
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 33(1): 158–180.
DOI: 10.3934/era.2025009
Received: 28 October 2024
Revised: 26 December 2024
Accepted: 03 January 2025
Published: 17 January 2025

Research article

TBRAFusion: Infrared and visible image fusion based on two-branch
residual attention Transformer

Wangwei Zhang1, Hao Sun1 and Bin Zhou2,*

1 Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450000, China
2 Electronics and Electrical Engineering College, Zhengzhou University of Science and Technology,

Zhengzhou 450064, China

* Correspondence: Email: whelmmail@126.com; Tel: +8617539126677.

Abstract: The fusion of infrared and visible images highlights the target while preserving detailed
information, which helps to comprehensively capture the scene information. However, the existing
methods continue to face challenges in managing the integration of global and local information, as
well as enhancing the extraction of detailed image features, thus ultimately leading to constrained
fusion outcomes. To enhance the fusion effect, this paper proposes a dual-branch residual attention-
based infrared and visible image fusion network (TBRAFusion). The network utilizes two key
modules, TransNext and the dual-branch residual attention (DBRA) module, which are used to
process the input images in parallel to extract contrast and detail information. Additionally,
an auxiliary function is incorporated into the loss function. Compared with mainstream fusion
models, TBRAFusion achieves better fusion results and metrics through these improvements. The
experimental results on the TNO dataset show that TBRAFusion improves the metrics in entropy
(EN), spatial frequency (SF), sum ofcorrelation differences (SCD), and visual information fidelity
(VIF) by 0.42%, 4%, 3.9%, and 1.2%, respectively. Tests on the MSRDS dataset show improvements
of 1.7%, 5.4%, 9.6%, and 4.9% in EN, standard deviation (SD), SF, and SCD, respectively.
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1. Introduction

Image fusion can extract and integrate the image information from different sensors. Compared
with the image from a single sensor, the image information generated after fusion is more
abundant [1]. The fusion of an infrared image and a visible image is widely used [2]. Infrared sensing
equipment can capture the thermal radiation information from the target and generate infrared images
that highlight the target; however the details of infrared images are poor due to noise. A visible sensor
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can capture reflected light information and generate visible images containing details and color
information; however, it can’t highlight the target due to environmental influence. The fusion image
of infrared and visible images can contain both contrast information and detail information, thus
making such fusion images widely applicable in areas such as target tracking [3], target detection [4],
semantic segmentation [5], and saliency detection [6].

Over the years, many fusion methods have been proposed to improve the fusion of infrared and
visible images [7]. Traditional methods can be categorized into the following types: multi-scale
transformation methods [8], sparse representation methods [9], subspace representation methods [10],
and hybrid methods [11]. Multi-scale transformation methods enhance the richness of the fused
images by combining the feature information extracted at different scales and orientations, thus
resulting in fusion images with good visual effects [12–15]. Sparse matrix methods rely on two key
factors: first, training overcomplete dictionaries on large datasets to obtain sparse representations; and
second, reconstructing the fused image using sparse coefficients based on different fusion
strategies [16–18]. Subspace clustering extracts the independent inherent structures from the original
images by reducing the dimensionality of the image features and by projecting high-dimensional
features into a low-dimensional space for the information fusion [19–21]. Hybrid methods combine
the strengths of the above approaches [22].

With the rapid development of deep learning, neural networks are widely used in image fusion.
Deep learning-based methods can be divided into three categories: convolutional neural networks [23]
(CNN), autoencoders [24] (AE), and generative adversarial networks [25] (GAN). Liu et al. [26] were
the first to apply CNNs to image fusion by establishing a mapping relationship between the source
images and the focused images to learn the activity level measurements and fusion strategies.
DenseFuse [27] combines encoding networks, convolutional layers, fusion, and dense blocks based on
traditional CNNs, thus improving the deep feature extraction capabilities while retaining more
multi-scale feature information. To further enhance the model’s ability to extract deep features, Li et
al. [28] proposed NestFuse, thereby incorporating both spatial and channel attention mechanisms to
guide image fusion with different fusion weights through attention modules, thus enhancing the
performance of the deep feature fusion. SEDRFuse [29] extracts intermediate and compensatory
features through multiple residual blocks, thereby fusing the intermediate features with selected
compensatory features using attention maps, which enables the model to make better use of the detail
features and enhances the contrast of the fused image. To improve the accuracy of feature extraction,
Park et al. [30] used the Transformer to enable the information exchange between the spatial domain
and the channel domain, thus successfully removing redundant information from the image. Zhu et
al. [31] proposed a method for multimodal spatial enhancement and edge shape correction, which
further improved the processing accuracy of multimodal information.

