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Abstract: Using an optimal control framework, the optimization of production and maintenance
processes is investigated in this paper. We focused on analyzing system behavior, managing costs, and
controlling quality. Differential equations are utilized to model the relationship between inventory level,
production, and maintenance strategies. A cost function is built combining different cost elements, and
the optimal production and maintenance rates were obtained. A sensitivity analysis is performed to
assess the impact of different parameters on the total cost and on the optimal solution. The key findings
demonstrated that higher initial inventory levels significantly decreased long-term costs and improved
production efficiency. The optimal preventive maintenance strategy emphasized the importance of early
investments in quality and maintenance, leading to sustained operational stability.
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1. Introduction

The last couple of decades have seen a large number of researchers emphasizing the integration of
two or more models into a single one to coordinate the efforts of two or more functions in a firm. Indeed,
as shown in many studies, decision making in an integrated model can lead to significant savings over
decision making in the separate models. The integrated models we have in mind are the production
planning model and the maintenance model. This integrated model has been largely studied, see for
example the overviews of Ben-Daya and Rahim [1] and Van Horenbeek et al. [2]. The model of interest
to us was introduced by Cho et al. [3]. The performance of the production process they considered
worsens over time in the absence of maintenance. They measured the performance of the process in
terms of the proportion of ‘good’ (non-defective) units produced.

Using the maximum principle, the authors obtained the necessary conditions for the controls (pro-
duction rate and preventive maintenance rate) to be optimal in the case of a quadratic production cost
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function and linear maintenance cost function. They used a two-stage algorithm, tailored to this problem,
to solve for the optimal controls.

This model has been further investigated by other researchers. Maurer et al. [4] studied the same
model under different cost structures. They used a second order sufficiency test to prove optimality
of the computed controls. The dynamics of the model were also studied by Bukhari [5] who used
an adaptive control approach. Assuming a system of the tracking type, Bukhari and El-Gohary [6]
substituted a tracking error objective function for the profit objective function of Cho et al. [3]. They
also used the maximum principle to obtain the optimal production and maintenance rates. Besides
production and maintenance, Li [7] incorporated emission tax and pollution R&D investment. Again,
the maximum principle was used to derive the optimal production rate, the optimal maintenance rate,
and the optimal pollution R&D investment rate.

Our intention in this paper is to further investigate the model of Cho et al. [3] in the following two
ways: 1) By generalizing the model; and 2) by applying a different solution technique.

Concerning the model, first we introduce the deterioration of items while in stock. This is a very
important topic in inventory theory as shown by the numerous survey papers that have been written
on the subject. The field of deteriorating and perishable inventory models has undergone substantial
evolution, as detailed in several comprehensive reviews. Bakker et al. [8] and Janssen et al. [9] analyze
developments in inventory systems since the early 2000s, focusing on deterioration rates, demand
variability, and supply chain coordination. These reviews highlight the importance of incorporating
realistic assumptions and the potential for empirical studies to enhance model applicability. Goyal and
Giri [10] and Raafat [11] provide foundational insights, mapping the trajectory of inventory models that
address perishability and the economic implications of inventory deterioration.

In more recent analyses, Chaudhary et al. [12] and Kaushik [13] examine inventory models tailored
for perishable products, emphasizing the role of time-dependent demand, shelf life, and pricing strategies.
These reviews underscore the necessity of sophisticated models to reduce waste and optimize inventory
levels, suggesting that integrating stochastic elements and customer behavior can further enhance model
robustness. Li et al. [14] also contribute by reviewing the various replenishment policies and demand
types, offering a comprehensive overview of the deteriorating inventory models and their applications.

Additionally, Karaesmen et al. [15] and Pahl and Voß [16] delve into the management of perishable
and aging inventories, discussing the integration of deterioration and lifetime constraints in production
and supply chain planning. Their work emphasizes dynamic models that adapt to changing conditions
and the potential of big data and machine learning to refine inventory management. Nahmias [17]
provides a classic review of perishable inventory theory, setting a foundation for understanding early
inventory policies. Sharan and Sayyed [18] conclude with a focus on mathematical approaches to
deteriorating inventory models, advocating for optimization algorithms and simulation techniques to
advance the field further.

