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Abstract: The matrix square root is widely encountered in many fields of mathematics. In this paper,
based on the properties of M-matrix and quadratic matrix equations, we study the square root of M-
matrix, and prove that for a regular M-matrix there always exists a regular M-matrix as its square
root. In addition, a structure-preserving doubling algorithm is proposed to compute the square root.
Theoretical analysis and numerical experiments are given to show that our method is feasible and is
effective under certain conditions.

Keywords: matrix square root; M-matrix; iterative method; doubling algorithm

1. Introduction

Let A ∈ Cn×n, a matrix X ∈ Cn×n is called a square root of A if it satisfies the following matrix
equation:

X2 = A. (1.1)

The matrix square root is widely encountered in many fields of mathematics, such as nonlinear matrix
equations, computation of the matrix logarithm, boundary value problems, Markov chains, and so on
(see [1–4]).

In recent years, many scholars have conducted in-depth research on the theories and numerical
algorithms of matrix square root, and obtained a large number of results. In terms of theoretical re-
search, people have discussed the existence and the number of square roots for general matrices and
obtained many results (see [2, 3]). In addition, for matrices with special structure and special proper-
ties, such as M-matrix (see [5]), H-matrix with positive diagonal entries (see [6]), central symmetric
matrix (see [7, 8]), P-orthogonal matrix (see [9]), Toeplitz matrix (see [10]), cyclic matrix (see [11]),
Boolean matrix (see [12]), and so on, the existence of square root is also studied.
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In terms of numerical algorithms, the Schur method was first used to calculate the square root of
a general matrix (see [13, 14]). In fact, the command sqrtm in Matlab for calculating the square root
of a general matrix was written based on the Schur method. However, when the size of the matrix
increases, the complexity of the Schur method increases sharply. Moreover, for some matrices with
special structures, iterative methods are more effective, so people turned to iterative methods. Higham
first proposed the Newton method to calculate the square root of a general matrix in [15]. Although the
Newton method has a fast convergence rate, the operation count of each iteration is too large. In order
to overcome the defects of the Newton method, the simple Newton method was proposed. However,
the simple Newton method has poor stability in calculation (see [2]). Later, the Newton method was
improved, and some fast and effective algorithms were proposed, such as the DB method, the CR
method, and so on (see [16–20]). Recently, many effective algorithms for calculating matrix square
root have also been proposed from different perspectives, such as the power method (see [21, 22]),
gradient neural network method (see [23]), Zolotarev iterative method (see [24]), Chebyshev iterative
method (see [25]), and so on (see [26–28]).

Generally speaking, the theory of matrix square root is very complex, and the existence of a square
root of a general matrix is not as evident as it seems. For a general matrix, it may have no square root,
or may have many square roots. A sufficient condition for one to exist is that A has no real negative
eigenvalue. More generally, any matrix A having no non-positive real eigenvalues has a unique square
root for which every eigenvalue has positive real part, and this square root, denoted by A1/2, is called
the principal square (see [1, 2]). As for M-matrix, we have the following result.

Lemma 1.1. [2] Let A be a nonsingular M-matrix. Then A has exactly one nonsingular M-matrix as
its square root.

But for general M-matrix, the above conclusion is not necessarily valid. For example, consider

A =
(

0 −1
0 0

)
, B =

(
1 −1
0 0

)
.

It is easy to verify that A and B are M-matrices, but direct calculation shows that A has no square root
while B has an M-matrix square root. Therefore, it is necessary to extend the above theorem to more
general subclasses of M-matrix. The regular M-matrix is an extension of the nonsingular M-matrix
and the irreducible singular M-matrix. The regular M-matrix has many beautiful properties similar to
the nonsingular M-matrix and the irreducible singular M-matrix, and it also plays an important role in
the theories of nonsymmetric algebraic Riccati equations. In this paper, we will prove that for a regular
M-matrix, there always exists a regular M-matrix as its square root. In addition, a structure-preserving
doubling algorithm is proposed to compute the square root. Theoretical analysis and numerical exper-
iments are given to show that our method is feasible and is effective under certain conditions.

