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Abstract: This paper deals with the initial boundary value problem for a class of n-dimensional
higher-order nonlinear evolution equations that come from the viscoelastic mechanics and have no
positive definite energy. Through the analysis of functionals containing higher-order energy of motion,
a modified potential well with positive depth is constructed. Then, using the potential well method,
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a global weak solution to such an evolution problem.
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1. Introduction

In this paper, we study the following initial boundary value problem for n-dimensional higher-order
nonlinear wave equations with dispersive and dissipative terms:

utt(x, t) + ut(x, t) + (−1)K∆Ku(x, t) + (−1)K∆Kut(x, t) + (−1)K∆Kutt(x, t)
= f (u(x, t)) , (x, t) ∈ U × [0,T ),

(1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ U, (1.2)

Dαu(x, t) = 0 for any 0 ≤ |α| ≤ K − 1, (x, t) ∈ ∂U × [0,T ), (1.3)

where U ⊂ Rn is a bounded domain with sufficiently smooth boundary ∂U, K = 1, 2, 3, · · · , Dα =
∂|α|

∂xα1
1 ∂x

α2
2 ···∂x

αn
n

means multi-index derivative operator, α = (α1, α2, · · · , αn) is multi-index of nonnegative
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integers αi(i = 1, 2, · · · , n),
∣∣∣α∣∣∣ = α1 + α2 + · · · + αn, u0(x) ∈ HK

0 (U) and u1(x) ∈ HK
0 (U). Moreover,

f (u) = |u|p−1u (1.4)

with p > 1 satisfying:

1 < p < +∞ when K ≥
n
2

; 1 < p ≤
n

n − 2K
when K <

n
2
. (1.5)

Problems (1.1)–(1.3) come from viscoelastic mechanics. As K = 1, the nonlinear evolution equa-
tion

utt − uxx − uxxtt = f (u)

describes the propagation of longitudinal strain waves in a slender elastic rod [1, 2]. Similar equations
containing a strong damping term uxxt appear in the framework of the Mooney–Rivlin viscoelastic
solids of second grade (see [3]). Concerning the higher-dimensional equation

utt − ∆u − ∆ut − ∆utt = f (u), x ∈ U, t > 0, (1.6)

a unique existence result of a global strong solution for the initial boundary problem of Eq (1.6) was
proved in [4] under some assumptions on f (u) for the positive definite energy. Xu et al. [5] also proved
that the global strong solution of Eq (1.6) decays to zero exponentially as the time approaches infinity
by using the multiplier method for the positive definite energy.

In [6], Gazzola and Squassina considered the initial boundary value problem of the following equa-
tion with both strong and weak damping terms

utt − ∆u − ω∆ut + µut = |u|p−2u in U × (0,T ), (1.7)

where T > 0, ω ≥ 0 and µ > −ωλ1 (λ1 is the first eigenvalue of the operator −∆ under homoge-
neous Dirichlet boundary condition). They got the global existence of solutions with initial data in
the potential well, which was first introduced by Sattinger (see [7]). Moreover, they proved the finite
time blow up for solutions starting in the unstable set and constructed the high energy initial data for
which the solution blows up. In [8], Lian and Xu also obtained the global well-posedness of equation
utt − ∆u − ω∆ut + µut = u ln |u|.

In [9], Xu and Yang studied the following nonlinear wave equation with dispersive–dissipative terms
and weak damping

utt − ∆u − ∆ut − ∆utt + ut = |u|p−1u. (1.8)

Using the technique of [6] and the concavity method, Xu and Yang derived a sufficient condition
on the initial data with arbitrarily positive initial energy such that the corresponding local solution of
Eq (1.8) blows up in a finite time. However, the global existence of weak solutions and strong solutions
for Eq (1.8) is still open.

As K = 2, Eq (1.1) represents the elastic plate equation with dispersive and dissipative effects
[10, 11]. In [12], Xu et al. studied the global well-posedness of the initial boundary value problem
for a class of fourth-order wave equations with a nonlinear damping term and a nonlinear source term,
which was introduced to describe the dynamics of a suspension bridge. By the potential well method,
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in [13] Lin et al. derived global weak solutions and global strong solutions of the initial boundary value
problem for a class of damped nonlinear evolutional equations

utt − ∆u + ∆2u − α∆ut = f (u), x ∈ U, t > 0.

Up to now, there is no result on the existence of global solutions to the initial boundary value
problem for the nonlinear wave equation, including dispersive term △utt, dissipative term △ut and ut.

Fourth-order equation models with the main part utt+∆
2u+· · · containing weak and strong damping

terms such as ut, f (ut),∆ut and nonlinear strain
∑n

i=1
∂
∂xi
σi(uxi) also attract a lot of attention (see [14–

18]). A recent work by Lian et al. (see [19]) considered the solutions of the following equation

utt + ∆
2u − ∆u +

n∑
i=1

∂

∂xi
σi(uxi) − ∆ut + |ut|

r−1ut = f (u), (x, t) ∈ U × (0,∞). (1.9)

The global existence, asymptotic behavior, and blow-up of solutions for subcritical initial energy
and critical initial energy of Eq (1.9) were obtained, and the blow-up of solutions in finite time for the
positive initial energy case was also proved.

As K > 2, Problems (1.1)–(1.3) also appear in physics. For example, when n = 2 and K = 4,
Eq (1.1) can represent the model of two-dimensional quasicrystal elasticity with dispersive and dissi-
pative effect; when n = 3 and K = 6, Eq (1.1) represents the model of three-dimensional quasicrystal
elasticity with dispersive and dissipative effect (see [20]). As mentioned above, Eq (1.1) has an im-
portant physical background, while the mathematical achievements for the arbitrary higher order wave
equation with both dispersive and dissipative terms (for any positive integer K ≥ 1) are scarce. So the
aim of the present paper is to establish a global existence result of weak solutions to such an evolu-
tion problem.

Motivated by previous papers [6,8,13], we shall use the potential well theory to establish conditions
under which the initial boundary value problems (1.1)–(1.3) have global weak solutions. This method
proposed by Sattinger (see [7, 21]) and its improvements (see [22–25]) allow us to consider the hyper-
bolic equations without positive definite energy. For example, concerning about Eq (1.7) in [6], in the
framework of the potential well method, a Nehari manifold N, a stable set W (potential well) and an
unstable set V (outside the potential well), should be introduced, and the mountain pass energy level d
(also known as potential well depth) can be characterized as

d = inf
u∈N

(1
2
∥∇u∥2 −

1
p + 1

∥u∥p+1
p+1

)
.

