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Abstract:  Electrical impedance tomography (EIT) is a noninvasive imaging technique that
reconstructs the internal conductivity distribution of an object by measuring electric potentials on its
surface. Mathematically, EIT is twofold: the forward problem solves a generalized Laplace equation
with conductivity coefficients to determine the electric potential, while the inverse problem requires
estimating conductivity from noisy and incomplete boundary measurements—an ill-posed task highly
sensitive to noise. This paper proposed a hybrid deep learning—evolutionary framework for EIT
image reconstruction. The fully-connected feedforward neural networks (FNNs) and convolutional
neural networks (CNNs) were trained to approximate the forward map from conductivity to electric
potential, eliminating the need for repeated finite element simulations during inversion. For the
inverse problem, we formulate the recovery of conductivity distributions as a global optimization task
using differential evolution and its variants. Among them, success-history based adaptive differential
evolution (SHADE) achieved the most accurate and robust results. While the proposed CNN-SHADE
algorithm demonstrated competitive reconstruction performance, the FNN-SHADE approach provided
a favorable trade-off between accuracy and computational efficiency. Furthermore, the FNN-SHADE
framework outperformed the traditional finite element-based method in computational speed, while
maintaining accuracy. By embedding a neural forward operator into the differential evolution loop, the
framework offered a scalable, data-driven alternative to traditional EIT reconstruction methods.

Keywords: electrical impedance tomography; generalized Laplace equation; image reconstruction;
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1. Introduction

Electrical impedance tomography (EIT) is a noninvasive imaging technique that reconstructs the
internal conductivity distribution of a subject by injecting small electrical currents through surface
electrodes and measuring the resulting voltages. This requires solving both a forward and an inverse
problem governed by a generalized Laplace equation with conductivity coefficients. The forward
problem involves computing the electric potential given a known conductivity distribution, while the
inverse problem involves recovering conductivity from boundary voltage measurements. EIT arises in
a wide range of applications, particularly in biomedical imaging where it offers a low-cost portable
alternative [1], facilitates early breast cancer diagnosis [2], and aids in detecting pulmonary emboli
and abdominal lesions [3]. In geophysical imaging, it is used to analyze rock resistivity based on
porosity and water content [4], as well as to locate underground mineral deposits and leaks [5].
Industrial applications are equally diverse, ranging from damage detection in self-sensing composite
tubes [6] to monitoring pharmaceutical crystallization processes [7].

Due to rapid technological advances and increasing accuracy in data collection and processing,
there is a demand for EIT image reconstruction algorithms to improve imaging resolution. However,
reconstructing high-quality images from EIT data remains a challenge due to the ill-posed nature of
the inverse problem [8]. This is because, in the Hadamard sense, the inverse conductivity problem
only meets existence and uniqueness, but not stability (continuous dependence on data), as the inverse
map is discontinuous [9]. It has been demonstrated that because the forward map lacks a continuous
inverse, the problem requires a regularization strategy based on a family of continuous mappings [10].
To be precise, the EIT inverse problem admits at best a logarithmic stability estimate [11],
highlighting its severe ill-posedness. Consequently, small measurement noise can cause large errors in
the reconstructed conductivity, necessitating regularization techniques in classical numerical methods
for solving partial differential equations (PDEs) such as finite element method (FEM), finite volume
method, and spectral element method. For instance, [12] developed a software package for EIT
utilizing FEM by discretizing the conductivity domain, formulating the governing PDEs, and
assessing its accuracy, computational efficiency, and practical application in reconstructing resistivity
distributions from boundary voltage measurements. However, they are computationally expensive,
particularly for complex geometries and high-resolution reconstructions, due to the need for fine mesh
discretization and iterative solvers. They also scale poorly with domain size, as larger problems lead
to increasingly large system matrices that hinder real-time applications. Even small discretization
errors can impact accuracy due to their sensitivity to mesh quality and boundary conditions.
Moreover, they may struggle to maintain accuracy when the true conductivity distribution exhibits
structural irregularities, such as sharp transitions or discontinuous inclusions, which exacerbate
instability. Robustness to such irregularities is therefore a key consideration in modern EIT
reconstruction methods, as highlighted in related work on discontinuous PDE inputs [13].

Machine learning techniques, particularly data-driven neural networks, have shown promising
results in EIT image reconstruction. Artificial neural networks can learn complex mappings between
input voltages and output conductivity distributions, offering a faster and more efficient approach than
classical PDE-based methods. Among these, multilayer perceptrons (MLPs) have been explored
extensively in EIT. For instance, [14] systematically investigated the performance of different MLP
architectures for solving the EIT inverse problem, focusing on anomaly localization on a sensing
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surface. MLPs rely on fully-connected layers and treat input features independently, which limits
their ability to exploit spatial relationships. In contrast, convolutional neural networks (CNNs) use
convolutional filters to capture local spatial patterns, making them more effective for modeling the
structured nature of EIT data. In particular, CNNs have demonstrated robust performance in capturing
spatial dependencies within EIT data, thereby improving image quality [15].

Alongside neural networks, global optimization algorithms such as differential evolution [16],
genetic algorithm, particle swarm optimization, and simulated annealing have been explored to
fine-tune neural network parameters and enhance model generalizability. Unlike gradient-based
optimization techniques, which can be sensitive to local minima, these algorithms leverage
metaheuristic strategies to efficiently search high-dimensional parameter spaces and escape local
optima. In the context of standard neural networks, this capability was demonstrated by using various
metaheuristic optimization algorithms to effectively train MLPs [17]. Furthermore, this approach has
been extended to deep learning, where algorithms such as simulated annealing and differential
evolution were applied to CNNs to improve classification accuracy compared to traditional
methods [18]. Compared to other global optimization algorithms, differential evolution is known for
its simple yet powerful self-adaptive mutation and crossover mechanisms, making it well-suited for
challenging search landscapes, particularly those where gradients are very small, such as those arising
from inverse problems like EIT. For instance, [19] demonstrated that differential evolution’s mutation
scheme allows for significantly faster convergence than genetic algorithm while using fewer control
parameters. Moreover, [20] provides a comparative analysis showing that differential evolution offers
superior stability and versatility compared to particle swarm optimization, particularly when
navigating the complex, multimodal environments often encountered in such inverse problems.
Differential evolution is gradient-free and relies solely on function evaluations, allowing it to progress
without explicit regularization or carefully-chosen initial guesses, while its self-adaptive and
population-based nature enhances robustness in exploring the search space. As such, differential
evolution has been used in several EIT algorithms. For example, [21] investigated the performance of
differential evolution and other evolutionary algorithms in reconstructing irregular insulating objects.
More recently, [22] proposed an approach that combines differential evolution with a modified
Newton-Raphson algorithm (MNR), which allows each individual in the population to be optimized
using the MNR algorithm during the mutation stage. Both works, however, rely on repeatedly solving
the forward problem via traditional numerical solvers such as FEM, which can be computationally
expensive during optimization.

This paper introduces a deep learning-evolutionary framework to enhance EIT image
reconstruction. Specifically, we propose using neural networks to solve the forward problem and
differential evolution to solve the inverse problem by minimizing the discrepancy between simulated
and measured boundary voltages. In this work, we primarily focus on deep fully-connected
feedforward neural networks (FNNs) due to their simplicity and ease of implementation. FNNs
require minimal architectural tuning and make no assumptions about input structure, such as spatial
locality or sequential patterns. This makes them suitable for low-dimensional, structured inputs like
parameterized conductivity values. While FNNs serve as the baseline architecture in this study, we
also evaluate CNNs to assess the benefits of spatial feature extraction in solving the forward and
inverse problems. Moreover, we explore different differential evolution variants to assess their
efficiency and accuracy in recovering conductivity distributions under various conditions.
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Our work is motivated by recent progress in data-driven PDE solvers [14, 15] and evolutionary
optimization techniques [21, 22] for ill-posed inverse problems. However, most prior studies apply
these two methodologies independently. Our contribution is distinct in embedding a pretrained neural
network forward operator directly within a global optimization loop. In prior hybrid approaches,
differential evolution or other global optimization algorithms are used to train or fine-tune the neural
network itself. Early investigations applied the standard version of this technique to train radial basis
function networks [23] or optimize back propagation networks [24]. Similarly, [25] utilized it to train
artificial neural networks for nonlinear reconstruction. Advancing this methodology, [26] later
employed a hybrid variant of particle swarm optimization to optimize radial basis function neural
networks. In contrast, in our work, differential evolution optimizes only the conductivity parameters
of the EIT inverse problem, with the neural network acting as a fast surrogate PDE solver. Moreover,
this approach differs from standard FEM-based iterative methods. Such algorithms have been
implemented specifically for imaging human brain function [27], while a general finite element model
has been formulated for impedance computed tomography [28]. These conventional techniques
typically optimize over the full conductivity field with strong regularization. Instead, under a
piecewise-conductivity assumption we recover a low-dimensional parameter vector, substantially
reducing the search space. To our knowledge, this explicit use of a neural network as a forward model
inside a global inverse solver—rather than using global optimizers to train the network—has not been
demonstrated for EIT.

By using the data-driven learning capabilities of deep neural networks to approximate the
nonlinear mapping from conductivity to boundary voltage, and the optimization power of differential
evolution to explore the conductivity space globally, our proposed method reduces computational
cost by eliminating the need to repeatedly solve large PDE systems during reconstruction. Instead of
relying on mesh-based solvers at every iteration, this approach uses a pretrained model to perform
forward evaluations without solving the PDE or assembling matrices on a mesh, thereby reducing
computation time. Beyond improving speed, embedding the neural forward operator within the
differential evolution loop also enables much broader global exploration than is feasible with
FEM-based inversions, allowing the optimizer to test a larger and more diverse set of candidate
conductivity distributions. While this achieves reconstruction accuracy comparable to FEM-based
techniques, it does so with significantly improved computational efficiency, making our proposed
method more practical for real-time scenarios and expanding applicability of EIT across
various domains.

2. Problem formulation

The mathematical foundation of EIT dates back to the Calderén problem [29], originally posed by
the mathematician Alberto Calderdén in 1980, which focuses on determining the internal conductivity
of a domain Q C R? by measuring voltage on its boundary dQ. To be precise, EIT is divided into two:
a forward problem and an inverse problem [30].

