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Abstract: In this paper, we focus on studying two classes of finite dimensional ∆-associative algebras,
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1. Introduction

As an invariant of a finite tensor category, the representation ring plays a very important role, having
gained great attention in recent years. For example, Chen et al. [1] constructed the representation
rings of Taft algebras Hn(q). Wang et al. studied the Green rings of finite-dimensional pointed rank-
one Hopf algebras of nilpotent and non-nilpotent types in [2, 3]. It should be noted that the small
quantum group [4, 5] and the Drinfeld double of a Taft algebra [6, 7] are not of finite representation
type. Their representation rings are not finitely generated, as described by [8] and [9,10], respectively.
In [11, 12], the authors considered the Grothendieck rings of the quotient algebras of Wu-Liu-Ding
algebras (see [13, 14] for definitions), and provided their Casimir numbers, which are a class of non-
pointed semi-simple Hopf algebras. The representations and Grothendieck rings of the Hopf algebra
H2n2 are described in [15]. Furthermore, Guo and Yang [16] explicitly described the Grothendieck
rings of the category of Yetter-Drinfeld modules over H2n2 by generators and relations. Sun et al. [17]
described the structure of the representation ring of the small quasi-quantum group. For more results
on representations and representation rings, one can refer to [18–25].

In order to understand and extend the concept of representation rings, we can weaken the definition
of weak Hopf algebras to more general cases. The most interesting one is the so-called ∆-associative
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algebra, which was introduced in [26], where the representation ring of ∆-associative algebra was
defined and described for Kac-Paljutkin Hopf algebra K8(i.e., H8). One consideration is that the
representation rings of ∆-associative algebras may not be commutative and may not even contain the
identity (see [26]). In this paper, we provide two classes of ∆-associative algebras to understand them.
Roughly speaking, based on Kac-Paljutkin-type Hopf algebras H2n2 (see [27] or [15]), which are
generalizations of the 8-dimensional Kac-Paljutkin Hopf algebra, we weaken the definition of Hopf
algebra H2n2 to obtain two classes of ∆-associative algebras, H2n2 and Ĥ2n2 . One can see that H2n2 is
still a weak Hopf algebra but Ĥ2n2 is a non-trivial ∆-associative algebra. Following that, we describe
their representations as well as their representation rings. We show that the representation ring
r(H2n2) is a commutative ring, but the representation ring r(Ĥ2n2) is noncommutative with no identity.
However, we can embed the ring r(Ĥ2n2) into a ring r∗(Ĥ2n2) with an identity in the natural way. The
rings r(H2n2) and r∗(Ĥ2n2) are described by generators with suitable relations.

The paper is organized as follows. In Section 2, we recall the definition of ∆-associative algebra,
and review the definition and representations of the semi-simple Hopf algebra H2n2 . In Section 3, by
weakening the definition of Hopf algebra H2n2 , we obtain two classes of ∆-associative algebras H2n2

and Ĥ2n2 , where H2n2 is a weak Hopf algebra, and Ĥ2n2 is just a non-trivial ∆-associative algebra.
Some properties of H2n2 and Ĥ2n2 are discussed. In Section 4, all irreducible modules of H2n2 are
listed, and there are (n2 +7n+2)/2 non-isomorphic finite dimensional irreducible modules for H2n2 .
The decomposition formulas of the tensor product of two arbitrary irreducible H2n2-modules are also
established. The representation ring r(H2n2), described by generators and relations, shows that r(H2n2)
is a commutative ring. In Section 5, the representations and representation ring of Ĥ2n2 are studied.
We found that the representation ring r(Ĥ2n2) is a noncommutative ring with no identity, which can be
embedded into a ring r∗(Ĥ2n2) with an identity.

2. Preliminaries

Throughout this research, we work over a fixed algebraically closed field k of characteristic 0,
unless otherwise stated. All algebras, Hopf algebras, and modules are defined over k; all modules are
left modules and finite dimensional; all maps are k-linearity; dim,⊗, and hom stand for dimk, ⊗k, and
homk, respectively.

The definition of weak Hopf algebra was introduced by Li (see [28]). We recall that a k-bialgebra
(H,µ,η ,∆,ε) is called a weak Hopf algebra if there exists a map T ∈ hom(H,H) such that T ∗ id∗T =

T and id ∗T ∗ id = id, where ∗ is the convolution map in hom(H,H). By weakening the definition of
weak Hopf algebras, the following definition is established.

Definition 2.1. An associative k-algebra A with an identity is called a ∆-associative algebra if there
exists an algebra homomorphism ∆ : A → A⊗A such that (∆⊗ id)∆ = (id⊗∆)∆.

All Hopf algebras, bialgebras, and weak Hopf algebras are ∆-associative algebras. If the
∆-associative algebra A is not a coalgebra, A is said to be non-trivial.

In the sequel, we always assume that A is a ∆-associative algebra, and the Sweedler’s notations [29]
are used. For example, for a ∈ A, we denote

∆(a) = ∑
(a)

a(1)⊗a(2).
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Now, suppose that M and N are two A-modules, then M⊗N is also an A-module defined as follows:

a · (m⊗n) = ∑
(a)

a(1)m⊗a(2)n,

for all m ∈ M,n ∈ N.
We denote by [M] the isomorphism class of an A-module M and

P = {[M]|M ∈ mod-A} .

Let R(A) be a free abelian group spanned by P . For all [M], [N] ∈ P , we define [M][N] = [M ⊗N],
and it is easy to see that R(A) is a ring. Let

r(A) =
R(A)

⟨ [M⊕N]− [M]− [N]⟩
,

where ⟨ [M⊕N]− [M]− [N]⟩ is the ideal of R(A) generated by [M⊕N]− [M]− [N] for all [M], [N]∈P ,
then r(A) is also a ring and is called the representation ring or the Green ring of A. If A is a non-trivial
∆-associative algebra, then r(A) may have no identity [kε ], the trivial 1-dimensional A-module. In this
case, let

r∗(A) = {(k,α)|k ∈ k,α ∈ r(A)}.