The rest of the paper is organized as follows: In Section 2, we give some preliminary results of
M-matrix. In Section 3, based on the properties of M-matrix and quadratic matrix equations, we prove
the existence of square root of a regular M-matrix. In Section 4, we propose a structure-preserving
doubling algorithm to compute the square root and then give a convergence analysis of it. In Section 5,
we use some numerical examples to show the feasibility and effectiveness of our method. Conclusions
are given in Section 6.
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2. Preliminaries

In this section, we review the definitions and some properties of M-matrix.
For any matrix A ∈ Rm×n, if the elements of A satisfy ai j ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n, then A is

called a nonnegative matrix, denoted by A ≥ 0. For any matrices A ∈ Rm×n, B ∈ Rm×n, we write A ≥ B
if ai j ≥ bi j hold for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let A = (ai j) ∈ Rn×n, then A is called a Z-matrix if
ai j ≤ 0 for all i , j. A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that
A = sI − B and s ≥ ρ(B), where ρ(B) is the spectral radius of B. In particular, A is called a nonsingular
M-matrix if s > ρ(B) and is called a singular M-matrix if s = ρ(B).

The following properties of M-matrix are well-known and can be found in [29].

Lemma 2.1. Let A ∈ Rn×n be a Z-matrix. Then the following statements are equivalent:
(i) A is a nonsingular M-matrix;
(ii) A−1 ≥ 0;
(iii) Au > 0 for some positive vector u > 0.

Lemma 2.2. Let A be a nonsingular M-matrix and B be a Z-matrix. If A ≤ B, then B is also a
nonsingular M-matrix.

Lemma 2.3. Let A be an irreducible singular M-matrix and B be a Z-matrix. If A ≤ B and A , B,
then B is a nonsingular M-matrix.

The regular M-matrix is an extension of the nonsingular M-matrix and the irreducible singular M-
matrix. The definition of regular M-matrix is introduced in the following:

Definition 2.1. [30] An M-matrix A is said to be regular if Au ≥ 0 for some u > 0.

It is easy to verify that nonsingular M-matrices and irreducible singular M-matrices are always
regular M-matrices, and any Z-matrix A such that Au ≥ 0 for some u > 0 is a regular M-matrix.

3. The square root of regular M-matrix

In this section, we consider the square root of a regular M-matrix, and prove that for a regular
M-matrix there exists a regular M-matrix as its square root.

Let A = (ai j) ∈ Rn×n be a regular M-matrix, and let

X = αI − Y, (3.1)

where α > 0 is a parameter to be determined. Then Eq (1.1) can be rewritten as

Y2 − 2αY + α2I − A = 0. (3.2)

Here we choose the parameter α such that α2I − A is a nonnegative matrix. Since A is a regular M-
matrix, we can easily verify from definition that aii ≥ 0 for i = 1, 2, · · · , n, where aii are the diagonal
elements of A. In addition, it is evident that max

1≤i≤n

√
aii > 0 unless A = 0. Thus, if we choose

α ≥ max
1≤i≤n

√
aii,
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then α2I − A is a nonnegative matrix.
In the following, we discuss the existence of a minimal non-negative solution for Eq (3.2). In order

to achieve this goal, we write Eq (3.2) in the following form:

2αY = Y2 + α2I − A,

and then consider the iteration

Yk+1 =
1

2α
(Y2

k + α
2I − A), Y0 = 0. (3.3)

We have the following result for iteration (3.3).

Lemma 3.1. Let A = (ai j) ∈ Rn×n be a regular M-matrix, and the parameter α satisfy α ≥ max
1≤i≤n

√
aii.

Then the sequence {Yk} generated by iteration (3.3) is well defined, monotonically increasing, and
satisfies Yku ≤ αu, where u > 0 is a positive vector such that Au ≥ 0.

Proof. It is evident that the sequence {Yk} is well defined, since only matrix additions and multiplica-
tions are used in the iteration (3.3).

We prove the conclusion by mathematical induction.
(i) The sequence {Yk} is monotonically increasing, i.e.,

0 ≤ Yk ≤ Yk+1, k ≥ 0.

When k = 0, it is evident that

0 = Y0 ≤ Y1 =
1

2α
(α2I − A).