The forward problem solves for the electric potential ¢ € H'(Q) and the corresponding boundary
voltage V = ¢lsq in the generalized Laplace equation with conductivity coefficients o € L*(€)
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given by
V.-(0Vp)=0 inQ,
0 2.1
0'—('0 = f on0Q, @1
on

where n denotes the unit outer normal to dQ. The boundary current f is chosen so that the law of
conservation of charge is preserved, that is,

F=o0. (22)
0Q

To ensure the uniqueness of the solution, the electric potential ¢ must also satisfy

f ¢ =0, (2.3)
oQ

which amounts to choosing the reference voltage. In this work, we adopt the same assumption of
piecewise constant conductivity as in [31], motivated by the fact that many real-world materials, such
as biological tissues and industrial composites, naturally exhibit distinct, nearly homogeneous
conductivity in separate regions. This assumption aligns with the discrete nature of materials, where
sharp transitions between regions are more common than smoothly varying conductivity. As such, we
assume that a body Q = Uf;ol Q); consists of disjoint subdomains €);, corresponding to k — 1 inclusions
on a medium €. The conductivity o of Q can then be expressed as a piecewise constant function

k-1
o(x) = ) o), (2.4)
i=0

where o; € R are distinct conductivity parameters and y; is a characteristic function of €Q;.

The inverse problem, or Calderén problem, on the other hand, involves recovering the conductivity
o throughout Q based solely on measurements of ¢ on 9Q. This is typically accomplished by
introducing a known current on 02 and measuring the corresponding voltage response, or vice versa.
This process is captured by the Dirichlet-to-Neumann (DtN) map A, : ¢lsq — 00,¢lsq, Which maps
each boundary voltage distribution to the corresponding boundary current flux. For essentially
bounded conductivities o € L*(Q), [32] showed that in two dimensions, the DtN map uniquely
determines o, even when o is merely bounded and possibly discontinuous. This ensures that in such
configurations involving discontinuous or rough conductivities, the inverse conductivity problem is
well-defined in the sense that a unique solution exists. However, it remains ill-posed in the Hadamard
sense, meaning small errors in boundary measurements can still lead to large reconstruction errors.
Hence, practical reconstruction still requires careful modeling and regularization.

To illustrate the setup, consider a simple configuration shown in Figure 1, where a domain Q
contains an inclusion Q; with different conductivity oy from the conductivity o of the surrounding
medium €. A current is applied at the boundary of Q and the resulting voltage is influenced by the
varying conductivities. The primary objective of the inverse problem is to determine the unknown
conductivities inside the domain based on the applied current and the observed boundary voltage.
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Figure 1. A representation of a body Q containing an irregularly shaped inclusion €; with
conductivity oy in a medium €, with conductivity o.

Mathematically, we define a forward operator F : L*(Q) — Zz((iQ) that maps the internal
conductivity distribution o to boundary voltages ¢|sq, i.e., F(0) = ¢|sq. Here, Z2(6Q) denotes the set
of all functions f € L*(AQ) such that (2.2) holds. If the measured boundary voltage V, = F(o.,) is
known, then the inverse problem recovers the unknown conductivity o.. This leads to the following
optimization strategy

o, = argmin||F (o) — V.|,

where || - ||, denotes the L?-norm. In practice, however, there is a finite number, say m, of measured
boundary voltages V; at x; € 0Q, fori = 1,2,...,m, thatis, V, = V := (V, V,,...,V,). This translates
to minimizing a mean squared error (MSE) given by

m

1 —\2
MSE(0) = — > (F(o); = Vi), (2.5)
m 4
i=1

where F(o); = ¢(x;) denotes the forward evaluation of the voltage at boundary node x; € 0Q.
Minimizing MSE, which is equivalent to minimizing a squared £>-norm up to a constant factor, is
preferred in numerical optimization due to its smoothness, differentiability, and clear interpretation as
the average squared prediction error.

3. Methods

In this section, we present our proposed algorithm and describe the datasets and numerical methods
used to solve the EIT forward and inverse problems.

3.1. Data acquisition

While experimental EIT datasets exist, we opted to use simulated data in this study to maintain full
control over the ground-truth conductivity distributions and ensure consistency across experiments.
This controlled setting allowed us to systematically evaluate accuracy, stability, and the relative
performance of different differential evolution variants without confounding factors such as electrode
placement errors or physiological variability.

The datasets were generated using simulated EIT measurements. Conductivity distributions were
created within specified domains, with each distribution incorporating random inclusions of varying
shapes, sizes, and conductivity values sampled from a predefined range. These inclusions were
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embedded within a homogeneous background conductivity to simulate realistic scenarios encountered
in practical applications.

To obtain the corresponding electric potential distributions, forward simulations were performed
using FEM as follows. We obtain the variational formulation of (2.1), where we seek ¢ € H'(Q) such
that for all v € H'(Q), we have

a(p,v) = f fv, where a(e,v) := fO'V(,D - V.
o0 Q

To incorporate normalization condition (2.3), we introduce a Lagrange multiplier 4 € R in the
variational formulation. The resulting problem seeks (¢,4) € H'(Q) x R such that for all

(v, ) € H'(Q) x R, we have
a(cp,v)+/1f v+uf 90:ffv. 3.1
oQ 0Q 00

To numerically solve this problem, we discretize domain Q into a finite set of nonoverlapping triangles,
forming a triangular mesh. The vertices of these triangles are called nodes, with the total number of
nodes in the mesh denoted by M, and the total number of boundary nodes by m. This enables us to
construct a finite-dimensional subspace S C H'(Q), using piecewise linear (P1) basis functions {1 j}y: |
associated with the mesh nodes. We then approximate the solution ¢ using the finite-dimensional basis
to gety = Zyzl @y ;, where @; are unknown coefficients. Thus, we have ¢(x;) = ¢, for all x; € Q. This
reduces (3.1) to solving for ¢ := [@;] € R™ and A € R in the linear system

o o)l =lo 5

where A := [a(y;, ¢ ;)] € RMM B := [fa(z Yl € RM and b := [fag f¢;] € R™. We implement this in
scikit-fem, a Python library for finite element analysis where matrices are assembled in
Compressed Sparse Row format—allowing us to solve (3.2) using sparse lower-upper (LU)
factorization from scipy.sparse.linalg module.

All datasets were initially stored in csv files and were converted to and accessed from the HDF5
(.h5) format using dask which enabled efficient parallel processing and facilitated better storage,
organization, and access to large numerical datasets [33]. Each dataset was split into 70% for
training, 30% for validation to provide an unbiased evaluation of the model during development, and
an additional 10% of the dataset size was generated for testing to assess the generalization capability
of the model after training.

3.1.1. Configurations based on geometry and conductivity

Four datasets were generated based on the geometry and conductivity of configurations of inclusions
within a body.

The first configuration considers a domain with a fixed geometry based on anatomical structures
obtained from CT scans, as detailed in [31]. Specifically, we model the thorax, including the heart and
lungs as inclusions, where only the conductivity values remain unknown. Estimating these values is
crucial for real-time physiological monitoring, as conductivity variations can indicate significant
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pathological or physiological changes. For instance, fluctuations in conductivity may signal fluid
accumulation in the lungs, cardiac activity, or tissue abnormalities. In this configuration, the medium
conductivity outside the inclusions is fixed at oy = 6.7. The conductivity values o, and o, of the two
inclusions are uniformly sampled from [0, 10]. Furthermore, the function f that appears in (2.2) was
the same as in [31]. For the domain discretization, we use the mesh generated in [31], where the
anatomical boundaries of the lungs, heart, and thoracic wall were first approximated using parametric
curves fitted via Fourier series expansions. The Fourier coefficients were estimated by fitting the
series to sampled boundary points extracted from a CT scan. This parametric representation enabled
accurate reconstruction of anatomical contours and allowed the generation of a high-resolution finite
element mesh of size & = 0.014 consisting of 25, 309 triangular elements and a total of M = 12, 845
nodes, which includes m = 379 boundary nodes. The geometric model of the thorax is illustrated in
Figure 2.

Figure 2. Domain geometry used in the first configuration, reconstructed from CT scan
data as described in [31]. The thoracic region includes the heart (red) and lungs (blue) as
embedded inclusions.

The remaining three configurations consider domain Q = [0, 1] X [0, 1], discretized into a mesh of
size h = 0.01 consisting of M = 20, 000 triangular elements and a total of m = 10,201 nodes, of which
m = 400 nodes are at the boundary. As in [30], we take f : Q — R, x := (x'V, x@) o 2xDx@ —xD 52
in (2.2). Each configuration is defined by specific geometric and conductivity parameters. The medium
conductivity outside the inclusions is fixed at oy = 0.01 to simulate a clear contrast between the
inclusions and the surrounding medium. Each circular or elliptical inclusion €;, i > 0, is characterized
by its center coordinates (/;, k;) within the unit square. The size of the inclusion is determined by either
a single radius r; for circular inclusions or semi-axes r;, and r;, for ellipses, with values carefully
chosen to ensure the inclusions remain entirely within the domain. For an elliptical inclusion, an
additional parameter 6; defines the tilt angle, representing the counterclockwise rotation relative to the
xV—axis. The electrical property of the inclusion are represented by its conductivity value o;, which
define the contrast in electrical properties relative to the medium. To ensure a diverse dataset, the
geometry and conductivity parameters are uniformly sampled from a predefined interval for a number
of samples, as listed in Table 1. These interval values follow those used in [31] to ensure that the
parameter bounds were physically meaningful and consistent with established practice in the literature.
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Table 1. Range of parameters and number of samples for each dataset configuration.

Configuration Parameters Interval Sample Size
1). Thorax Conductivity o, 0 [0,10], [0,10] 30,000
2). One circular inclusion Center (hy, k1) [0,1] x [0,1] 60,000
Radius r, [0,1]
Conductivity o [5,9]
3). One elliptical inclusion Center (h, k;) [0,1] x [0,1] 90,000
Semi-axes ri4, 1 [0,1], [0,1]
Tilt angle 6, [0, 7]
Conductivity o [5,9]
4). Two inclusions (one Center 1 (hy, k) [0,1] x [0,1] 150,000
circular and one elliptical)  Radius r, [0,1]
Center 2 (hy, k) [0,1] x [0,1]
Semi-axes ry,, 1 [0,1], [O0,1]
Tilt angle 6, [0, 7]
Conductivities o1, 0 [5,9], [5,9]

3.2. Neural networks for EIT forward problem

To solve the forward problem, we consider two network architectures: FNNs and CNNs. We train
the model using the mean absolute error (MAE) as the loss function, which weighs all data
equally—making it robust to the presence of outliers or noisy measurements. In EIT terms, the goal is
to minimize absolute differences between predicted and true electric potential values—crucial in
applications like medical imaging, where outliers from noise or artifacts should not dominate training.