For (k,α), (k′,α ′) ∈ r∗(A), we define the addition and multiplication in r∗(A) as the following

(k,α)+(k′,α ′) = (k+ k′,α +α
′),

(k,α) · (k′,α ′) = (kk′,k′α + kα
′+αα

′).

Then, r∗(A) is a ring with the identity (1,0), and r(A) is embedded into r∗(A) naturally.
In the sequel, we always assume that n > 1 and q is a primitive n-th root of unity.
The Hopf algebra H2n2 can be found in [15, 27], which is a generalization of Kac-Paljutkin Hopf

algebra.

Definition 2.2. The Hopf algebra H2n2 is an associative algebra generated by x,y and z, with the
following relations

xn = 1, yn = 1, xy = yx, zx = yz, zy = xz,

z2 =
1
n

n−1

∑
i, j=0

q−i jxiy j.

The comultiplication, counit, and antipode are as follows

∆(x) = x⊗ x, ε(x) = 1, S(x) = x−1,

∆(y) = y⊗ y, ε(y) = 1, S(y) = y−1,

∆(z) = 1
n

n−1
∑

i, j=0
q−i jxiz⊗ y jz, ε(z) = 1, S(z) = z.
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The Hopf algebra H2n2 is a 2n2-dimensional semi-simple Hopf algebra. It is of a basis
{xiy j, xiy jz|0 ≤ i, j ≤ n−1}. Indeed,

ℓ=

(
n−1

∑
i=0

xi

)(
n−1

∑
j=0

y j

)
(1+ z)

is the left and right integral of H2n2 and ε(ℓ) = 2n2 , 0. It is also a quasi-triangular Hopf algebra with
a universal R-matrix

R =
1
n

n−1

∑
i, j=0

q−i jx j ⊗ yn−i.

Therefore, the representation ring of H2n2 is semi-simple and commutative. The representations and
representation ring of the Hopf algebra H2n2 are described in [15]. We list them as follows, where q is
any primitive n-th root of unity, but q = e2pπi/n with an even number p ∈ Z if n is odd for convenience.

Set

σ(m) =

{
1, 0 ≤ m ≤ n−1,
−1, n ≤ m ≤ 2n−1.

(a) 1-dimensional irreducible H2n2-module Sm,m ∈ Z2n: it is of basis vm, and the actions of H2n2 on
Sm are

x.vm = qmvm, y.vm = qmvm, z.vm = σ(m)q
m2
2 vm;

(b) 2-dimensional irreducible H2n2-module Si, j,0 ≤ i < j ≤ n− 1: it is of basis vi j
1 and vi j

2 , and the
actions of H2n2 on Si, j are

x.vi j
1 = qivi j

1 , y.vi j
1 = q jvi j

1 , z.vi j
1 = vi j

2 ,

x.vi j
2 = q jvi j

2 , y.vi j
2 = qivi j

2 , z.vi j
2 = qi jvi j

1 .

The set
S = {Sm,Si, j | m ∈ Z2n,0 ≤ i < j ≤ n−1}

forms a complete list of non-isomorphic irreducible H2n2-modules.

Lemma 2.3. [15, Theorem 1] The decomposition formulas of tensor product of two H2n2-modules in
S are as follows.

(1) (a) For all 0 ≤ m,m′ ≤ n−1, we have

Sm ⊗Sm′ � Sm+m′(mod n);

(b) for all 0 ≤ m ≤ n−1,n ≤ m′ ≤ 2n−1 and n ≤ m+m′ ≤ 2n−1, or 0 ≤ m′ ≤ n−1,n ≤ m ≤
2n−1 and n ≤ m′+m ≤ 2n−1, we have

Sm ⊗Sm′ � Sm+m′;

(c) for all 0 ≤ m ≤ n−1,n ≤ m′ ≤ 2n−1 and 2n ≤ m+m′ ≤ 3n−1, or 0 ≤ m′ ≤ n−1,n ≤ m ≤
2n−1 and 2n ≤ m′+m ≤ 3n−1, we have

Sm ⊗Sm′ � Sm+m′−n;
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(d) for all n ≤ m,m′ ≤ 2n−1 and 2n ≤ m+m′ ≤ 3n−1, we have

Sm ⊗Sm′ � Sm+m′(mod 2n);

(e) for all n ≤ m,m′ ≤ 2n−1 and 3n ≤ m+m′ ≤ 4n−1, we have

Sm ⊗Sm′ � Sm+m′(mod 3n).

(2) For all m ∈ Z2n,0 ≤ i < j ≤ n−1, we have

Sm ⊗Si, j � Sm+i(mod n), j+m(mod n) � Si, j ⊗Sm.

(3) Set I1 = {0 ≤ i < j,k < l < n | i+ k ≡ j + l(mod n)} and I2 = {0 ≤ i < j,k < l < n | i+ l ≡
j+ k(mod n)}, then

(a) if i, j,k, l < I1 ∪ I2, we have

Si, j ⊗Sk,l � Si+k(mod n), j+l(mod n)⊕Si+l(mod n), j+k(mod n);

(b) if i, j,k, l ∈ I1\I2, we have

Si, j ⊗Sk,l � Si+k ⊕S j+l ⊕Si+l(mod n), j+k(mod n);

(c) if i, j,k, l ∈ I2\I1, we have

Si, j ⊗Sk,l � Si+k(mod n), j+l(mod n)⊕Si+l(mod n)⊕S j+k(mod n)+n;

(d) if n is even, and i, j,k, l ∈ I1 ∩ I2, we have

Si, j ⊗Sk,l � Si+k ⊕S j+l ⊕Si+l(mod n)⊕S j+k(mod n)+n.

Let

Al(y,z,u) =


z uy 0 · · · 0 0
1 z y · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · z y
0 0 0 · · · 1 z


l×l

and
Bl(y,z) = det(Al(y,z,1+ yn)) , Dl(y,z,x) = det

(
Al(y,z,1+ y2m−1x)

)
.