Thus, not only does the process deteriorate over time, but the end product also deteriorates while
it is on the shelves. Second, we use a more general cost function of which the objective function of
Cho et al. [3] is a special case. Third, we assume that all the exogenous parameters involved (items
deterioration rate, obsolescence rate of process performance in the absence of maintenance, and demand
rate) are general functions of time.

Concerning the solution method, Cho et al. [3] used an algorithm that was adapted to their control
problem. In contrast, we employ the nonlinear model predictive control (NMPC), which seems
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particularly well-suited to control a dynamic model with nonlinear constraints and an objective function.
We notice that our work treats the model introduced and studied in Cho et al. [3]. We tried to refer to

all the relevant works studying the same model such as the ones cited in the introduction. Unfortunately,
we found in the literature a small number of works on this subject and we are trying to expand the utility
of their model in the hope that it will attract other researchers to work on the same topic.

2. Model building

We will be following the notation of Cho et al. [3] as much as possible. Let θ(t), α(t), and s(t) denote
the items deterioration rate at time t, the obsolescence rate of process performance in the absence of
maintenance (non-decreasing function of time), and demand rate at time t, respectively. The state of the
system is described by the state variables x(t) and p(t) (0 ≤ p(t) ≤ 1), which denote the inventory level
at time t and the proportion of good units of end items produced at time t, respectively. Control over the
system is achieved through the control variables u(t) and m(t), representing the scheduled production
rate at time t and maintenance rate applied at time t, respectively.

Next, we derive the equations that describe the dynamics of the inventory level and the proportion of
good units produced over time in the production system in response to production rates, maintenance
activities, demand, and deterioration. For the inventory dynamics, we note that the inventory increases
at a rate proportional to the product of the proportion of good units produced, p(t), and the scheduled
production rate, u(t); and the inventory decreases due to demand, s(t), and the deterioration of items in
stock at a rate of θ(t)x(t). Therefore, the change in the inventory level, ẋ(t) is such that:

ẋ(t) = p(t)u(t) − s(t) − θ(t)x(t), x(0) = x0. (2.1)

For the production quality dynamics, we note that the proportion of good units decreases at a rate
dependent on the obsolescence of the production process, α(t), and the maintenance rate, m(t), both
of which reduce p(t); and the maintenance efforts, m(t), also contribute positively to the proportion of
good units. Therefore, the change in the proportion of good units produced, ṗ(t), is such that:

ṗ(t) = −[α(t) + m(t)]p(t) + m(t), p(0) = p0. (2.2)

Here, the initial inventory level at time t = 0 is given by x0 and the initial proportion of good units at
time t = 0 is given by p0.

To determine the optimal production and maintenance cost, we follow the same idea as in Cho et
al. [3] and minimize the prediction horizon a cost function that is a combination of various cost elements,
namely production, inventory, and maintenance. The forms of the cost elements are taken from Cho et
al. [3] in nonlinear forms.

The first cost element penalizes the production of defective items, encouraging the system to maintain
a high p(t) (i.e., a high proportion of good units). Since p(t) is the proportion of good units produced,
1 − p(t) is the proportion of defective units. Multiplying the production rate u(t) by 1 − p(t) gives
the rate at which defective items are produced. Letting w represent a cost factor that quantifies the
cost associated with producing defective items, the cost associated with the production of defective or
substandard items during the time interval [t0, t0 + T ] is given by∫ t0+T

t0

[
w(1 − p(t))u(t)

]
dt.
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The second cost element penalizes high inventory levels, encouraging the system to avoid excess
inventory. Using a quadratic function to account for increasing costs due to higher levels of inventory
(e.g., storage, spoilage, or insurance costs), the inventory holding cost during the time interval [t0, t0 +T ]
is given by ∫ t0+T

t0

[
h1x(t) + h2x2(t)

]
dt,

where h1, h2 > 0.
The third cost element balances the cost of production, discouraging both excessive production

(due to the quadratic term) and underproduction (which could lead to unmet demand). Using again a
quadratic cost to reflect possible increasing marginal costs at higher production rates (e.g., overtime pay,
wear and tear on machinery), the production cost during the time interval [t0, t0 + T ] is given by∫ t0+T

t0

[
r1u(t) + r2u2(t)