3.2.1. Fully-connected neural network

We design an FNN architecture with several fully-connected layers, where each layer, except the
output layer, was followed by a rectified linear unit (ReLU) activation function to introduce
non-linearity. Here, the forward FNN model takes as input a configuration parameter vector, denoted
by ©, consisting of geometry and conductivity parameters, and outputs the corresponding electric
potential distribution pen(x;; ®) for all x; € Q, j = 1,2,..., M. Architectural choices—such as the
number of layers and neurons—are tuned for accuracy and stability using grid search cross-validation
(GridSearchCV), a systematic hyperparameter tuning method provided in the Python scikit-learn
library. This method performs an exhaustive search over a specified parameter grid using
cross-validation to evaluate each combination, ensuring robust selection of hyperparameters [34]. The
hyperparameters tuned included the number of layers, the number of neurons per layer, and the batch
size. The range of values for these hyperparameters are shown in Table 2. We selected these ranges
based on common practice in EIT deep-learning studies, which typically use multilayer architectures
with tens to a few hundreds batch sizes and neurons per layer [14,35]. Our upper limits represent the
practical ceiling of what our hardware can handle while still capturing the nonlinear mapping between
conductivity and boundary data. During initial tuning, performance peaked at moderate sizes.
Because no clear gains appeared at the upper limits, larger models would have incurred longer
training times and higher risk of overfitting without clear benefits. Table 2 therefore focuses on the
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ranges where improvements were actually observed. We supplemented the grid search method with
trial-and-error adjustments based on the computational resources available. This hybrid approach
allowed us to fine-tune the model more effectively and select the most appropriate configurations.

Table 2. Hyperparameters with their range and the selected values.

Hyperparameters Range Value
Number of Hidden Layers 1 to 100 10
Number of Neurons in each Hidden Layer 32 to0 256 64
Batch Size 32 to 256 128

Considering the configuration with one circular inclusion, we ran GridSearchCV ten times, with
each run testing different hyperparameter configurations. This process enabled us to evaluate the
impact of various combinations of hyperparameters. After evaluating the results, we determined that a
network architecture with 10 layers—each containing 64 neurons, trained with a batch size of 128
using the default learning rate—offered the optimal balance between computational efficiency and
accuracy. This configuration achieved a high level of precision in reconstructing conductivity
distributions while maintaining reasonable training times and memory usage. Given the success of
this architecture in the circular inclusion case, we applied the same architecture across all
configurations for simplicity and consistency. This approach minimized the need for further
exhaustive hyperparameter searches and allowed us to streamline the experimentation process
without sacrificing model performance, ensuring a high degree of generalization to other problem
configurations.

3.2.2. Convolutional neural network

In addition to FNN, we considered a CNN model to approximate the EIT forward solution using
a spatially structured representation of the input. Unlike FNN, which operates on low-dimensional
parameter vectors, the forward CNN model takes as input a conductivity distribution o (x;) for all
x; € Q,j=1,2,...,M, which is represented as a two-dimensional image on a grid. This outputs
the corresponding electric potential field ¢cnn(x;), also represented on a grid of the same resolution.
Here, the spatial conductivity distribution o over the domain Q is generated using the geometry and
conductivity parameters of the configuration to evaluate (2.4).

The CNN model used in this study follows a U-Net architecture [36], where each layer consists of
a 3 X 3 convolution followed by batch normalization and a ReLU activation. Downsampling is
performed using a 1 X 1 convolution, batch normalization, ReLU, and 2 X 2 max pooling, while
upsampling consists of a 1 X 1 convolution, batch normalization, ReLLU, and transposed convolution.
We also adjust the number of channels and spatial dimensions to match the resolution of our input
domain. In particular, the number of convolutional kernels or output channels is progressively
increased in the encoder, starting from two in the first layer and doubling at each downsampling stage
up to 32 in the bottleneck. This pattern is mirrored in the decoder through upsampling and skip
connections. The use of only two kernels in the initial layer provides a compact feature representation,
significantly reducing the number of trainable parameters while still enabling the model to capture
complex patterns through deeper layers. The resulting architecture is illustrated in Figure 3.
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Figure 3. U-net architecture of the CNN model.

3.3. Global optimization algorithms for EIT inverse problem

The goal of the inverse problem is to identify the configuration parameters that define the geometry
and conductivity of inclusions in a medium, given measured (observed) voltage measurements at the
boundary. In this work, we consider boundary voltage data V simulated using our pretrained neural
network model using the configuration parameter values in Table 3.

Table 3. Input variables and their corresponding values.

Configuration Parameter Vector Values

®l = (0-190-2) (1’63)

@2 = (l’ll,kl,rl,O'l) (03,07,01,7)

O := (h, k, 714, 715, 01, 01) (0.3,0.7,0.1,0.2,7/4,7)

@4 := (hy, ky, 71, has ko, Py o, 02, 01, 02) - (0.3,0.7,0.1,0.7,0.3,0.1,0.2, 7/4, 6, 8)

To formulate the inverse problem in our deep-learning framework, we first need to address the so-
called inverse crime [37], which occurs when the same model and discretization scheme are used for
both generating synthetic data and solving the inverse problem. This can lead to overly accurate results,
as the inverse solver may recover parameters that fit the synthetic data too well, due to lack of model
mismatch or measurement uncertainty. To avoid this, we introduce noise to the simulated boundary
voltage data to allow realistic measurement errors and ensure a more robust and honest evaluation of
the model performance under practical conditions. In particular, we assume a noisy boundary voltage
dataV = (V,,V,,...,V,) such that V; = V; + z;, where z is the Gaussian noise with a mean of 0 and a
standard deviation of 0.01 times the standard deviation of the true solution V. The actual solutions to
the inverse problem that we aim to achieve are those shown in Table 3.

So far, we have a neural network model of the forward problem, which may be FNN or CNN, trained
to predict electric potential distributions. In view of (2.5), we define a forward neural network operator
F~n, Which maps the configuration parameter vector ® = (h;, k;, 1,4, 15, 0;, 0;) to boundary voltages,
that is, 7\ (®) = onnloa Where oan(x; ®), x € Q, is the output of the pretrained neural network model.
Given a measured (observed) boundary voltage data V, we find the configuration parameter vector
0., containing geometry and conductivity information, that minimizes the mean squared error (MSE)
between the predicted and measured boundary voltage, which we denote by Jnxn. The minimization
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problem can then be written as follows:

m

0, = argmin Jyn(®) := argmin ! Z (ffNN((a),- - \7,-)2 , (3.3)
(€] ® m

i=1

where Fyn(®); = onn(x;) denotes the predicted voltage at boundary node x; € 9.

To numerically solve this inverse problem, we propose using differential evolution (DE) for
minimizing the objective function Jyn(®). While the EIT inverse problem is fundamentally ill-posed,
it can be formulated as a well-defined optimization task. The objective function is typically
non-convex and may exhibit large flat regions where the gradient is extremely small, even when the
current estimate is far from the true conductivity distribution. In such cases, small variations in the
cost function do not reflect corresponding improvements in the reconstruction error. This poses a
major challenge for iterative gradient-based algorithms, which tend to stagnate in nearly flat regions
and, thus, rely heavily on a good initial guess to approach the global solution. DE, in contrast, is a
global optimization algorithm known for its straightforward implementation, relatively few control
parameters, and robust convergence in exploring complex search spaces, even in the face of
ill-posedness [16]. It is a population-based optimization technique designed to optimize real-valued
multidimensional objective functions where individuals in the population are perturbed by the
difference between two randomly chosen individuals, creating a new candidate solution. This
perturbation helps DE avoid local optima and increases its robustness for complex search spaces.
Using DE, we aim to find ©® such that the predicted boundary voltages Fyn(®) best match the
measured voltages V, in terms of MSE. This begins with a population of candidate solutions
(@, ...,0k), randomly generated from a given set of bounds for each configuration parameter. Here,
O; represents a possible parameter configuration. During mutation, a new candidate vector ®; is
generated for each individual by perturbing three randomly selected population members, say ©,, 0,
and (:)c, according to the rule:

O, = ®a + S(C:)b - (:)C)7

where s is a user-defined scaling factor. In the crossover step, this mutant vector ®; is combined with
the current target vector ®; to form a trial vector using

(i)i = Cq)l' + (1 - C)(:‘jl',

where c is the crossover probability. Finally, during selection, the trial vector ®; is evaluated using the
objective function Jyy, and it replaces ©; in the next generation if it yields a lower objective value.
After the maximum number of function evaluations is reached, the best-performing individual in the
final population is selected as the solution. In our implementation, we used a population size K = 50,
mutation scaling factor s = 0.1, and crossover rate ¢ = 0.9. However, the parameters and learning
strategies are highly problem-dependent.

To address this limitation, we explore four DE-variant algorithms: self-adaptive differential
evolution (SADE), adaptive differential evolution with optional external archive (JADE),
success-history based adaptive differential evolution (SHADE), and self-adaptive population-based
differential evolution (SAPDE). SADE adaptively adjusts the scaling factor s and the crossover rate ¢
based on the performance of the population during optimization, eliminating the need for manual
tuning [38]. In our implementation, SADE was initialized with a population size K = 50, with s and ¢
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updated based on success-history. Building on SADE, JADE introduces an adaptive parameter
mechanism that allows the algorithm to adjust to different optimization stages dynamically [39].
Additionally, JADE incorporates an optional external archive that stores promising solutions,
preserving diversity and guiding the search more effectively. We used initial adaptive scaling factor
s = 0.5 and initial adaptive crossover rate ¢ = 0.5. SHADE further refines parameter adaptation by
maintaining a historical record of successful parameter settings, computing mean values across
generations to enhance convergence [40]. In SHADE, we used the initial scaling factor s = 0.5 and
initial crossover rate ¢ = (.5. While these DE variants focus on tuning mutation and crossover
parameters, they keep the population size fixed. In contrast, SAPDE introduces a dynamic population
size adjustment mechanism, removing the need for pre-defining an optimal population size [41],
which allows the population size to evolve throughout the optimization process based on performance
indicators such as diversity and fitness improvement trends. We initialized with a population of
K = 50, and used Gaussian method instead of uniform method.