Then, we have
B0(y,z) = 1+ yn, B1(y,z) = z, B2(y,z) = z2 − y− yn+1;

D0(y,z,x) = 1+ y2m−1x, D1(y,z,x) = z, D2(y,z,x) = z2 − y− y2mx.

[15, Theorem 2, Theorem 3] can be stated as follows.

Lemma 2.4. Assume that n ≥ 2 is an integer, we have
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(1) if n ≥ 3 is odd and m = n−1
2 , then

r(H2n2) � Z[y,z]/
〈
y2n −1, zyn − z, Bm+1(y,z)− ym+1Bm(y,z)

〉
;

(2) if n = 2, then

r(H2n2) � Z[x,y,z]/⟨ y2 −1, x2 − y2, zx− zy, z− zy, z2 − x− y− xy−1 ⟩;

(3) if n > 2 is even with m = n
2 , then

r(H2n2) � Z[x,y,z]

/〈
xn −1, Dm+1(y,z,x)− ym+1Dm−1(y,z,x),
x2 − y2, zx− zy, Dm(y,z,x)− ymDm(y,z,x)

〉
.

3. Extensions of Hopf algebra of Kac-Paljutkin type

In this section, we establish two classes of extensions of Hopf algebra H2n2 of Kac-Paljutkin type,
which are denoted by H2n2 and Ĥ2n2 , where H2n2 is a weak Hopf algebra in the sense of Li in [28], but
Ĥ2n2 is a non-trivial ∆-associative algebra.

Definition 3.1. Let H2n2 be an associative algebra generated by x,y, and z, with the following relations

xn+1 = x, yn+1 = y, xy = yx,

z = yzxn−1, z = xzyn−1,

z2 =
1
n

n

∑
i, j=1

q−i jxiy j.

For convenience, we set

ei =
1
n

n

∑
l=1

q−ilxl, fi =
1
n

n

∑
k=1

q−ikyk,

for i = 1,2, · · · ,n, then

xsei = qisei, ytei = eiyt , xs fi = fixs, yt fi = qit fi,

for s, t = 1,2, · · · ,n, and

z2 =
n

∑
j=1

e jy j =
n

∑
i=1

xi fi.

We also have

∆(z) =

(
n

∑
j=1

e j ⊗ y j

)
(z⊗ z) =

(
n

∑
i=1

xi ⊗ fi

)
(z⊗ z).

Let J1 = xn,J2 = yn and J = J1J2.
The following lemma helps us to understand the deep relations between the algebra H2n2 and the

algebra H2n2 .

Lemma 3.2. z = yzxn−1, z = xzyn−1 if and only if zJ = Jz = z, zx = yz, zy = xz.
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Proof. Indeed, assume that z = yzxn−1, z = xzyn−1, then

z = ynzxn(n−1) = J2zJ1 and z = xnzyn(n−1) = J1zJ2.

It follows that
z = J1zJ2 = J1J2zJ1J2 = JzJ

and zJ = Jz = z. Also,

zx = yzxn = yzJ1 = y(J2zJ1) = yz, zy = xzyn = xzJ2 = x(J1zJ2) = xz.

Conversely, if zJ = Jz = z and xz = zy, yz = zx, then

zJi = zJJi = zJ = z = Jz = JiJz = Jiz

for i = 1,2. So we have

z = zJ2 = zyn = xzyn−1, z = zJ1 = zxn = yzxn−1.

The result follows. □

It is easy to see that
{J,J1 − J,J2 − J,1+ J− J1 − J2}

is a set of orthogonal central idempotents of H2n2 .
Now, we define three maps ∆ : H2n2 → H2n2 ⊗H2n2 , ε : H2n2 → k, and T : H2n2 → H2n2 as follows

∆(x) = x⊗ x, ε(x) = 1, T (x) = xn−1,
∆(y) = y⊗ y, ε(y) = 1, T (y) = yn−1,

∆(z) = 1
n

n
∑

i, j=1
q−i jxiz⊗ y jz, ε(z) = 1, T (z) = z.

We get the first main result as follows.

Theorem 3.3. H2n2 is a weak Hopf algebra with the weak antipode T .

Proof. We will prove this theorem in three steps.
a) The k-map ∆ keeps the defining relations, hence it can be extended into the whole algebra H2n2

such that ∆ is an algebra homomorphism. Indeed, we note that

ei =
1
n

n

∑
l=1

q−ilxl, fi =
1
n

n

∑
k=1

q− jkyk, for i = 1,2, · · · ,n,

z2 =
n

∑
j=1

e jy j =
n

∑
i=1

xi fi,

∆(z) =
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz =

(
n

∑
j=1

e j ⊗ y j

)
(z⊗ z) =

(
n

∑
i=1

xi ⊗ fi

)
(z⊗ z).
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So it is easy to see that

(∆(x))n+1 = ∆(x), (∆(y))n+1 = ∆(y), ∆(x)∆(y) = ∆(y)∆(x),

∆(y)∆(z)∆(x)n−1 = (y⊗ y)

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)
(xn−1 ⊗ xn−1)

=
1
n

n

∑
i, j=1

q−i jxiyzxn−1 ⊗ y jyzxn−1

=
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz = ∆(z),

∆(x)∆(z)∆(y)n−1 = (x⊗ x)

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)
(yn−1 ⊗ yn−1)

=
1
n

n

∑
i, j=1

q−i jxixzyn−1 ⊗ y jxzyn−1

=
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz = ∆(z),

(∆(z))2 =

(
n

∑
j=1

e j ⊗ y j

)
(z⊗ z)

(
n

∑
i=1

xi ⊗ fi

)
(z⊗ z)

=
n

∑
i, j=1

e jyi+ j ⊗ eiyi+ j =
1
n2

n

∑
i, j,l,k=1

q−il− jkxlyi+ j ⊗ xkyi+ j

=
1
n2

n

∑
i, j,l,k=1

q− jl+i(l−k)xly j ⊗ xky j =
1
n

n

∑
i, j=1

q−i jxiy j ⊗ xiy j

=
1
n

n

∑
i, j=1

q−i j
∆(x)i

∆(y) j.

