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Abstract: The study of the oscillatory behavior of a general class of neutral Emden-Fowler differential
equations is the focus of this work. The main motivations for studying the oscillatory behavior of
neutral equations are their many applications as well as the richness of these equations with exciting
analytical issues. We obtained novel oscillation conditions in Kamenev-type criteria for the considered
equation in the canonical case. We improve the monotonic and asymptotic characteristics of the
non-oscillatory solutions to the considered equation and then utilize these characteristics to refine the
oscillation conditions. We present, through examples and discussions, what demonstrates the novelty
and efficiency of the results compared to previous relevant findings in the literature. In addition, we
numerically represent the solutions of some special cases to support the theoretical results.
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1. Introduction

Studying the properties of solutions to differential equations (DEs) is the main aim of qualitative
theory. This theory is concerned with investigating features such as stability, periodicity, bifurcation,
oscillation, synchronization, etc. This theory emerged from researchers’ attempts to obtain sufficient
information about the nonlinear models that appear when modeling biological, physical, and other
phenomena; see [1–4]. The qualitative theory was also extended to include functional, fractional, and
partial differential equations.

A functional differential equation (FDE) is a DE with a deviating argument. That is, the FDE
contains a dependent variable and some of its derivatives for various argument values. These
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equations are distinguished by the fact that they take into account the previous and subsequent times
when studying any phenomenon or system. In fact, the majority of studies on FDEs until the time of
Volterra [5] focused only on some properties of some very special equations. A few books on FDEs
were published. In the latter portion of the 1940s and the initial phase of the 1950s. Mishkis [6] laid
the groundwork for a broad theory of linear systems in his book by introducing a general class of
delayed-argument equations. In 1954, Bellman and Danskin [7] noted the many uses of equations
containing past information in disciplines such as economics and biology. Bellman and Cook [8]
provide a more comprehensive treatment of the theoretical framework concerning linear equations
and the fundamentals of stability theory.

Oscillation theory, as part of qualitative theory, revolves around creating the criteria for the
presence of oscillatory and non-oscillatory solutions to FDEs, investigating zero-order distribution
laws, estimating the number of zeros in a certain period of time and the distance between neighboring
zeros, and other basics. Oscillation theory has now become an important mathematical instrument for
numerous advanced fields and technological applications. Obtaining oscillation conditions for
specific FDEs has been a widely studied area in the last few decades; see [9–13].

1.1. FDEs with a neutral delay argument

Delay DEs that have the derivative of the solutions of the highest order with and without delay are
known as neutral differential equations. These equations are apparent in the investigation of oscillatory
masses and the modeling of electrical circuitry with ideal transmission lines (see [14]). Understanding
the qualitative characteristics of delay differential equations is becoming more and more important as
new models and developments in biology, economics, physics, and engineering keep appearing.

In the canonical scenario, we find new conditions to test the oscillation of nonlinear neutral FDEs
of second order. Namely, we consider the FDE

d
dt

(
aψ (x)

[
d
dt

z
]α)

(t) + q (t) F (x (g (t))) = 0, (1.1)

where t ∈ I := [t0,∞), α ∈ Q+ is a ratio of odd numbers, and

z := x + p x (h) .

In our study, we consider the following hypotheses:

A1: a ∈ C1 (I,R+), q ∈ C (I,R+), and p ∈ C
(
I,
[
0, p0

])
, where p0 < 1.

A2: h, g ∈ C (I,R), h ≤ t, g ≤ t, g′ ≥ 0, limt→∞ h (t) = ∞, and limt→∞ g (t) = ∞.
A3: ψ ∈ C1 (R, [m,M]), where 0 < m ≤ M, and κ = m−1/αM1/α.
A4: F ∈ C1 (R,R), κ F (κ) > 0 for κ , 0, F′ (κ) ≥ 0, and −F (−κw) ≥ F (κw) ≥ F (κ) F (w) for
κw > 0.

