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Abstract: We investigate the existence of nodal solutions for the nonlinear Lidstone boundary value
problem 

(−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t) f (u), t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1,
(P)

where λ > 0 is a parameter, c is a constant, m ≥ 1 is an integer, a : [0, r] → [0,∞) is continuous
with a . 0 on the subinterval within [0, r], and f : R → R is a continuous function. We analyze
the spectrum structure of the corresponding linear eigenvalue problem via the disconjugacy theory and
Elias’s spectrum theory. As applications of our spectrum results, we show that problem (P) has nodal
solutions under some suitable conditions. The bifurcation technique is used to obtain the main results
of this paper.
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1. Introduction

We investigate the existence of nodal solutions for nonlinear Lidstone boundary value problem
(−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t) f (u), t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1,
(1.1)

where λ > 0 is a parameter, c is a constant, m ≥ 1 is an integer, a : [0, r] → [0,∞) is continuous with
a . 0 on the subinterval within [0, r], and f : R→ R is a continuous function.

Problem (1.1) is called a Lidstone boundary value problem. Lidstone boundary value problems arise
in a lot of various fields of applied mathematics and physics. If m = 1, problem (1.1) are Newton’s
equations of motion under Dirichlet boundary conditions. If m = 2, problem (1.1) is the elastic beam
equation with simple support at both ends. If m = 3, problem (1.1) can be used to describe the speed
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of a flagellate protozoan [1]. From this point of view, it is not only of great theoretical significance to
discuss such problems, but also of practical application value.

Lidstone boundary value problems in a comparable form to (1.1) have been taken into account in
many papers, particularly in second and fourth-order cases, see for example [2–6] and [7–10] and
references therein. Specifically, Lazer and McKenna [10] considered the existence for nodal solutions
of (1.1) with m = 2, a(t) ≡ 1, and a “jumping” nonlinearity, i.e.,

u′′′′(t) + cu′′ = λ[(u + 1)+ − 1], t ∈ (0, r),

u(0) = u(r) = u′′(0) = u′′(r) = 0.
(1.2)

The eigenvalues of the linear eigenvalue problem corresponding to (1.2) can be obtained directly by
ordinary differential equation calculation, but for the linear eigenvalue problem with weighted function
a(t), the eigenvalues cannot be calculated. In addition, it is worth noting that a complicated method
was used in [10] (see Lemma 2.2) to certify that all zeros of the solutions are simple, moreover, this
method does not seem to apply in the case of m > 2.

Existence and multiplicity of positive solutions for 2mth-order Lidstone boundary value problems
have been extensively studied by several authors, see [11–17]. For example, Yuan et al. [17] considered
the existence of a positive solution for the 2mth-order Lidstone boundary value problem

(−1)mu(2m)(t) = λ f (t, u(t)), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, · · · ,m − 1
(1.3)

by the fixed point theorem of mixed monotone operators. However, relatively little is known about the
existence of nodal solutions for 2mth-order Lidstone boundary value problems, see [18, 19]. In [19],
Xu and Han dealt with the existence of nodal solutions of Lidstone boundary value problems with the
assumption that the nonlinearity f is asymptotically linear

(−1)mu(2m)(t) = µa(t) f (u), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, · · · ,m − 1
(1.4)

under these suppositions:
(A1) a ∈ C([0, 1], [0,∞)), a . 0 on subinterval within [0, 1];
(A2) f ∈ C(R,R), f (s)s > 0 for s , 0;
(A3) there exist f0, f∞ ∈ (0,∞) such that

lim
|s|→0

f (s)
s
= f0, lim

|s|→∞

f (s)
s
= f∞.

Let µk be the kth eigenvalue of the linear eigenvalue problem associated with (1.4). By using
bifurcation techniques, they obtained
Theorem A. [19, Theorem 1.1.] Let (A1)–(A3) hold. Assume that for some k ∈ N, either

µk

f∞
< µ <

µk

f0
,
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or
µk

f0
< µ <

µk

f∞
.