Hence, ∆ can define a homomorphism of algebra. Similarly, ε can also define a homomorphism of
algebra.

b) (H2n2,∆,ε) is a coalgebra. Indeed, the k-map ∆ is coassociative. To see this fact, we have

(∆⊗ id)∆(x) = x⊗ x⊗ x = (id⊗∆)∆(x),

(∆⊗ id)∆(y) = y⊗ y⊗ y = (id⊗∆)∆(y),

and

(∆⊗ id)∆(z) = (∆⊗ id)

(
n

∑
i=1

xiz⊗ fiz

)
definition and (a)
===========

n

∑
i, j=1

xie jz⊗ xiy jz⊗ fiz =
n

∑
i, j=1

qi je jz⊗ xiy jz⊗ fiz,

= (id⊗∆)

(
n

∑
j=1

e jz⊗ y jz

)
= (id⊗∆)∆(z).
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Hence,
(∆⊗ id)∆(a) = (id⊗∆)∆(a)

for a ∈ {x,y,z}. Then, the map ∆ is coassociative in H2n2 by the statement a). Furthermore, ε also
satisfies the counit axiom.

By the statements a) and b), we see that H2n2 is a bialgebra.
c) The map T can define a weak antipode of H2n2 in a natural way. To see this fact, we note that

(T (x))n+1 = ((x)n−1)n+1 = xn−1 = T (x);
(T (y))n+1 = ((y)n−1)n+1 = yn−1 = T (y);
T (y)T (x) = (y)n−1(x)n−1 = (x)n−1(y)n−1 = T (x)T (y);

(T (x))n−1T (z)T (y) = ((x)n−1)n−1z(y)n−1 = J1z = z = T (z);
(T (y))n−1T (z)T (x) = ((y)n−1)n−1z(x)n−1 = J2z = z = T (z);

1
n

n

∑
i, j=1

q−i j(T (y)) j(T (x))i =
1
n

n

∑
i, j=1

q−i jy(n−1) jx(n−1)i =
1
n

n

∑
i, j=1

q−i jxiy j = z2 = (T (z))2.

Thus, the map T can be extended into an anti-algebra homomorphism T : H2n2 → H2n2 .
Furthermore, it is easy to see that

(id∗T ∗ id)(x) = xT (x)x = xn+1 = x = id(x),

(T ∗ id∗T )(x) = T (x)xT (x) = xn−1 = T (x),

(id∗T ∗ id)(y) = yT (y)y = yn+1 = y = id(y),

(T ∗ id∗T )(y) = T (y)yT (y) = yn−1 = T (y),

(id∗T ∗ id)(z) =
n

∑
i, j=1

qi je jzT (xiy jz) fiz =
n

∑
i, j=1

qi je jz2y(n−1) jx(n−1)i fiz

=
n

∑
i, j=1

q−i je j(
n

∑
k=1

ekyk) fiz =
n

∑
i, j=1

e j fiz = Jz = z = id(z),

(T ∗ id∗T )(z) =
n

∑
i, j=1

qi jT (e jz)xiy jzT ( fiz) =
n

∑
i, j=1

q−i jze(n−1) jz
2 f(n−1)i

=
n

∑
i, j=1

q−i jze(n−1) j(
n

∑
k=1

ekyk) f(n−1)i = z
n

∑
i, j=1

e j fi = Jz = z = T (z).

In addition, we have

∑
(x)

T (x(1))x(2) = J1 = ∑
(x)

x(1)T (x(2)),

∑
(y)

T (y(1))y(2) = J2 = ∑
(y)

y(1)T (y(2)),

∑
(z)

T (z(1))z(2) =
n

∑
i=1

T (xiz) fiz =
n

∑
i=1

yn−ieiz2 =
n

∑
i=1

ynei = J1J2 = J,
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∑
(z)

z(1)T (z(2)) =
n

∑
j=1

e jzT (y jz) =
n

∑
j=1

e jz2yn− j =
n

∑
i=1

e jyn = J1J2 = J.

The elements J1,J2 and J are all the center of H2n2 by Lemma 3.2. Hence,

∑
(a)

a(1)T (a(2)),∑
(a)

T (a(1))a(2) ∈C(H2n2),

the center of H2n2 , for all a ∈ H2n2 .
The above facts show that

∑
(a)

a(1)T (a(2))a(3) = a = id(a), ∑
(a)

T (a(1))a(2)T (a(3)) = T (a)

for all a ∈ H2n2 by induction.
This means that T can indeed define a weak antipode of H2n2 , and hence H2n2 is a weak Hopf

algebra. Here, we point that H2n2 is a noncommutative and noncocommutative weak Hopf algebra. □

Now, we assume that

JH2n2 = A0, (J1 − J)H2n2 = A1, (J2 − J)H2n2 = A2, (1+ J− J1 − J2)H2n2 = A3.

One can get the following result.

Proposition 3.4. As algebras, we have

(1) H2n2 = A0 ⊕A1 ⊕A2 ⊕A3;
(2) A0 � H2n2 ;
(3) A1 � A2 � k[g]/(gn −1);
(4) A3 � k.

Proof. (1) The first statement follows from the fact that {J,J1 − J,J2 − J,1+ J − J1 − J2} is a set of
orthogonal central idempotents.

(2) For the statement, we note that A0 can be viewed as a subalgebra of H2n2 with the identity
element J, generated by Jx, Jy, and Jz with the relations

(Jx)n = J, (Jy)n = J,

(Jx)(Jy) = (Jy)(Jx), (Jz)(Jx) = (Jy)(Jz), (Jz)(Jy) = (Jx)(Jz),

(Jz)2 =
1
n

n−1

∑
i, j=0

q−i j(Jx)i(Jy) j.

Let ρ0 : H2n2 → A0 be the map defined by

ρ0(1) = J, ρ0(x) = Jx, ρ0(y) = Jy ρ0(z) = Jz,

it is straightforward to see that ρ0 is a well-defined surjective algebra homomorphism. Let φ : H2n2 →
H2n2 be the map given by

φ(1) = 1, φ(x) = x, φ(y) = y, φ(z) = z.
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The map φ is also a well-defined algebra epimorphism. Considering the restriction φ |A0
of φ on A0,

we have φ |A0
◦ρ0 = idH2n2 . Hence, ρ0 is injective and A0 � H2n2 as algebras.