Suppose the conclusion is true for k − 1. From

Yk+1 =
1

2α
(Y2

k + α
2I − A), Yk =

1
2α

(Y2
k−1 + α

2I − A),

and
Yk+1 − Yk =

1
2α

(Y2
k − Y2

k−1) ≥ 0,

we know the conclusion is true for k. So for any k ≥ 0, the conclusion is true.
(ii) Since A is a regular M-matrix, there is a positive vector u > 0 such that Au ≥ 0. In the following,

we prove that for any k ≥ 0, Yku ≤ αu holds true.
When k = 0, the conclusion is obvious. Suppose that the conclusion is true for k − 1. Then

Yku =
1

2α
(Y2

k−1 + α
2I − A)u

≤
1

2α
(α2u + α2u)

= αu,

thus, the same is true for k. So for any k ≥ 0, the conclusion is true. □

Electronic Research Archive Volume 32, Issue 9, 5306–5320.
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Theorem 3.1. Let A = (ai j) ∈ Rn×n be a regular M-matrix, and the parameter α satisfy α ≥ max
1≤i≤n

√
aii.

Then Eq (3.2) has a minimal non-negative solution Y, and αI − Y is a regular M-matrix.

Proof. According to Lemma 3.1, the sequence {Yk} obtained from iteration (3.3) is monotonically
increasing and upper bounded. So there is a limit lim

k→∞
Yk = Y . Taking limit on both sides of (3.3), we

know Y is a solution of Eq (3.2), and Y ≥ 0.
If Z ≥ 0 is another non-negative solution of Eq (3.2), we can easily verify as in Lemma 3.1 that

the sequence {Yk} obtained from iteration (3.3) satisfies Yk ≤ Z. Taking limit yields Y ≤ Z, so Y is the
minimal non-negative solution.

In addition, we have obtained Yku ≤ αu for k ≥ 0 in the proof of Lemma 3.1. Taking limit, we have
Yu ≤ αu, so

(αI − Y)u = αu − Yu ≥ 0.

Thus, by definition, αI − Y is a regular M-matrix. □

According to the above theorem, we can achieve the following conclusion.

Theorem 3.2. Let A ∈ Rn×n be a regular M-matrix. Then there exists a square root of A, and the square
root is a regular M-matrix.

Proof. By Theorem 3.1, αI − Y is a regular M-matrix, and it is a square root of A since it satisfies Eq
(1.1). □

Corollary 3.1. Let A ∈ Rn×n be a regular M-matrix, and

α1 > α2 ≥ max
1≤i≤n

√
aii

be two parameters. Then Y1 ≥ Y2, where Y1 and Y2 are minimal non-negative solutions of Eq (3.2)
associated with α1 and α2, respectively.

Proof. Let A1/2 be the square root of A, as in Theorem 3.2. Since

A1/2 = α1I − Y1 = α2I − Y2,

we have Y1 ≥ Y2 immediately. □

Corollary 3.2. Let A ∈ Rn×n be a regular M-matrix and Y be the minimal non-negative solution of Eq
(3.2). If A is a nonsingular M-matrix, then ρ(Y) < α; if A is singular, then ρ(Y) = α.

Proof. Note that αI − Y is an M-matrix and satisfies Eq (1.1). If A is nonsingular, so is αI − Y , and by
definition of M-matrix we know ρ(Y) < α. If A is singular, so is αI − Y , and thus ρ(Y) = α. □

Remark 1. We have proved that, for a regular M-matrix A, there exists a square root of A, and the
square root is a regular M-matrix. However, A may have more than one M-matrix as its square root.
For example, consider

A =


1 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Electronic Research Archive Volume 32, Issue 9, 5306–5320.
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It is evident that A is a regular M-matrix, and A is a square root of itself since A2 = A. In addition,

B =


1 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0


is an M-matrix (not regular), and B is also a square root of A.

4. A structure-preserving doubling algorithm

The doubling algorithms are very efficient iterative methods for solving nonlinear matrix equations.
The idea of doubling algorithms can be traced back to the 1970s, and recently the doubling algorithms
have been successfully applied to various kinds of nonlinear matrix equations. We refer to [31] for a
complete description of doubling algorithms. In this section, we propose a structure-preserving dou-
bling algorithm to compute the square root of a regular M-matrix and then give a theoretical analysis
of it.