]
dt,

where r1, r2 > 0.
The fourth cost element controls the maintenance activity, balancing the cost of maintenance against

the need to maintain a high p(t) by preventing obsolescence (managed by m(t)). Using again a quadratic
cost to account for the fact that aggressive maintenance might incur higher costs (e.g., more frequent
servicing, downtime), the production cost during the time interval [t0, t0 + T ] is given by∫ t0+T

t0

[
c1m(t) + c2m2(t)

]
dt,

where c1, c2 > 0.
Combining these cost elements, we write our objective function as

J :=
∫ t0+T

t0
F(t)dt, (2.3)

where

F(t) = w (1 − p(t)) u(t) +
[
h1x(t) + h2x2(t)

]
+
[
r1u(t) + r2u2(t)

]
+
[
c1m(t) + c2m2(t)

]
. (2.4)

By taking into account production quality, inventory costs, production costs, and maintenance costs, our
objective is to find the optimal balance between production, inventory, and maintenance activities that
minimizes the total cost over the time period of interest.

3. Model solution

We are faced with the problem of minimizing the cost function (2.3) subject to the state equations
(2.1) and (2.2). We proceed using the trapezoid formula to calculate the integral. For simplicity, we will
be writing t instead of t0. Let n be a positive integer and divide the interval [t, t + T ] into n sub-intervals

Electronic Research Archive Volume 33, Issue 1, 277–293.



281

of equal length h = T
n . Then, by the trapezoid formula for n intervals, the objective function (2.3) can be

approximated as follows:

J ≃
h
2

F(t) + 2
n−1∑
i=1

F(t + ih) + F(t + nh)

 . (3.1)

To calculate the summation in expression (3.1) above, we apply the first-order Taylor approximation to
x(t + ih) and p(t + ih) to get:

x(t + ih) ≃ A1(t, i) + A2(t, i)u(t),

p(t + ih) ≃ C1(t, i) +C2(t, i)m(t),

where
A1(t, i) = x(t) − ih [s(t) + θ(t)x(t)] , A2(t, i) = ihp(t),

C1(t, i) = [1 − ihα(t)]p(t), C2(t, i) = ih[1 − p(t)].

Note that taking the square of x(t + ih) yields:

x2(t + ih) ≃ B1(t, i) + B2(t, i)u(t) + B3(t, i)u2(t),

where
B1(t, i) = A2

1(t, i), B2(t, i) = 2A1(t, i)A2(t, i), B3(t, i) = A2
2(t, i).

Substituting in (2.4), we get:

F(t + ih) = h1A1(t, i) + h2B1(t, i) + [h1A2(t, i) + h2B2(t, i)] u(t) + h2B3(t, i)u2(t)
+ {w [1 −C1(t, i)] + r1} u(t + ih) + r2u2(t + ih)
−wC2(t, i)m(t)u(t + ih) + c1m(t + ih) + c2m2(t + ih).

Let

A1(t) :=
n−1∑
i=1

A1(t, i); A2(t) :=
n−1∑
i=1

A2(t, i);

B1(t) :=
n−1∑
i=1

B1(t, i); B2(t) :=
n−1∑
i=1

B2(t, i); B3(t) :=
n−1∑
i=1

B3(t, i).

Then,

2
n−1∑
i=1

F(t + ih) ≃ 2h1A1(t) + 2h2B1(t) + [2h1A2(t) + 2h2B2(t)] u(t) + 2h2B3(t)u2(t)

+2
n−1∑
i=1

{w [1 −C1(t, i)] + r1} u(t + ih) + 2r2

n−1∑
i=1

u2(t + ih)

−2wm(t)
n−1∑
i=1

C2(t, i)u(t + ih) + 2c1

n−1∑
i=1

m(t + ih) + 2c2

n−1∑
i=1

m2(t + ih).
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Hence, substituting this expression in (3.1) yields

J ≃
h
2

[
h1x(t) + h2x2(t)

]
+

h
2

[h1A1(t, n) + h2B1(t, n)] + hh1A1(t) + hh2B1(t)

+
h
2
{
w
[
1 − p(t)

]
+ r1 + 2 [h1A2(t) + h2B2(t)] + h1A2(t, n) + h2B2(t, n)

}
u(t)

+h
n−1∑
i=1

{w [1 −C1(t, i)] + r1} u(t + ih) +
h
2

c1m(t) + hc1

n−1∑
i=1

m(t + ih)

−hwm(t)
n−1∑
i=1

C2(t, i)u(t + ih) +
h
2

[r2 + 2h2B3(t) + h2B3(t, n)] u2(t)

+hr2

n−1∑
i=1

u2(t + ih) +
h
2

c2m2(t) + hc2

n−1∑
i=1

m2(t + ih).