Then, (1.4) possesses two solutions, namely u+k and u−k . The solution u+k has precisely k−1 simple zeros
within the interval (0, 1) and is positive in the vicinity of 0. Similarly, u−k also has exactly k − 1 simple
zeros in (0, 1) and is negative near 0.

However, the more general operator (−1)m(u(2m)(t) + cu(2m−2)(t)) and “jumping” nonlinearity are not
considered in [19].

Inspired by [10] and [19], the main purpose of this paper is to analyze the existence of nodal so-
lutions for problem (1.1). One of the contributions of this paper is to employ the disconjugacy theory
to examine a sufficient condition that guarantees the disconjugacy of (−1)m(u(2m)(t) + cu(2m−2)(t)) = 0
on the interval [0, r]. In addition, it is probably the first time that we utilize Elias’s spectrum theory
to explore the spectrum structure of the linear operator (−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t)u, t ∈ (0, r)
coupled with the boundary conditions u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1. Moreover, we use
a bifurcation technique to obtain the existence of nodal solutions for problem (1.1). It is worth noting
that a novel method is employed to prove that all zeros of the solution of problem (1.1) are simple,
which is based on the well-known Uri Elias formula, see [20, 21].

The assumptions of this paper are as follows:

(H1) c is a constant with c <
π2

r2 ;
(H2) a ∈ C([0, r], [0,∞)) and a . 0 on subinterval within [0, r];
(H3) f ∈ C(R,R), f (s)s > 0 for s , 0,

lim
s→−∞

f (s)
s
= 0, lim

s→+∞

f (s)
s
= f+∞, lim

s→0

f (s)
s
= f0

for some f+∞, f0 ∈ (0,∞).

Using the disconjugacy theory and Elias’s spectrum theory, we first consider the spectrum structure
of the linear eigenvalue problem

(−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t)u, t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1.
(1.5)

Theorem 1.1. Assume that (H1) is satisfied, and a satisfies (H2). Then,
(i) There is an infinite series of positive eigenvalues for problem (1.5)

λ1[c] < · · · < λk[c] < · · · .

(ii) λk[c]→ ∞ as k → ∞.
(iii) For each eigenvalue λk[c], there is an essentially unique eigenfunction φk. This eigenfunction

φk has exactly k − 1 simple zeros within the interval (0, r) and is positive in the vicinity of 0.
(iv) For an arbitrary subinterval within [0, r], an eigenfunction corresponding to a sufficiently large

eigenvalue will undergo a sign change in that subinterval.
(v) For every k ∈ N, the algebraic multiplicity for λk[c] is 1.
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According to Theorem 1.1, we employ bifurcation theory to acquire our main results.

Theorem 1.2. Let (H1), (H2), (A2), and (A3) hold. Suppose that for k ∈ N, either

λk[c]
f∞
< λ <

λk[c]
f0
,

or
λk[c]

f0
< λ <

λk[c]
f∞
.

Then, (1.1) possesses two solutions, namely u+k and u−k . The solution u+k has precisely k−1 simple zeros
within the interval (0, r) and is positive in the vicinity of 0. Similarly, u−k also has exactly k − 1 simple
zeros in (0, r) and is negative near 0.

Remark 1.1. If c = 0 and r = 1, then Theorem 1.2 is transformed into Theorem 1.1 in [19].

Furthermore, we consider the case of the “jumping” nonlinearity.

Theorem 1.3. Assume (H1)–(H3) hold. When λ >
λk[c]

f0
, there exist at least 2k−1 non-trivial solutions

of the boundary value problem (1.1). Indeed, there are solutions w−1 , · · · ,w
−
k , such that, for each

1 ≤ j ≤ k, w−j has exactly j− 1 simple zeros on the open interval (0, r) and is negative close to 0. Also,
there are solutions z+2 , · · · , z

+
k such that for each 2 ≤ j ≤ k, z+j has precisely j − 1 simple zeros on the

open interval (0, r) and is positive close to 0.

Remark 1.2. If m = 2, a(t) ≡ 1, f (u) = (u + 1)+ − 1, then Theorem 1.3 is transformed into Theorem 1
in [10].