For comparison, we also consider three population-based optimization algorithms: genetic
algorithm (GA), particle swarm optimization (PSO), and swarm simulated annealing (SSA). These
methods are selected due to their widespread use in inverse problems and global optimization. They
are also among the simplest and most commonly used baseline algorithms in the literature, and are
often compared with DE. For example, in [42], GA, PSO, DE, and simulated annealing (SA) were
directly compared in solving a nonconvex dynamic economic dispatch problem, highlighting their
general applicability and effectiveness in complex optimization tasks. While DE was recently found
to outperform PSO in most real-world and benchmark problems [20], we are interested in
evaluating their relative performance in the context of our proposed deep-learning framework for the
EIT inverse problem.

GA 1s inspired by the principles of natural evolution, where the fittest individuals are selected for
reproduction to produce the offspring of the next generation. It operates on a population of
individuals, each representing a potential solution to the optimization problem. The main operators in
GA include selection where individuals are selected based on their fitness, crossover where portions
of two parent chromosomes are exchanged to create offspring, and mutation where a gene within a
chromosome is randomly altered to introduce diversity. As such, GA is well-suited for both
combinatorial and continuous optimization problems and is particularly effective for
high-dimensional and complex search spaces. However, GA can be computationally expensive and
may require careful tuning of parameters. In our implementation, GA used a population size of 50, a
mutation probability of 0.05, and uniform crossover with probability 0.9.

PSO is a population-based optimization algorithm inspired by the social behavior of birds flocking
or fish schooling. In PSO, candidate solutions are represented as particles within a search space. Each
particle has a position and velocity, which corresponds to a potential solution and the rate of movement
toward new solutions. The particles adjust their positions based on their own best-known position and
the best-known position of the entire swarm. We used local coefficient ¢, = 2.05, global coefficient
¢, = 2.05, inertia weight w = 0.4, and a swarm size of 50.

Finally, SA is an optimization technique inspired by the annealing process in metallurgy, where the
temperature of a material is slowly lowered to minimize defects and achieve a low-energy state. SA
operates by iteratively generating new solutions in the search space and accepting them based on a
probability function that depends on the difference in energy or objective function value between the
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current and new solution, and the current “temperature”. Traditional SA, while effective in avoiding
local minima through its probabilistic acceptance of worse solutions, operates using a single candidate
solution that updates iteratively. This single-agent approach often results in slow convergence, as the
algorithm relies on stochastic movements to explore the search space. SSA is a hybrid optimization
algorithm that integrates swarm intelligence techniques with the probabilistic nature of SA to
efficiently search for global optima in complex optimization problems. By incorporating the
cooperative behavior of swarm-based algorithms and the temperature-based exploration mechanism
of SA, SSA enhances both global exploration and local exploitation, making it a robust method for
solving high-dimensional optimization challenges. For SSA, we used initial temperature 7, = 1000,
final temperature #; = 1, maximum sub-iterations per temperature cycle 5, move count per
individual 5, mutation rate 0.1, mutation step size 0.1, and mutation step size damp 0.99.

These methodological choices were designed to enhance the stability and reliability of the inverse
reconstruction. By reducing the dimensionality of the problem through a parametric inclusion model,
employing diversity-preserving global optimizers to avoid premature convergence, introducing
controlled noise into the boundary measurements during inversion to improve robustness, and
performing multiple stochastic reconstructions to quantify uncertainty, we established a framework
that mitigates the inherent ill-posedness of EIT.

3.4. Proposed algorithm and its implementation

In summary, we proposed two numerical methods for EIT image reconstruction: FNN-DE and
CNN-DE algorithms.
We first present the details of the proposed FNN-DE algorithm as follows.

1) Forward problem: Train an FNN model that takes as input a set of geometry and conductivity
parameters to predict the corresponding electric potential distribution @gn.

2) Inverse problem: Given a boundary voltage data V, solve minimization problem using differential
evolution. The procedure is as follows:

(a) Specify lower and upper bounds for all geometric and conductivity parameters to define the
feasible search space.

(b) Randomly generate an initial population of K candidate parameter vectors {®, ..., Ok}, where
each O, represents a possible configuration of inclusion geometry and conductivity.

(c) Apply differential evolution operators to generate K trial solution vectors {®,, ..., Dg}.

(d) For each candidate vector ®; and trial vector ®;, compute the corresponding electric
potential distributions @pnn(x; ®,) and ©rnN(X; ) using the pretrained feedforward neural
network model.

(e) Extract the predicted boundary voltages Fran(0,) and Fenn (D)) at boundary nodes.

(f) Compute the objective function values 7, i (©)) and Jan(D;) and retain the better-performing
vector for the next generation.

(g) Repeat steps (c) to (f) and stop after 7'(7) function evaluations, where 7 = dim(®) is the number
of unknown parameters.
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(h) The final output is the best-performing individual in the final population, which is
argmin, Jenn(0);).

The flowchart of the proposed FNN-DE algorithm is shown in Figure 4. Moreover, we
implemented variations of the proposed FNN-DE framework using the four DE-variants and three
non-DE algorithms for the inverse problem. In particular, we compare the performance of
FNN-SADE, FNN-JADE, FNN-SHADE, FNN-SAPDE, FNN-GA, FNN-PSO, and FNN-SSA with
that of the base FNN-DE algorithm. The best-performing algorithm among these was then further
compared with a CNN-based model and with the classical FEM-based method, both using the same
optimization algorithm.

The CNN-DE algorithm follows the same structure as the FNN-DE approach, with the key
difference being the use of a CNN for the forward model instead of an FNN. One additional step in
this framework is the explicit computation of the conductivity distribution o(x) from the geometric
and conductivity parameters ®. This involves evaluating a linear combination of inclusion indicator
functions to produce a 2D matrix representation of o-(x). The boundary voltage is then extracted and
compared with the measured data, and the parameters ® are iteratively updated using differential
evolution to minimize the objective function Jyn(®), as in the FNN-DE implementation.

input:
bounds for geometry and
conducnv'ty parameters Neural network-based Forward Solver
[

randomly generate a candldate ,J‘/ ‘f" predicted /ff
population of candidate ’ vector  ——> —>/  electric potential
/ - / -9,
solutions {O1,...., 0k} / O, / / rnn(T; ©;) compute
i 7 boundary voltages
" / / 5:), F(®s
apply differential evolution /. / / predicted / {Fraw(©4), F (@)}

. / trial vector /
operators to generate trial —»/

7/ ——/ electric potential

; = = / & |/ - - ) teptial
solutions {®1, ..., 2k} ;/‘/ pretrained FNN model / ernN (z; @) /
Qeoomugiufyt-and YES stoppinlgs tt:?i(teerion on | updated population of "J update each candidate
conductivity parameters function evaluations ‘ﬁ skt selliens /‘7 Selluily by et
0, = argmin; Jenn(0;) reached? / ey Sl / argmin(Jrnn(0:), T (1))
NO

Figure 4. Flowchart of the proposed FNN-DE algorithm for the EIT problem.

We note here that direct numerical comparisons with other typical EIT reconstruction algorithms,
such as those listed in the review paper [43], may not be meaningful due to different problem setups,
cost functions, parameterizations, and assumptions. In practice, the major algorithm families vary in
three main ways: the type of unknowns or parameterization (full-field conductivity, evolving
boundaries, or low-dimensional parametric vectors), the priors or regularization imposed (global
smoothness, total variation, edge-preserving, or hybrid penalties), and the optimization technique
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(gradient-based versus gradient-free global search). Representative examples include methods
minimizing penalized objectives over the full conductivity field using gradients, such as the
foundational Newton’s One-Step Error Reconstructor (NOSER) algorithm [44], improved Tikhonov
regularization for lung monitoring [45], and homotopic mapping techniques [46]. Focusing on
sparsity and edge preservation, other works employ total fractional-order variation [47] or modified
orthogonal matching pursuit [48], while specialized solvers address fast iterative shrinkage [49] and
region-of-interest estimation [50]. Distinct from these are Gauss—Newton approaches, which linearize
the forward map and update the full field with Jacobians and regularization [51]. D-bar methods form
another distinct group, solving a nonlinear transform with distinct regularization and no explicit misfit
minimization. Specific studies have established regularized frameworks for this direct reconstruction
method [52] and provided comprehensive guides to demystify its theoretical and practical
application [53]. Shape reconstruction approaches alternatively evolve boundaries under
piecewise-constant assumptions. Common implementations utilize level set representations combined
with total variational regularization [54], or apply these techniques to experimental data for
simultaneous conductivity and permittivity recovery [55]. Alternative geometric strategies employ
monotonicity principles, particularly for lung imaging applications [56]. Finally, deep learning-based
methods map measurements directly to images and are tied to the training distribution [24-26].
Recent surveys have comprehensively reviewed modern deep learning architectures and their
implementations in this domain [57]. The implementation differences in these studies are not minor,
but represent fundamentally different problem statements. These references illustrate that while
qualitative comparisons can be made, e.g., the general accuracy of conductivity values or the ability to
capture shapes, a fair comparison between the numerical methods is difficult to establish because each
family of methods solves a different version of the EIT inverse problem under different modeling
assumptions. For this reason, we focus our baseline on FEM-DE. As is common in the literature,
FEM is used for solving the forward problem, while heuristic algorithms, such as DE, are employed
when treating the inverse problem as an optimization task, as in [31].

3.4.1. Training

All geometry and conductivity parameters ® were min-max normalized using the training set. For
the CNN model, conductivity fields defined on the FEM mesh were rasterized to a grid using a
piecewise-constant per-triangle assignment. Dataset splits were 70% training, 30% validation, with an
additional independent test set comprising 10% of the total dataset.

To investigate the effect of data availability on model performance, models were trained using five
different dataset sizes: 20%, 40%, 60%, 80%, and 100% of the generated dataset for each test
configuration. For each dataset size, five random seeds {0, 1,42, 100, 1234} were used, and we report
median performance across seeds.