Therefore, using a matrix notation, we can write:

J ≃ C(t) +G⊤1 (t)U(t) +G⊤2 (t)M(t) − M⊤(t)Q12(t)U(t) + U⊤(t)Q1(t)U(t) + M⊤(t)Q2(t)M(t),

where

C(t) :=
h
2

[
h1x(t) + h2x2(t)

]
+ hh1A1(t) + hh2B1(t) +

h
2

[
h1A1(t, n) + h2A2

1(t, n)
]

;

U(t) :=
[
u(t), u(t + h), u(t + 2h), · · · , u(t + (n − 1)h)

]⊤
n×1

;

M(t) :=
[
m(t),m(t + h),m(t + 2h), · · · ,m(t + (n − 1)h)

]⊤
n×1

;

G1(t) :=
(
g(1)

i (t)
)

i=0,1,··· ,n−1
; G2(t) :=

(
g(2)

i (t)
)

i=0,1,··· ,n−1
;

Q1(t) := diag
(
q(1)

i (t)
)

i=0,1,··· ,n−1
; Q2(t) := diag

(
q(2)

i (t)
)

i=0,1,··· ,n−1
,

with

g(1)
i (t) =


h
2

{
w
[
1 − p(t)

]
+ r1 + 2 [h1A2(t) + h2B2(t)] + h1A2(t, n) + h2B2(t, n)

}
, i = 0,

h {w [1 −C1(t, i)] + r1} , 1 ≤ i ≤ n − 1;

g(2)
i (t) =


h
2c1, i = 0,

hc1, 1 ≤ i ≤ n − 1;

q(1)
i (t) =


h
2 {r2 + 2h2B3(t) + h2B3(t, n)} , i = 0,

hr2, 1 ≤ i ≤ n − 1;

q(2)
i (t) =


h
2c2, i = 0,

hc2, 1 ≤ i ≤ n − 1;
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Q12(t) :=


0 hwC2(t, 1) . . . hwC2(t, n − 1)

0 0 0 · · · 0 0

0 0 0 · · · 0 0


n×n

.

Simple computations permit us to write

A1(t) = [(n − 1) − hγ1θ(t)]x(t) − hγ1s(t) with γ1 :=
n−1∑
i=1

i =
n(n − 1)

2
;

B2(t) = 2h(γ1 − hθ(t)γ2)p(t)x(t) − 2γ2h2 p(t)s(t)

with γ2 :=
n−1∑
i=1

i2 =
n(n − 1)(2n − 1)

6
;

B3(t) = γ2h2 p2(t).

The unique global maximum of the objective function J is reached at the couple (U∗(t),M∗(t)), which is
the solution of the vectorial system of two equations:

G2(t) −Q12(t)U(t) + 2Q2(t)M(t) = 0, (3.2)
G1(t) −Q⊤12(t)M(t) + 2Q1(t)U(t) = 0. (3.3)

From (3.2) we have

U∗(t) =
1
2

Q−1
1 (t)Q⊤12(t)M∗(t) −

1
2

Q−1
1 (t)G1(t). (3.4)

Inserting (3.4) into (3.3), we obtain

M∗(t) =
[
2Q2(t) −

1
2

Q12(t)Q−1
1 (t)Q⊤12(t)

]−1 [
−

1
2

Q12(t)Q−1
1 (t)G1(t) −G2(t)

]
.

Substituting the value of M∗(t) in (3.4), we obtain the value of U∗(t) as follows

U∗(t) =
1
2

Q−1
1 (t)Q⊤12(t)M∗(t) −

1
2

Q−1
1 (t)G1(t).