GANs can estimate the probability distribution of detail and contrast information in images under
unsupervised conditions. By applying different discriminative constraints to the generator, various
fusion effects can be achieved. Ma et al. [32] applied the GAN model to image fusion tasks, thereby
proposing FusionGAN. Based on FusionGAN, Ma et al. [33] improved it by proposing the Dual-
Discriminator Conditional Generative Adersarial Netowork (DDCGAN), which addresses the issue
of fusing images of different resolutions. In the study of the Generative Adversarial Network with
Multiclassification Constraints (GANMcC) [34], a multi-classification task was used to optimize the
discriminator, while primary and auxiliary functions were employed to supplement the gradient and
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contrast information, thus resulting in a more enriched and balanced gradient and contrast information
in the fused image. Li et al. [35] combined multi-scale attention mechanisms with GANs to propose
AttentionGAN, which, guided by two multi-scale attention mechanisms, allows the network to focus
on more infrared target information and visible detail information, thereby enhancing the model’s
ability to extract multi-scal features. Rao et al. [36] added channel Transform and spatial Transform
in the generator, thus enabling the generator to learn the correlation between spatial information and
dimensional information.

Traditional methods achieve good visual results in image fusion by using different feature
representations [37, 38], though they have some drawbacks: traditional methods can fuse different
source images using pixel-level fusion strategies, but they often rely on manually designed activity
level measures and fusion strategies. This may lead to the loss of important feature information
during the fusion process and the inability to adapt to complex scene requirements. Deep
learning-based fusion methods also have some drawbacks: CNN methods lack the adequate extraction
of cross-modal features, making it difficult to distinguish between the specific features of different
modalities. Additionally, these methods also have weak global feature extraction capabilities, thus
resulting in the loss of high-frequency information. GAN networks usually require constant
adjustments to the discriminator’s classification strategy to improve the fusion results, which often
results in an imbalance between the features of visible and infrared images during fusion.

The keys to infrared and visible image fusion are as follows:
Fully extract the feature information from the images: For visible images, it is crucial to extract

detailed information while not neglecting the contrast information contained within the visible image.
In certain scenes, the contrast information from the visible image can serve as a supplement to enhance
the contrast in the fused image. Similarly, for infrared images, it is important to extract the contrast
information adequately. At the same time, the detail information contained in the infrared image should
also be incorporated to enrich the fused image.

Balance contrast information and detail information during fusion: For infrared and visible images
fusion, rich details help enhance the scene information, while the contrast emphasizes the target. It is
essential to fully utilize the detailed information while maintaining the contrast between the target and
the background during fusion.

Establish the relationship between the global and local features to fully utilize the feature
information during fusion: It is critical to adequately extract features a from both the infrared and
visible images in the same scene. However, if the network only focuses on the local information, then
it may hinder the fusion effect. Therefore, establishing a connection between the global and local
information is essential to improve the fusion quality.

To address these issues, we will focus on three aspects. First, visual Transformers have achieved
significant results in image fusion. TransNext is a novel visual Transformer. In TransNext, the pixel
aggregation attention block can establish feature correlations between global and local information,
while the convolutional GLU can perform the preliminary detail feature extraction. In the fusion
layer, all feature information can be fully utilized, which helps enhance the extraction of the detail
features and establish global attention and long-range dependencies. Second, to maximize the
extraction and preservation of the detail information, we combine a dual-branch attention mechanism
with a residual module. This increases the weight of the detail information while ensuring that no
information is lost. The attention mechanism in the dual-branch residual attention (DBRA) module
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enhances the extraction of detailed features, while the residual module better preserves the input
feature information. Third, most fusion networks only focus on extracting the detail information from
visible images, thus neglecting the fact that infrared images can also contain rich detail information in
certain scenes. Therefore, in this paper, we introduce auxiliary gradient loss in the loss function to
supplement the fused image with the infrared image detail information, thus improving the fusion
effect. Our contributions are as follows:

• By combining the Vision Transformer and DBRA, we improve the extraction of deep features.
TransNext can establish the relationship between the global and local feature information, while
DBRA effectively extracts the detailed features. The integration of both can enhance the fusion
of the detail information and improve the contrast of the fused image.
• To enrich and balance the fused image, we introduce a feature decomposition loss and an auxiliary

gradient loss into the loss function. The feature decomposition loss computes the similarity during
fusion and uses similarity constraints to balance the fusion of the detail and contrast information.
The auxiliary gradient loss allows the infrared detail information to complement and enrich the
fused image.
• TBRAFusion improves the quality of the fused image through a two-stage end-to-end training

strategy. We compare our method with mainstream fusion methods using the TNO and MSRS
datasets, both subjectively and objectively, and quantitatively analyze our method’s performance
using six metrics. The results show that our model effectively fuses infrared and visible images.

2. Related works

In this part, we review the development of Transform and its application in image fusion. At the
same time, the structure and principle of DBRA and the latest visual Transform model TransNext
are introduced.

2.1. Visual Transformers in image fusion

Dosovitskiy [39] introduced the Vision Transformer (ViT), which achieved better results in image
classification tasks compared to CNNs when trained on large-scale datasets. To enhance the
performance of Vision Transformers, Liu et al. [40] proposed the Swing Transformer, which uses
local convolution operations and computes self-attention within sliding windows, thus allowing the
model to better extract multi-scale features and reduce the linear complexity of computing
high-resolution images. Zamir et al. [41] combined gated-Dconv networks with multi-head attention
using Restorm blocks to propose a lightweight and efficient mobile Natural Language Processing
(NLP) architecture. To further reduce the high memory consumption and complexity of calculating
self-attention for high-resolution images, Wang et al. [42] proposed a sparse attention mechanism,
although this also reduced the ability to extract the detail features. Therefore, Shi [43] introduced
TransNext, which replaces local attention mechanisms with aggregation attention, thus enabling the
model to achieve a better global perception while extracting fine-grained features. Liu et al. [44]
successfully enhanced the model’s global feature extraction ability in multi-modal image processing
by combining Transformers with CNNs. To further enhance the multi-modal information utilization,
Zhu et al. [45] introduced the Swin Transformer with a shifted patch token strategy, thereby boosting
the local perception ability of the Transformer and improving the feature fusion results.
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In this paper, we use Restorm for the global feature extraction; then, we use TransNext to extract the
detail information from the shared feature information and establish connections between the global
and local information.

2.2. TransNext

TransNext is a type of visual Transformer, where the dual-path design can focus on fine-grained
attention for nearby features and coarse-grained attention for spatially downsampled features.
Convolutional GLU is a convolutional algorithm that focuses on channel attention by fusing the
nearest image features. The combination of convolutional GLU and aggregation attention
significantly enhances the model’s ability to extract local features and its robustness. The TransNext
module can improve the extraction capability of shallow features and establish connections between
the global and local information at a lower parameter cost. The structures of the aggregation attention
module, TransNext, and convolutional GLU are shown in Figures 1–3, respectively.
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Figure 1. Structure of the aggregation attention module.
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Figure 2. Structure of TransNext.

Electronic Research Archive Volume 33, Issue 1, 158–180.



163

Lin
ear

D
W

 C
o

n
v

A
ctivatio

n

Lin
ear

in
p

u
t

Lin
ear

Figure 3. Structure of convolutional GLU.

The entire module contains three aggregation attention blocks and one self-attention block. The
self-attention block includes two layer normalization (LN) layers, an aggregation attention (AA) layer,
a convolutional GLU layer, and an additive operation for the connections. The convolutional GLU is a
channel mixer that outperforms multi-layer perceptrons (MLPs) in certain tasks. The structure of GLU
includes two linear projections: one projection outputs the result without modification, while the other
applies an activation function to the result. To reduce the computational complexity, a convolution
operation is introduced before the activation function. This helps to improve the efficiency while
maintaining the performance of the channel mixing operation. The calculation process of aggregation
attention is as follows: for the input image pixel set Xi, j ∈ I,V , where I ∈ RH×W×1, V ∈ RH×W×3

represents the input image; the input image is processed through the LN layer to obtain the pooled
pixel set σ(X); and then, the input image pixel set is then segmented using a sliding window to obtain
the processed pixel set ρ(i, j), with the sliding window size is K×K. Throughout the entire computation
process, there are two paths that perform attention calculations on the original pixel set and the pooled
pixel set. These two paths can establish fine-grained attention and global feature perception. The
mathematical expression for the entire computation process is as follows:

PFAx(i, j) = S (
Q(i, j)KT

concat
√

d
+ Bi, j)Vconcat, (2.1)

where S (·) represents the sigmoid, Kconcat = Concat(Kρ(i, j),Kσ(X)), d is the dimension, and the B is offset.
In the mathematical expression, it can be seen that after performing the Sigmoid calculation on

the two paths and placing them in the same competition, both the fine-grained features and the global
similarity comparisons can be comprehensively perceived. This is beneficial to enhance the extraction
effect of the global feature information and to increase the model’s receptive field.
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2.3. Dual-branch residual attention module

To fully extract the detailed information from either visible images or infrared images, two
different attention modules are employed for the feature extraction on the feature map. The two
attention modules are the channel attention module [46] (CAB) and the spatial attention module [47]
(SAB). After extracting the feature information, a residual module is used to skip-connect all the
feature information. The process of CAB processing is as follows: after the feature map is input, the
average pool (GAP) layer is used for processing, the dimension is 1 × 1 × C, the fully connected layer
(FC) is used for reducing the dimension, ReLU is the activation function, and the second FC layer
will be upgraded to 1 × 1 × C; and finally, the Sigmoid function is used to obtain a weight map, and
the weight is multiplied by the original input feature map. The SAB processing process is as follows:
after inputting the feature map, the dimension of the feature map is changed to H × W through two
convolutions and ReLU; and then, the spatial weight map is obtained by using Sigmoid function, and
the weight is multiplied by the original input feature map. The specific process is as follows: the input
image {I ∈ RH×W×1,V ∈ RH×W×3} passes through two attention blocks on separate branches to extract
the important features, thus producing the output results {FS AB

out , F
CAB
out }; the weight maps from both

branches are multiplied with the input; and finally, the outputs of the two branches are concatenated
along the dimension, with a residual connection between the input and the output. The structure of
DBRA is shown in Figure 4, where the kernel size is 3 × 3.
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Figure 4. Structure of DBRA.

The expression for DBRA is as follows:

Fout = FS AB
out + FCAM

out + FIn, (2.2)

where FS AB
out and FCAB

out represent the output results of the spatial attention block and the channel attention
block, respectively.

From the computational process, using two branches to perform attention calculations separately
allows for better extraction of detailed features, while the residual connection ensures that all feature
information is preserved.
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3. Methodology

In this section, we introduce the overall framework of TBRAFusion and the structure of each
module. Additionally, the design of the loss function in this paper is expressed in detail.

3.1. Encoder

The encoder extracts and decomposes the image, including three modules: the shared coding block
based on Restormer, TransNet based on convergent attention, and the two-branch residual
attention module.

For ease of presentation, we define the following notation: the infrared image V ∈ RH×H×3, visible
image I ∈ RH×W , shared coding Restormer block, TransNet, and DBRA are denoted by S (·), T (·),
D(·) denote.

Shared coding Restormer block: The shared coding block performs a shallow feature extraction on
the input infrared and visible images, which can be expressed as follows:

ΦS
V = S (V),ΦS

I = S (I), (3.1)

where ΦS
V and ΦS

I represent the shallow shared features extracted from the input image.
The TransNext block: Through the structure in graph 1, the TransNext block allows aggregated

attention to enable the shared features of the input and to establish the global correlations, while the
convolutional GLU can further perform a fine-grained feature extraction on the shared features, which
is expressed as follows:

ΦT
I = D(ΦS

I ),ΦT
V = D(ΦS

V), (3.2)

where ΦT
I and ΦT

V represent the extraction of global feature information from the shared features and
the establishment of global dependencies.

DBRA block: DBRA is a lossless feature extraction module, and one of the keys to the fusion of
infrared and visible images is to extract and retain the detail information, Therefore, we will use the
DBRA module to extract features from the shared feature map of Restormer more fully. Considering
that the infrared image may also have detail information in a certain scene, after extracting the detail
information of the infrared image, it will be complementary to the detail information of the visible
layer in the fusion layer. DBRA will process the space and channel separately in the form of double
branches, and finally connect with the residual, which is expressed as follows:

ΦD
I = D(ΦS

I ),ΦD
V = D(ΦS

V), (3.3)

where ΦD
I and ΦD

V represent local detail information in the extracted shared features.