All models were optimized using the Adam optimizer with a learning rate of 0.01 and eps set
to 1 x 1077, Each model was trained for up to 500 epochs with a batch size of 128. A learning rate
scheduler (ReduceLROnPlateau) was applied to automatically reduce the learning rate by a factor
of 0.5 whenever the validation loss plateaued for five consecutive epochs. Early stopping was also
implemented with a patience of 20 epochs, based on validation loss. The best-performing model on
the validation set was saved and restored after training.
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3.4.2. Optimization

For the inverse problem, each algorithm was executed independently 100 times with default
parameters and a stopping criterion of 3000 - 7 function evaluations, where 7 denotes the
dimensionality of the problem given by the number of parameters in the configuration vector ®. Since
each run uses a newly generated noisy dataset, this procedure effectively performs bootstrapping, and
we record statistical measures across runs to quantify the associated uncertainties. Each run
incorporates a randomly-generated noise with a mean of O and a standard deviation equal to 0.01
times the standard deviation of the true electric potential. In addition, we investigate varying the mesh
size to verify that the method remains effective under different discretizations, and we perturb the
injected currents, recording the corresponding estimated parameters as another form of bootstrapping.
All global optimizers were implemented using the mealpy package [58].

3.4.3. Evaluation metrics

To assess the forward model performance, the predicted electric potential values were compared
against reference solutions in the test data. Since EIT is an ill-posed inverse problem, small errors in
the predicted electric potential values can lead to noticeable distortions when used to reconstruct the
images. For the forward model evaluation, we consider four performance metrics: test MSE, which
measures the average squared difference between predicted and true values; coefficient of
determination (R?), which indicates how well the predictions explain the variance in the true data;
peak signal-to-noise ratio (PSNR), which assesses the quality of the predicted signal relative to noise;
and structural similarity index (SSIM), which evaluates the perceived similarity between predicted
and true images based on luminance, contrast, and structure. These metrics provide a comprehensive
quantitative assessment of prediction accuracy and perceptual similarity. The reported metrics
represent the median values across five independent runs with different random seeds (0, 1, 42, 100,
1234). Lower MSE and higher values of R?, PSNR, and SSIM indicate better model performance. We
also compare neural network model predictions of electric potential distribution with that of the
FEM-based reference solutions, by computing the relative error, across all test configurations.

For the inverse problem, evaluation was based on MSE and intersection over union (IoU), measuring
both numerical accuracy and geometric consistency in reconstructing conductivity distributions. Lower
MSE and higher values of IoU indicate better performance. We also present overlay visualizations of
the results along with the relative error of the best, average, and worst estimated conductivities obtained
by each algorithm.

In addition to model performance, we also evaluate the computational cost of each optimization
algorithm in terms of runtime, measured as the total time required to reach the maximum number of
function evaluations. All runtimes were recorded using Python’s built-in time module, capturing the
duration of each run from initialization to termination. Each experiment was repeated 100 times, and
the reported runtime reflects the average across these runs.

3.4.4. Hardware and software

The forward simulations were conducted on Windows 11 Home (Version 24H2), using an AMD
Ryzen™ 9 8945HS CPU with Radeon™ 780M Graphics @ 4.00 GHz and 32GB RAM. The
implementation used Python 3.13 and PyTorch 2.6, with NumPy and Matplotlib for numerical
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computation and visualization, respectively. On the other hand, the inverse simulations were run on
Ubuntu 22.04, using an Intel(R) Xeon(R) Gold 6248 CPU @ 2.50 GHz (8 cores) and 64 GB RAM.
Optimization was performed using the mealpy package [58], which supports population-based
metaheuristic algorithms.

4. Results and discussion

This section presents the results of the proposed algorithms for solving the EIT forward and
inverse problems. We report the performance of the FNN and CNN models in predicting electric
potential distribution, as well as the reconstruction quality achieved using the pretrained neural
network model with DE, its four variants (SADE, JADE, SHADE, SAPDE), and three other global
optimization algorithms (GOAs): GA, PSO, and SSA. Comparisons are made against the FEM-based
solutions to evaluate accuracy and consistency.

4.1. Forward problem

The loss curves of the forward FNN and CNN models during training and validation across four
test configurations are illustrated in Figure 5. For both architectures, the training and validation losses
rapidly decrease within the first few epochs and then stabilize, indicating convergence. The FNN
shows consistently low validation loss across all cases with minimal overfitting. The CNN exhibits
similar trends, although with slightly higher variance in the validation loss. Nonetheless, both models
generalize well, with close alignment between training and validation losses.

Configuration 1 Configuration 2 Configuration 3 Configuration 4
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Figure 5. Training (blue) and validation (orange) loss curves of the forward FNN (top) and
CNN (bottom) model across configurations.

Across all four configurations, Table 4 presents the median performance metrics obtained from five
independent training runs with different random seeds. In general, increasing the size of the training
dataset results in improved model performance, as evidenced by lower test loss, lower MSE, and higher
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R?, PSNR, and SSIM values. This trend highlights the benefit of larger datasets for generalization in
the forward EIT problem.

Table 4. Performance metrics of the FNN model for the forward problem.

Config Sample Size Test Loss MSE R? PSNR SSIM

1 30,000 6.56000 x 107*  1.76813 x 107®  0.99999958 67.87612 0.9999739
24,000 6.96822 x 107*  1.79552x 107® 0.99999952 67.18670 0.9999715
18,000 7.30892 x 107* 226116 x 107 0.99999928 67.11420 0.9999639
12,000 8.59385x 10™*  3.01011 x 10™® 0.99999893 65.54156 0.9999591
6,000 12.70026 x 107*  5.43267 x 107°  0.99999583  63.28205 0.9999214

2 60,000 6.95620 x 1072 3.07537 x 1072 0.99945702 50.07821 0.9880054
48,000 7.33158 x 1072 3.28295x 1072 0.99942551 49.79371 0.9877824
36,000 7.62693 x 1072 3.63851 x 1072 0.99936439 49.31757 0.9864775
24,000 8.72567 x 1072 4.53511 x 1072 0.99920222 48.35665 0.9840954
12,000 1.03628 x 107" 5.99776 x 1072 0.99894044 47.14246 0.9808856

3 90,000 9.41736 x 1072 3.78197 x 1072 0.99934579 49.12356 0.9876026
72,000 1.00151 x 107" 4.20971 x 102 0.99927461 48.66441 0.9863467
54,000 1.08883 x 107! 4.82666 x 102 0.99916137 48.08865 0.9845991
36,000 1.12694 x 107" 5.17437 x 1072 0.99910799 47.77948 0.9839454
18,000 144113 x 107! 7.74754 x 1072 0.99866457 46.01739  0.9779998

4 150,000 1.84685 x 1071 1.00296 x 107! 0.99817581 44.94544 0.9753957
120,000 1.77801 x 107" 9.58364 x 1072  0.99825978 45.15244 0.9764413
90,000 1.86633 x 107" 1.01305 x 107! 0.99816151 44.89740 0.9752029
60,000 1.97430 x 1071 1.14836 x 1071 0.99790603 44.36085 0.9728754
30,000 2.29354 x 107" 1.47003 x 107" 0.99731425 43.29089 0.9668762

However, the improvement in metrics is not strictly monotonic as the training set size increases.
Minor fluctuations are observed in certain cases. This behavior can be attributed to the inherent
stochasticity of neural network training, arising from random initialization and data shuffling, which
can still lead to variability in final outcomes. Moreover, as the dataset grows, the optimization
landscape may shift, which may cause the model to converge to different local minima, especially if
the network’s capacity is not optimally matched to the data complexity. As a result, the models may
encounter difficulty in generalizing as more varied samples are introduced in more complex cases.
This observation suggests that expanding the range of hyperparameters considered during tuning may
be necessary to fully adapt the model to the increased data complexity and to achieve optimal
performance at larger dataset sizes.

Overall, while the general trend affirms the advantage of larger datasets for improved predictive
accuracy, there are observed minor inconsistencies due to the combined effects of stochastic
optimization and increasing data complexity.

The performance of the CNN model for the forward problem is summarized in Table 5. Across all
four geometric cases, the improvement in performance metrics with increasing dataset size was strictly
monotonic. This consistent trend suggests that a CNN model with a U-net architecture is particularly
well-suited for learning spatial features and benefits directly from the availability of more training
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data. When compared to the FNN model performance in Table 4, CNNs generally achieve lower test
loss and comparable or higher PSNR values across most configurations. Although FNNs sometimes
attain marginally better R? scores due to their direct approximation of FEM coefficients, CNNs provide

reconstructions with higher structural fidelity, as reflected in their superior SSIM values.

Table 5. Performance metrics of the CNN model for the forward problem.

Config  Sample Size  Test Loss MSE R? PSNR SSIM
1 30,000 3.38994 x 1073 478114 x 107 0.99990 51.55488 0.99946
24,000 3.94193 x 1073 6.50955 x 107 0.99988  50.98160 0.99937
18,000 4.18450 x 1073 8.32644 x 107> 0.99981 49.45207 0.99933
12,000 5.85120 x 1073 25.25968 x 10> 0.99954  46.65135  0.99903
6,000 9.66159 x 1073 63.74875 x 10> 0.99850  40.88564  0.99645
2 60,000 4.90948 x 1072 1.01127 x 1072 0.99985  55.72820  0.99692
48,000 5.34322 x 1072 1.05303 x 1072 0.99984  55.20704  0.99676
36,000 5.62540 x 1072 1.25015 x 1072 0.99981 54.79769  0.99609
24,000 6.12718 x 1072 1.44612 x 1072 0.99977  54.07781 0.99560
12,000 7.97138 x 1072 2.31482 x 1072 0.99961 52.22923  0.99378
3 90,000 6.90441 x 1072 1.70230 x 1072 0.99975 53.45060 0.99516
72,000 6.97484 x 1072 1.72943 x 1072 0.99975 53.43304 0.99519
54,000 7.47295 x 1072 1.95871 x 1072 0.99970  52.78146  0.99435
36,000 8.38660 x 1072 2.30337 x 1072 0.99964  52.11940 0.99394
18,000 9.90166 x 1072 3.11384 x 1072 0.99949  50.58530 0.99194
4 150,000 9.46501 x 1072 2.93625 x 1072 0.99952  50.73349  0.99304
120,000 9.60641 x 107 2.98090 x 1072 0.99951 50.59544  0.99267
90,000 10.09884 x 1072 3.26450 x 1072 0.99945  50.24608  0.99221
60,000 11.20994 x 1072 3.90168 x 1072 0.99932  49.58626 0.99101
30,000 13.19443 x 1072 5.13409 x 1072 0.99908  48.27336  0.98836

Overall, CNNs outperform FNNs in the configurations 2—4, achieving lower test loss, higher PSNR,
and better SSIM scores across all dataset sizes. These configurations involve simple or moderately
complex geometries, where CNNs trained on structured grids effectively capture spatial features. In
contrast, FNNs perform better in the first configuration, where the domain is highly irregular. Here,
the use of FEM basis functions in FNNs provides a natural alignment with the unstructured mesh,
while the CNNs rely on interpolated data mapped onto a regular grid, which can introduce artifacts
and reduce accuracy near complex boundaries.

