT as the induced representation of the Lie group on the Lie algebra by
g→ IT (g−1). Then,

Hk(M,R) ⊂ Hk(G,⊗kρIT ).

Notice that ρIT is split into line bundles of characters generated by their eigenvectors.

Corollary 2.: Let M = G/Γ be a compact solvmanifold. Then, it has a symplectic structure if and
only if it is almost symplectic, i.e., if there is a 2 class α ∈ H2(M,R) such that αn , 0 in H2n(M,R).

We write ga as the set of eigenvectors in the Lie algebra, and ρa as the inverse of the related
characters. Then, Gi =

∑
a ga ⊗ ρa. We have the following corollary.

Corollary 3.: There is a finite dimensional complex

n∑
k=0

(∧k(
∑

a

ga ⊗ ρa)) ∩Ωk(M)

which induces the cohomology ring on M.

Furthermore, we can generalize the Benson-Gordon theorem in [9].

Corollary 4.: If G is a solvable Lie group and G/Γ is a compact solvmanifold with a symplectic
structure such that the 1-Lefschetz condition is satisfied, then:

(i) There is an abelian complement a in the Lie algebra G of n = [G,G].
(ii) a and n are even dimensional.
(iii) The center of G intersects n trivially.
(iv) The symplectic form is cohomologous to a Gi left invariant symplectic form on Gi/Γ′ of the form

ω = ω0 + ω1, where n = ker(ω0) and a = ker(ω1).
(v) Both ω0 and ω1 are closed but not exact on Gi.
(vi) The Gi adjoint action of a on n are symplectic automorphisms on (n, ω1).
Moreover, if a compact solvmanifold with a symplectic structure has property (iv) with a

complement a of n, then it is 1-Lefschetz.

Therefore, one can classify all 1-Lefschetz compact solvmanifolds by finding all the even
dimensional abelian rational subgroup A of symplectic automorphisms over a compact symplectic
nilmanifold such that N is the commutator of the semi-product A ∝ N.

We just adopt their proof to the IT (Γ/Γ′) invariant case. Actually, [9] proved the following theorem.

Theorem 4.: If M = G/Γ is a solvmanifold, then H j(M,R) = H j(G), j = 1, n − 1. Moreover, let
n = [G,G], a be a complement of n, k = dim a, and l = dim n. Then, d(∧n−2G) = (∧ka∗) ∧ (∧l−1n∗),
H1(M,R) = H1(G) = a∗, and Hn−1(M) = Hn−1(G) = (∧k−1a∗) ∧ (∧ln∗).

The first part comes from the relation between the first homology and the fundamental group. The
second part was proven in [9]. See (2.7) there.

We see that the only matter is that ω is no more G-left invariant in our case but Gi-left invariant.
Since a ⊂ ai, H1

IT (Γ/Γ′)(Gi) = (ai)∗IT (Γ/Γ′) = a∗, and similarly for Hn−1
IT (Γ/Γ′). Therefore, their arguments still

Electronic Research Archive Volume 33, Issue 2, 931–937.



934

hold for our case. But, we shall use their argument with the Gi left-invariant differential forms instead.
See Section 3.

We obtained Propositions 1 and 2 in 2006 to deal with the pseudo-kählerian case. About the same
time when we were trying to publish [4], Professor Fino showed us their paper [10] and told us the work
of Professor Witte [11]. It turned out that the modification result in Proposition 1 was known to Witte
in 1994 already, and moreover, only need to modify it by the imaginary part. However, there were some
errors in Witte’s paper, see [12] Section 6 for some corrections. This made things more complicated.

There are also some efforts from [13, 14]. In summer 2013, Professor Dorfmeister told us about
Kasuya’s work. That eventually lead us to the book [15] and then this version of results.

Here, I would like to thank Professor Fino for showing us about [11] and Professor Dorfmeister for
telling us about [13, 14].

2. Proof of our main statements: Theorems 1, 2 and 3

In this section, we shall prove Theorems 1, 2, and 3 as our main statements.
As in [3], we shall use modifications of solvable Lie groups. The modifications we used in [3]

first appeared in Azencott and Wilson’s paper [16] in 1976. Later on, a similar construction was used
in [17] in 1989. Our method in [3] was formally taken from [17], applied to a completely different
setting following yet another different setting in an earlier paper. That was the reason that we did
not concentrate on the solvable case and made things more complicated. Around 1985, Professor
Dorfmeister had a different form of modification in [18], which also originally came from [19]. The
modification which we shall use in this paper is similar to Dorfmeister’s version, but more general and
simpler. We take it from [15].

Let i : G → Der(G) be the homomorphism of the projection of the imaginary part of the adjoint
action on to the Lie algebra of T , A→ iT (A). We define a new product by

[A, B]i = [A, B] − i(A)B + i(B)A.