3.2. Fusion layer

The main role of the fusion layer is to fuse the contrast information and the detail information
after the feature extraction. The contrast and detail information of the fusion layer comes from the
TransNext layer and DBRA layer, which is expressed as follows:
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ΦT = FT (ΦT
I ,Φ

T
V),ΦD = FD(ΦD

I ,Φ
D
V ), (3.4)

where ΦT and ΦD represent global information and local information, respectively.

3.3. Decoder

In the decoder DC(.), the extracted feature maps of infrared and visible images are used as the input
after dimension splicing. The original image and the fused image in the first and second stages of
training are used as the output, and finally the fused image is output through the decoder, which is
expressed as follows:

Stage I: Î = D(ΦT
I ,Φ

D
I ), V̂ = D(ΦT

V ,Φ
D
V ),

Stage II: F̂ = D(ΦT ,ΦD). (3.5)

3.4. Two-stage training

Our network is trained in two stages. The first stage aims to train a network model capable of
extracting both the global and local information by reconstructing the original image. In the second
stage, the encoder network parameters trained in the first stage are used to extract the frequency-
specific feature information from the infrared and visible images. These features are fused in the
fusion layer, and the combined features are input into a Restormer decoder block based on multi-head
attention to reconstruct the final fused image. The entire network can be seen as a progressive cross-
modal differential perception network. Since our network needs to extract information from different
source images, we adopt a two-stage end-to-end training strategy to better fuse the infrared and visible
information. The flow of training is shown in Figures 5 and 6.
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Figure 5. The first stage of training: TransNext is used to extract contrast information and
DBRA is used to extract local features.
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Figure 6. The second stage of training: Generating a fused image.

Training stage 1: Infrared and visible images {I ∈ RH×W×,V ∈ RH×H×3} will be input into Restormer,
respectively, to extract shallow features {ΦS

I ,Φ
S
V}; at the same time, the extracted feature maps will be

coded as shared features. Then, the fine-grained feature information will be extracted and the global
feature {ΦT

I ,Φ
T
V} mapping is established by TransNext. Finally, the dual-branch residual attention

module will extract sufficient detailed features {ΦD
I ,Φ

D
V } from the input. After the visible and infrared

feature maps are obtained, they will be spliced in dimensions and input into the decoder to obtain
the reconstructed visible and infrared images. Training stage 2: Infrared and visible images {I ∈
RH×W ,V ∈ RH×W×3} will be the input to the encoder after the first stage of training for the feature
extraction. The extracted detail features and basic features will be fused through the fusion layer to
obtain a fused image.

3.5. Loss function

The loss function for the first stage is expressed as follows:

LI
total = Lir + α1Lvis + α2Ldecomp + α3Lgrad, (3.6)

where Lir and Lvis are the structural esimilarity errors after the infrared and visible image
reconstruction, respectively(i.e., reconstruction errors). Ldecomp is the feature decomposition loss.
α1, α2, α3 are the weight coefficients used to adjust the contribution of information during the
training process.

The Lir is expressed as follows:

Lir = β1LI
int(I, Î) + β2LS S IM(I, Î), (3.7)

where LS S IM is the structural similarity, which measures the quality loss between the reconstructed
image and the original image through contrast and structural similarity. β1 and β2 are weight
coefficients used to ensure the structural similarity between the original image and the reconstructed
image. The detail information contained in the infrared image is extracted and supplemented into the
fused image during the training phase of fusion.
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The LS S Im formula is expressed as follows:

LS S IM(I, Î) = 1 − S S IM(I, Î). (3.8)

The Ldecomp formula is expressed as follows:

Ldecomp =
(LC

CC)2

LS T
CC

=
(CC(ΦS T

I ,Φ
S T
V ))2

CC(ΦC
I ,Φ

C
V) + ε

, (3.9)

where CC(·) is the correlation coefficient operator, and the ε value is 1.01 to prevent the denominator
from being 0.