To further evaluate the accuracy of the predictions, Figure 6 shows the pointwise relative error
between the neural network predictions and the FEM-based reference solutions across all
configurations. For both FNN and CNN models, the relative error is low across most of the domain,
indicating strong agreement with the FEM solution. However, error is typically higher near interfaces
between regions with differing conductivities. These are the areas where both architectures face
challenges due to sharp transitions.
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Configuration 1 Configuration 2 Configuration 3 Configuration 4

FNN

CNN

Figure 6. Pointwise relative errors of forward solutions obtained using FNN (top) and CNN
(bottom) against FEM solutions for all configurations.

In the first configuration, which represents a thorax model with lung and heart inclusions, the
agreement between the FEM and FNN results is particularly strong. The FNN model captures the
details with high accuracy, resulting in almost identical outputs. This suggests that FNN can
effectively model complex anatomical structures, highlighting its potential for biomedical
applications. The CNN, in contrast, shows visibly higher errors across the domain, particularly
near the center. This is likely due to interpolation artifacts introduced by mapping data onto a
structured grid.

In the remaining test configurations, however, the CNN outperforms the FNN, producing lower
errors. These configurations show that CNNs effectively learn spatial patterns from grid-aligned data.
The FNNs, while still generally accurate, exhibit higher errors near conductivity transitions. This
suggests that CNNs are well-suited for structured domains, whereas FNNs maintain an advantage in
domains with irregular geometries, as their outputs are expressed in the FEM basis, eliminating the
need for interpolation onto a structured grid.

Overall, both models provide accurate forward predictions, with CNNs excelling in structured
domains and FNNs showing advantages in irregular domains. The primary limitation observed in
both architectures is related to accuracy at conductivity interfaces and geometrically complex
regions, areas where further refinement in network training or architecture could potentially
enhance performance.

4.2. Comparison of global optimization algorithms for the inverse EIT

The goal of the inverse problem is to estimate both the geometric parameters (e.g., location, size,
orientation) and the conductivity values of internal inclusions from boundary voltage measurements.
In this section, we first focus on evaluating how accurately each GOA recovers the true conductivity
values across the four test configurations.
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To assess this, we report the relative errors between the true and estimated conductivity values
obtained using each GOA in combination with the pretrained FNN forward model.

Table 6. Relative error of conductivity values for test configuration 1. For the average and
best-case errors, blue values indicate the top three per configuration; the best is also bold.

o-Relative Error o»-Relative Error
Algorithm Average Best Worst Average Best Worst
FNN-DE 1.38x 1072 256x 10 376 x1072 3.20x 1072 1.65x10~* 9.27 x 1072

FNN-SADE 1.22x 1072 1.81x10™* 4.48x 1072 288x 1072 4.63x10* 1.05x 107!
FNN-JADE 146 x 1072 3.54x 107 4.81x 1072 3.46x 1072 2.66x 10 1.29x 107!
FNN-SHADE 1.17x107%2 1.41x10™* 391x1072 279x102 8.67x10™* 1.06x 107!
FNN-SAPDE 1.10x 107! 1.31x10™* 1.88x 107" 238x 107" 536x10° 5.28x 107!
FNN-GA 8.98x 1072 7.43x1072 927x1072 235x 107! 1.88x 107! 273 x 107!
FNN-PSO 206x 1072 553x107° 7.61x1072 525x10% 6.80x10* 2.30x 107!
FNN-SSA 1.50x 107" 1.96x 1072 1.85x 107" 529x 107" 3.96x 107 5.87x 107!

Table 6 reports the relative errors for test configuration 1, where the true conductivities are o} = 1
and o, = 6.3. Among the proposed algorithms, FNN-SADE, FNN-JADE, FNN-SHADE, and FNN-
PSO consistently achieved near-perfect values across all metrics, indicating stable performance. FNN-
DE also performed well but showed minor deviations, while FNN-SAPDE, FNN-GA, and FNN-SSA
resulted in larger errors.

For configuration 2, where the true conductivity is oy = 7, Table 7 shows that FNN-DE achieved the
lowest average and worst-case relative errors, indicating stable performance. While FNN-SSA attained
the lowest best-case error, it has a higher variability across trials. FNN-SAPDE followed closely,
with competitive best and average errors but slightly less consistency in the worst case. FNN-GA
produced a strong best-case result, but its higher average error suggests occasional poor convergence.
In contrast, FNN-SADE, FNN-JADE, FNN-SHADE, and FNN-PSO all converged to nearly identical
values close to the lower bound of the search range, resulting in uniformly high relative errors across
trials, indicating poor exploration of the solution space.

Table 7. Relative error of conductivity values in test configurations 2 and 3. For the average
and best-case errors, blue values indicate the top three per configuration; the best is also bold.

Configuration 2 Configuration 3

o1-Relative Error o1-Relative Error
Algorithm Average Best Worst Average Best Worst
FNN-DE 250x 1071 2.80x 1072 2.86x 107" 1.92x 107" 6.84x10™* 2.86x 107!

FNN-SADE 141 x 1077 253x 107 2.86x 107" 1.39x 107" 620x 107 2.86x 107!
FNN-JADE 1.61 x 107" 1.95x 1072 2.86x 107! 1.32x 107" 241x 107 2.86x 107!
FNN-SHADE 1.54x 107! 1.84x 107 2.86x 107" 137x107! 1.86x10™% 2.86x 107!
FNN-SAPDE 1.78 x 107! 8.18 x 10 2.86 x 107" 2.03x 107" 6.83x 107 2.86x 107!
FNN-GA 1.50x 107" 4.91x 107 2.80x 107" 1.54x 107" 897x 107 2.86x 107!
FNN-PSO 1.17x 107" 9.77x 107 276 x 107" 131x107' 8.03x 107 2.81x10!
FNN-SSA 279%x 107" 1.84x 107" 2.86x 107" 286x 107" 2.86x 107" 2.86x 107!
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Table 8. Relative error of conductivity values in test configuration 4. For the average and
best-case errors, blue values indicate the top three per configuration; the best is also bold.

o 1-Relative Error o»-Relative Error
Algorithm Average Best Worst Average Best Worst
FNN-DE 1.42%x 107" 5.14x 107 5.00x 107! 9.87x 1072 2.68x 1072 1.99x 107!

FNN-SADE  230x 107" 2.84x107 5.00x 10" 1.29x 107" 2.00x10™* 3.75x 107!
FNN-JADE 1.99x 107! 419x10* 500x 107" 146x 107" 1.50x 107 3.72x 107!
FNN-SHADE 2.13x 107" 135x 107 4.83x107' 1.14x107" 2.02x10™* 3.70x 107!
FNN-SAPDE 2.73x 107! 1.32x 107 5.00x 107" 1.83x107! 244x1072 3.75x 107!
FNN-GA 229%x 107" 838x 1072 4.99x 107" 1.53x 107" 258 x 107 3.75%x 107!
FNN-PSO 1.64x 107" 7.27x10™* 490x 107" 122x 107" 290x 107 3.41x 107!
FNN-SSA 1.18x 107" 1.10x 107" 5.00x 107" 416x 1072 3.99x 1072 1.25x 107!

For configuration 3 (Table 7), with a single inclusion of true conductivity oy = 7, FNN-DE achieved
the most accurate average and best-case estimates but showed variability in the worst case. FNN-JADE
and FNN-SAPDE also achieved accurate best cases but had large worst-case errors. On the other hand,
FNN-SADE, FNN-SHADE, FNN-GA, FNN-PSO, and FNN-SSA frequently converged to boundary
values, yielding high average errors.

In configuration 4 (Table 8), where the goal is to simultaneously recover oy = 6 and o, = 8,
the best conductivity estimates were close to the true solution for most algorithms. However, the
worst estimates often hit the endpoints of the search space. The average conductivity pairs from the
algorithms deviated slightly from the true values, reflecting the difficulty in consistently recovering
both conductivity values accurately.

FNN-DE FNN-SADE FNN-JADE FNN-SHADE FNN-SAPDE

FNN-GA FNN-PSO FNN-SSA CNN-SHADE FEM-SHADE

Figure 7. Overlay of predicted inclusions for configuration 2. The red dashed lines represent
the true location and size.
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Figure 8. Overlay of predicted inclusions for configuration 3. The red dashed lines represent
the true location and size.
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Figure 9. Overlay of predicted inclusions for configuration 4. The red dashed lines represent
the true location and size.

While these tables show how accurately the proposed algorithms can capture the conductivity
values, these metrics do not fully capture the spatial quality of reconstructions. The geometry of the
inclusions also plays a crucial, if not more significant, role. The overlay plots further illustrate how
well the algorithms recover the geometric features of the true conductivity distribution. In first
configuration, the geometry was fixed, and only the conductivity values varied. Figures 7-9 show the
overlay of the predicted geometries for each algorithm across the last three test configurations with
the red dashed lines representing the true inclusions. These overlays provide insight into how well
each GOA, coupled with the pretrained FNN model, can recover not only the conductivity values but
also the geometric features of the inclusions.

In general, FNN-JADE, FNN-SADE, and FNN-SHADE produced the most accurate geometric
reconstructions, with the predicted shapes closely matching the true boundaries. The overlays for FNN-
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PSO also show reasonable agreement but with some runs experiencing more geometric distortions.
FNN-DE and FNN-GA showed more spread and less precision in shape recovery, while FNN-SAPDE
and FNN-SSA consistently produced scattered and inaccurate geometric reconstructions, highlighting
their poor performance.

For the second configuration, the inclusions recovered by most algorithms were relatively accurate,
with FNN-JADE, FNN-SADE, and FNN-SHADE yielding the cleanest match to the ground truth.
However, as the geometric complexity increased, differences among the algorithms became more
pronounced. In the most complex case, FNN-SHADE remained the most consistent, while FNN-SSA
and FNN-SAPDE struggled, producing significant deviations and noise.

Table 9 presents the average MSEs between the true and predicted conductivity distributions for
each algorithm across four test cases. In the first configuration, FNN-SADE achieved the lowest
MSE, followed by FNN-SHADE and FNN-PSO. All three produced near machine-precision errors,
indicating highly accurate reconstructions. FNN-JADE also performed well but ranked lower.
FNN-DE and FNN-SAPDE had moderate errors, while FNN-GA and FNN-SSA showed the highest.