The analysis in the previous section shows that in order to calculate the square root of a regular M-
matrix, it is only necessary to compute the minimal non-negative solution of Eq (3.2). For effectively
solving (3.2), we divide both sides of Eq (3.2) by α2 and let Z = Y/α to obtain

Z2 − 2Z +
1
α2 (α2I − A) = 0. (4.1)

By Theorem 3.1 and Corrolary 3.2, Eq (4.1) has a minimal non-negative solution Z such that ρ(Z) ≤ 1.
In particular, ρ(Z) < 1 when A is a nonsingular M-matrix.

It can be verified that Eq (4.1) is equivalent to(
0 I

1
α2 (α2I − A) −2I

) (
I
Z

)
=

(
I 0
0 −I

) (
I
Z

)
Z. (4.2)

Pre-multiply Eq (4.2) by

P =
(

I 1
2 I

0 −1
2 I

)
,

then we have

M0

(
I
Z

)
= N0

(
I
Z

)
Z, (4.3)

where

M0 =

( 1
2α2 (α2I − A) 0
− 1

2α2 (α2I − A) I

)
=:

(
E0 0
−H0 I

)
,

N0 =

(
I −1

2 I
0 1

2 I

)
=:

(
I −G0

0 F0

)
.

It is clear that the matrix pencil M0 − λN0 is in the first standard form (SF1) as defined in [31], and it
is natural to apply the doubling algorithm for SF1 to solve (4.3).

Electronic Research Archive Volume 32, Issue 9, 5306–5320.
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The basic idea of the structure-preserving doubling algorithm for SF1 to solve (4.3) is to recursively
construct a sequence of pencils Mk − λNk for k ≥ 1 that satisfy

Mk

(
I
Z

)
= Nk

(
I
Z

)
Z2k
, (4.4)

and at the same time have the same forms as M0 − λN0:

Mk =

(
Ek 0
−Hk I

)
, Nk =

(
I −Gk

0 Fk

)
. (4.5)

Moreover, the blocks in Mk and Nk can be produced by the following iteration of doubling algorithms:

Ek+1 = Ek(I −GkHk)−1Ek,

Fk+1 = Fk(I − HkGk)−1Fk,

Gk+1 = Gk + Ek(I −GkHk)−1GkFk,

Hk+1 = Hk + Fk(I − HkGk)−1HkEk.

For Eq (4.1), another matrix equation can be constructed as follows:

1
α2 (α2I − A)W2 − 2W + I = 0, (4.6)

which is called the dual equation of (4.1). It can be verified similarly that Eq (4.6) has a minimal
non-negative solution W such that ρ(W) ≤ 1 as for (4.1). In addition, we have

Mk

(
W
I

)
W2k
= Nk

(
W
I

)
, k = 0, 1, 2, · · · (4.7)

for matrix pencils Mk − λNk in (4.5).
Thus, as long as Ek, Fk, Gk, and Hk are well-defined, we will have

Mk

(
I
Z

)
= Nk

(
I
Z

)
Z2k
, Mk

(
W
I

)
W2k
= Nk

(
W
I

)
,

or, equivalently,

Z − Hk = FkZ2k+1, Ek = (I −GkZ)Z2k
, (4.8)

W −Gk = EkW2k+1, Fk = (I − HkW)W2k
. (4.9)

According to the above derivation, the structure-preserving doubling algorithm to compute the
square root of regular M-matrix can be stated as follows:

Electronic Research Archive Volume 32, Issue 9, 5306–5320.
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Algorithm 4.1 The structure-preserving doubling algorithm (SDA)
Input: A regular M-matrix A;
Output: A square root of A, which is a regular M-matrix.
Step 1. Set α = max1≤i≤n

√
aii;

Step 2. Compute E0 = H0 =
1

2α2 (α2I − A), F0 = G0 =
1
2 I;

Step 3. For k = 0, 1, 2, · · · , until convergence, compute
Ek+1 = Ek(I −GkHk)−1Ek,

Fk+1 = Fk(I − HkGk)−1Fk,

Gk+1 = Gk + Ek(I −GkHk)−1GkFk,

Hk+1 = Hk + Fk(I − HkGk)−1HkEk;
Step 4. Set A1/2 = α(I − Z), where Z = limk→∞ Hk.

In the following, we give a convergence analysis of the structure-preserving doubling algorithm.