Example 1.1. Let a(t) = sin
π

r
t and c <

π2

r2 . We consider the existence of nodal solutions for sixth
order boundary value problem −u′′′′′′(t) − cu′′′′(t) = λ sin

π

r
t f (u), t ∈ (0, r),

u(0) = u(r) = u′′(0) = u′′(r) = u′′′′(0) = u′′′′(r) = 0,
(1.6)

where

f (u) =


−4, u < −2,

2u, −2 ≤ u ≤ 2,

6u − 8, u > 2.

It is easy to verify that

lim
u→−∞

f (u)
u
= 0, lim

u→+∞

f (u)
u
= 6, lim

u→0

f (u)
u
= 2.

Then, the conditions of Theorem 1.3 are fulfilled. Therefore, when λ >
λk[c]

f0
, there exist at least 2k − 1

non-trivial solutions of the boundary value problem (1.6). Indeed, there are solutions w−1 , · · · ,w
−
k , such

that, for each 1 ≤ j ≤ k, w−j has exactly j − 1 simple zeros on the open interval (0, r) and is negative
close to 0. Also, there are solutions z+2 , · · · , z

+
k such that for each 2 ≤ j ≤ k, z+j has precisely j − 1

simple zeros on the open interval (0, r) and is positive close to 0.
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The remainder of this paper is structured as follows. Section 2 is dedicated to demonstrating the
spectrum results of the linear eigenvalue problem (1.5). In Section 3, we study the existence of nodal
solutions for the nonlinear problem (1.1) under some suitable conditions via bifurcation theory.

2. Spectrum results and maximum principle

Definition 2.1. [22] Let pk ∈ C[a, b] for k = 1, ..., n. A linear differential equation of order n

Ly ≡ y(n) + p1(t)y(n−1) + · · · + pn(t)y = 0 (2.1)

is regarded as disconjugate on an interval [a, b] if every non-trivial solution possesses less than n zeros
on [a, b], where multiple zeros are accounted for in accordance with their multiplicity.

Definition 2.2. [22] The functions y1, · · · , yn ∈ Cn[a, b] are claimed to form a Markov system when
the n Wronskians

Wk := W[y1, · · · , yk] =

∣∣∣∣∣∣∣∣∣
y1 · · · yk

· · · · · · · · ·

y(k−1)
1 · · · y(k−1)

k

∣∣∣∣∣∣∣∣∣ , (k = 1, · · · , n)

are positive on [a, b].

Lemma 2.1. [22] Equation (2.1) possesses a Markov fundamental system of solutions on [a, b] when
and only when it is disconjugate on [a, b].

Lemma 2.2. [22] Equation (2.1) possesses a Markov fundamental system of solutions when and only
when L has a representation

Ly ≡ v1v2 · · · vnD
1
vn

D · · ·D
1
v2

D
1
v1

y,

where D = d/dt, and

1 = W0, v1 = W1, vk = WkWk−2/W2
k−1, (k = 2, · · · , n).

Example 2.1. For every M ∈ (−m4
0,m

4
1), the equation u′′′′(t)+Mu(t) = 0 is disconjugate on the interval

[0, 1], where m0,m1 are the first positive solution of the equations

cos(m) cosh(m) = 1, tanh
m
√

2
= tan

m
√

2

respectively. See [23] for details.

Example 2.2. For every M ∈ (−∞, 2π), u′′′ + Mu′ = 0 is disconjugate on [0, 1]. See [24] for details.
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2.1. Spectrum results

Elias [21] developed a theory on the eigenvalue problem
Ly + λh(x)y = 0, x ∈ [a, b],

(Liy)(a) = 0, i ∈ {i1, · · · , ik},

(L jy)(b) = 0, i ∈ { j1, · · · , jn−k}

(2.2)

where
L0y = ρ0y

Liy = ρi(Li−1y)′, i = 1, · · · , n
Ly = Lny

and ρi ∈ Cn−i[a, b] with ρi > 0 on [a, b]. L0y, · · · ,Ln−1y are called the quasi-derivatives of y(x). To
apply Elias’s spectrum theory, we have to prove that problem (1.1) can be rewritten in the form of (2.2),
i.e., the linear operator

L[u] := u(2m)(t) + cu(2m−2)(t)

has a factorization of the form

L[u] = v1v2v3 · · · v2m(
1

v2m
· · · (

1
v3

(
1
v2

(
1
v1

u)′)′)′· · ·)′

on [0, r], where vi ∈ C2m−i[0, r] with vi > 0 on [0, r], and

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1

if and only if
Liu(0) = Liu(r) = 0, i = 0, 1, · · · ,m − 1.