For a solution of Eq (1.1), we define a function x ∈ C1 ([tx,∞) ,R) , tx ∈ I, which has the properties:
a · ψ · (z′)α ∈ C1 ([tx,∞) ,R), sup {|x (t)| : t ≥ t∗} > 0 for all t∗ ≥ tx, and satisfies Eq (1.1) on [tx,∞). If a
solution x of FDE (1.1) has arbitrarily large zeros, it is referred to as oscillatory; if not, it is referred to
as non-oscillatory. The FDE (1.1) is said to be in the canonical case if∫ ∞

t0
a−1/α (s) ds = ∞. (1.2)
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1.2. Literature review

We can divide previous related works in the literature into two main parts. The first section
consists of studies that are concerned with using different techniques to study oscillation, and the
second section consists of studies that focus on improving the relationships and inequalities used in
studying oscillation.

Oscillation criteria are often only sufficient conditions to test the oscillation and are not necessary.
Therefore, finding different techniques and methods for studying oscillation is inevitable and necessary
for the purpose of application to the largest area of special cases and also to get rid of some of the
restrictions that may be imposed by some techniques.

In 2000, Džurina and Mihalı́ková [15] used Riccati substitution to provide some oscillatory
conditions for the solutions of the equation(

az′
)′ (t) + q (t) (x ◦ h) (t) = 0 (1.3)

with h(t) = t − k, k > 0 and p(t) = −p0 < 1. Han et al. [16] acquired some Kamenev-type oscillation
conditions for (1.3) when h′(t) = h0 > 0. By comparison method, Džurina [17] studied the oscillation
of (1.3) with an advanced neutral term, i.e., when h (t) ≥ t.

Şahiner [18] presented Philos-type conditions for oscillation of (1.1) when α = 1, F′ (υ) ≥ K > 0,
and ±F (±υw) ≥ LF (υ) F (w), for all υw > 0 and for some L > 0.

Theorem 1. ( [18], Theorem 2.1) Assume that

D0 = {(κ, ς) : κ > ς > κ0} and D = {(κ, ς) : κ ≥ ς ≥ t0} .

By P ∈ ℑ, we mean that the continuous real-valued function P with domain D belongs to class ℑ and
satisfies

(i) P (κ, ς) = 0 for κ ≥ t0;
(ii) P (κ, ς) > 0 on the domain D0;
(iii) P (κ, ς) possesses a continuous and non-positive partial derivative ∂P/∂ς

on the domain D0 where
∂P (κ, ς)
∂ς

= −k(κ, ς)
√

P (κ, ς) for all (κ, ς) ∈ D0

holds for k ∈ C (D,R) .

If there is a function ρ ∈ C (I,R+) such that

lim sup
t→∞

1
P (t, t0)

∫ t

t0

(
P (t, s) ρ (s) Q (s) −

Mρ (s) a (g (s))
4LKg′ (s)

G2(t, s)
)

ds = ∞,

then all solutions of (1.1) are oscillatory, where Q := q
[
1 − p (g)

]
, and

G (κ, ς) = k (κ, ς) −
ρ′ (ς)
ρ (ς)

√
P (κ, ς).
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Putting P (κ, ς) = (κ − ς)n , n > 1, in the results of Theorem 1, we obtain a Kamenev-type criterion
of Eq (1.1).

On the other hand, in the most recent period, there was a significant surge in research activity
concentrated on improving the inequalities that are used in the study of oscillation. One of the
influential relationships in investigating the oscillation of neutral equations involves examining the
interplay between x and its z, as well as the relationship between the corresponding function and its
derivatives.

The classical substitution x > (1 − p) z is often used in studying the oscillation of neutral equations.
Moaaz et al. [19] devised improved conditions for the oscillation of

(
a
[
z′
]α)′ (t) + L∑

i=1

qi (t) xγ (gi (t)) = 0, (1.4)

They provided the following relationship as an improvement on the classical relationship:

x > z
ν/2∑
j=1

1

p2 j−1
0

1 − 1
p0

ηt1

(
h[−2 j]

)
ηt1

(
h[−(2 j−1)]

) ,

for p0 > 1 and ν is an even natural number, and

x > z (1 − p0)
(ν−1)/2∑

j=0

p2 j
0

ηt1

(
h[2 j+1]

)
ηt1

,

for p < 1, and ν is an odd natural number, where h[±l] = h±1
(
h[±(l−1)]

)
, for l = 1, 2, ..., and

ηt1 (t) :=
∫ t

t1
a−1/α (s) ds.

For the non-canonical situation, Hassan et al. [20] used the improved relationship

x > z
(n−1)/2∑

r=0

p2r
0

1 − p0

µ0

(
h[2r+1]

)
µ0

(
h[2r] (t)

) ,
when z′ < 0.