However, when dealing with the present models with higher-order dispersive term ∆Kutt, higher-
order energy of motion ∥∇Kut∥L2(U) should be contained in energy functionals. This work brings com-
plicated construction of potential well W, and consequently a detailed computational formula of the
modified potential well depth d is needed.

Therefore, in Section 2, we present some notations and definitions for the energy functionals, mod-
ified potential well W, and modified potential well depth d. Then we concentrate on the detailed
equivalent definition of d and prove that d > 0.

In Section 3, using the potential well method and Galerkin method, we construct a global weak
solution to the evolution Problems (1.1)–(1.3) when the initial data stars from stable set W.
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There are also interesting problems for further studies.
1) As K = 1, the blow-up property of corresponding local solution, has been derived in [12],

whereas the uniqueness of solution, vacuum isolation of solutions and decay or blow-up properties of
solutions are still open for dispersive–dissipative models with any arbitrary higher-order K.

2) The Cauchy problem of such kinds of higher-order evolution equations has not been of concerned
so far.

3) It is well worth considering some important physical properties and physical structures in numer-
ical analysis, such as positivity preservation, maximum principle [26], long-term behavior [27], and
singular solutions.

2. Notations and preliminaries

Let us give some explanations for constraint (1.5) of exponent p. Note that 2∗ = 2n
n−2K is the critical

Sobolev exponent for q in the embedding HK
0 (U) ↪→ Lq(U) (see [28]); it follows from (1.5) that

HK
0 (U) ↪→ Lp+1(U), hence the following functionals I(u), J(u), and E(t) introduced in (2.1), (2.2),

and (2.4) should be well defined. Furthermore, by assumption (1.5), we can control the L2 norm of the
nonlinear term (1.4) by using Sobolev embedding HK

0 (U) ↪→ L2p(U). It will lead to global existence
results for the nonlinear ordinary differential systems (3.7) and (3.8) associated to Problems (1.1)–(1.3)
when the Galerkin method is applied.

We denote by
∥∥∥ ·∥∥∥

q
the Lq(U) norm for 1 ≤ q ≤ ∞, by

∥∥∥ ·∥∥∥ the L2(U) norm, and by
∥∥∥ ·∥∥∥

k,p
the Wk,p(U)

norm. Let
Z =

{
u(x, t) in L∞(0,T ; HK

0 (U)) and ut(x, t) in L∞(0,T ; HK
0 (U))

}
.

For any 0 < t < T , we define functionals I, J : Z → R by

I(u) =
∥∥∥∇Ku

∥∥∥2
+

∥∥∥∇Kut

∥∥∥2
−

∥∥∥u
∥∥∥p+1

p+1
, p > 1 (2.1)

and
J(u) =

1
2

∥∥∥∇Ku
∥∥∥2
+

1
2

∥∥∥∇Kut

∥∥∥2
−

1
p + 1

∥∥∥u
∥∥∥p+1

p+1
, p > 1. (2.2)

We define the potential well depth (also the mountain pass value of J ) as

d = inf
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

(
sup
a≥0

J(au)
)
. (2.3)

The energy functional E : Z → R is defined by

E(u) =
1
2

∥∥∥ut

∥∥∥2
+

1
2

∥∥∥∇Ku
∥∥∥2
+

1
2

∥∥∥∇Kut(x, t)
∥∥∥2
−

∫
Ω

F
(
u(x, t)

)
dx, (2.4)

where F(u) =
∫ u

0
f (s)ds.

We introduce the modified Nehari manifold (for Nehari manifold we refer to [29] and [30] ) as

N = {u ∈ Z
∣∣∣I(u) = 0 and ∥∇Ku∥2 + ∥∇Kut∥

2 , 0}.

Finally, for any 0 < t < T the modified potential well is defined as

W =
{
u ∈ Z

∣∣∣ I(u) > 0, J(u) < d
}
∪ {0} . (2.5)
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Theorem 2.1. The depth of the potential well (denoted by d in (2.3)) can also be characterized as

d = inf
0<t<T,

u∈N

J(u).

In order to prove Theorem 2.1, we introduce the following two lemmas.

Lemma 2.1. If 0 < t < T, u ∈ Z and ∥∇Ku∥2 + ∥∇Kut∥
2 , 0, we have

(i) Lim
a→+∞

J(au) = −∞, Lim
a→0

J(au) = 0.

(ii) There exists a unique positive number ã = ã(u) such that dJ(au)
da

∣∣∣
a=ã
= 0.

(iii) When a = ã, d2 J(au)
da2 < 0.

(iv) J(au) increases with a as 0 ≤ a ≤ ã; J(au) decreases with a as ã ≤ a < +∞.

Proof. (i) is true because

J(au) =
a2

2

∥∥∥∇Kut

∥∥∥2
+

a2

2

∥∥∥∇Ku
∥∥∥2
−

ap+1

p + 1

∥∥∥u
∥∥∥p+1

p+1
, p > 1. (2.6)

Calculate
dJ(au)

da
= a

∥∥∥∇Kut

∥∥∥2
+ a

∥∥∥∇Ku
∥∥∥2
− ap

∥∥∥u
∥∥∥p+1

p+1
. (2.7)

Solving dJ(au)
da = 0, there is an unique solution

ã =

(
∥∇Kut∥

2 + ∥∇Ku∥2
) 1

p−1

∥u∥
p+1
p−1

p+1

. (2.8)

(ii) is true as ∥∇Kut∥
2 + ∥∇Ku∥2 , 0.

In order to obtain (iii), substitute (2.8) into the expression

d2J(au)
da2 =

∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2
− ap−1 p ∥u∥p+1

p+1

gives
d2J(au)

da2 |a=ã =

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

)
ãp−1(1 − p) < 0.

At last, from (2.7) and (2.8), we have

dJ(au)
da

= ∥u∥p+1
p+1 a(ãp−1 − ap−1).

Hence dJ(au)
da > 0 as 0 < a < ã and dJ(au)

da < 0 as ã < a < +∞. So (iv) is true.