This can be achieved under (H1) by using the disconjugacy theory in [22].

Define a linear differential equation of order 2m

L[u] := u(2m)(t) + cu(2m−2)(t) = 0, t ∈ (0, r).

Theorem 2.1. Let (H1) hold. Then, L[u] has a factorization

L[u] = v1v2v3 · · · v2m(
1

v2m
· · · (

1
v3

(
1
v2

(
1
v1

u)′)′)′· · ·)′, (2.3)

where vk ∈ C2m−k+1[0, r] with vk > 0 (k = 1, 2, 3, · · · , 2m).

Proof. Take ϕ(t) as the unique solution of the initial value problem

ϕ′′ + cϕ = 0,
ϕ(0) = 0, ϕ′(0) = 1.
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Subsequently, (H1) along with the Sturm Comparison Theorem leads to the conclusion that

ϕ(t) > 0, t ∈ (0, r],

and therefore
ϕ(t + σ) > 0, t ∈ [0, r],

if σ > 0 is small enough. Take

v1 = 1, v2 = 1,
v3 = 1, v4 = 1,
· · · · · ·

v2m−3 = 1, v2m−2 = 1,

v2m−1 = ϕ(t + σ), v2m =
1

ϕ2(t + σ)
.

One can easily verify that (2.3) holds true. □

At present, we are able to compute

L0u =
1
v1

u = u

L1u =
1
v2

(L0u)′ = u′

L2u =
1
v3

(L1u)′ = u′′

· · ·

L2m−3u =
1

v2m−2
(L2m−4u)′ = u(2m−3)

L2m−2u =
1

v2m−1
(L2m−3u)′ =

1
ϕ(t + σ)

u(2m−2)

L2m−1u =
1

v2m
(L2m−2u)′ = u(2m−1)ϕ(t + σ) − u(2m−2)ϕ′(t + σ)

L2mu = v1v2v3 · · · v2m(L2m−1u)′ = u(2m)(t) + cu(2m−2)

Therefore, it is easy for us to reach the following conclusion.

Theorem 2.2. Let (H1) hold. Then,

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1

is equivalent to
Liu(0) = Liu(r) = 0, i = 0, 1, · · · ,m − 1.
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Remark 2.1. In [20], Rynne considered the boundary value problem

Lu(x) = p(x)u(x) + g(x)u(x), t ∈ (0, π).

He assumes that L is a 2mth-order, disconjugate, ordinary differential operator on (0, π), together with
separated boundary conditions at 0 and π. However, we give a constructive proof (Theorem 2.1.) to
obtain that u(2m)(t)+cu(2m−2)(t) = 0 is disconjugate on the interval [0, r] if and only if c < π

2

r2 in Theorem
2.1.

Currently, we are capable of applying Elias’s spectrum theory to investigate the eigenvalue problem.
(−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t)u, t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1.
(2.4)

The Proofs of Theorem 1.1. Items (i) to (iv) are direct consequences of Elias (as mentioned in The-
orems 1–5 in reference [21]) as well as Theorems 2.1 and 2.2. We shall only provide a proof for (v).
Let Y = C[0, r] be the Banach space which is equipped with the norm

||u||∞ = max
t∈[0,r]
|u(t)|.

Define L̄ : D(L̄)→ Y by setting

L̄u := (−1)m(u(2m)(t) + cu(2m−2)(t)), u ∈ D(L̄), (2.5)

where
D(L̄) = {u ∈ C2m[0, r] : u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1}.

For simplicity, we define λk := λk[c]. For demonstrating (v), it suffices to prove

ker(L̄ − λk)2 = ker(L̄ − λk).