(3) We note that A1 and A2 are the subalgebras of H2n2 with the unit J1 − J and J2 − J, respectively.
In A1, we have

(J1 − J)y = J1y− J1y = 0, (J1 − J)z = z− z = 0.

It follows that A1 is generated by (J1 − J)x, with the relation

[(J1 − J)x]n = J1 − J.

Similarly, the subalgebra A2 is generated by (J2 − J)y, with the relations

[(J2 − J)y]n = J2 − J,

and (J2 − J)x = J2x− J2x = 0, (J2 − J)z = z− z = 0. Finally, it is easy to see that

A1 � A2 � k[g]/(gn −1).

(4) It is obvious that A3 is a one-dimensional subalgebra of H2n2 with the unit 1+ J − J1 − J2.
Indeed,

(1+ J− J1 − J2)x = 0, (1+ J− J1 − J2)y = 0, (1+ J− J1 − J2)z = 0.

So, A3 = k(1+ J− J1 − J2).
The proof is completed. □

By Proposition 3.4, H2n2 is a semi-simple algebra of dimension 2n2 +2n+1 with a k-basis:{
(Jx)i(Jy) j, (Jx)i(Jy) jz, [(J1 − J)x]i, [(J2 − J)y] j,1+ J− J1 − J2

∣∣1 ≤ i, j ≤ n
}
.

Now, we consider the second class of extensions of H2n2 . The definition is given as follows.

Definition 3.5. The associative algebra Ĥ2n2 is generated by x,y, and z, with the relations

xn+1 = x, yn+1 = y, xy = yx,

zx = yz, zy = xz,

z2 =
1
n

n

∑
i, j=1

q−i jxiy j.

We define ∆ : Ĥ2n2 → Ĥ2n2 ⊗ Ĥ2n2, as follows

∆(x) = x⊗ x, ∆(y) = y⊗ y, ∆(z) =
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

and extend it to Ĥ2n2 in the natural way. As previously, let J1 = xn,J2 = yn and J = J1J2.

Theorem 3.6. Ĥ2n2 is a ∆-associative algebra.
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Proof. We should show that the ∆ is an algebra homomorphism of Ĥ2n2 . In fact,

(∆(x))n+1 = ∆(x), (∆(y))n+1 = ∆(y), ∆(x)∆(y) = ∆(y)∆(x),

∆(y)∆(z) = (y⊗ y)

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)

=

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)
(x⊗ x) = ∆(z)∆(x),

∆(x)∆(z) = (x⊗ x)

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)

=

(
1
n

n

∑
i, j=1

q−i jxiz⊗ y jz

)
(y⊗ y) = ∆(z)∆(y).

Furthermore, we have that

(∆(z))2 =
1
n

n

∑
i, j=1

q−i j
∆(x)i

∆(y) j

by the proof of Theorem 3.3 a). Hence, the map ∆ can be extended to a homomorphism of algebra
in Ĥ2n2 . Also, ∆ satisfies the coassociative axiom by the proof of Theorem 3.3 b). Hence, Ĥ2n2 is a
∆-associative algebra. □

Remark 3.7. The ∆-associative algebra Ĥ2n2 may be non-trivial. Indeed, if there exists a k-map
ε : Ĥ2n2 → k :

ε(x) = a, ε(y) = b, ε(z) = c, a,b,c ∈ k,

such that ε is a counit of Ĥ2n2 . Then, we have

xε(x) = ε(x)x = x, yε(y) = ε(y)y = y,

we get that a = b = 1 and

m◦ (ε ⊗ id)∆(z) = c

(
1
n

n

∑
i, j=1

q−i jy j

)
z = cJ2z = cynz,

m◦ (id⊗ ε)∆(z) = c

(
1
n

n

∑
i, j=1

q−i jxi

)
z = cJ1z = cxnz,

where m is the multiplication of Ĥ2n2 .
If there exists a c ∈ k such that cJ1z = cJ2z = z, then Ĥ2n2 is trivial. Otherwise, Ĥ2n2 is non-trivial.
Here, we always assume that x, y, and z are freely without any additional conditions in the definition

of Ĥ2n2. Consequently, in this case, Ĥ2n2 is a non-trivial ∆-associative algebra.
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Recall that in Ĥ2n2 , the set

{J, J1 − J+ J2 − J,1+ J− J1 − J2}

is a set of orthogonal central idempotents. Set

Â0 := JĤ2n2 , Â1 := (J1 − J+ J2 − J)Ĥ2n2, Â2 := (1+ J− J1 − J2)Ĥ2n2.

Proposition 3.8. As an algebra, we have

(1) Ĥ2n2 = Â0 ⊕ Â1 ⊕ Â2.

(2) Â0 � H2n2.
(3) Â1 � H2 ⊕H2 ⊕·· ·⊕H2︸                    ︷︷                    ︸

n copies

, where H2 is the Sweedler’s algebra.

(4) Â2 � k[h]/(h2).

Proof. (1) It is obvious.
(2) The proof is similar to Proposition 3.4 (2).
(3) Let

x1 = (J1 + J2 −2J)x, y1 = (J1 + J2 −2J)y, z1 = (J1 + J2 −2J)z.

Note that Â1 is a subalgebra of Ĥ2n2 with the identity J1 + J2 −2J, which is generated by x1, y1, and z1
with the relations

xn
1 = J1 − J, yn

1 = J2 − J, x1y1 = y1x1 = 0,
z2

1 = 0, z1x1 = y1z1, x1z1 = z1y1.

Let

λs =
1
n

n

∑
t=1

q−stxt
1, µs =

1
n

n

∑
t=1

q−styt
1,

for s = 1,2, · · · ,n. One can see that

{λ1,λ2, · · · ,λn,µ1,µ2, · · · ,µn}

is a complete set of primitive orthogonal idempotents of Â1, and

x1λs = λsx1 = qsλs, y1λs = λsy1 = 0, z1λs = µsz1,
x1µs = µsx1 = 0, y1µs = µsy1 = qsµs, z1µs = λsz1.