Lemma 2.2. If 0 < t < T, u ∈ Z and ∥∇Kut∥
2 + ∥∇Ku∥2 , 0, J(αu) = sup

a≥0
J(au) is equivalent to

I(αu) = 0.
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Proof. Since

I(αu) = α2
∥∥∥∇Kut

∥∥∥2
+ α2

∥∥∥∇Ku
∥∥∥2
− αp+1 ∥u∥p+1

p+1 ,

ã in (2.8) coincides with the solution to equation I(αu) = 0. From Lemma 2.1 (iv), J(αu) = sup
a≥0

J(au).

Conversely, if J(αu) = sup
a≥0

J(au), Lemma 2.1 gives α = ã in (2.8), then

I(αu) = ã2
∥∥∥∇Kut

∥∥∥2
+ ã2

∥∥∥∇Ku
∥∥∥2
− ãp+1 ∥u∥p+1

p+1 = 0.

Proof of Theorem 2.1: By Lemma 2.1, the depth of potential well (see (2.3)) should be

d = inf
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

(
sup
a≥0

J(au)
)

= inf
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

J(ãu). (2.9)

Let w = ãu then from Lemma 2.2 we have d = inf J(w), where the infimum is taken for all t ∈ (0,T )
and all functions w ∈ Z satisfying that I(u) attains 0 on (0,T ) with ∥∇Ku∥2 + ∥∇Kut∥

2 , 0, which means
w ∈ N.

The proof of Theorem 2.1 is completed.

Lemma 2.3. As p > 1 satisfies (1.5), a computational formula for the potential well depth is

d =
1
κΛκ
. (2.10)

Here

κ =
2(p + 1)

p − 1
(2.11)

and

Λ2 = sup
t∈(0,T ),u∈Z

∥∇Kut∥
2+∥∇Ku∥2,0

∥u∥2p+1∥∥∥∇Kut

∥∥∥2
+ ∥∇Ku∥2

. (2.12)

Moreover,

d ≥
1
κS κp+1

> 0,

where S p+1 is the best Sobolev constant for the embedding HK
0 (U) ↪→ Lp+1(U), i.e.,

S p+1 = sup
u∈HK

0 (U)\{0}

∥u∥p+1

∥∇Ku∥
.
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Proof. As the process of proof in Theorem 2.1, substituting (2.8) into the computation of J(au) (see
(2.6)) we obtain

J(ãu) =
ã2

2

(
|∇Kut∥

2 + ∥∇Ku∥2
)
−

ãp+1

p + 1
∥u∥p+1

p+1

=
ã2

2

(
|∇Kut∥

2 + ∥∇Ku∥2
)
−

ã2

p + 1
· ãp−1 ∥u∥p+1

p+1

=
ã2

2

(
|∇Kut∥

2 + ∥∇Ku∥2
)
−

ã2

p + 1
·

(
∥∇Kut∥

2 + ∥∇Ku∥2
)

∥u∥p+1
p+1

∥u∥p+1
p+1

=

(
1
2
−

1
p + 1

)
· ã2

(
∥∇Kut∥

2 + ∥∇Ku∥2
)

=
p − 1

2(p + 1)
·

∥∇Kut∥
2 + ∥∇Ku∥2

∥u∥2p+1


p+1
p−1

.

Value of κ and Λ in (2.11), (2.12) gives

sup
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

 ∥u∥2p+1

∥∇Kut∥
2 + ∥∇Ku∥2


p+1
p−1

= Λ
2(p+1)

p−1 = Λκ.

Therefore

d = inf
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

J(ãu)

=
1

sup 0<t<T,u∈Z,
∥∇Ku∥2+∥∇Kut∥

2,0

1
J(ãu)

=
1
κΛκ
.

Furthermore,

Λ2 ≤ sup
0<t<T,u∈Z,

∥∇Ku∥2+∥∇Kut∥
2,0

∥u∥2p+1∥∥∥∇Ku∥2
≤ S 2

p+1.

It follows that
d ≥

1
κS κp+1

> 0.

Lemma 2.4. If J(u) ≤ d, then I(u) > 0 is equivalent to

0 <
∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2
< Λ−κ.

Proof. From (2.1) and (2.2), the following equality holds:

J(u) =
1

p + 1
I(u) +

1
κ

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

)
. (2.13)
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Since d = 1
κΛκ

where κ = 2(p+1)
p−1 , for I(u) > 0 and J(u) ≤ d we have

0 <
∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2
< Λ−κ.

Conversely, if ∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2
< Λ−κ, (2.14)

then
Λκ ·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

)
< 1.

By value of Λ in (2.12),

1 > Λ
κ(p−1)

2 ·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

) p−1
2

= Λp+1 ·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

) p−1
2

≥ ∥u∥p+1
p+1 ·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

)− p+1
2
·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

) p−1
2

= ∥u∥p+1
p+1 ·

(∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2

)−1
.

Hence
∥u∥p+1

p+1 <
∥∥∥∇Kut

∥∥∥2
+

∥∥∥∇Ku
∥∥∥2
.

Thus I(u) =
∥∥∥∇Ku

∥∥∥2
+

∥∥∥∇Kut

∥∥∥2
−

∥∥∥u
∥∥∥p+1

p+1
> 0.

3. Global weak solution

We denote the inner product in L2(U) by

(
u, v

)
=

∫
U

u(x)v(x)dx. (3.1)

A continuous linear functional defined on the locally convex linear topological space D(0,T ) is
called the “distribution” or the “generalized function” (see [31], Chapter 8). We denote the space of
generalized functions on (0,T ) by D′(0,T ).

Definition 3.1. For T > 0, if the function u(x, t) ∈ Z satisfies:
1) for any v(x) ∈ HK

0 (U) and for almost t ∈ [0,T ),

(
ut, v

)
+

∫ t

0

(
∇Ku,∇Kv

)
dτ +

(
∇Ku,∇Kv

)
+

(
∇Kut,∇

Kv
)
+ (u, v)

=

∫ t

0

(
f (u), v

)
dτ + (u1, v) + (∇Ku0,∇

Kv) + (∇Ku1,∇
Kv) + (u0, v).

(3.2)

2) u(x, 0) = u0(x) in HK
0 (U) and ut(x, 0) = u1(x) in L2(U).