Clearly,
ker(L̄ − λk)2 ⊇ ker(L̄ − λk).

Assume by contradiction that the algebraic multiplicity of λk is greater than 1. In that case, there
exists a vector u that belongs to ker(L̄ − λk)2 but not to ker(L̄ − λk). Subsequently,

L̄u − λku = γφk

for some γ , 0. After multiplying both sides of the aforementioned equation by φk and integrating
from 0 to r, we can infer that

0 = γ
∫ r

0
[φk(t)]2dt,

which is a contradiction. □
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Remark 2.2. Let a(t) = 1. We consider the eigenvalue problem
(−1)m(u(2m)(t) + cu(2m−2)(t)) = λu(t), t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1,
(2.6)

we see that the eigenvalues are λk = ηk · · · ηk︸  ︷︷  ︸
m−1

(ηk−c) for k = 1, 2, · · · with corresponding eigenfunctions

φk(t) = sin kt, k = 1, 2, · · · for c <
π2

r2 , where {ηk}
∞
1 are the eigenvalues of the problem

−y′′ = ηy, t ∈ (0, r),

y(0) = y(r) = 0.

It is worth noting that the first eigenvalue η1 =
π2

r2 . Therefore, the eigenvalues of problem (2.6) are
simple, the eigenfunctions have only simple zeros on (0, r), and the kth eigenfunction possesses exactly
k − 1 simple zeros on the open interval (0, r). If m = 2, then problem (2.6) reduces to the situation
in [10].

2.2. Maximum principle

Theorem 2.3. Suppose that condition (H1) is satisfied. Take e ∈ C[0, r], e ≥ 0 in [0, r] with e . 0 in
[0, r]. If u ∈ C2m[0, r] satisfies

(−1)m(u(2m)(t) + cu(2m−2)(t)) = e(t), t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1,
(2.7)

then u(t) > 0 in (0, r).

Proof. LetDu = −u′′. Then,

(−1)m(u(2m)(t) + cu(2m−2)(t)) = D · · ·D︸   ︷︷   ︸
m−1

(D− cI)u.

Let z1 := D · · ·D︸   ︷︷   ︸
m−2

(D− cI)u = (−1)m−1(u(2m−2)(t) + cu(2m−4)(t)). From (2.7), then we have that

−z′′1 = e, z1(0) = z1(r) = 0,

which implies
z1(t) > 0, t ∈ (0, r).

Repeating this procedure m − 1 times, we obtain

−z′′m−1 = zm−2, zm−1(0) = zm−1(r) = 0,

which implies
zm−1(t) > 0, t ∈ (0, r),
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where zm−1 = (D− cI)u.

According to c <
π2

r2 , we get

−u′′ − cu = zm−1, u(0) = u(r) = 0.

This together with zm−1(t) > 0 implies that u(t) > 0 for t ∈ (0, r). □

3. Existence of a nodal solutions

Let E = {u ∈ C2m−2[0, r] : u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1} be the Banach space which is
equipped with the norm

||u||E = max
t∈[0,r]
{||u(2i)||∞}, i = 0, 1, · · · ,m − 1.

Then, L̄−1 : Y → E is completely continuous. Here, L̄ is presented as in (2.5).

Take ζ, ξ ∈ C(R,R) such that

f (u) = f0u + ζ(u), f (u) = f+∞u+ + ξ(u),

where u+ = max{u, 0}. Clearly,

lim
|u|→0

ζ(u)
u
= 0, lim

|u|→∞

ξ(u)
u
= 0. (3.1)

Let
ξ̃(u) = max

0≤|s|≤u
|ξ(s)|.

Then, ξ̃ is nondecreasing and

lim
u→∞

ξ̃(u)
u
= 0. (3.2)

Let us consider
L̄u − λa(t) f0u = λa(t)ζ(u) (3.3)

as a bifurcation problem originating from the trivial solution u ≡ 0.