Then, it defines a new Lie algebraic structure. We only need to prove that the Jacobi identity is true.
Let

s(Ψ(A, B,C)) = Ψ(A, B,C) + Ψ(B,C, A) + Ψ(C, A, B)

for any operation Ψ of three elements A, B, and C. Then,

s(Ψ(A, B,C)) = s(Ψ(B,C, A)) = s(Ψ(C, A, B)).

We notice that i(i(A)B) = 0, and have

s([[A, B]i,C]i) = s([[A, B] − i(A)B + i(B)A,C]i)
= s([i(B)A − i(A)B,C]) + s(i(C)([A, B]) − i([A, B])C)
+ s(i(i(A)B − i(B)A)C − i(C)(i(A)B − i(B)A))
= s([i(B)A,C]) − s([i(A)B,C]) + s([i(C)A, B]) + s([A, i(C)B])
− s([i(A), i(B)])C − s(i(C)i(A)B) + s(i(C)i(B)A)
= s([i(A)C, B]) − s([i(A)B,C]) + s([i(A)B,C]) − s([i(C)B, A])
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− s([i(A), i(B)])C − s(i(A)i(B)C) + s(i(B)i(A)C)
= 0

From [15] page 94 to 97, the Lie group product is IT (g, h) = (IT (h)g)h and IT (IT (g)h) = IT (h).
Especially, if Γ′ is the kernel of IT , then IT (g, γ) = gγ for any g ∈ G, γ ∈ Γ′. Therefore, (Γ′)i = Γ′ and
G/Γ′ = Gi/Γ′.

Moreover,
gγ = (IT (γ)IT (γ−1)g)γ = IT (IT (γ−1)g, γ)

for any g ∈ Gi, γ ∈ Γ. Therefore, the action of Γ on the right invariant Lie algebra Gi is the same as the
inverse action of IT (γ). We have all our Theorems 1, 2, and 3.

A remark from the author is that the algebraic closures of Ad(G), Ad(Gi), and Ad(Γ′) have the same
image of R, but only the last two have the same image from I with IΓ,0 as the identity components. The
first part also comes from that G/Γ′ is compact.

3. The generalized Benson-Gordon Theorem: Corollary 4

Here, we shall prove our Corollary 4 following [9] page 974 with the Gi left-invariant differential
forms. Since Gi is a modification of G, as a vector space, we could identify Gi with G. Then, Gi = a⊕n.

Lemma 1. Any (n − 1)-form is closed.

Proof: Indeed, we can write A = i(X)vol. Then, dA = −tr(ad(X))vol = 0.

Lemma 2. We write Λs,t
i = (a∗)s ∧ (n∗)t as a vector subspace of the Gi left-invariant vector fields.

Then,
d : Λs,t

i → Λ
s+2,t−1
i + Λs+1,t

i + Λs,t+1
i ;

d : Λk,l−2
i → Λk,l−1

i ;

d : Λk−1,l−1
i → Λk,l−1

i ;

d : Λk−2,l
i → Λk,l−1

i .

Therefore, d(Λn−2(Gi)∗ ⊂ Λk,l−1
i .

Proof: Since d(a∗) = 0, we have d(Λs,t
i ) = Λs,0

i ∧ d(Λ0,t
i ) and follow exactly the same argument as

in [9].

Lemma 3. Every element in (Λk,l−1
i )IT (Γ/Γ′) is exact and Hn−1(G) = (Λk−1,l

i )IT (Γ/Γ′).

Proof: Same as in [9].

Next, for any X ∈ n, we have B = ω(X, ) ∧ ωn−1 ∈ Λk,l−1
i . Therefore, B is exact by Lemma 3. That

is, C = ω(X, ) is not in a∗. Therefore, ω is non-degenerate on n. We let a = {A|ω(A,n),0}. We have
ω ∈ Λ2,0 + Λ0,2

i with components ω2,0 and ω0,2.
Since ω2,0 is closed, so is ω0,2. ω2,0 is G invariant.

Lemma 4. a is abelian.

Proof: ω([A, B], X) = ω(A, [B, X]) + ω(B, [X, A]) = 0 for all X ∈ Gi, A, B ∈ a, and therefore,
[A, B] = 0.

Similarly, we can get (vi) in Corollary 4 with a as a Gi subalgebra acting on n.
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Following the argument in [9], we have the following lemma.

Lemma 5. If Z ∈ n and is in the center of G, then Z = 0.

Proof: C = ω(Z, ) is closed. By Lemma 3, C ∧ωn−1 is exact, and therefore, C = 0 and Z = 0 by the
1-Lefschetz condition.

This proves (iii). Once we have (iv) in Corollary 4, one can easily see that the 1-Lefschetz condition
holds. Therefore, we have proved Corollary 4.
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