Based on the principal of Model Predictive Control (MPC), only the first components m∗(t), u∗(t) of
M∗(t), U∗(t) are applied in the state equations (2.1) and (2.2), respectively. Then, by solving (2.1) and
(2.2) we get the optimal state variables x∗(t) and p∗(t). Therefore, we obtain

m∗(t) =
c1r2 + whγ1(w + r1)(1 − p(t)) + w2hp(t)(1 − p(t))

[
hγ2α(t) − γ1

]
w2γ2h2(1 − p(t))2 − 2c2r2

(3.5)

and

u∗(t) =
D1 + D2 p(t) + D3 p(t)x(t) + D4 p(t)s(t)

2r2 + D5 p2(t)
, (3.6)
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with

D1 := −w − r1,

D2 := w − hh1(2γ1 + n),
D3(t) := 2n2h2θ(t) − 2nh − 4hh2(γ1 − hγ2θ(t)),

D4 := 4h2h2γ2 + 2n2h2,

D5 := 2h2h2(n2 + 2γ2).

Inserting the previous explicit forms of m∗(t) and u∗(t) in the system of differential equations (2.1) and
(2.2) yields a system of nonlinear differential equations that can be solved numerically. We summarize,
in the following steps of the solution procedure:

Algorithm 1 Solution procedure
Input: System parameters: x0, p0, T , c1, c2, w, h1, h2, r1, r2, n.
Input: Auxiliary functions: s(t), α(t), θ(t).
Step 1: Select the system parameters x0, p0, T , c1, c2, w, h1, h2, r1, r2, n.
Step 2: Choose the auxiliary functions s(t), α(t), θ(t).
Step 3: Insert the optimal controls m∗ and u∗ from (3.5) and (3.6) into the differential system (2.1) and

(2.2).
Step 4: Solve the differential system obtained in Step 3 for the state variables.
Step 5: Substitute the state solutions obtained in Step 4 into (3.5) and (3.6) to compute the optimal

control variables.
Step 6: Calculate the optimal objective function value J∗ by substituting the optimal state and control

variables into the objective function (3.1).
Output: Optimal state and control variables (x∗, p∗, u∗,m∗) and the optimal objective function value J∗.

4. Illustrative example

Let us take the same data as in reference [3]. Assume that x0 = 2, p0 = 0.8, T = 1, c1 = 0.025,
c2 = 0.1, w = 1, h1 = 0.01, h2 = 1, r1 = 0.01, r2 = 4, and n = 20. In a first example, we assume that the
three known functions s, α, and θ are constant, that is, s(t) = 4, α(t) = 0.02, and θ(t) = 0.01. In this
case, the optimal solutions x∗ and p∗ of the system of state differential equations are shown in Figure 1.
Also shown in Figure 1 are the optimal control variables u∗ and p∗.

The optimal inventory level x∗(t) consistently diminishes as time progresses. Starting from an initial
value of approximately 2, it gradually declines to 0 by the end of the prediction horizon. This indicates
that the system exhausts its inventory during production, depending on the produced units to restock.
The optimal proportion of good units p∗(t) commences below 0.9 and swiftly rises, nearing a plateau
around 0.95. This implies an enhancement in production quality over time, stabilizing close to an upper
threshold. The optimal production rate u∗(t) initiates slightly above 0.5 and steadily escalates throughout
the prediction period, reaching about 3.5. This mirrors a gradual increase in production activity as the
system advances. Finally, the optimal rate of preventive maintenance m∗(t) commences at a notably
high level (approximately 20) and swiftly diminishes over time, eventually stabilizing at a low level
near 5. This indicates that intensive preventive maintenance is crucial at the beginning of the process to
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ensure production quality, but the necessity for maintenance decreases as the system stabilizes. The
optimal objective function value in this example is J∗ = 58.1242.
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Figure 1. Case s(t) = 4, α(t) = 0.2, and θ(t) = 0.01: Optimal inventory level x∗(t) (top left)
and optimal proportion of good units p∗(t) (top right); optimal production rate u∗(t) (bottom
left) and optimal preventive maintenance rate m∗(t) (bottom right).

Assume now that the known functions s, α, and θ are not constant and are such that s(t) = 0.4t + 2,
α(t) = 0.1

10+t , and θ(t) = 0.01 + 0.04 sin(t). We take the rest of the parameters as follows: x0 = 1.2,
p0 = 0.8, T = 1, c1 = 0.025, c2 = 0.1, w = 1, h1 = 0.01, h2 = 1, r1 = 0.01, r2 = 4, and n = 20. In this
non constant case, the optimal inventory level x∗, the optimal proportion of good units p∗, the optimal
production rate u∗, and the optimal preventive maintenance rate m∗ are shown in Figure 2.