Equation (3.3) can be equivalently transformed into

u(x) = λL̄−1[a(·) f0u(·)](t) + λL̄−1[a(·)ζ(u(·))](t). (3.4)

Obviously, the compactness of L̄−1 combined with (3.1) indicates that

||L̄−1[a(·)ζ(u(·))]|| = o(||u||E) as ||u||E → 0.

In the following content, we adopt the terminology of Rabinowitz [25].
Let S +k represent the set of functions in E that possess exactly k − 1 interior nodal (i.e., nondegen-

erate) zeros within the interval (0, r) and are positive in the vicinity of t = 0. Set S −k = −S +k , and
S k = S +k ∪ S −k . These sets are disjoint and open in E. Let Σ denote the closure of the set consisting of
nontrivial solutions of (3.4) in R × E.
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Lemma 3.1. Suppose that (H1)–(H3) (or (A2) and (A3)) are satisfied. If u ∈ D(L̄) is a nontrivial
solution of 

(−1)m(u(2m)(t) + cu(2m−2)(t)) = λa(t) f (u), t ∈ (0, r),

u(2i)(0) = u(2i)(r) = 0, i = 0, 1, · · · ,m − 1,
(3.5)

then u has only simple zeros in (0, r). Thus, by definition, u ∈ S k.

Proof. In fact, (3.5) can be rewritten as
L̄u = λâ(t)u

where

â(t) =
{

a(t) f (u(t))
u(t) , as u(t) , 0,

a(t) f0, as u(t) = 0.

Obviously, â(t) meets (H2). Therefore, Lemma 2.2 of [20] implies that all zeros of u on the interval
(0, r) are simple. □

Remark 3.1. We say that u is a nodal solution if all of zeros of the solution are simple. It is a
challenging problem to prove that all zeros of the solution are simple, see [10, Lemma 2.2]. In this
paper, a novel method is employed to prove that all zeros of the solution of problem (1.1) are simple,
which is based on the well-known Uri Elias formula [20, 21], see Lemma 3.1.

By the Rabinowitz global bifurcation theorem [25], there is a continuum Ck ⊂ Σ of solutions for

(3.4) bifurcating from (
λk

f0
, 0) which is either unbounded or contains a pair (

λ j

f0
, 0) for j , k. By Lemma

1.24 of [25], it implies that if (λ, u) ∈ Ck and is near (
λk

f0
, 0), u = αφk + ω with ω = o(|α|). Since S ±k is

open and φk ∈ S k, then

(Ck \ {(
λk

f0
, 0)} ∩ Bε(

λk

f0
, 0)) ⊂ R × S k,

for all positive ε small enough, where

Bε(
λk

f0
, 0) = {(λ, u) ∈ R × E : ∥u∥ + |λ −

λk

f0
| < ε}.

Define Ĉk = Ck − Bε(
λk

f0
, 0). Then, Lemma 3.1 implies that

Ĉk ⊂ R × S k.

Otherwise, there exists (λ̄, ū) ∈ Ĉk such that λ̄ > 0 and ū is in the boundary of S k. If ū = 0, then λ̄ = λ j

for some j , k, and so all points in Ĉ+k near (λ j, 0) are in S j, a contradiction. Hence, ū , 0. Since all
the sets S j, j = 1, 2, · · · , are open, it follows that there is t0 ∈ [0, r] such that ū(t0) = ū′(t0) = 0. But,
this contradicts Lemma 3.1. Consequently, one has that

Ck ⊂ (R × S k ∪ {(
λk

f0
, 0)}).

It follows that Ck returning to the set of trivial solution axis is impossible. So, Ck is unbounded.
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Furthermore, by Theorem 2 of [26], there exist two continua C+k and C−k composed of the bifurcation

branch Ck which satisfy that either C+k and C−k are both unbounded or C+k ∩ C
−
k , {(

λk

f0
, 0)}.We know

that u = αφk + ω for (λ, u) ∈ Ck \ {(
λk

f0
, 0)} near (

λk

f0
, 0). Since αφk ∈ S ±k if 0 , α ∈ R± or R∓, we have

that
(C±k \ {(

λ1

f0
, 0)} ∩ Bε(

λ1

f0
, 0)) ⊂ R × S ±k

for all positive ε small enough. Similar to the above argument, we are able to demonstrate that