Lemma 4.1. Let A ∈ Rn×n be a regular M-matrix, and Z and W be the minimal non-negative solutions
for Eqs (4.1) and (4.6), respectively. Then I − ZW and I − WZ are both regular M-matrices. In
particular, I−ZW and I−WZ are nonsingular M-matrices if A is nonsingular, and they are irreducible
M-matrices if A is irreducible.

Proof. (i) Since A is a regular M-matrix, there exists a positive vector u > 0 such that Au ≥ 0. Firstly,
we can easily verify as in Lemma 3.1 that the sequences {Zk} and {Wk} generated by the following
iterations

Zk+1 =
1
2

(
Z2

k +
1
α2 (α2I − A)

)
, Z0 = 0, (4.10)

Wk+1 =
1
2

(
I +

1
α2 (α2I − A)W2

k

)
, W0 = 0, (4.11)

are well defined, monotonically increasing, and satisfy

Zku ≤ u, Wku ≤ u,

for all k ≥ 0. Taking limit, we have Zu ≤ u and Wu ≤ u.
In addition, it is clear I − ZW and I −WZ are Z-matrices, and noting that

(I − ZW)u = u − ZWu ≥ u − Zu ≥ 0, (I −WZ)u = u −WZu ≥ u −Wu ≥ 0,

we know I − ZW and I −WZ are both regular M-matrices.
(ii) When A is a nonsingular M-matrix, it follows that Au = v > 0 for u > 0. We can verify further

that the sequence {Zk} generated by (4.10) satisfies

Zku ≤ u −
v

2α2 , k = 0, 1, 2, · · · .

Taking limit, we obtain
Zu ≤ u −

v
2α2 < u.

Thus
(I − ZW)u = u − ZWu ≥ u − Zu > 0, (I −WZ)u = u −WZu > u −Wu ≥ 0,
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which mean I − ZW and I −WZ are nonsingular M-matrices.
When A is irreducible, from (4.10) and (4.11) we can observe

Z1 =
1

2α2 (α2I − A), W2 =
1
2

(
I +

1
4α2 (α2I − A)

)
,

are irreducible. Since Z ≥ Z1 ≥ 0 and W ≥ W2 ≥ 0, we can conclude Z and W are irreducible
M-matrices. Hence I − ZW and I −WZ are irreducible M-matrices. □

By the general theory of doubling algorithms, we can conclude the following convergence result
when A is a nonsingular M-matrix or an irreducible singular M-matrix.
Theorem 4.1. Let A ∈ Rn×n be a nonsingular M-matrix or an irreducible singular M-matrix, and Z
and W be the minimal non-negative solutions for Eqs (4.1) and (4.6), respectively. Then the sequences
{Ek}, {Fk}, {Gk}, {Hk} generated by Algorithm 4.1 are well-defined, and for k ≥ 1
(a) Ek = (I −GkZ)Z2k

≥ 0;
(b) Fk = (I − HkW)W2k

≥ 0;
(c) I −GkHk and I − HkGk are nonsingular M-matrices;
(d) 0 ≤ Hk ≤ Hk+1 ≤ Z, 0 ≤ Gk ≤ Gk+1 ≤ W, and

0 ≤ Z − Hk ≤ W2k
ZZ2k
, 0 ≤ W −Gk ≤ Z2k

WW2k
. (4.12)

In addition, we have

lim sup
k→∞

∥Z − Hk∥
1/2k
≤ ρ(Z) · ρ(W), lim sup

k→∞
∥W −Gk∥

1/2k
≤ ρ(Z) · ρ(W).

Proof. We prove the conclusions by mathematical induction.
(i) When k = 1, we observe firstly that E0, F0, G0, and H0 are well-defined and are all non-negative.

In addition, since

I − H0G0 = I −G0H0

= I −
1

4α2 (α2I − A) =
1

4α2 (3α2I + A),

both I −H0G0 and I −G0H0 are nonsingular M-matrices by Lemmas 2.2 and 2.3. Thus E1, F1, G1, and
H1 are well-defined. Moreover, from the iteration of doubling algorithms we have

E1 = E0(I −G0H0)−1E0 ≥ 0,
F1 = F0(I − H0G0)−1F0 ≥ 0,
G1 = G0 + E0(I −G0H0)−1G0F0 ≥ G0,

H1 = H0 + F0(I − H0G0)−1H0E0 ≥ H0.