Then we call u = u(x, t) a global weak solution to Problems (1.1)–(1.3).
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For u0 ∈ HK
0 (U) and u1 ∈ HK

0 (U), we introduce the following initial functionals:

E(0) =
1
2

∥∥∥u1(x)
∥∥∥2
+

1
2

∥∥∥∇Ku0(x)
∥∥∥2
+

1
2

∥∥∥∇Ku1(x)
∥∥∥2
−

∫
U

F
(
u0(x)

)
dx, (3.3)

J(0) =
1
2

∥∥∥∇Ku0(x)
∥∥∥2
+

1
2

∥∥∥∇Ku1(x)
∥∥∥2
−

1
p + 1

∥∥∥u0(x)
∥∥∥p+1

p+1
, (3.4)

I(0) = ∥∇Ku1(x)∥2 + ∥∇Ku0(x)∥2 − ∥u0(x)∥p+1
p+1 . (3.5)

Theorem 3.1. If T > 0, f (s) = |s|p−1s where p satisfies (1.5) and E(0) < d, there exists a global
weak solution to Problems (1.1)–(1.3) as long as I(0) > 0, J(0) < d for u0 ∈ HK

0 (Ω) and u1 ∈ HK
0 (Ω).

Moreover, for any 0 ≤ t < T , u ∈W.

3.1. Step 1: Galerkin method.

Let {ωk(x)}(k = 1, 2, 3, · · · ) be a complete orthogonal basis in H2K(Ω) ∩ HK
0 (Ω), which solves the

following eigenvalue system

(−1)K∆Kωk = λkωk, Dαωk

∣∣∣
∂U
= 0, 0 ≤ |α| ≤ K − 1.

It is also a complete orthonormal basis for L2(U) and a complete orthogonal basis for HK
0 (U).

(see [32, 33]).
Based on the Galerkin method, an approximate solution to Problems (1.1)–(1.3) can be con-

structed by

um(x, t) =
m∑

k=1

gkm(t)ωk(x), m = 1, 2, 3, · · · , (3.6)

where um(x, t) satisfies a system of nonlinear ordinary differential equations

(ωk, umtt) + (ωk, (−1)K∆Kum) + (ωk, (−1)K∆Kumt) + (ωk, (−1)K∆Kumtt) + (ωk, umt)
= (ωk(x), f (um(x, t)))

(3.7)

with initial values
gkm(0) = akm and g

′

km(0) = bkm (3.8)

for k = 1, 2, · · · ,m.
Since u0(x) ∈ HK

0 (U) and u1(x) ∈ HK
0 (U), when m → +∞ there exist akm and bkm (k = 1, 2, · · · ,m)

such that

um(x, 0) =
m∑

k=1

akmωk(x) −→ u0(x) in HK
0 (U), (3.9)

umt(x, 0) =
m∑

k=1

bkmωk(x) −→ u1(x) in HK
0 (U). (3.10)

Notice that f (s) = |s|p−1s (p > 1) is locally Lipschitz continuous with respect to s. According
to classical existence theory for nonlinear ordinary differential equations (see [34], corollary 1.1.1),
systems (3.7) and (3.8) with initial data satisfying (3.9) and (3.10) have a local solution um(x, t) for
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each m. In order to extend it to a global solution on [0,T ), we will make priori estimates of um(x, t)
(m = 1, 2, · · · ).

Multiplying by g
′

km(t) on both sides of (3.7) and summing up from k = 1 to k = m, we obtain

( m∑
j=1

ωk(x)g
′

km(t), umtt
)
+

( m∑
k=1

ωk(x)g
′

km(t), (−1)K∆Kum
)
+

( m∑
k=1

ωk(x)g
′

km(t), (−1)K∆Kumt
)

+
( m∑

k=1

ωk(x)g
′

km(t), (−1)K∆Kumtt
)
+

( m∑
k=1

ωk(x)g
′

km(t), umt
)
=

( m∑
k=1

ωk(x)g
′

km(t), f (um)
)
.

That is, (
umt, umtt

)
+

(
umt, (−1)K∆Kum

)
+

(
umt, (−1)K∆Kumt

)
+

(
umt, (−1)K∆Kumtt

)
+ (umt, umt) =

(
umt, f (um)

)
.

Integrating the above equality by parts with respect to x,

1
2

d
dt

∥∥∥umt

∥∥∥2
+

1
2

d
dt

∥∥∥∇Kum

∥∥∥2
+

∥∥∥∇Kumt

∥∥∥2
+

1
2

d
dt

∥∥∥∇Kumt

∥∥∥2
+ ∥umt∥

2 −
(
f (um), umt

)
= 0.

Let F(um) =
∫ um

0
f (s)ds, calculation

d
dt

∫
U

F(um)dx =
∫

U

d
dt

F(um)dx =
∫

U
f (um) · umtdx =

(
f (um), umt

)
gives that

d
dt

(1
2
∥umt∥

2 +
1
2

∥∥∥∇Kum

∥∥∥2
+

1
2

∥∥∥∇Kumt

∥∥∥2
−

∫
U

F(um)dx
)
+

∥∥∥∇Kumt

∥∥∥2
+ ∥umt∥

2 = 0. (3.11)

Let Em(t) = E(um), from (2.4) we have

Em(t) =
1
2

∥∥∥umt

∥∥∥2
+

1
2

∥∥∥∇Kum

∥∥∥2
+

1
2

∥∥∥∇Kumt

∥∥∥2
−

∫
U

F(um)dx (3.12)

and

Em(0) =
1
2

∥∥∥umt(x, 0)
∥∥∥2
+

1
2

∥∥∥∇Kum(x, 0)
∥∥∥2
+

1
2

∥∥∥∇Kumt(x, 0)
∥∥∥2
−

∫
U

F(um(x, 0))dx. (3.13)

Integrating (3.11) with respect to t on (0, t) for 0 ≤ t < T gives

Em(t) +
∫ t

0

∥∥∥∇Kumτ(x, τ)
∥∥∥2

dτ +
∫ t

0

∥∥∥umτ(x, τ)
∥∥∥2

dτ = Em(0), 0 ≤ t < T. (3.14)

It concludes that
Em(t) ≤ Em(0), 0 ≤ t < T. (3.15)
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3.2. Step 2: proving um(x, t) ∈W for sufficiently large m and 0 < t < T.