A research study for the fourth-order DE(
az′′′

)′ (t) + q (t) x (g (t)) = 0,

Moaaz et al. [21] devised improved substitution for x by z in all cases of positive solutions.

Lemma 1. ( [21], Lemma 1) Let x be a solution of (1.1) and x > 0 eventually. Then,

x (t) >
m∑

r=0

 2r∏
l=0

p
(
h[l] (t)

)
 z

(
h[2r] (t)

)
p
(
h[2r] (t)

) − z
(
h[2r+1] (t)

) ,
for any integer m ≥ 0, where

h[0] (t) := t, h[l] (t) =
(
h ◦ h[l−1]

)
(t) , for l = 1, 2, ... .
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See [22–24] for other intriguing findings on the oscillatory nature of solutions to third- and fourth-
order DEs that have been published more recently.

The oscillation criteria of neutral DEs depend on several factors:

– The substitution x by z;
– The monotonic and asymptotic features of non-oscillatory solutions;
– The technique used to obtain the oscillation criteria.

Improving any of these factors directly affects the oscillation criteria. In our paper, we test the extent
to which the oscillation criteria are affected by improving the relationship between x and z. We used a
well-known technique that produces criteria known as Kamenev criteria; but the improvement lies in
the new relationships used in the study.

1.3. The function class Y

Here, we define a class of functions to obtain the oscillation condition of the Kamenev-type criteria.
Suppose that

K :=
{
(u, v,w) ∈ I3 : w ≤ v ≤ u

}
.

A φ ∈ C (K,R) belongs to the class Y (φ ∈ Y), if

(i) φ (u, u,w) = 0, φ (u,w,w) = 0, and φ (u, s,w) , 0 for w < s < u.
(ii) φ has the partial derivative ∂φ/∂v on K and ∂φ/∂v is locally integrable with respect to v in K.

For any function f ∈ C1 (I,R),we define the following operator:

T
[
f ; u,w

]
:=

∫ u

w
f (v)φ (u, v,w) dv,

for w ≤ v ≤ u. Moreover, we define the function µ (u, v,w) by

µ (u, v,w) :=
1

φ (u, v,w)
∂φ (u, v,w)

∂s
,

for all w < v < u. We notice that T [· ; u,w] is linear. Using integration by parts, we find that

T
[
f ′; u,w

]
= −T

[
( f · µ) ; u,w

]
. (1.5)

2. Main results

Here, we investigate the improved monotonic features of non-oscillatory solutions and then
establish new oscillation conditions for (1.1). For simplicity, the class of all positive non-oscillatory
solutions of (1.1) is denoted by the symbol S. Also, we assume that γ = 1

α
(α/ (α + 1))α+1,

At∗ (t) :=
∫ t

t∗

1
[a (s)]1/αds

for t ≥ t∗, and

Gq (t; m) := q (t) F

 m∑
r=0

 2r∏
l=0

p
(
h[l] (g (t))

) [ 1
p
(
h[2r] (g (t))

) − 1
] At1

(
h[2r] (g (t))

)
At1 (g (t))


κ .
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2.1. Monotonic properties and preliminary results

First, we infer the monotonic behavior of positive solutions in the next lemma.

Lemma 2. If x ∈ S, then the corresponding function z of x conforms to z > 0, z′ > 0, and
(aψ (x) [z′]α)′ < 0, eventually.

Proof. Suppose that x ∈ S. From (A2), there exists a t1 ∈ I whereby (x ◦ h) (t) and (x ◦ g) (t) are
positive for t ≥ t1. Therefore, z (t) > 0. Using (A4), we have that F (x (g (t))) > 0. Hence, (1.1)
becomes (

aψ (x)
[
z′
]α)′ (t) = −q (t) F (x (g (t))) < 0.

Thus, we find that aψ (x) [z′]α has a constant sign. This is the same as stating that z′ > 0 or z′ < 0 for
t ≥ t2, where t2 is large enough. But, when z′ (t) < 0, this case contradicts (1.2), as displayed next:

Let z′ (t) < 0 for t ≥ t2. Then(
aψ (x)

[
z′
]α) (t) ≤

(
aψ (x)

[
z′
]α) (t2) := −L < 0.