Let k = 1 in (4.8) and (4.8) to get

Z − H1 = F1Z3 ≥ 0, E1 = (I −G1Z)Z2 ≥ 0,

W −G1 = E1W3 ≥ 0, F1 = (I − H1W)W2 ≥ 0,

Electronic Research Archive Volume 32, Issue 9, 5306–5320.
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thus we have
0 ≤ H0 ≤ H1 ≤ Z, 0 ≤ G0 ≤ G1 ≤ W.

From Lemma 4.1 and noting that

I − H1G1 ≥ I − ZW, I −G1H1 ≥ I −WZ,

we know I − H1G1 and I −G1H1 are nonsingular M-matrices. Furthermore, we have

0 ≤ Z − H1 = F1Z3 = (I − H1W)W2Z3 ≤ W2ZZ2,

0 ≤ W −G1 = E1W3 = (I −G1Z)Z2W3 ≤ Z2WW2.

This completes the proof for k = 1.
(ii) Suppose now that the conclusions are true for k = l. From the iteration of doubling algorithms,

El+1, Fl+1, Gl+1, and Hl+1 are well-defined, and satisfy

El+1 = El(I −GlHl)−1El ≥ 0,
Fl+1 = Fl(I − HlGl)−1Fl ≥ 0,
Gl+1 = Gl + El(I −GlHl)−1GlFl ≥ Gl,

Hl+1 = Hl + Fl(I − HlGl)−1HlEl ≥ Hl.

On the other hand, let k = l + 1 in (4.8) and (4.8) to obtain

Z − Hl+1 = Fl+1Z2l+1+1 ≥ 0, El+1 = (I −Gl+1Z)Z2l+1
≥ 0,

W −Gl+1 = El+1W2l+1
≥ 0, Fl+1 = (I − Hl+1W)W2l+1

≥ 0.

Thus, we have
I − Hl+1Gl+1 ≥ I − ZW, I −Gl+1Hl+1 ≥ I −WZ,

which mean that I − Hl+1Gl+1 and I −Gl+1Hl+1 are nonsingular M-matrices from Lemma 4.1. Further-
more, we have

0 ≤ Z − Hl+1 = Fl+1Z2l+1+1 = (I − Hl+1W)W2l+1
Z2l+1+1 ≤ W2l+1

ZZ2l+1
,

0 ≤ W −Gl+1 = El+1W2l+1
= (I −Gl+1Z)Z2l+1

W2l+1
≤ Z2l+1

WW2l+1
.

Thus, the conclusions are true for k = l + 1.
By the induction, the conclusions are true for all k ≥ 1.
In addition, from (4.12) we can obtain

∥Z − Hk∥
1/2k
≤ ∥W2k

∥1/2
k
∥Z∥1/2

k
∥Z2k
∥1/2

k
,

∥W −Gk∥
1/2k
≤ ∥Z2k

∥1/2
k
∥W∥1/2

k
∥W2k
∥1/2

k
.

Letting k → ∞, we have

lim sup
k→∞

∥Z − Hk∥
1/2k
≤ ρ(Z) · ρ(W), lim sup

k→∞
∥W −Gk∥

1/2k
≤ ρ(Z) · ρ(W).

□
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Remark 2. We only prove the convergence result of the structure-preserving doubling algorithm for the
nonsingular M-matrix and the irreducible singular M-matrix. However, when A is a general regular M-
matrix, the convergence analysis of the structure-preserving doubling algorithm is very complicated.
We refer to [31] for a complete convergence analysis of the structure-preserving doubling algorithm.
In addition, from Theorem 4.1, we can observe that when A is a nonsingular M-matrix, the convergence
rate is quadratic since ρ(Z) · ρ(W) < 1. When A is an irreducible singular M-matrix, the convergence
rate is linear.

5. Numerical examples

In this section, we use some numerical examples to show the feasibility and effectiveness of the
structure-preserving doubling algorithm (Algorithm 4.1). We will compare Algorithm 4.1 (SDA) with
the basic Newton method (Newton) in [2]. The numerical results are presented in terms of iteration
numbers (IT), CPU time (CPU) in seconds, and residue (Res), where the residue is defined to be

Res =
∥X2 − A∥∞
∥A∥∞

.