Table 9. Average MSE between the true and predicted conductivity distributions for each
algorithm across all configurations. Blue values indicate the top three per configuration; the
best is also bold.

Algorithm Configuration 1 Configuration 2 Configuration 3 Configuration 4
FNN-DE 4.36480 x 1073 5.12737 x 107! 1.65458 x 10° 1.45083 x 10!
FNN-SADE 3.72352 x 1073 2.33875 x 107! 9.24779 x 107! 4.51386 x 10°
FNN-JADE 5.57131 x 1073 2.29579 x 101 8.03804 x 107! 4.45917 x 10°
FNN-SHADE 3.28988 x 103 2.32966 x 10! 6.99476 x 10! 4.32549 x 10°
FNN-SAPDE 1.96785 x 107! 2.52605 x 10° 3.64952 x 10° 6.40001 x 10°
FNN-GA 1.50517 x 107! 4.42862 x 107! 1.33081 x 10° 7.64654 x 10°
FNN-PSO 1.34703 x 1072 3.58233 x 107! 1.42353 x 10° 2.89318 x 10!
FNN-SSA 8.09906 x 107! 2.19800 x 10° 9.75441 x 10° 5.57908 x 10!
CNN-SHADE 6.51363 x 10~ 1.66176 x 107! 4.15736 x 107! 2.93994 x 10°
FEM-SHADE 2.32199 x 1073 2.28066 x 107! 3.85457 x 107! 2.81672 x 10°

In the second configuration, FNN-JADE, FNN-SADE, and FNN-SHADE were the top performers.
FNN-PSO and FNN-DE produced moderate errors. FNN-SAPDE, FNN-GA, and FNN-SSA had
significantly higher MSEs, with FNN-SSA performing worst.

In the third configuration, FNN-SHADE ranked first, followed by FNN-JADE and FNN-SADE.
FNN-PSO and FNN-DE produced acceptable results, while FNN-SAPDE and FNN-SSA had the
largest errors. Finally, in the fourth configuration, FNN-SAPDE achieved the lowest MSE, followed
by FNN-SHADE and FNN-SADE. FNN-JADE and FNN-PSO showed moderate accuracy. FNN-DE
and FNN-GA had larger errors, and FNN-SSA again recorded the highest. It is important to note that
FNN-SAPDE achieved the lowest MSE even though it failed to correctly identify several
inclusions—most predicted radii were close to zero (i.e., < 107°), effectively omitting them. This
apparent contradiction arises because the MSE metric evaluates the difference between predicted and
true conductivity values across the domain, not the presence or absence of geometric structures. In
this case, since inclusions occupy a relatively small area, omitting them can still result in a low
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average error across the entire domain. However, this comes at the cost of geometric fidelity.

Overall, among all algorithms evaluated, FNN-SHADE consistently demonstrated strong
performance across all test configurations. It ranked within the top three in every configuration and
achieved the lowest MSE in configuration 3, and second-lowest in configurations 1 and 4. This
consistency underscores the robustness of FNN-SHADE in handling a range of conductivity
distributions, including both simple and complex scenarios. FNN-SADE also performed strongly,
achieving the lowest MSE in configuration 1. FNN-JADE ranked in the top three in two out of four
configurations, indicating good but slightly less consistent performance compared to FNN-SHADE
and FNN-SADE. In contrast, FNN-SSA consistently recorded the highest MSE values in all test
configurations, indicating limited reconstruction accuracy and suggesting poor adaptability to varying
conductivity profiles. We attribute this weaker performance of SAPDE and SSA to the aggressive
self-adaptation and cooling schedules used by these algorithms. When parameters such as population
size or temperature are adapted too quickly, the resulting loss of population diversity in early
generations can drive premature convergence and collapse to suboptimal or trivial solutions. This
effect is amplified in EIT because the objective surface contains large, flat regions where insufficient
diversity prevents the optimizer from escaping uninformative areas of the search space. Moreover,
using a neural forward surrogate introduces small approximation errors relative to FEM. In variants
that rely heavily on parameter adaptation, these perturbations can shift the search process toward
regions of the solution space that contain low-quality or misleading solutions. In contrast, SADE,
JADE, and SHADE combine success-based parameter adaptation with explicit diversity mechanisms,
sustaining exploration on the broad plateaus of the EIT objective function. The other optimizers we
tested—original DE, GA, and PSO—also maintain more robust diversity, which allows ongoing
exploration even late in the search and makes them less prone to collapse on the highly flat landscape
of the EIT inverse problem. These differences mainly reflect the stochastic nature of evolutionary
optimization.  Different global optimization algorithms balance exploration and exploitation
differently, leading some to stable reconstruction and others to premature convergence.

While MSE provides insight into overall electric potential prediction accuracy, it does not fully
capture how well the shape and location of internal inclusions are reconstructed. To address this,
we evaluate each algorithm using the IoU metric. Table 10 presents the average IoU scores for each
algorithm across configurations 2 to 4. These values quantify the geometric accuracy of the predicted
inclusions relative to the ground truth, that is, how well each algorithm recovers the shape and location
of the inclusions.

As shown in the Table 10, the average IoU for FNN-SAPDE for configuration 4 was only 0.03126,
indicating that it failed to capture the inclusion shapes and locations. In contrast, FNN-SHADE
achieved a higher MSE but correctly reconstructed the inclusion geometry, yielding the highest IoU
score of 0.66668. This geometric accuracy is critical in many practical applications.

Among the FNN-based methods, FNN-SHADE achieved the highest IoU scores in
configurations 3 and 4, and was nearly tied for best in configuration 2, confirming its superior
capability in geometric reconstruction. In contrast, algorithms like FNN-SAPDE and FNN-SSA
recorded significantly lower IoUs, indicating poor inclusion localization. While FNN-SADE and
FNN-JADE also yielded competitive results, their performance was slightly less consistent
across configurations.
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Table 10. Average IoU scores for each algorithm across configurations 2—-4. Higher IoU
indicates better geometric accuracy in identifying inclusions. Blue values indicate the top
three among the proposed FNN-based algorithms per configuration; the best is also bold.

Algorithm Configuration 2 Configuration 3 Configuration 4
FNN-DE 0.83193 0.53134 0.14784
FNN-SADE 0.89785 0.78256 0.26304
FNN-JADE 0.89495 0.79737 0.31893
FNN-SHADE 0.89239 0.82861 0.29308
FNN-SAPDE 0.03160 0.03664 0.06336
FNN-GA 0.75788 0.65680 0.28147
FNN-PSO 0.80958 0.66987 0.15536
FNN-SSA 0.00000 0.27418 0.09397
CNN-SHADE 0.92415 0.89331 0.57278
FEM-SHADE 0.87885 0.90709 0.57317

As illustrative examples, Figures 10 to 13 present the reconstructions with the lowest MSEs for each
test configuration. For the configuration 1 with fixed geometry, the conductivity has values that closely
match the ground truth. For configurations 2 and 3, the recovered inclusion’s location, size, shape,
and conductivity from most algorithms agree closely with the targets, with residuals concentrated only
along thin boundary interfaces. On the other hand, for configuration 4, only FNN-SADE, FNN-JADE,
FNN-SHADE, CNN-SHADE, and FEM-SHADE were able to recover the approximate location, size,
shape, and conductivity values of both the inclusions. These examples are consistent with the findings
in Tables 9 and 10.

0’ %? e

FNN-GA FNN-PSO FNN-SSA CNN-SHADE FEM-SHADE

£

25

Figure 10. Reconstructions with the lowest MSE value for configuration 1.
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Figure 11. Reconstructions with the lowest MSE value for configuration 2.
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Figure 12. Reconstructions with the lowest MSE value for configuration 3.
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Figure 13. Reconstructions with the lowest MSE value for configuration 4.
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Table 11 presents the computational time (in seconds) required to solve the EIT inverse problem
using different methods across all configurations. Among these, FEM-SHADE consistently required
the highest computational cost. The results clearly show that the neural network-based models,
combined with various GOAs, offer significant computational advantages. Across all configurations,
the FNN-based methods required only around 6 to 38 seconds depending on the complexity of the
configuration and the specific GOA used. CNN-SHADE, which incorporates convolutional layers,
was considerably slower—ranging from 69 to 125 seconds—due to the added computational
overhead. While CNN-SHADE achieves good accuracy, it is consistently outpaced by FNN-SHADE
in runtime. In the same vein, FEM-SHADE, which directly solves the forward problem using the
finite element method, required substantially more time—reaching up to 1618 seconds in
configuration 4.

Table 11. Runtimes (in seconds) taken in solving the EIT inverse problem using variants of
the proposed algorithm. Blue values indicate the top three algorithms per configuration; the
best is also bold.

Algorithm Configuration 1 Configuration 2 Configuration 3 Configuration 4
FNN-DE 6.59874 14.51166 23.82091 34.88486
FNN-SADE 6.72153 14.54692 23.88585 35.82462
FNN-JADE 7.59279 15.74757 25.22329 37.75088
FNN-SHADE 7.99827 16.08827 25.46233 37.69826
FNN-SAPDE 7.33459 15.14424 25.00183 36.85576
FNN-GA 7.95353 14.85899 24.25379 35.51946
FNN-PSO 6.59445 14.16006 23.10202 34.35080
FNN-SSA 6.96922 14.86165 24.04540 34.02391
CNN-SHADE 96.59271 69.17885 77.48984 124.02645
FEM-SHADE 1346.48680 942.14251 1560.33578 1618.48402
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Figure 14. Reconstruction results of configuration 1 using different mesh sizes with matched
forward and inverse meshes to evaluate discretization errors. The red dashed line represents
the true solution, the green triangles indicate the mean, and the orange line marks the median.

This stark difference in computational cost highlights the strength of using FNN models for the
EIT problem. The FNN-based approach drastically reduces runtime while maintaining an accuracy
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comparable to FEM, especially beneficial when solving large-scale or computationally demanding
problems. The reduced time is crucial for practical applications where repeated runs and real-time
performance are necessary.  Meanwhile, the slight variation in runtime among the neural
network-based GOAs reflects their inherent stochastic nature and convergence behavior, but all
remain significantly faster than FEM-SHADE. This efficiency gain, combined with acceptable
accuracy, makes FNN-SHADE a practical and powerful tool for EIT.
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Figure 15. Reconstruction results of configurations 2, 3, and 4 using different mesh sizes
with matched forward and inverse meshes to evaluate discretization errors. The red dashed
line represents the true solution, the green triangles indicate the mean, and the orange line
marks the median.
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In addition to the MSE and IoU, we generated box plot visualizations to illustrate in Figures 14
and 15 the spread of the recovered parameters associated to the reconstructed inclusions. This allows
us to assess accuracy (proximity of means to true values) and stability (width of confidence intervals
and presence of outliers).