Hence,

z′ ≤ −
L1/α

a1/α (t)
[
ψ (x)

]1/α ,

which with (A3) gives

z′ ≤ −
L1/α

M1/αa−1/α.

Thus,

z (t) ≤ z (t2) −
L1/α

M1/α

∫ t

t2
a−1/α (s) ds.

But condition (1.2) results in z (t)→ −∞ as t → ∞, a contradiction.
Consequently, the proof ends. □

Lemma 3. Assume that x ∈ S. Then

z (t) ≥ M−1/α [
a (t)ψ (x (t))

]1/α z′ (t) At1 (t) .

Moreover,
z (t)[

At1 (t)
]κ

is nonincreasing, for t ≥ t1.

Proof. Let x ∈ S. From (A2), there is a t1 ∈ I such that (x ◦ h) (t) > 0 and (x ◦ g) (t) > 0 for t ≥ t1.
Using Lemma 2, we obtain

z (t) = z (t1) +
∫ t

t1

1[
a (ξ)ψ (x (ξ))

]1/α

[
a (ξ)ψ (x (ξ))

]1/α z′ (ξ) dξ

≥

∫ t

t1

1[
Ma (ξ)

]1/α

[
a (ξ)ψ (x (ξ))

]1/α z′ (ξ) dξ
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≥
1

M1/α

[
a (t)ψ (x (t))

]1/α z′ (t)
∫ t

t1

1[
a (ξ)

]1/αdξ

=
1

M1/α

[
a (t)ψ (x (t))

]1/α z′ (t) At1 (t) .

Hence, for any t ≥ t1,

0 ≥ z′ −
M1/α[

a (t)ψ (x)
]1/α At1

z

≥ z′ −
M1/α

m1/α

[a]−1/α

At1
z. (2.1)

Since A′t1 (t) ≥ 0, At1 (t1) = 0 and At1 (∞) = ∞, there is a t2 ≥ t1 such that At1 (t2) = 1. Now, from (2.1),
we obtain

0 ≥
d
dt

(
z (t) exp

[
−κ

∫ t

t2

[a (s)]−1/α

At1 (s)
ds

])
=

d
dt

(
z (t) exp

[
−κ ln At1 (t)

])
=

d
dt

(
z (t)[

At1 (t)
]κ ) .

Consequently, this proof ends. □

Next, we improve the oscillation results by deriving a new substitution for x by z.

Lemma 4. Assume that x ∈ S. Then (1.1) can be articulated as(
a (t)ψ (x (t))

[
z′ (t)

]α)′
+Gq (t; m) F (z (g (t))) ≤ 0, (2.2)

for t > t1 and any integer m ≥ 0.

Proof. Let x ∈ S. From (A2), there is a t1 ∈ I such that (x ◦ h) (t) > 0 and (x ◦ g) (t) > 0 for t ≥ t1.
Using Lemma 1, we obtain

x >
m∑

r=0

 2r∏
l=0

p
(
h[l]

)
 z

(
h[2r]

)
p
(
h[2r]) − z

(
h[2r+1]

) (2.3)

From Lemmas 2–3, we find that

z′ > 0 and
(

z[
At1

]κ )′ ≤ 0.

Then,
z
(
h[2r]

)
≥ z

(
h[2r+1]

)
and

z
(
h[2r]

)
≥

At1

(
h[2r]

)
At1


κ

z.
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Using previous relationships in (2.3), we arrive at

x > z
m∑

r=0

 2r∏
l=0

p
(
h[l]

) [ 1
p
(
h[2r]) − 1

] At1

(
h[2r]

)
At1


κ

,

which with (1.1) gives

0 =
(
aψ (x)

[
z′
]α)′

+qF

z (g)
m∑

r=0

 2r∏
l=0

p
(
h[l] (g)

) [ 1
p
(
h[2r] (g)

) − 1
] At1

(
h[2r] (g)

)
At1 (g)


κ

≥
(
aψ (x)

[
z′
]α)′

+qF (z (g)) F

 m∑
r=0

 2r∏
l=0

p
(
h[l] (g)

) [ 1
p
(
h[2r] (g)

) − 1
] At1

(
h[2r] (g)

)
At1 (g)


κ

=
(
aψ (x)

[
z′
]α)′
+Gq (t; m) F (z (g)) ,

where assumption (A4) was used.
Therefore, the proof ends. □

The following theorem transforms the studied equation into the form of a Riccati inequality, or what
is known as the Riccati technique.