The training loss function of the second stage is expressed as follows:

LII
total = β1 + β2Lgradaux + β4Ldecomp, (3.10)

Lint =
1

HW
||I f − max(Iir, Ivis)||1, (3.11)

Lgradmain = ||∇I f − ∇Ivis||1, (3.12)
Lgradaux=||∇I f−∇Iir ||1 . (3.13)

The symbol ∇ represents the gradient operation, and max(·) represents the maximum selection.
Lgradmain is the gradient information of the visible image, Lgradaux is the gradient information of the
infrared image, and α4, α5, α6, α7 are the weight coefficients used to balance the gradient information
and the contrast information during the fusion process.

The design logic of the entire loss function is as follows. In the first stage of training, we need to
extract the gradient information and contrast information to ensure the completeness of the information,
while using the feature decomposition to establish the correlation between the infrared and visible
image features. The contrast information is often the background of the image, while the gradient
information represents the edge details of the target. The contrast information between the infrared
and visible images usually has a high degree of correlation, whereas the gradient detail information
often has a lower correlation. Therefore, Ldecomp is used to ensure the effectiveness of the feature
decomposition. In the second stage, the focus is mainly on fusing the gradient and contrast information.
By considering the detail information in the infrared images in certain scenes, we introduce an auxiliary
function in the fusion of the detail information to enhance the fusion effect.

4. Experimental

In this section, we introduce the experimental environment, training steps, and public datasets
used, while also comparing our approach with other mainstream image fusion models through both
subjective and objective assessments. Finally, we validate the model’s performance and rationality
through ablation experiments.

4.1. Experimental configuration

Datasets: We used the public datasets MSRS and TNO as the training datasets. In testing the
experimental results, we conducted comparison experiments with mainstream fusion models,
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including DIDFuse [48], SDNet [49], U2Fusion [50], TarDAL [51], DeFusion [52], DATFuse [53],
and CDDFuse [54].

Implementing rules: The training and testing were conducted using a GPU configured with NVIDIA
RTX 4090, with the framework being PyTorch. During the preprocessing stage of the experiment, the
images used for training were randomly cropped into 128 × 128 patches. The total number of training
iterations was 120, which as divided into two rounds: the first round consisted of 80 iterations, and the
second round consisted of 40 iterations. The batch size was set to 16. The optimization method used
was Adam, with an initial learning rate set to 10−4, thus reducing the learning rate by half every 20
epochs. The correlation coefficients in the loss function were set as follows: α1 is 1, α2 is 2.5, α3 is 6,
β1 is 1, β2 is 10, β3 is 6.5, and β4 is 2.5.

Metrics: We employed six metrics, namely entropy (EN [55]), standard deviation (SD [56]), spatial
frequency (SF), sum of correlation differences (SCD [57]), structural similarity (MI [58]), and visual
information fidelity (VIF [59]), to quantitatively analyze the results of the image fusion. EN measures
the information richness of the fused image: a higher value indicates richer information and better
fusion effects. SD reflects the pixel distribution of the fused image: a larger value signifies a greater
contrast and improved fusion results. SF indicates the rate of gray-level change in the fused image:
a higher value suggests a clearer image and better fusion. MI represents the information retention
between the fused image and the source image: a larger value means that the fused image retains
more source information, thus resulting in a better fusion. SCD assesses the quality of the fused
image through correlation differences: a lower value signifies better fusion results. A larger VIF value
indicates a higher visual fidelity of the fused image, thus leading to better fusion effects.

4.2. Experimental results

Data set comparison results: In Figure 7, we present some typical fused contrast images, and in
Figure 8, we present some fusion results for the dataset MSRS. Tables 1 and 2 quantitatively compare
the different fusion methods. Our approach demonstrates advantages in both the visual and quantitative
analyses. To visually demonstrate the comparison between our fusion method and others, we will
present the original images alongside locally enlarged sections of the fused images. From a subjective
perspective, we aim for the fused images to contain as much detail and contrast information as possible.
The more details the fused image includes, the more effectively we have extracted the features of
the visible image. If the targets in the fused image are more prominent, then it indicates that we
have successfully captured the contrast information from the infrared image. Moreover, if the fused
image contains clear targets and distinct environmental information, then it suggests a good fusion of
contrast and detail information. Based on the comparison results, while the methods discussed above
can achieve good fusion results, they all have certain shortcomings. DID, SDN, and DEF are not
effective in extracting details (such as the close-up of the second column), while DAT and U2F are
good in extracting details, though the contrast between the background and the target in the picture is
insufficient (such as the close-up of the third column). The details obtained by CDD are rich, and the
contrast between the scene and the target is large, though it will produce artifacts (such as the enlarged
close-up of the third column). On the whole, our TBRAT can retain the details of visible images and
some infrared details well, the contrast between the target and the background is obvious, and the fused
image has rich scene information.
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Figure 8. Fusion results in MSRS.
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Table 1. Quantitative analysis results of TNO data set.