First, we claim that there exists N1 > 0 such that

I(um)(0) > 0 and J(um)(0) < d for all m > N1. (3.16)

From (3.9), (3.10), and (1.5), using Sobolev imbedding theorem we find
∥∥∥∇Kum(x, 0)

∥∥∥ converges

to
∥∥∥∇Ku0(x)

∥∥∥,
∥∥∥um(x, 0)

∥∥∥p+1

p+1
converges to

∥∥∥u0(x)
∥∥∥p+1

p+1
and

∥∥∥∇Kumt(x, 0)
∥∥∥ converges to

∥∥∥∇Ku1(x)
∥∥∥ as m →

+∞. Therefore, when m tends to +∞,

I(um)(0) =
∥∥∥∇Kum(x, 0)

∥∥∥2
+

∥∥∥∇Kumt(x, 0)
∥∥∥2
−

∥∥∥um(x, 0)
∥∥∥p+1

p+1

converges to I
(
0
)

and

J(um)(0) =
1
2

∥∥∥∇Mum(x, 0)
∥∥∥2
+

1
2

∥∥∥∇Kumt(x, 0)
∥∥∥2
−

1
p + 1

∥∥∥um(x, 0)
∥∥∥p+1

p+1

converges to J
(
0
)
.

Since I(0) > 0 and J(0) < d, we conclude that I(um)(0) > 0 and J(um)(0) < d for sufficiently large
integer m, which implies (3.16).

Next we prove that
∫

U
F
(
um(x, 0)

)
dx converges to

∫
U

F
(
u0(x)

)
dx when m increases to +∞.

By mean value theorem of integral, there exists ξ(m) between u0(x) and um(x, 0) such that

F(um(x, 0)) − F(u0(x)) =
∫ um(x,0)

u0(x)
f (s)ds = f

(
ξ(m))(um(x, 0) − u0(x)),

hence ∣∣∣∣∣∫
U

(
F(um(x, 0)) − F(u0(x))

)
dx

∣∣∣∣∣ ≤ ∥∥∥|ξ(m)|p
∥∥∥ p+1

p
∥um(x, 0) − u0(x)∥p+1.

Under condition (1.5) of p, HK
0 (U) is embedded in Lp+1(U). Since um(x, 0) converges to u0(x) in

HK
0 (U) as m increases to +∞ (see (3.9)),

∥∥∥um(x, 0) − u0(x)
∥∥∥

p+1
→ 0 as m → +∞ and

∥∥∥|ξ(m)|p
∥∥∥ p+1

p
is

uniformly bounded for m = 1, 2, · · · . So we arrive at∫
U

F
(
um(x, 0)

)
dx −→

∫
U

F
(
u0(x)

)
dx (m→ +∞). (3.17)

By (3.9), (3.10), and (3.17), Em(0) in (3.13) converges to

1
2

(∥∥∥u1

∥∥∥2
+

∥∥∥∇Ku0

∥∥∥2
+

∥∥∥∇Ku1

∥∥∥2
)
−

∫
U

F(u0)dx,

that is,
Em(0) −→ E(0), m→ +∞. (3.18)

Since E(0) < d, there exists N2 > 0 satisfying Em(0) < d for all m > N2.
Recalling

∣∣∣ f (u)
∣∣∣ = ∣∣∣u∣∣∣p, a control of F(u) =

∫ u

0
f (s)ds is

0 ≤ F(u) ≤
1

p + 1

∣∣∣u∣∣∣p+1
,
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then
−

1
p + 1

∫
U
|u|p+1dx ≤ −

∫
U

F(u)dx. (3.19)

Combining with (3.19), it follows from (2.2), (3.12) that

Em(t) ≥ J(um) +
1
2

∥∥∥umt

∥∥∥2
, 0 ≤ t < T.

Therefore, from (3.14) we have

Em(0) ≥
∫ t

0

∥∥∥∇Kumτ(x, τ)
∥∥∥2

dτ + Em(t)

≥

∫ t

0

∥∥∥∇Kumτ(x, τ)
∥∥∥2

dτ + J(um) +
1
2

∥∥∥umt

∥∥∥2
, 0 ≤ t < T. (3.20)

Hence
J(um(x, t)) < d for all t ∈ (0,T ) and m > N2. (3.21)

In what follows, we prove that um(x, t) ∈ W for sufficiently large integer m. Set m > max{N1,N2}

and T > 0, if there exists t0 = t0(m) ∈ (0,T ) such that um(x, t) attains ∂W at t = t0, then I(um)(t0) = 0
with

∥∥∥∇Kum(x, t0)
∥∥∥ + ∥∥∥∇Kumt(x, t0)

∥∥∥ , 0 or J(um)(t0) = d.
Inequality (3.21) means J(um)(t0) = d is impossible; on the other hand, by Theorem 2.1 we find

J(um)(t0) ≥ d, which also contradicts (3.21). Therefore, when m is large enough and 0 < t < T , um(x, t)
always stays in W. That is, I(um) > 0 and J(um) < d.

3.3. Step 3: existence of a global solution for nonlinear ordinary differential systems (3.7) and (3.8).

Substituting

J
(
um(x, t)

)
=

p − 1
2(p + 1)

(∥∥∥∇Kum

∥∥∥2
+

∥∥∥∇Kumt

∥∥∥2)
+

1
p + 1

I
(
um(x, t)

)
(3.22)

into (3.20), we obtain

p − 1
2(p + 1)

(∥∥∥∇Kum

∥∥∥2
+

∥∥∥∇Kumt

∥∥∥2)
+

1
p + 1

I
(
um(x, t)

)
+

1
2

∥∥∥umt

∥∥∥2
< d

and ∫ t

0

∥∥∥∇Kumτ(x, τ)
∥∥∥2

dτ < d, 0 < t < T. (3.23)

Since I(um) > 0, when sufficiently large m we have the estimates

∥∇Kum∥
2 + ∥∇Kumt∥

2 < κd (3.24)

and
∥umt∥

2 < 2d, 0 < t < T. (3.25)

Inequality (3.24) shows
∥∥∥um

∥∥∥
HK

0 (U)
and

∥∥∥umt

∥∥∥
HK

0 (U)
are uniformly bounded for m = 1, 2, · · · . Conse-

quently
∥∥∥um

∥∥∥ and
∥∥∥∇um

∥∥∥ are also uniformly bounded for m = 1, 2, · · · .