Theorem 2. Assume that x ∈ S, and there is a constant L > 0 such that

F′ (υ) ≥ L [F (υ)]1−1/α , (2.4)

for u , 0. If we define the function ω as

ω := υ
aψ (x) [z′]α

F (z (g))
, (2.5)

then ω satisfies

ω′ (t) ≤
υ′ (t)
υ (t)

ω (t) − υ (t) Gq (t; m) −
L g′ (t)

(Ma (g (t)) υ (t))1/α [ω (t)]1+1/α , (2.6)

where υ ∈ C1 (I,R+).

Proof. Assume that x ∈ S. By differentiating ω, we find

ω′ =
υ′

υ
· ω + υ ·

[
(a · (ψ ◦ x) · [z′]α)′

(F ◦ z ◦ g)
−

a · (ψ ◦ x) · [z′]α

(F ◦ z ◦ g)2 (F ◦ z ◦ g)′
]
,

which with (2.2) yields

ω′ ≤
υ′

υ
· ω + υ ·

[
−Gq −

a · (ψ ◦ x) · [z′]α

(F ◦ z ◦ g)2 ·
(
F′ ◦ z ◦ g

)
·
(
z′ ◦ g

)
· g′

]
. (2.7)
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Since (a (t)ψ (x (t)) [z′ (t)]α)′ < 0 and g (t) ≤ t, we have

a (t)ψ (x (t))
[
z′ (t)

]α
≤ a (g (t))ψ (x (g (t)))

[
z′ (g (t))

]α
≤ Ma (g (t))

[
z′ (g (t))

]α ,
and then

z′ (g (t)) ≥
(a (t)ψ (x (t)) [z′ (t)]α)1/α

M1/α [
a (g (t))

]1/α . (2.8)

Combining (2.7) and (2.8), we arrive at

ω′ ≤
υ′

υ
· ω + υ ·

−Gq −

[
a · (ψ ◦ x) · [z′]α

]1+1/α

(F ◦ z ◦ g)2 ·
(F′ ◦ z ◦ g) · g′

M1/α (a ◦ g)1/α


=

υ′

υ
· ω + υ ·

[
−Gq −

ω1+1/α

υ1+1/α ·
(F′ ◦ z ◦ g)

(F ◦ z ◦ g)1−1/α ·
g′

M1/α (a ◦ g)1/α

]
. (2.9)

Using (2.4), we find

ω′ ≤
υ′

υ
· ω − υ ·Gq −

L g′

M1/α (a ◦ g)1/α
· υ1/α

ω1+1/α.

Therefore, the proof ends. □

2.2. Kamenev-type oscillation criteria

Here, we employ the previous results to derive a novel criterion that tests whether all solutions are
oscillatory.

Theorem 3. Assume that φ ∈ Y, υ ∈ C1 (I,R+), and there is a constant L > 0 such that (2.4) holds. If

lim sup
t→∞

T

υ ·Gq −
γM
Lα

(
υ′

υ
+ µ

)α+1 (a ◦ g) · υ
(g′)α

; t, l
 > 0, (2.10)

then (1.1) oscillates.

Proof. Assuming the opposite of what is required means that there is a non-oscillatory solution to the
studied equation, and this necessarily leads to guaranteeing the existence of a solution that eventually
becomes positive for this equation. Let it be x. From Theorem 2, if we define the function ω as in
(2.5), then ω satisfies (2.6).

Next, applying the operator T [· ; t, l] to (2.6), we obtain

T
[
ω′; t, l

]
≤ T

[(
υ′

υ
· ω −

L g′

(M (a ◦ g) · υ)1/αω
1+1/α

)
; t, l

]
− T

[
υ ·Gq; t, l

]
.