EN SD SF MI SCD VIF
DID 6.97 45.12 12.59 1.70 1.71 0.68
SDN 6.64 32.66 12.05 1.37 1.49 0.56
U2F 6.83 34.55 11.52 1.52 1.71 0.58
TarD 6.84 45.63 8.68 1.86 1.52 0.53
DeFusion 6.95 38.41 8.21 1.78 1.64 0.60
DATF 6.58 29.65 10.09 2.36 1.45 0.70
CDDFuse 7.12 46.00 13.15 2.19 1.76 0.77
TBRAF 7.15 45.76 13.68 2.23 1.83 0.78

Note: Black fonts and underscores represent the best and second best values, respectively.

Table 2. Quantitative analysis results of MSRS data set.

EN SD SF MI SCD VIF
DID 4.27 31.49 10.15 1.61 1.11 0.31
SDN 5.25 17.35 8.67 1,19 0.99 0.50
U2F 5.37 25.52 9.07 1.40 1.24 0.54
TarD 5.28 25.22 5.98 1.49 0.71 0.42
DeF 6.46 37.63 6.60 2.16 1.35 0.77
DAT 6.58 40.45 11.63 2.73 1.44 0.88
CDDFuse 6.70 43.38 11.56 2.47 1.62 1.05
TBRAF 6.82 45.75 12.68 2.53 1.70 0.80

Note: Black fonts and underscores represent the best and second best values, respectively.

For the EN and MI metrics, DID, SDN, U2F, and TraD achieve poor results, while DeF, DAT,
CDDFuse, and DBRAT achieve better results.DID, SDN, and U2F use the stacking of multiple
convolutional layers during the encoding process to improve the feature extraction effect by
deepening the depth of the network. Additionally, TraD employs convolutional stacking in the
generator. DAT, CDDFuse, and DBRAT use different feature extraction modules in the process of
feature extraction to achieve deep feature extraction, (i.e., the previous methods are not sufficient for
deep feature extraction, and thus achieve poorer results in EN and MI). For the SD metric, SDN, U2F,
and TraD achieve poor results, in the loss function of SDN; moreover, the focus is on the detail
information of the fused image, and there is no balance between the contrast information and the
detail information during fusion.The feature extraction in the U2F coding network is insufficient, and
the same generator network used in TraD does not adequately extract the contrast information from
the IR image; therefore, the contrast of the fused image is lower than that of the U2F coding network,
and the contrast information from the IR image is not adequately extracted by the generator network.
Hence the contrast of the fused image is poor. For the SCD metric, SDN and TraD achieve the worst
results: SDN considers more detail information when fusing, and TraD wants the fused image to be
closer to either the infrared or visible images when fusing the images, and does not balance the fusion
information well. Therefore the results in the SCD metric are poor. For the VIF metric, DID, SDN,
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U2F, TraD, and DeF achieve poorer results, while DAT, CDDFuse, and DBRAT achieve better results.
The previous methods do not establish the relationship between the global and local information,
while the latter three methods use Transform to carry out the remote dependency between the global
and local information, thus achieving better results in VIF.

4.3. Ablation experiment of network structure

In order to verify the effectiveness of the DBRA block and TransNext in the model, we conducted
ablation experiments to prove the complementarity of the two modules in the detail feature extraction
and the global and local features. Table 3 shows the quantitative results of removing the DBRA and
TransNext blocks. Bold numbers in the table indicates the optimal value. From the results in the
table, we can see that the complete network structure achieves good results. As can be seen from the
comparison diagram in Figure 9, the ability to extract detailed features decreases after removing the
DBRA module, and the network can’t accurately pay attention to the detailed features. After removing
TransNext, the network can’t pay attention to global and local features well, and the fused image
becomes blurred. The complete network obtains the best effect.

Table 3. Ablation experiment of each module in TNO.