Thus, the bounded quiver of Â1 is as follows

λ1

µ1′

α1

OO

β1
��

λ2

µ2′

α2

OO

β2
��

· · ·

· · ·

λn

µn′

αn

OO

βn
��

with the admissible ideal
αiβi = βiαi = 0,(i = 1,2, · · · ,n).
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Therefore, the set
{λ1 +µ1,λ2 +µ2, · · · ,λn +µn}

forms a complete set of orthogonal central idempotents of Â1 and

Â1 =
n⊕

l=1

(λl +µl)Â1.

In addition, each ideal (λl +µl)Â1 of Â1 is a 4-dimensional subalgebra of Â1 with the identity λl +µl .
Also, it has the k-basis {λl,µl,λlz,µlz} for l ∈ {1,2, · · · ,n}.

Let H2 be the 4-dimensional Sweedler’s algebra generated by η ,χ subjecting to the relations

η
2 = 1, χ

2 = 0, ηχ =−χη .

For l = 1,2, · · · ,n, let ρl : (λl +µl)Â1 → H2 be the map given by

ρl(λl +µl) = 1, ρl(λl) =
1+η

2
,

ρl(µl) =
1−η

2
, ρl(λlz) =

1+η

2
χ, ρl(µlz) =

1−η

2
χ.

Obviously, ρl is an algebra isomorphism.
(4) The ideal Â2 is a subalgebra of Ĥ2n2 with the identity 1+ J− J1 − J2. Since

(1+ J− J1 − J2)x = 0, (1+ J− J1 − J2)y = 0, (1+ J− J1 − J2)z , 0,

it can be viewed as an algebra generated by (1+ J− J1 − J2)z with the relation

[(1+ J− J1 − J2)z]2 = 0.

This shows that Â2 is isomorphic to k[h]/(h2).
The proof is completed. □

By Proposition 3.8, we see that Ĥ2n2 is not a semi-simple algebra with the dimension 2n2 +4n+2.
Its radical has a k-basis as follows

{λlz,µlz,(1+ J− J1 − J2)z|l = 1,2, · · · ,n}.

4. The representations of H2n2

In this section, the aim is to classify all indecomposable representations of the weak Hopf algebra
H2n2 , and then to characterize its representation ring using generators with generating relations.

The representation theory of semi-simple algebra H2n2 and k[g]/(gn − 1) was studied by many
authors; see, for example, [15, 30, 31]. Let ind-R denote the set of all indecomposable representations
of some ring R. By Proposition 3.4, we have

H2n2 = A0 ⊕A1 ⊕A2 ⊕A3
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as algebras, therefore,
ind-H2n2 = ind-A0 ∪ ind-A1 ∪ ind-A2 ∪ ind-A3.

where ind-Ai can be viewed as the subset of ind-H2n2 in the natural way. We note that A0 � H2n2 ,
A1 � A2 � k[g]/(gn −1) and A3 � k,

Now, we list all irreducible representations of Ai, i = 1,2,3.

(1) Let Mi, i ∈ Zn. The 1-dimensional irreducible H2n2-module with basis v(i), the actions of H2n2 on
Mi are

x.v(i) = qiv(i), y.v(i) = 0, z.v(i) = 0.

In fact,
ind-A1 = {Mi|i ∈ Zn}.

(2) Let Ni, i ∈ Zn. The 1-dimensional irreducible H2n2-module with basis w(i), the actions of H2n2 on
Ni are

x.w(i) = 0, y.w(i) = qiw(i), z.w(i) = 0.

In fact,
ind-A2 = {Ni|i ∈ Zn}.

(3) Let L be a 1-dimensional irreducible H2n2-module with basis u, the actions of H2n2 on L are

x.u = 0, y.u = 0, z.u = 0.

In fact,
ind-A3 = {L}.

Therefore, we have the following results.

Proposition 4.1. The set

R = {Sm, Si, j, Ms, Ns, L | m ∈ Z2n,0 ≤ i < j ≤ n−1,s ∈ Zn}

forms a complete list of non-isomorphic irreducible representations of H2n2 .

For the decomposition formulas of the tensor product of two irreducible representations of H2n2 ,
we have the following several lemmas.

Lemma 4.2. For all i ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) Mi ⊗Sm � Sm ⊗Mi �Mm+i(mod n);
(2) Mi ⊗Ss,t � Ss,t ⊗Mi �Mi+s(mod n)⊕Mi+t(mod n);
(3) Ni ⊗Sm � Sm ⊗Ni � Nm+i(mod n);
(4) Ni ⊗Ss,t � Ss,t ⊗Ni � Ni+s(mod n)⊕Ni+t(mod n);
(5) L⊗Sm � Sm ⊗L � L;
(6) L⊗Ss,t � Ss,t ⊗L � L⊕L.
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Proof. Suppose that Sm and Ss,t are irreducible H2n2-modules with the basis {vm} and {vst
1 , vst

2 },
respectively, for all m ∈ Z2n and 0 ≤ s < t ≤ n−1.

(1) Considering the decomposition formulas of tensor product Mi ⊗Sm for i ∈ Zn. We have

x.(v(i)⊗ vm) = qi+mv(i)⊗ vm, y.(v(i)⊗ vm) = 0, z.(v(i)⊗ vm) = 0.

Hence, Mi ⊗Sm �Mi+m(mod n). Similarly, one can show that Sm ⊗Mi �Mi+m(mod n).
(2) Considering the decomposition formulas of tensor product Mi ⊗Ss,t for all i ∈ Zn. We have

x.(v(i)⊗ vst
1 ) = qi+sv(i)⊗ vst

1 , y.(v(i)⊗ vst
1 ) = 0, z.(v(i)⊗ vst

1 ) = 0,
x.(v(i)⊗ vst

2 ) = qi+tv(i)⊗ vst
2 , y.(v(i)⊗ vst

2 ) = 0, z.(v(i)⊗ vst
2 ) = 0.