The optimal level of inventory x∗(t) shows a consistent decline over time, starting at approximately
1.2 and reaching 0 by the end of the prediction horizon. This implies that as production progresses, the
inventory is being used up, and the demand is met with the units produced. The optimal proportion of
good units p∗(t) initiates at around 0.8 and experiences a rapid increase, converging towards a value
close to 1 by the end of the forecast horizon. This suggests a swift enhancement in production quality,
stabilizing at almost perfect quality (nearly 100% good units). The optimal rate of production u∗(t)
commences at a relatively low level of about 0.5 and steadily rises over time, reaching approximately 2.
This indicates a gradual escalation in production activity as the system progresses towards the optimum
output. Finally, the optimal rate of preventive maintenance m∗(t) starts at a high point (around 25)
and diminishes rapidly, eventually stabilizing at a lower level close to 5. This signifies that initially, a
substantial amount of preventive maintenance is necessary to enhance the production process’s quality.
However, the requirement for maintenance declines as the system stabilizes over time. The optimal
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objective function value is J∗ = 25.4288.
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Figure 2. Case s(t) = 0.4t+2, α(t) = 0.1
10+t , and θ(t) = 0.01+0.04 sin(t): Optimal inventory level

x∗(t) (top left) and optimal proportion of good units p∗(t) (top right); and optimal production
rate u∗(t) (bottom left) and optimal preventive maintenance rate m∗(t) (bottom right).

5. Sensitivity analysis and managerial implications

As is well known, conducting sensitivity analysis on system parameters provides valuable insights
and aids in informed managerial decision-making. We choose some key parameters and assess their
impact on the optimal solution and the optimal objective functional value. The sensitivity analysis is
performed in the general case where the known functions s, α, and θ are not constant.
Sensitivity to w. This sensitivity analysis reflects the weight of production quality control (i.e.,
penalizing the proportion of defective units) on the total cost.

First, we note that the change in the values of w does not affect the optimal inventory level and the
optimal production rate. Looking at Figure 3 (top), we observe that the optimal proportion of good
units p∗(t) increases continuously as w increases. This suggests that the system seeks to retain a higher
proportion of good units to reduce the penalty associated with faulty goods when the cost of quality
(expressed by w) is more significant. Also, Figure 3 (bottom) shows that for all values of w, the first
preventive maintenance rate m∗(t) spikes dramatically at the beginning, indicating an immediate attempt
to increase or maintain the proportion of good units. On the other hand, m∗(t) rapidly decays with time,
suggesting that following an initial burst of maintenance actions, the system stabilizes and requires less
work.

Electronic Research Archive Volume 33, Issue 1, 277–293.



287

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 p
*
(
t)

Optimal proportion of good units p*(t)

w=0.8

w=0.9

w=1

w=1.1

w=1.2

w=1.3

w=1.4

w=1.5

w=1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t

0

10

20

30

40

50

60

70

80

90

100

m
*
(
t)

Optimal preventive maintenance rate m *(t)

w=0.8

w=0.9

w=1

w=1.1

w=1.2

w=1.3

w=1.4

w=1.5

w=1.6

Figure 3. Case s(t) = 0.4t + 2, α(t) = 0.1
10+t , and θ(t) = 0.01 + 0.04 sin(t) and w in the

range {0.8; 0.9; 1; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6}: Optimal proportion of good units p∗(t) (top); and
optimal preventive maintenance rate m∗(t) (bottom).

Sensitivity analysis in Table 1 shows that the optimal objective function value J∗ rises dramatically
with an increase in w. For example, with w = 0.8, the total cost is relatively low (J∗ = 18.25), while
it increases exponentially to 332.30 when w = 1.6. This rapid growth shows the substantial impact
that increased focus on product quality has on the overall cost. The cost of maintaining higher-quality
products becomes more expensive. This makes intuitive sense because ensuring a higher proportion of
good units (through increased maintenance or production adjustments) requires more resources.