Metrics Remove TransNext Remove DBRA Complete
EN 7.05 7.09 7.15
SD 41.73 41.48 47.86
SF 12.14 12.11 13.68
MI 1.63 1.61 2.07
SCD 1.76 1.80 1.83
VIF 0.61 0.63 0.76

Note: The best performance is shown in bold.

Figure 9. Ablation experiment of each module.

4.4. Ablation experiment of loss function:

The loss function of the network consists of four parts: pixel loss, auxiliary gradient loss, structure
loss, and feature decomposition loss. The structure loss, auxiliary gradient loss, and feature
decomposition loss are the key loss functions; therefore, we will verify the significance of these three
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loss functions. We performed ablation experiments on the verification set; from the design motivation,
the loss function of each part will achieve different results. Gradient loss makes the fused image
obtain the detailed information in the visible and infrared images. At the same time, we introduce
auxiliary gradient loss; therefore, we hope that the model can make full use of the visible details and
make the infrared details as a supplement. Structural loss allows the model to better measure the
visual image effect between the fused image and the original image. The loss function of feature
decomposition is used to balance the infrared contrast information and the visible detail information
during fusion. Therefore, we will compare the loss function in the first stage and the second stage of
training. In the first stage of training, the structural loss function and the characteristic decomposition
loss function are removed. In the second stage, the auxiliary loss function is removed. Specifically,
this is expressed as follows:

LI
1 = α1Lir

int + α2Lvi
int + α3Ldecomp + α4Lgrad, (4.1)

LII
1 = β1Lint + β2Lgradmain + β3Lgradaux + β4Ldecomp, (4.2)

LI
2 = Lir + α1Lvis + α3Lgrad, (4.3)

LII
2 = β1Lint + β2Lgradmain + β3Lgradaux , (4.4)

LI
3 = Lir + α1Lvis + α2Ldecomp + α3Lgrad, (4.5)

LII
3 = β1Lint + β2Lgradmain + β2Ldecomp. (4.6)

From the result diagram of Figure 10, we can see the influence of different loss functions. The
complete loss function can make full use of the characteristic information of infrared and visible
images, and the obtained fused image has complete scene information, which not only highlights the
target, but also enriches the details. After removing the structural loss, it can be clearly seen that the
details of the infrared and visible images are not utilized, the details of the fused image are greatly
affected, and the edges become blurred. It can be seen that the fused image will lose some details by
removing the auxiliary gradient loss. Without the loss of feature decomposition, the model will
produce artifacts and lose some details. Table 4 shows the results of the quantitative analysis after
removing each loss function. Objectively speaking, the results of each index are consistent with
subjective feelings.

Table 4. Results of different loss functions in TNO.

Metrics L1 L2 L3 Complete
EN 7.09 7.11 7.09 7.09
SD 43.65 45.04 41.48 47.86
SF 11.33 12.71 12.11 13.68
MI 1.61 1.62 1.61 2.07
SCD 1.78 1.80 1.80 1.83
VIF 0.63 0.62 0.63 0.76

Note: The best performance is shown in bold.
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Figure 10. Loss function ablation experiment.

5. Conclusions

In this paper, we proposed a fusion network of infrared and visible images based on two-branch
attention mechanism. The whole network is an end-to-end model. The fusion of infrared and visible
images should not only fully extract important information, but also balance the contrast information
and detail information. Therefore, we combined visual Transform with an attention mechanism. In
the training process, we adopted a phased training to reduce the training complexity; at the same time,
we used auxiliary loss to supplement the detail information in the loss function. The effectiveness of
each module was verified by the TNO and MSRS data sets. The ablation experiments showed that the
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combination of different modules achieved the best fusion effect. For the ablation experiment of the loss
function, it can be seen that the feature decomposition loss and the auxiliary gradient loss were helpful
to balance and enrich the feature information of the fused image. Compared with the mainstream 8
fusion methods, our method achieved the best performance in a qualitative analysis and subjective
vision. At present, our model achieved good results in the fusion of infrared and visible images;
however, it was not effective in the fusion of multi-exposure images with different brightnesses in the
same scene. In the future, we will focus on the fusion of multi-exposure images. We will consider using
the illumination intensity as an indicator, thereby introducing the illumination perception network into
the existing model, and calculating the illumination intensity of each image through the illumination
perception network to adaptively adjust the feature weight of image fusion with different brightnesses.
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