So, Mi⊗Ss,t �Mi+s(mod n)⊕Mi+t(mod n). Similarly, Ss,t ⊗Mi �Mi+s(mod n)⊕Mi+t(mod n) can be proven.
The remaining cases can be proven in a similar way. □

Lemma 4.3. For all i, i′ ∈ Zn, we have

(1) Mi ⊗Mi′ �Mi+i′(mod n);
(2) Mi ⊗Ni′ � Ni′ ⊗Mi � L;
(3) Mi ⊗L � L⊗Mi � L;
(4) Ni ⊗Ni′ � Ni+i′(mod n);
(5) Ni ⊗L � L⊗Ni � L;
(6) L⊗L � L.

Proof. It is similar to the proof of Lemma 4.2. □

Let a = [S1], b = [Sn+1], c = [S0,1], d = [M0], e = [N0] in r(H2n2), we have the following lemma.

Lemma 4.4. For all i, i′ ∈ Zn, the following statements hold in r(H2n2).

(1) If n is odd, then

(a) [Mi] = bid, and bnd = d;
(b) [Ni] = bie, and bne = e;
(c) [L] = ed;
(d) cd = d +bd, ce = e+be, d2 = d and e2 = e.

(2) If n is even, then

(a) [Mi] = aid, and and = d;
(b) [Ni] = aie, and ane = e;
(c) [L] = ed;
(d) bd = ad, be = ae, cd = d +ad, ce = e+ae, d2 = d and e2 = e.

Proof. (1) If n is odd, it can be concluded that bi = S
i+ (−1)i+1+1

2 n
, for i ∈ Zn and bn = Sn by [15, Lemma

3]. Hence, we get that

M0 ⊗S
i+ (−1)i+1+1

2 n
� S

i+ (−1)i+1+1
2 n

⊗M0 �Mi,

M0 ⊗Sn � Sn ⊗M0 �M0,

N0 ⊗S
i+ (−1)i+1+1

2 n
� S

i+ (−1)i+1+1
2 n

⊗N0 � Ni,

N0 ⊗Sn � Sn ⊗N0 � N0,

M0 ⊗S0,1 � S0,1 ⊗M0 �M0 ⊕M1,
N0 ⊗S0,1 � S0,1 ⊗N0 � N0 ⊕N1,
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by Lemma 4.2. One sees that [Mi] = bid, bnd = d, [Ni] = bie and bne = e. The statements (a) and (b)
of (1) are followed.

Moreover, based on statements (a) and (b), one can get that cd = d +bd, ce = e+be. Also,

M0 ⊗N0 � L, M0 ⊗M0 �M0, N0 ⊗N0 � N0

by Lemma 4.3, then [L] = ed, d2 = d and e2 = e.
The first claim follows.
(2) If n is even, by [15, Lemma 4], it can be concluded that

ai = Si, bi = S
i+ (−1)i+1+1

2 n
, for i ∈ Zn and bn = an = S0.

The remaining statements can be proven in a similar way of claim (1). □

Corollary 4.5. For the representation ring r(H2n2), we have

(1) if n is odd, the set {
bk|0 ≤ k ≤ 2n−1

}⋃{
cib j|1 ≤ i ≤ n−1

2 ,0 ≤ j ≤ n−1
}⋃{

bld,ble,de|0 ≤ l ≤ n−1
}

forms a Z-basis of r(H2n2);
(2) if n is even, the set{

aib j|0 ≤ i ≤ n−1, j = 0,1
}⋃{

cib j|1 ≤ i < n
2 ,0 ≤ j ≤ n−1

}⋃{
c

n
2 b j|0 ≤ j < n

2

}⋃{
ald,ale,de|0 ≤ l ≤ n−1

}
forms a Z-basis of r(H2n2).

Proof. (1) If n is odd, the set{
bk|0 ≤ k ≤ 2n−1

}⋃{
cib j|1 ≤ i ≤ n−1

2
,0 ≤ j ≤ n−1

}
corresponds one-to-one to the set of irreducible H2n2-modules

{[Si]|0 ≤ i ≤ 2n−1}
⋃{

[Si, j]|0 ≤ i < j ≤ n−1
}

by [15, Corollary 2 (1)]. We have

[Mi] = bid, bnd = d, [Ni] = bie, bne = e, [L] = ed

by Lemma 4.4 (1).
Similarly, the set

{
bld,ble,de|0 ≤ l ≤ n−1

}
corresponds one-to-one to the set of irreducible H2n2-

modules {[Ml], [Nl], [L]|0 ≤ l ≤ n−1}.
(2) If n is even, the set{

aib j|0 ≤ i ≤ n−1, j = 0,1
}⋃{

cib j|1 ≤ i <
n
2
,0 ≤ j ≤ n−1

}⋃{
c

n
2 b j|0 ≤ j <

n
2

}
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corresponds one-to-one to the set of irreducible H2n2-modules{
[Si], [Si, j|0 ≤ i ≤ 2n−1,0 ≤ i < j ≤ n−1

}
by [15, Corollary 2 (2)].

On the other hand, we have

[Mi] = aid, and = d, [Ni] = aie, ane = e, [L] = ed,

by Lemma 4.4 (2). Hence, the set
{

ald,ale,de|0 ≤ l ≤ n−1
}

corresponds one-to-one to the set of
irreducible H2n2-modules {[Ml], [Nl], [L]|0 ≤ l ≤ n−1}.

Accordingly, the proof is finished. □

Now, we can prove the main result of this section.