In configuration 1, the box plots reveal that almost all algorithms produce parameter estimates very
close to the true solution, with narrow confidence intervals across both conductivity parameters. This
indicates that the reconstructions are highly stable and consistent regardless of the optimizer used.
Only a few isolated outliers appear across the algorithms, but their effect on the median and mean
values is minimal.

In configuration 2, the box plots show that the geometric parameters &, k, and r have very tight
confidence intervals around the true values for almost all algorithms, indicating stable reconstructions
across runs and minimal sensitivity to stochastic effects. On the other hand, the spread for o is
noticeably larger. This is likely due to the boundary electric potential being less sensitive to
conductivity than to geometric parameters, causing the global optimization algorithms to shift their
focus toward optimizing the latter. That said, FNN-SHADE, CNN-SHADE, and FEM-SHADE all
maintain mean values that remain very close to the true solution. This pattern demonstrates that, for
this configuration, all methods converge reliably on the geometric parameters and that the
best-performing optimizers also achieve accurate conductivity estimate.

In configuration 3, the mean estimates of 4, k, r;, and r, obtained by FNN-SHADE, CNN-SHADE,
and FEM-SHADE were very close to the desired values. The confidence intervals around these means
were narrow with only a few outliers, indicating consistent performance across runs even under varying
noise. For the rotation angle 6§, FNN-SHADE produced a mean still close to the true value but exhibited
a few farther outliers compared with CNN-SHADE and FEM-SHADE. For the conductivity parameter
01, all three methods performed similarly, with comparable means and spreads.

In configuration 4, which involves two inclusions but with different geometry and placement, A,
ki, and r; again had means close to the true values with narrow confidence intervals, confirming stable
recovery of the primary inclusion. However, for h,, k;, r»2,, and r,;,, the means were somewhat farther
from the desired values and the distributions showed more outliers, reflecting the increased difficulty
of estimating the second inclusion under noise. The rotation angle 8 had a slightly biased mean, with
FEM-SHADE achieving the closest alignment to the true value, suggesting its advantage in angular
estimation. For the conductivities oy and o7, both inclusions yielded mean values near seven. This
convergence, as well as the inaccuracies in the geometry and placement, likely results from occasional
switching of the location of the two inclusions and associated conductivity labels across runs.

It is important to note that for some parameters and configurations, solutions tend to be toward the
endpoints of the bounds. We attribute this to mealpy’s default handling of boundary conditions, which
clips any candidate outside the search limits to the nearest bound.

The reconstruction metrics (MSE and IoU) and box plot visualizations show how reconstruction
uncertainty grows with problem complexity, yet the results remain generally stable, highlighting
where the proposed methods are most reliable and where additional modeling or regularization may
be beneficial.

Overall, FNN-SHADE demonstrated superior accuracy and robustness in both conductivity
recovery and geometric reconstruction, making it the most reliable algorithm for solving the EIT
inverse problem in this study. While FNN-SADE and FNN-JADE also performed well, FNN-SHADE
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consistently delivered the more accurate and stable reconstructions.

In terms of computation time, FNN-SHADE achieved substantial speedups compared to
CNN-SHADE and FEM-SHADE across all four configurations. In Configuration 1, it was about 12
times faster than CNN-SHADE and more than 168 times faster than FEM-SHADE. In the second
configuration, the gains remained significant, with FNN-SHADE being over 4 times faster than
CNN-SHADE and nearly 59 times faster than FEM-SHADE. For Configuration 3, it ran about 3
times faster than CNN-SHADE and over 61 times faster than FEM-SHADE. Finally, in the fourth
configuration, FNN-SHADE was more than 3 times faster than CNN-SHADE and about 43 times
faster than FEM-SHADE. These results highlight the considerable computational advantage of
FNN-SHADE in solving the inverse EIT problem.

Given its consistent performance and substantial computational advantage across all configurations,
we focus on FNN-SHADE in the subsequent experiments.

4.3. Varying mesh size

To assess the influence of discretization error, model mismatch, and electrode uncertainties, we
trained and tested our inverse models on four distinct mesh resolutions (26 x 26, 51 x 51, 101 x 101,
201 x 201) using the corresponding meshes for the inverse problem.

In Figure 16, the boxplots for A, k, and r across the four mesh resolutions reveal a clear and
consistent pattern. There is a slightly larger spread at the coarsest mesh, tighter interquartile ranges at
intermediate and fine meshes, and stable central tendencies very close to the true values at all mesh
sizes. This convergence indicates that geometric parameters become more accurate and stable as
discretization error diminishes. In contrast, o retains a larger absolute variance but maintains its
mean near the true value across all meshes. In terms of computational costs, the forward model
training became progressively slower with increasing mesh resolution, whereas inverse
reconstructions across all tested mesh sizes required a similar average runtime of about 16 seconds
per run.
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Figure 16. Reconstruction results using different mesh sizes with matched forward and
inverse meshes to evaluate discretization errors. The red dashed line represents the true
solution, the green triangles indicate the mean, and the orange line marks the median.

To examine potential inverse crime effects, we also tested our inverse solvers on voltage data
generated on a finer grid. Specifically, the true simulated voltage data came from a 101 x 101 grid,
while the inverse solvers operated on coarser grids (either 51 x 51 or 26 x 26). This setup allowed us
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to observe how differences between the data generation mesh and the inversion mesh influenced
reconstruction stability and accuracy. The results in Figure 17 showed that, despite the mismatch
between meshes, the reconstructed geometric parameters remained stable and close to the true values,
indicating that the approach is reasonably robust to mesh discrepancies.
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Figure 17. Comparison of reconstruction results when using coarser inverse meshes on data
simulated on a finer mesh to evaluate inverse crime effects. The red dashed line represents
the true solution, the green triangles indicate the mean, and the orange line marks the median.

4.4. Uncertainty quantification in the applied current

In Figure 18, the box plots comparing the original and perturbed current injection patterns serve as
an additional validation step and provide an uncertainty analysis by showing the effect of current
perturbations on the estimated parameters. For A, k, and r, the central tendencies remain essentially
unchanged between the two current configurations, indicating that the model generalizes well to
unseen boundary excitations. Variability increases slightly under the perturbed pattern—especially for
r—but the spread remains small and the estimates continue to cluster near the true values. Similarly,
o shows the largest absolute variance but retains its mean and median across both current patterns.
These findings show that introducing perturbed current injection patterns produced no meaningful
degradation in performance compared to the unperturbed case, suggesting that the reconstructions are
robust to electrode-related uncertainties such as placement shifts, contact impedance, and imperfect
current delivery, and also partially simulate model mismatch between training and testing
forward operators.
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Figure 18. Comparison of results using the original current pattern and the perturbed current
pattern. The red dashed line represents the true solution, the green triangles indicate the
mean, and the orange line marks the median.
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Overall, the combined results from mesh variation, perturbed excitations, and added Gaussian
noise show that our inverse model is robust to discretization error, electrode-related variability, and
differences in boundary conditions. The method consistently recovers geometric parameters across
diverse conditions and maintains reasonable stability for conductivity, indicating strong generalization
beyond the specific forward configurations used in training.

5. Conclusions

This paper presents a hybrid framework for solving the forward and inverse problems in EIT,
combining deep neural networks and DE. The neural networks were trained to approximate solutions
for the forward problem across diverse geometric configurations, while DE, its variants, and other
optimization algorithms were used for reconstructing the internal conductivity distribution in the
inverse problem. This integrated framework addresses the ill-posedness of the EIT inverse problem,
with the global search capability of DE overcoming the limitations of gradient-based methods that
tend to stagnate in flat regions of the neural network-based objective function. Among the
optimization techniques explored, SHADE outperformed the others.

FEM served as a benchmark for SHADE’s performance in solving the inverse problem. A
comparison of the FNN, CNN, and FEM approaches revealed key insights into their respective
strengths and limitations, highlighting the trade-offs between efficiency and accuracy. Although FEM
and CNN excelled in terms of accuracy, their slower implementation made it less suitable for
real-time inverse problem solving. The FNN-SHADE framework has the potential for accurate and
efficient reconstructions, emphasizing the promise of integrating machine learning with evolutionary
optimization in EIT applications.

There are several directions for future research and improvement in this area of study. One
potential avenue is the refinement of hyperparameter tuning specifically tailored to each
configuration. By conducting more targeted and configuration-specific hyperparameter optimization,
it may be possible to further improve the performance of optimization algorithms and the accuracy of
neural network predictions. Future work may also explore alternative activation functions beyond
ReLU to better capture sharp conductivity transitions and potentially reduce estimation errors near
discontinuities. Furthermore, hyperparameter tuning for the optimization algorithms could further
improve reconstruction accuracy and reduce computational costs. In addition, evaluating a broader
range of optimization algorithms, including other SHADE variants such as L-SHADE, and
experimenting with different Python optimization packages as well as boundary constraint handling
strategies may provide further improvement in performance and robustness.

Another important area for future work involves extending the study to more complex scenarios,
such as those involving more than two inclusions. These configurations introduce even more
complexities of the conductivity distribution. A more diverse dataset along with improved
optimization techniques will be required to effectively handle these configurations.

Another key direction is to validate the proposed framework on experimental and clinical EIT
datasets. While the present study relied on simulated data to maintain full control over ground-truth
conductivity distributions and ensure consistency across experiments, future work will extend the
framework to real-world data to demonstrate robustness and practical applicability. In addition,
establishing a standardized benchmark across different EIT reconstruction methods would enable fair
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comparisons between fundamentally different frameworks. Designing such a benchmark is beyond
the scope of the present study but represents a natural and important next step.

Lastly, it would be worth considering using physics-informed neural networks (PINNs) or their
variations, as opposed to traditional artificial neural networks. These incorporate physical laws
directly into the neural network structure and have shown great promise in solving inverse problems,
particularly when dealing with differential equations and boundary conditions. Employing PINNs or
similar approaches could potentially lead to more accurate and robust solutions, as they are designed
to leverage already-known physics alongside data-driven learning.
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