Electronic Research Archive Volume 32, Issue 9, 5357–5376.



5369

From (1.5), the Sobolev space HK
0 (U) is embedded in Lp+1(U) and L2p(U). Thus

∥∥∥um

∥∥∥
p+1

and∥∥∥ f (um)
∥∥∥2
= ∥um∥

2p
2p are also uniformly bounded for m = 1, 2, · · · .

When 0 < t < T , ∣∣∣(ωk(x), f (um)
)∣∣∣ ≤ ∥∥∥ωk(x)

∥∥∥∥∥∥ f (um)
∥∥∥ = ∥∥∥ f (um)

∥∥∥
should be uniformly bounded for m = 1, 2, · · · , where

{
ωk(x)

}+∞
k=1 is a complete orthonormal basis in

L2(Ω) with
∥∥∥ωi(x)

∥∥∥ = 1 (i = 1, 2, · · · ).
Now we conclude that there exist global solutions

gkm(t), k = 1, 2, 3, · · · ,m

to problems (3.7) and (3.8) on [0,T ), according to classical theory of nonlinear ordinary differential
system (see [34]).

3.4. Step 4: deriving global weak solutions that satisfy (3.2).

Let q = p+1
p and QT = U × [0,T ). It follows from∣∣∣ f (u)

∣∣∣q = ∣∣∣u∣∣∣pq
=

∣∣∣u∣∣∣p+1

that {
f (um)

}+∞
m=1 is uniformly bounded in L∞

(
0,T ; Lq(U)

)
. (3.26)

Furthermore, {
f (um)

}+∞
m=1 is uniformly bounded in Lq(QT ). (3.27)

By (3.24) there exists a subsequence of
{
um(x, t)

}+∞
m=1

(
still denoted by

{
um(x, t)

}+∞
m=1

)
, a function u(x, t)

satisfying the following two:

um(x, t) converges to u(x, t) in L∞
(
0,T ; HK

0 (U)
)

weakly-star as m increases to +∞, (3.28)
umt(x, t) converges to ut(x, t) in L∞

(
0,T ; HK

0 (U)
)

weakly-star as m increases to +∞. (3.29)

By (3.26), there exists another subsequence of
{
um(x, t)

}+∞
m=1 (still denoted by

{
um(x, t)

}+∞
m=1 again), a

function X(x, t) satisfy that

f
(
um(x, t)

)
converges to X(x, t) in L∞

(
0,T ; Lq(U)

)
weakly-star as m increases to +∞. (3.30)

By (3.25),
{
um(x, t)

}+∞
m=1 is uniformly bounded in H1(QT ). Since H1(QT ) is compactly imbedded into

L2(QT ), there exists a subsequence of
{
um(x, t)

}+∞
m=1

(
still denoted by

{
um(x, t)

}+∞
m=1

)
such that

um(x, t) converges to u(x, t) in L2(QT ) as m increases to +∞,

and then

um(x, t) converges to u(x, t) in QT almost everywhere as m increases to +∞.
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Moreover,

f (um(x, t)) converges to f (u(x, t)) in QT almost everywhere as m increases to +∞,

because f (s) = |s|p−1s is continuous.
On the other hand, f (um(x, t)) is bounded in Lq(QT ) from (3.27), according to J. L. Lions’ Lemma

( [35], Lemma 1.3) we find

f
(
um(x, t)

)
weakly converges to f

(
u(x, t)

)
in Lq(QT ) as m increases to +∞. (3.31)

For 0 ≤ t < T, integrating by parts with respect to x and integrating with respect to t from 0 to t on
both sides of (3.7), we obtain

(
ωk, umt

)
+

∫ t

0

(
∇Kωk,∇

Kum
)
dt +

(
∇Kωk,∇

Kum
)
+

(
∇Kωk,∇

Kumt,
)
+ (ωk, um)

=

∫ t

0

(
ωk, f (um),

)
dt +

(
ωk, umt(x, 0),

)
+

(
∇Kωk(x),∇Kum(x, 0),

)
+

(
∇Kωk(x),∇Kumt(x, 0)

)
+

(
ωk(x), um(x, 0)

)
, k = 1, 2, 3, · · · .

Let m→ +∞, we obtain

(
ωk, ut

)
+

∫ t

0

(
∇Kωk,∇

Ku
)
dt +

(
∇Kωk,∇

Ku
)
+

(
∇Kωk,∇

Kut
)
+

(
ωk, u

)
=

∫ t

0

(
ωk, f (u)

)
dt +

(
ωk, u1

)
+

(
∇Kωk,∇

Ku0
)
+

(
∇Kωk,∇

Ku1
)
+

(
ωk, u0

)
,

k = 1, 2, 3, · · · .

Since
{
ωk(x)

}+∞
k=1 is a complete orthogonal basis in HK

0 (U), the above equality still holds if we replace
ωk by arbitrary v ∈ HK

0 (U).

3.5. Step 5: verifying u(x, 0) = u0(x) in HK
0 (U) and ut(x, 0) = u1(x) in L2(U).

According to Lemma 1.2 in [35], it can be deduced from (3.28) and (3.29) that um(x, t) ∈
C
(
0,T ; HM

0 (U)
)
, u(x, t) ∈ C

(
0,T ; HK

0 (U)
)
. Then

um(x, 0)→ u(x, 0) in HK
0 (U) weakly-star as m→ +∞.

On the other hand, from (3.9) we see that um(x, 0) strongly converges to u0(x) in HK
0 (U) as m

increases to +∞, so
u(x, 0) = u0(x) in HK

0 (U).