Table 1. Sensitivity to w.

w 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
J∗ 18.25 18.87 22.90 25.92 37.20 58.60 100.98 182.15 332.30

Some important managerial insights can be gained from these experiments. First, in order to effec-
tively manage the production process, quality and cost must be balanced. In proportion to the system’s
increased emphasis on quality (seen by rising w), overall expenses climb dramatically. Businesses
that prioritize excellent quality will see significant cost increases; those that can tolerate a little lower
proportion of good units can retain manageable expenses. Beyond a certain point, expenses start to grow
sharply, indicating that more quality improvements might not always be worth the money. To prevent
unjustified cost rises, managers must carefully consider how much to invest in reaching greater quality
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levels. Second, initial preventative maintenance is critical in every case, irrespective of the quality
level selected. Early maintenance investments contribute to the establishment of a reliable and effective
manufacturing process. As continuous maintenance rates level out over time, long-term cost benefits
are realized. Thus, even if the initial expenses could be substantial, businesses gain from a proactive
approach centered on preventive maintenance since it eventually lowers operating costs and effectively
preserves output quality over time.
Sensitivity to p0. This analysis reflects the impact of the initial proportion of favorable items on the
optimal policy.

We also note that the change in the values of p0 does not affect the optimal inventory level and the
optimal production rate. Figure 4 (top) shows that the system attains a greater initial fraction of good
units as p0 rises. It follows that the higher the starting quality level p0, the less work is required to
maintain or increase this proportion during the production process. Also, Figure 4 (bottom) shows that
the initial preventive maintenance rate m∗(t) is larger as p0 drops. This suggests that greater effort (in the
form of maintenance) is needed early on to improve the manufacturing quality if the initial proportion
of good units is low. Similarly, the initial maintenance rate is comparatively low for higher p0 values
(e.g., 0.95 or 0.9), indicating that fewer corrective actions are required when the system starts at a higher
quality level.
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Figure 4. Case s(t) = 0.4t + 2, α(t) = 0.1
10+t , and θ(t) = 0.01 + 0.04 sin(t) and p0 in the range

{0.55; 0.6; 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95}: Optimal proportion of good units p∗(t) (top);
and optimal preventive maintenance rate m∗(t) (bottom).

Sensitivity analysis in Table 2 demonstrates that when p0 falls, the overall cost J∗ increases. For
instance, the cost is J∗ = 17.07 with p0 = 0.95, but J∗ = 104.67 with p0 = 0.55. This is a notable
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rise that shows that, because of the greater requirement for corrective and preventive maintenance,
starting with a lower initial proportion of good units leads to a significantly higher ultimate cost. A
lower initial quality level results in higher maintenance costs as well as higher expenses over time due
to manufacturing inefficiencies and errors, as shown by the increase in J∗ with decreasing p0.

Table 2. Sensitivity to p0.

p0 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55
J∗ 17.07 18.10 19.12 22.89 24.16 30.27 39.71 54.23 104,67

Important managerial insights can be gained from these analyses. First, setting a high priority for
early quality p0 turns out to be essential for lowering production and maintenance expenses over the
long run. Higher p0 systems from the outset require less intervention and continuous maintenance,
which reduces overall costs and maximizes resource efficiency. Managers should invest in quality
control processes early in the production cycle to avoid costly corrective steps later, as indicated by
the significant increase in costs when p0 is low. Because of this, establishing a high-quality baseline
before beginning manufacturing is a crucial tactic for cost effectiveness. Second, stabilizing production
quality is mostly dependent on preventive maintenance, especially in cases where initial quality is
poor. Early maintenance efforts are essential for maintaining stable, long-term operations, regardless of
where you start. It is evident from the decrease of the preventive maintenance rate m∗(t) with time that
fewer resources are needed to maintain quality once it has stabilized. As a result, early maintenance
investments not only raise quality levels right away but also lower the need for maintenance down
the road, leading to long-term sustainable production methods. Managers can effectively manage the
trade-off between quality and cost by striking a balance between long-term maintenance methods and
initial investments in quality.
Sensitivity to x0. This analysis shows how the initial inventory level affects the best strategy.