Using the property (1.5), we obtain

T
[
υ ·Gq; t, l

]
≤ T

[(
υ′

υ
+ µ

)
· ω −

L g′

(M (a ◦ g) · υ)1/αω
1+1/α; t, l

]
. (2.11)
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By simple calculation, we find that the function H (ω) = c1ω − c2ω
1+1/α, where c1, c2 > 0, has the

maximum
H (ω) ≤ H

(
ωmax

)
= γcα+1

1 c−α2 , (2.12)

at ωmax = (αc1/ ((α + 1) c2))α. Using (2.12), (2.11) becomes

T
[
υ ·Gq; t, l

]
≤ T

γM
Lα

(
υ′

υ
+ µ

)α+1 (a ◦ g) · υ
(g′)α

; t, l
 . (2.13)

Taking the super limit for (2.13), we have

lim sup
t→∞

T

υ ·Gq −
γM
Lα

(
υ′

υ
+ µ

)α+1 (a ◦ g) · υ
(g′)α

; t, l
 ≤ 0.

This contradicts assumption (2.10).
Therefore, the proof ends. □

Corollary 1. Assume that there is a constant L > 0 such that (2.4) holds. If there are υ, η ∈ C1 (I,R+)
and ϱ, k > max {1/2, α} such that

lim sup
t→∞

∫ t

l
η (s) (t − s)ϱ (s − l)k

[
υ (s) Gq (s; m) −

γM
Lα

H (t, s, l)
]

ds > 0, (2.14)

for l ≥ t0, then all solutions of (1.1) are oscillatory, where

H (t, s, l) :=
[
υ′ (s)
υ (s)

+
η′ (s)
η (s)

+
kt − (ϱ + k) s + ϱl

(t − s) (s − l)

]α+1 (a (g (s))) υ (s)
(g′ (s))α

. (2.15)

Proof. By choosing
φ (u, v,w) = η (v) (u − v)ϱ (v − w)k ,

we find
µ (u, v,w) =

η′ (v)
η (v)

+
ku − (ϱ + k) v + ϱw

(u − v) (v − w)
.

Using Theorem 3, condition (2.10) reduces to (2.14).
Therefore, the proof ends. □

Corollary 2. Assume that there is a constant L > 0 such that (2.4) holds. If g (t) = λt, λ ∈ (0, 1],
α ∈ Z+, a (t) ≥ 1, and there is ϱ, k > α such that

lim sup
t→∞

T
[
Gq; t, l

]
[
At1 (t) − At1 (l)

]ϱ+k−α >
1
λα
γM
Lα

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−iβ (k + i − α, ϱ − i + 1) , (2.16)

for l ≥ t0, then all solutions of (1.1) are oscillatory, where β (·, ·) is the beta function.

Proof. Assume that

υ (t) ≡ 1 and φ (u, v,w) =
(
At1 (u) − At1 (v)

)ϱ (At1 (v) − At1 (w)
)k . (2.17)
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Then, we find that

T

[
(µ)α+1 (a ◦ g)

(g′)α
; t, l

]
=

1
λα

∫ t

l

(
At1 (t) − At1 (s)

)ϱ(
At1 (s) − At1 (l)

)−k

[
ϱAt1 (t) − (ϱ + k) At1 (s) + kAt1 (l)

a (s)
(
At1 (t) − At1 (s)

) (
At1 (s) − At1 (l)

)]α+1

(a (λs)) ds

=
1
λα

∫ t

l

(
At1 (t) − At1 (s)

)ϱ−α−1(
At1 (s) − At1 (l)

)−k+α+1

[
ϱAt1 (t) − (ϱ + k) At1 (s) + kAt1 (l)

]α+1

[a (s)]α+1 (a (λs)) ds.

Since a′ (t) ≥ 0, we have that a (λs) /a (s) ≤ 1. Hence,

T

[
(µ)α+1 (a ◦ g)

(g′)α
; t, l

]
≤

1
λα

∫ t

l

(
At1 (t) − At1 (s)

)ϱ−α−1(
At1 (s) − At1 (l)

)−k+α+1

[
ϱAt1 (t) − (ϱ + k) At1 (s) + kAt1 (l)

]α+1

[a (s)]α
ds

≤
1
λα

∫ t

l

(
At1 (t) − At1 (s)

)ϱ−α−1(
At1 (s) − At1 (l)

)−k+α+1

[
ϱAt1 (t) − (ϱ + k) At1 (s) + kAt1 (l)

]α+1

[a (s)]1/α ds

=
1
λα

∫ t

l

(
At1 (t) − At1 (s)

)ϱ−α−1(
At1 (s) − At1 (l)

)−k+α+1

[
ϱAt1 (t) − (ϱ + k) At1 (s) + kAt1 (l)

]α+1 dAt1 (s) .