Next, we will verify ut(x, 0) = u1(x) in L2(U). Integrating by parts with respect to x on both sides
of (3.7), we get

(umtt, ωk) + (∇Kumtt,∇
Kωk)

= ( f (um), ωk) − (∇Kum,∇
Kωk) − (∇Kumt,∇

Kωk) − (umt, ωk), k = 1, 2, 3, · · · ,m.
(3.32)
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By (3.28)–(3.30), when m→ +∞, for k = 1, 2, 3, · · · ,(
f
(
um

)
, ωk

)
−→

(
X, ωk

)
in L∞(0,T ) weakly-star, (3.33)(

∇Kum,∇
Kωk

)
−→

(
∇Ku,∇Kωk

)
in L∞(0,T ) weakly-star, (3.34)(

∇Kumt,∇
Kωk

)
−→

(
∇Kut,∇

Kωk
)

in L∞(0,T ) weakly-star, (3.35)(
umt, ωk

)
−→

(
ut, ωk

)
in L∞(0,T ) weakly-star. (3.36)

So the right side in (3.32) converges to (X, ωk) − (∇Ku,∇Kωk) − (∇Kut,∇
Kωk) −

(
ut, ωk

)
in L∞(0,T )

weakly-star as m → +∞, which means that the left side of (3.32) is also convergent in L∞(0,T )
weakly-star.

Moreover, by (3.36) and (3.35) when m→ +∞, for k = 1, 2, 3, · · ·(
umt, ωk

)
−→

(
ut, ωk

)
in D′(0,T )

and (
∇Kumt,∇

Kωk
)
−→

(
∇Mut,∇

Mωk
)

in D′(0,T ).

Furthermore, when m→ +∞, for k = 1, 2, 3, · · · ,(
umtt, ωk

)
−→

(
utt, ωk

)
in D′(0,T )

and (
∇Kumtt,∇

Kωk
)
−→

(
∇Kutt,∇

Kωk
)

in D′(0,T ).

Hence the left side in (3.32) converges to
(
utt, ωk

)
+

(
∇Kutt,∇

Kωk
)

in D′(0,T ), and then it converges
to the same limit in L∞(0,T ) weakly-star by the uniqueness of limit.

From the above discussions, for k = 1, 2, · · ·(
ut, ωk

)
+

(
∇Kut,∇

Kωk
)
∈ L∞(0,T )

and (
utt, ωk

)
+

(
∇Kutt,∇

Kωk
)
∈ L∞(0,T ).

Again, using Lemma 1.2 in [35], for k = 1, 2, · · · we have(
umt, ωk

)
+

(
∇Kumt,∇

Kωk
)
∈ C(0,T ;R)

and (
ut, ωk

)
+

(
∇Kut,∇

Kωk
)
∈ C(0,T ;R).

Therefore, when m→ +∞, for k = 1, 2, · · ·(
umt(x, 0), ωk(x)

)
+

(
∇Kumt(x, 0),∇Kωk(x)

)
−→

(
ut(x, 0), ωk(x)

)
+

(
∇Kut(x, 0),∇Kωk(x)

)
.
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On the other hand, from (3.10) when m→ +∞, for k = 1, 2, · · ·(
umt(x, 0), ωk(x)

)
+

(
∇Kumt(x, 0),∇Kωk(x)

)
−→

(
u1, ωk

)
+

(
∇Ku1,∇

Kωk
)
.

By uniqueness of limit, for k = 1, 2, · · ·(
ut(x, 0), ωk(x)

)
+

(
∇Kut(x, 0),∇Kωk(x)

)
=

(
u1, ωk

)
+

(
∇Ku1,∇

Kωk
)
.

Integrating by parts with respect to x,(
ut(x, 0), ωk(x)

)
+

(
ut(x, 0), (−1)K∆Kωk(x)

)
=

(
u1, ωk

)
+

(
u1, (−1)K∆Kωk

)
, for k = 1, 2, · · · .

It follows that(
ut(x, 0), ωk(x)

)
+

(
ut(x, 0), λkωk(x)

)
=

(
u1, ωk

)
+

(
u1, λkωk

)
for k = 1, 2, · · · .

Equivalently,
(1 + λk)

(
ut(x, 0) − u1(x), ωk(x)

)
= 0 for k = 1, 2, · · · .

Since all eigenvalues λk > 0 (k = 1, 2, · · · ) (see Theorem 7.23 in [32]), there should be(
ut(x, 0) − u1(x), ωk(x)

)
= 0 for k = 1, 2, · · · .

Thus, we have ut(x, 0) − u1(x) = 0 in L2(U), that is, ut(x, 0) = u1(x) in L2(U).
We finally have a global weak solution u(x, t) ∈ L∞(0,T ; HK

0 (U)) with ut(x, t) ∈ L∞(0,T ; HK
0 (U)) to

Problems (1.1)–(1.3).

3.6. Step 6: proving u(x, t) ∈W for 0 ≤ t < T.

The process will be an analogue as in Step 2.
We denote the inner product in L∞(0,T ; L2(U)) by

[
u(·, t), v(·, t)

]
=

∫ t

0

(
u(·, τ), v(·, τ)

)
dτ, 0 ≤ t < T.

Making an inner product in L2(U) by ut on both sides of (1.1), we obtain(
ut, utt

)
+

(
ut, (−1)K∆Ku

)
+

(
ut, (−1)K∆Kut

)
+

(
ut, (−1)K∆Kutt

)
+ (ut, ut)

=
(
ut, f (u)

)
in D′(0,T ).

Integrating by parts with respect to x, we obtain

1
2

d
dt

∥∥∥ut

∥∥∥2
+ ∥ut∥

2 +
1
2

d
dt

∥∥∥∇Ku
∥∥∥2
+

∥∥∥∇Kut

∥∥∥2
+

1
2

d
dt

∥∥∥∇Kut

∥∥∥2

=
d
dt

∫
U

F(u)dx.

Integrating with respect to t from 0 to t (0 < t < T ), we have
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1
2

∥∥∥ut

∥∥∥2
+ [ut, ut] +

1
2

∥∥∥∇Ku
∥∥∥2
+

1
2

∥∥∥∇Kut

∥∥∥2
+ [∇Kut,∇

Kut] −
∫

U
F(u)dx

=
1
2

∥∥∥u1(x)
∥∥∥2
+

1
2

∥∥∥∇Ku0(x)
∥∥∥2
+

1
2

∥∥∥∇Ku1(x)
∥∥∥2
−

∫
U

F(u0)dx.

That is,

E(t) + [∇Kut,∇
Kut] + [ut, ut] = E(0).

Hence

E(t) ≤ E(0) for 0 ≤ t < T.