In our implementations, all iterations are performed in Matlab (R2018a) on a personal computer
with a 2G CPU and 8G memory and are terminated when the current iterate satisfies Res < 10−12.

Example 5.1. Consider nonsingular M-matrix as follows:

A =


D −I

−I D . . .
. . .
. . . −I
−I D

 ∈ R
n×n, D =


4 −1

−1 4 . . .
. . .
. . . −1
−1 4

 ∈ R
m×m,

where n = m2. For different orders of m, we apply both methods to calculate the square root of A. The
numerical results are shown in Table 1.

Table 1. Numerical results of Example 5.1.

m Method IT CPU RES
10 Newton 6 0.0645 7.5213e-16

SDA 6 0.0352 3.8339e-13
15 Newton 6 0.3145 1.1951e-15

SDA 7 0.1086 8.4507e-16
20 Newton 6 1.3102 4.1972e-14

SDA 7 0.5396 4.6757e-14
25 Newton 7 6.5119 1.6059e-15

SDA 8 1.8972 1.5041e-15
30 Newton 7 19.8473 1.5212e-15

SDA 8 4.9366 1.1492e-15
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It can be seen from the table that both methods can obtain results satisfying the accuracy for different
orders of m. In particular, the Newton method is a little faster than SDA, while SDA is much cheaper
than the Newton method in terms of CPU time.

Example 5.2. Consider the nonsingular M-matrix generated by the MATLAB command as in the fol-
lowing

a = rand(n, n); A = diag(a ∗ ones(n, 1)) − a + eye(n);

For different sizes of n, we apply both methods to calculate the square root of A. The numerical results
are reported in Table 2.

Table 2. Numerical results of Example 5.2.

n Method IT CPU RES
100 Newton 7 0.0955 3.6745e-14

SDA 7 0.0310 6.8434e-16
200 Newton 8 0.4543 1.0868e-15

SDA 7 0.1041 3.8228e-13
300 Newton 8 1.1642 1.2259e-15

SDA 8 0.2740 1.0488e-15
400 Newton 8 2.6180 1.4675e-14

SDA 8 0.5141 9.9678e-16
500 Newton 8 5.3220 3.6847e-13

SDA 8 0.9228 1.4307e-15

From Table 2, it can be seen that both methods can obtain results satisfying the accuracy. In partic-
ular, SDA is much cheaper than the Newton method in terms of CPU time.

Example 5.3. Consider irreducible singular M-matrix as follows:

a = rand(n, n); A = diag(a ∗ ones(n, 1)) − a;

For different sizes of n, the numerical results are reported in Table 3.

Table 3. Numerical results of Example 5.3.

n Method IT CPU RES
100 Newton 22 0.2288 7.1685e-13

SDA 20 0.0820 4.5514e-13
200 Newton 23 1.1957 2.8263e-13

SDA 20 0.2292 4.5569e-13
300 Newton 21 2.9924 3.5541e-13

SDA 20 0.5114 4.5553e-13
400 Newton 26 8.5343 2.7856e-13

SDA 20 1.2232 4.5548e-13
500 Newton 29 19.2009 3.6264e-13

SDA 20 2.5535 4.5548e-13
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In this example, due to the singularity of A, the convergence rates of the two iteration methods
are linear. In particular, SDA is a little faster than the Newton method and is much cheaper than the
Newton method.

Example 5.4. Consider the following regular singular M-matrix

A =


1 −1 0
−1 1 0
0 0 0

 .
The square root (reserved to four decimal places) is

A1/2 =


0.7071 −0.7071 0
−0.7071 0.7071 0

0 0 0

 .
The numerical results are shown in Table 4. For this example, the Newton method fails to converge,
but SDA can still get a result that meets the accuracy.

Table 4. Numerical results of Example 5.4.

Method IT RES
Newton - -
SDA 21 1.5486e-16

From the above four examples, it can be seen that the SDA proposed in this paper is feasible. In
particular, it requires fewer CPU time than the Newton method.

6. Conclusions

We studied the square root of M-matrix in this paper and proved that the square root of a regular M-
matrix exists and is still a regular M-matrix. In addition, we proposed a structure-preserving doubling
algorithm (SDA) to compute the square root. Theoretical analysis and numerical experiments have
shown that SDA is feasible and is effective under certain conditions.
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