Let w := At1 (s) − At1 (l). Thus,

T

[
(µ)α+1 (a ◦ g)

(g′)α
; t, l

]
≤

1
λα

∫ ϑ

0
(ϑ − w)ϱ−α−1 wk−α−1 [

k (ϑ − w) − ϱw
]α+1 dw

=
1
λα

∫ ϑ

0

(ϑ − w)ϱ−α−1 wk−α−1
α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−i (ϑ − w)α+1−i wi

 dw

=
1
λα

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−i

∫ ϑ

0
(ϑ − w)ϱ−i wk+i−α−1dw

=
1
λα

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−iϑϱ+k−α

∫ ϑ

0

(
1 −

w
ϑ

)ϱ−i (w
ϑ

)k+i−α−1 1
ϑ

dw

=
1
λα
ϑϱ+k−α

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−i

∫ 1

0
(1 − y)ϱ−i (y)k+i−α−1 dy

=
1
λα
ϑϱ+k−α

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−iβ (k + i − α, ϱ − i + 1) . (2.18)

Now, as in the proof of Theorem 3, if we assume the contrary, then we arrive at (2.13). Under
assumptions in (2.17), inequality (2.13) reduces to

T
[
Gq; t, l

]
≤
γM
Lα
T

[
(µ)α+1 (a ◦ g)

(g′)α
; t, l

]
,
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which with (2.18) gives

T
[
Gq; t, l

]
≤

1
λα
γM
Lα

ϑϱ+k−α
α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−iβ (k + i − α, ϱ − i + 1) .

Thus, we obtain

lim sup
t→∞

1
ϑϱ+k−αT

[
Gq; t, l

]
≤

1
λα
γM
Lα

α+1∑
i=0

(
α + 1

i

)
(−ϱ)i kα+1−iβ (k + i − α, ϱ − i + 1) .

This contradicts assumption (2.16).
Therefore, the proof ends. □

In the following corollaries, we present an oscillation criterion for a special case of the studied
equation, which is

d
dt

(
a (t) (ψ ◦ x) (t)

[
d
dt

z (t)
]α)
+ q (t) (xα ◦ g) = 0.

It is easy to notice that the function F (u) = uα satisfies (A4) and (2.4) with L = α.

Corollary 3. If there are υ, η ∈ C1 (I,R+) and ϱ, k > max {1/2, α} such that

lim sup
t→∞

∫ t

l
η (s) (t − s)ϱ (s − l)k

[
υ (s) Gq (s; m) −

γM
αα

H (t, s, l)
]

ds > 0, (2.19)

for l ≥ t0, then all solutions of (1.1) are oscillatory, where H (t, s, l) is defined as in (2.15).

Corollary 4. If g (t) = λt, λ ∈ (0, 1], α = 1, a (t) ≥ 1, and there is ϱ > 1/2 such that

lim sup
t→∞

1[
At1 (t)

]2ϱ+1T
[
Gq; t, l

]
>

M
λ

ϱ

4ϱ2 − 1
, (2.20)

for l ≥ t0, then all solutions of (1.1) are oscillatory.

2.3. Examples and discussion

Example 1. Consider the delay equation

d
dt

(
1

1 + sin2 (x (t))
d
dt

[
x (t) +

1
2

x (h0t)
])
+

q0

t2 x (g0t) = 0, (2.21)

where h0, g0 ∈ (0, 1], and q0 > 0. We note that α = 1, a (t) = 1, p (t) = 1/2, h (t) = h0t, g (t) = g0t,
q (t) = q0/t2, F (u) = u, and ψ (u) = 1/

(
1 + sin2 u

)
. It is easy to verify that

m =
1
2
≤ ψ (t) ≤ 1 = M,
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Figure 1. The numerical solution of (2.21) when h0 = g0 = 1 and q0 = 2.

κ = 2, At0 (∞) = ∞, h[r] (t) = hr
0t for r = 0, 1, ...,

Gq (t; m) =
q0

t2

 m∑
r=0

h4r
0

 2r∏
l=0

(
1
2

)
=

q0

2t2

m∑
r=0

(
h2

0

2

)2r

.