Similar to (3.20), by some computations we obtain

1
2

∥∥∥ut

∥∥∥2
+ J

(
u
)
≤ E(t) ≤ E(0) for 0 ≤ t < T.

Since E(0) < d,
J
(
u
)
< d for 0 ≤ t < T. (3.37)

If there exists t0 ∈ (0,T ) such that u ∈W for 0 ≤ t < t0 and u attains ∂W at t = t0, then the nontrivial
solution u ∈ Z satisfies that J

(
u
)
(t0) = d or I

(
u
)
(t0) = 0 with

∥∥∥∇Kut(x, t0)
∥∥∥ + ∥∥∥∇Ku(x, t0)

∥∥∥ , 0.
Inequality (3.37) implies that J

(
u
)
(t0) = d is impossible. On the other hand, if u(x, t) ∈ Z satisfies

that I
(
u
)
(t0) = 0 and

∥∥∥∇Kut(x, t0)
∥∥∥ + ∥∥∥∇Ku(x, t0)

∥∥∥ , 0, that is u(x, t0) ∈ N, from Theorem 2.1 we should
have that J

(
u
)
(t0) ≥ d, which is also in contradiction with (3.37). So we conclude that u(x, t) ∈ W for

0 ≤ t < T .
The proof of Theorem 3.1 is completed.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by Teaching Team Project, Guangdong Provincial Department of Education
2018 (No. 99161010120) and Guangdong Provincial NSF under Grants 2018A030313546.

Conflict of interest

The authors declare there are no conflicts of interest.

Electronic Research Archive Volume 32, Issue 9, 5357–5376.



5374

References

1. J. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13
(1997), 149–155. https://doi.org/10.1016/0010-4655(77)90009-1

2. P. A. Clarkson, R. J. Leveque, R. A. Saxton, Solitary-wave interaction in elastic rods, Stud. Appl.
Math., 75 (1986), 95–121. https://doi.org/10.1002/sapm198675295

3. M. Hayes, G. Saccomandi, Finite amplitude transverse waves in special incom-
pressible viscoelastic solids, J. Elast. Phys. Sci. Solids, 59 (2000), 213–225.
https://doi.org/10.1023/A:1011081920910

4. Y. D. Shang, Initial boundary value problem of equation utt − ∆u − ∆ut − ∆utt = f (u), Acta Math.
Appl. Sin., Chinese edition, 23 (2000), 385–393.

5. R. Z. Xu, X. R. Zhao, J. H. Shen, Asymptotic behavior of solution for fourth order wave
equation with dispersive and dissipative terms, Appl. Math. Mech., 29 (2008), 259–262.
https://doi.org/10.1007/s10483-008-0213-y

6. F. Gazzola, M. Squassina, Global solutions and finite time blowup for damped
semilinear wave equations, Ann. Inst. Henri Poincare, 23 (2006), 185–207.
https://doi.org/10.1016/j.anihpc.2005.02.007

7. D. H. Sattinger, On global solutions of nonlinear hyperbolic equalitions, Arch. Ration. Mech.
Anal., 30 (1968), 148–172. https://doi.org/10.1007/BF00250942

8. W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and
strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632.
https://doi.org/10.1515/anona-2020-0016

9. R. Z. Xu, Y. B. Yang, Finite time blow-up for the nonlinear fourth-order dispersive-
dissipative wave equation at high energy level, Int. J. Math., 23 (2012), 1250060.
https://doi.org/10.1142/S0129167X12500607

10. P. G. Ciarlet, Mathematical Elasticity, Vol. II: theory of plates, 1997.

11. J. E. Lagnese, Boundary Stabilization of Thin Plates, Philadephia: SIAM, 1989.
https://doi.org/10.1137/1.9781611970821

12. R. Z. Xu, X. C. Wang, Y. B. Yang, S. H. Chen, Global solutions and finite time blow-
up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503.
https://doi.org/10.1063/1.5006728

13. Q. Lin, Y. H. Wu, S. Y. Lai, On global solution of an initial boundary value problem for a class
of damped nonlinear equations, Nonlinear Anal. Theory Methods Appl., 69 (2008), 4340–4351.
https://doi.org/10.1016/j.na.2007.10.057

14. A. C. Biazutti, On a nonlinear evolution equation and its applications, Nonlinear Anal. Theory
Methods Appl., 24 (1995), 1221–1234. https://doi.org/10.1016/0362-546X(94)00193-L

15. J. A. Esquivel-Avila, Dynamics around the ground state of a nonlinear evolution equation, Nonlin-
ear Anal. Theory Methods Appl., 63 (2005), e331–e343. https://doi.org/10.1016/j.na.2005.02.108

16. Y. C. Liu, R. Z. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math.
Anal. Appl., 331 (2007), 585–607. https://doi.org/10.1016/j.jmaa.2006.09.010

Electronic Research Archive Volume 32, Issue 9, 5357–5376.

http://dx.doi.org/https://doi.org/10.1016/0010-4655(77)90009-1
http://dx.doi.org/https://doi.org/10.1002/sapm198675295
http://dx.doi.org/https://doi.org/10.1023/A:1011081920910
http://dx.doi.org/https://doi.org/10.1007/s10483-008-0213-y
http://dx.doi.org/https://doi.org/10.1016/j.anihpc.2005.02.007
http://dx.doi.org/https://doi.org/10.1007/BF00250942
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0016
http://dx.doi.org/https://doi.org/10.1142/S0129167X12500607
http://dx.doi.org/https://doi.org/10.1137/1.9781611970821
http://dx.doi.org/https://doi.org/10.1063/1.5006728
http://dx.doi.org/https://doi.org/10.1016/j.na.2007.10.057
http://dx.doi.org/https://doi.org/10.1016/0362-546X(94)00193-L
http://dx.doi.org/https://doi.org/10.1016/j.na.2005.02.108
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.09.010


5375

17. Y. C. Liu, R. Z. Xu, A class of fourth order wave equations with dissipative and nonlinear strain
terms, J. Differ. Equations, 244 (2008), 200–228. https://doi.org/10.1016/j.jde.2007.10.015

18. Y. Wang, Y. Wang, On the initial-boundary problem for fourth order wave equations
with damping, strain and source terms, J. Math. Anal. Appl., 405 (2013), 116–127.
https://doi.org/10.1016/j.jmaa.2013.03.060
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