C±k \ {(
λk

f0
, 0)} cannot depart from R × S ±k outside a neighborhood of (

λk

f0
, 0). Therefore, we have that

C±k ⊂ (R × S ±k ∪ {(
λk

f0
, 0)}). It follows that both C+k and C−k are unbounded. Otherwise, at the expense of

generality, we suppose that C−k is bounded. Then, there is (λ∗, u∗) ∈ C+k ∩C
−
k such that (λ∗, u∗) , (

λk

f0
, 0)

and u∗ ∈ S +k ∩ S −k . This contradicts the definitions of S +k and S −k .

The Proofs of Theorem 1.2. By applying a similar method as used to prove [19, Theorem 1.1], with
appropriate and obvious modifications, we can obtain the desired result. □

The Proofs of Theorem 1.3. We only need to show that

C−j ∩ ({λ} × E) , ∅, j = 1, 2, · · · , k,

and
C+j ∩ ({λ} × E) , ∅, j = 2, · · · , k.

Suppose on the contrary that

Cνj ∩ ({λ} × E) = ∅ for some ( j, ν) ∈ Γ,

where
Γ := {( j, ν) | j ∈ {2, · · · , k} as ν = +, and j ∈ {1, 2, · · · , k} as ν = − }.

As Cνj joins (
λk

f0
, 0) to infinity in Σ, and since (λ, u) = (0, 0) is the sole solution of (3.3) in E, there

exists a sequence {(µm, um)} ⊂ Cνj such that µm ∈ (0, λ) and ∥um∥E → ∞ as m → ∞. We may assume

that µm → µ̄ ∈ [0, λ] as m→ ∞. Let vm =
um

∥um∥E
,m ≥ 1. From the fact

L̄um = µma(t) f+∞(um)+ + µma(t)ξ(um),

we have that
vm = µmL̄−1(a(t) f+∞(vm)+) + µmL̄−1(a(t)

ξ(um)
∥um∥E

).

Therefore, since L̄−1 : E → E is completely continuous, it can be assumed that there is v ∈ E together
with ∥v∥E = 1 such that ∥vm → v∥E → 0 as m→ ∞. According to

|ξ(um)|
∥um∥E

≤
ξ̃(∥um∥∞)
∥um∥E

≤
ξ̃(∥um∥E)
∥um∥E

,
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and (3.2), we have that
v = µ̄L̄−1(a(t) f+∞v+). (3.6)

i.e., 
(−1)m(v(2m)(t) + cv(2m−2)(t)) = µ̄a(t) f+∞v+, t ∈ (0, r),

v(2i)(0) = v(2i)(r) = 0, i = 0, 1, · · · ,m − 1.

By (H1), (H2), (3.6), and the fact that ∥v∥E = 1, we conclude that µ̄a(t) f+∞v+ . 0, and consequently

µ̄ > 0, v+ . 0.

According to Theorem 2.3, it is known that v(t) > 0, t ∈ (0, r).
By Theorem 2.3, we know that v(t) > 0 in (0, r). This implies that µ̄ f+∞ is the first eigenvalue of

L̄u = λa(t)u and v is the corresponding eigenfunction of λ1. Hence, v ∈ S +1 , and therefore, since S +1
is open and ∥v − vm∥E → 0 as m → ∞, we have that vm ∈ S +1 for m large. But, this contradicts the
assumption that (λm, vm) ∈ Cνj and ( j, ν) ∈ Γ. This proves Theorem 1.3. □

Remark 3.2. In this paper, we consider the “jumping” nonlinearity, i.e.,

lim
s→−∞

f (s)
s
= 0, lim

s→+∞

f (s)
s
= f+∞, lim

s→0

f (s)
s
= f0

for some f+∞, f0 ∈ (0,∞), which complements the main result in [19].

Remark 3.3. For the existence result of solutions for (1.1) with m = 2, n ≥ 1 (PDE case), see [27–30].
For other results on the Lidstone BVPs, see [31–33].
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