Now, we have

1[
At1 (t)

]2ϱ+1T
[
Gq; t, l

]
=

1
[t − t0]2ϱ+1

∫ t

l
Gq (s; m)φ (t, s, l) ds

=
q0

2 [t − t0]2ϱ+1

m∑
r=0

(
h2

0

2

)2r ∫ t

l

1
s2

(t − s)2ϱ (s − l)2 ds.

Hence, condition (2.20) becomes

q0

2 (1 + 2ϱ)

m∑
r=0

(
h2

0

2

)2r

>
1
g0

ϱ

4ϱ2 − 1
.

Then, by using Corollary 4, all solutions of (2.21) are oscillatory if

q0

m∑
r=0

(
h2

0

2

)2r

>
1
g0
. (2.22)

Remark 1. Using Theorem 1 with H (t, s) = (t − s)2 and ρ (t) = t2, we obtain that all solutions of
(2.21) are oscillatory if

q0 >
2
g0
. (2.23)
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Applying to the special case when g0 = 0.5 and h0 = 0.9, we notice that criteria (2.22) and (2.23) lead
to q0 > 1.672 and q0 > 4, respectively. Therefore, our results improve results in [18]. For example, we
find that our results guarantee that all solutions of equation

d
dt

(
1

1 + sin2 (x (t))
d
dt

[
x (t) +

1
2

x
( t
2

)])
+

2
t2 x

( t
2

)
= 0

oscillate while the criteria of [18] do not apply (2 = q0 ≯
2
g0
= 4).

Figure 1 shows one of the numerical solutions to Eq (2.21).

Example 2. Consider the delay equation

d
dt

1 + e−x2(t)

et

d
dt

[
x (t) + p0x (t − h0)

] + q0e−tx (t − g0) = 0, (2.24)

where h0, g0, and q0 are positive. We note that α = 1, a (t) = e−t, p (t) = p0, h (t) = t − h0, g (t) = t − g0,
q (t) = q0e−t, F (u) = u, and ψ (u) = 1 + e−u2

. It is easy to verify that m = 1, M = 2, κ = 2,

Gq (t; m) = q0e−t [1 − p0
] m∑

r=0

p2r
0 e−4rh0 .

By choosing η (t) = υ (t) = et and ϱ = k = 2, we obtain

H (t, s, l) = eg0

[
2 +

2t − 4s + 2l
(t − s) (s − l)

]2

.

Thus,

lim sup
t→∞

∫ t

l
es (t − s)2 (s − l)2

×

q0
[
1 − p0

] m∑
r=0

p2r
0 e−4rh0 −

1
2

eg0

[
2 +

2t − 4s + 2l
(t − s) (s − l)

]2 ds

=

q0
[
1 − p0

] m∑
r=0

p2r
0 e−4rh0 − eg0

 (+∞) ,

which is fulfilled if

q0
[
1 − p0

] m∑
r=0

p2r
0 e−4rh0 > eg0 . (2.25)

Then, by using Corollary 3, all solutions of (2.24) are oscillatory if (2.25) holds.

Remark 2. Recent results in papers [26–30] provided many improved criteria that test the oscillatory
characteristics of second-order neutral DEs. However, these results fail to apply to Eqs (2.21) and
(2.24), because these results only apply in the case of ψ (u) = u. Figure 2 shows one of the numerical
solutions to Eq (2.24).
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Figure 2. The numerical solution of (2.24) when h0 = g0 = 1, p0 = 1/2, and q0 = e5.

3. Conclusions

The investigation into the oscillatory behavior of FDEs is affected by the accuracy of the
relationships and inequalities used. In this article, we studied the oscillations of solutions of the class
of FDEs of the neutral type (1.1). As an extension of the results in [21], we have derived a novel
relation between x and z. We used the Riccati approach to couple the studied equation with an
inequality of the Riccati type. Then, we presented Kamenev-type criteria that ensure the oscillation of
(1.1).

Our results—as shown in Remark 2—have the advantage of being applied to a more general class of
second-order FDEs of the neutral type compared to the results in [26–28]. Our results also presented
more sharp conditions in the oscillation test than the results that dealt with the same equation (see
Remark 1).

It would be of interest to formally extend our findings to the noncanonical case (At∗ (∞) < ∞). Also,
an interesting point, as a future work, is to obtain an improved relation between x and z without the
need for the constraint ψ (u) ≥ m > 0, which excludes a large class of bounded functions such as sin2 u,
e−u2

and 1
1+u2 .
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