This time, we note that the change in the values of x0 does not affect the optimal proportion of good
units and the optimal maintenance rate. From Figure 5 (top), it can be seen that as production increases,
inventory gradually depletes, as shown by the decreasing optimal inventory level x∗(t) over time. Starting
with a higher x0, however, enables the system to rely on the initial stock instead of rapidly increasing
production, which results in more cost-effective operations. Also, Figure 5 (bottom) shows that the
optimal pace of production over time, u∗(t) exhibits an increasing trend, indicating that preventative
maintenance efforts are high at first but become less so as the system stabilizes. The stability across
several x0 values suggests that the proportion of good units rather than the initial inventory has a greater
influence on the production rate.

Sensitivity analysis in Table 3 illustrates that the optimal objective function value J∗ experiences
a decline as the initial inventory level x0 rises. For instance, when x0 is set at 0.05, the total cost is
J∗ = 45.27, which decreases to 19.80 when x0 reaches 1.25. This trend indicates that higher initial
inventory levels are associated with reduced total costs. The reduction in J∗ implies that commencing
with a greater inventory level can lead to lower overall production and maintenance expenses. This
phenomenon likely arises from the fact that a higher initial inventory minimizes the need for frequent
adjustments in production and maintenance efforts. It is important to note that the decrease in J∗ is
not linear in relation to variations in x0. As x0 increases, the incremental reductions in J∗ become
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progressively smaller. Although enhancing the initial inventory proves advantageous, the benefits tend
to diminish as inventory levels rise. This observation suggests the existence of a threshold beyond
which additional increases in initial inventory may not yield significant cost reductions, highlighting the
importance of balancing inventory investments.
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Figure 5. Case s(t) = 0.4t + 2, α(t) = 0.1
10+t , and θ(t) = 0.01 + 0.04 sin(t) and w in the range

{0.05; 0.2; 0.35; 0.5; 0.65; 0.8; 0.95; 1.1; 1.25}. Optimal proportion of good units p∗(t) (top);
and optimal preventive maintenance rate m∗(t) (bottom).

Table 3. Sensitivity to x0.

x0 0.05 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25
J∗ 45.27 36.95 33.71 30.91 28.26 25.81 23.59 21.59 19.80

This analysis yields several conclusions and insights for managers. To begin, it underscores the
crucial significance of maintaining a high initial inventory level x0. Managers should give priority to
accumulating a sufficient stock of high-quality units before production commences, as this leads to
substantial cost savings over time. The inverse correlation between x0 and total cost J∗ illustrates that
early investments in quality inventory can lead to significant savings in both production and maintenance.
By starting with a higher proportion of good units, the system requires fewer aggressive interventions,
making the process more cost-effective and efficient. The second insight from this analysis is that as
production advances, a gradual increase in maintenance efforts is crucial, especially for lower initial
inventory levels. However, with a higher starting inventory, the system stabilizes more effectively,
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enabling managers to implement preventive maintenance more gradually, leading to improved long-term
cost optimization. In terms of resource management, the key insight is that early investment in inventory
quality, combined with a strategic, dynamically adjusted maintenance plan, enables better control over
costs while ensuring production efficiency.

6. Conclusions

We emphasize the crucial importance of optimal control in optimizing production and maintenance
functions in manufacturing systems. We considered a very important model introduced in the work by
Cho et al. [3] in which the authors used the maximum principal to solve the system, and we considered
a completely different method called (NMPC) to solve a more general model as explained in Section
3. By conducting sensitivity analysis and providing numerical examples, we have illustrated that a
larger initial inventory of good units substantially decreases total costs, underscoring the significance of
early investments in quality management. The results indicated that preventive maintenance not only
stabilizes production processes but also leads to cost efficiency over time, especially when combined
with a robust inventory strategy. Furthermore, dynamically adjusting maintenance efforts based on initial
inventory levels offers managers valuable insights into resource allocation and cost management. As
systems stabilize, a gradual reduction in maintenance efforts can be strategically implemented, ensuring
long-term operational efficiency.

Researchers can build upon this work by exploring several avenues. For example, extending the
model to include stochastic elements could provide a more realistic representation of production and
maintenance processes, enabling a deeper understanding of how these factors interact. Additionally,
investigating the impact of external variables, such as technological advancements, could enhance the
model’s applicability and relevance in dynamic environments. Researchers could also examine the
effects of different quality control methodologies, comparing traditional approaches with emerging
techniques like machine learning and predictive analytics.
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