Theorem 4.6. Assume that n ∈ N and n ≥ 2, then the representation ring r(H2n2) is a commutative
ring, which can be characterized by generators and relations as follows:

(1) if n is odd, then r(H2n2) � Z[y,z,α,β ]/I1, where I1 is the ideal generated by the set
y2n −1, zyn − z, Bm+1(y,z)− ym+1Bm(y,z),
ynα −α, ynβ −β , zα −α − yα, zβ −β − yβ ,
α2 −α, β 2 −β .


m:= n−1

2

;

(2) if n = 2, then r(H2n2) � Z[y,z,α,β ]/I2, where I2 is the ideal generated by the set
y2 −1, x2 − y2, zx− zy, z− zy, z2 − x− y− xy−1,
x2α −α, x2β −β , yα − xα, yβ − xβ ,
zα −α − xα, zβ −β − xβ , , α2 −α β 2 −β

 ;

(3) if n > 2 is even, then r(H2n2) � Z[y,z,α,β ]/I3, where I3 is the ideal generated by the set
xn −1, x2 − y2, zx− zy,
Dm+1(y,z,x)− ym+1Dm−1(y,z,x), Dm(y,z,x)− ymDm(y,z,x),
xnα −α, xnβ −β , yα − xα, yβ − xβ ,

zα −α − xα, zβ −β − xβ , α2 −α, β 2 −β


m:= n

2

.

Proof. It is easy to see that r(H2n2) is commutative.
(1) By Corollary 4.5, if n is odd, then r(H2n2) is generated by b,c,d and e. Hence, there is a unique

ring epimorphism
Φ : Z[y,z,α,β ]→ r(H2n2)

such that

Φ(y) = b = [Sn+1], Φ(z) = c = [S0,1], Φ(α) = d = [M0], Φ(β ) = e = [N0].

We note that
b2n = 1, cbn = c, Bm+1(b,c) = bm+1Bm(b,c),
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bnd = d, bne = e, cd = d +bd, ce = e+be, d2 = d, e2 = e,

by Lemma 2.4, and Lemma 4.4, we have

Φ(y2n −1) = 0, Φ(zyn − z) = 0, Φ
(
Bm+1(y,z)− ym+1Bm(y,z)

)
= 0,

Φ(ynα −α) = 0, Φ(ynβ −β ) = 0, Φ(zα −α − yα) = 0,
Φ(zβ −β − yβ ) = 0, Φ(α2 −α) = 0, Φ(β 2 −β ) = 0,

where m := n−1
2 . It follows that Φ(I1) = 0, and Φ induces a ring epimorphism

Φ : Z[y,z,α,β ]/I1 → r(H2n2)

such that

Φ(ν) = Φ(ν), for all ν ∈ Z[y,z,α,β ],

where ν = π(ν), and π is a natural epimorphism Z[y,z,α,β ]→ Z[y,z,α,β ]/I1.

We note that the ring r(H2n2) is the free Z-module of rank 4n+1+ n(n−1)
2 , with the Z-basis{

bk|0 ≤ k ≤ 2n−1
}⋃{

cib j|1 ≤ i ≤ n−1
2 ,0 ≤ j ≤ n−1

}⋃{
bld,ble,de|0 ≤ l ≤ n−1

}
.

So we can define a Z-module homomorphism:

Ψ : r(H2n2)→ Z[y,z,α,β ]/I1,

Ψ(cib j) = ziy j, Ψ(bk) = yk, Ψ(bld) = yl
α,

Ψ(ble) = yl
β , Ψ(de) = αβ ,

where 0 ≤ k ≤ 2n−1,1 ≤ i ≤ n−1
2 ,0 ≤ j ≤ n−1 and 0 ≤ l ≤ n−1.

On the other hand, as the Z-module, Z[y,z,α,β ]/I1 is generated by elements{
ziy j,yk,yl

α,yl
β ,αβ

∣∣0 ≤ k ≤ 2n−1,1 ≤ i ≤ n−1
2

,0 ≤ j ≤ n−1,0 ≤ l ≤ n−1
}
.

Let

a ∈
{

ziy j,yk,yl
α,yl

β ,αβ
∣∣0 ≤ k ≤ 2n−1,1 ≤ i ≤ n−1

2
,0 ≤ j ≤ n−1,0 ≤ l ≤ n−1

}
,

it is straightforward to check that ΨΦ(a) = a. Hence ΨΦ = id, which implies that Φ is a
monomorphism, and hence Φ is an isomorphism.

The proofs of the remaining statements of the theorem are similar to the above. □
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5. The representations of Ĥ2n2

In this section, the representations and representation ring of the ∆-associative algebra Ĥ2n2 are
given. Due to the similar research methods used as in Section 4, we directly provide relevant
conclusions and omit their proofs.

By Proposition 3.8, it follows that Ĥ2n2 = Â0 ⊕ Â1 ⊕ Â2 as algebras, then

ind-Ĥ2n2 = ind-Â0 ∪ ind-Â1 ∪ ind-Â2.

where ind-Âi can be viewed as the subset of ind-Ĥ2n2 in the natural way. As an algebra, we note that

Â0 � H2n2, Â1 � H2 ⊕H2 ⊕·· ·⊕H2︸                    ︷︷                    ︸
n copies

, Â2 � K[h]/(h2),

where H2 is the 4-dimensional Sweedler’s algebra.
It is noted that the algebra H2 and k[y]/(yd) are Nakayama algebras, and their representations are

also easy to construct; for examples, see [21, 30, 31]. Therefore, we can give a complete list of finite
dimensional indecomposable representations in ind-Â1 and ind-Â2 as follows.

(1) Let M̂i, i ∈ Zn. The 1-dimensional irreducible Ĥ2n2-module with basis v̂(i), the actions of Ĥ2n2 on
M̂i are

x.v̂(i) = 0, y.v̂(i) = qiv̂(i), z.v̂(i) = 0.

(2) Let N̂i, i ∈ Zn. The 1-dimensional irreducible Ĥ2n2-module with basis ŵ(i), the actions of Ĥ2n2 on
N̂i are

x.ŵ(i) = qiŵ(i), y.ŵ(i) = 0, z.ŵ(i) = 0.

(3) Let Li, i ∈ Zn. The 2-dimensional indecomposable Ĥ2n2-module with basis v̂(i)1 , v̂(i)2 , the actions of
Ĥ2n2 on Li are

x.v̂(i)1 = qiv(i)1 , y.v̂(i)1 = 0, z.v̂(i)1 = v̂(i)2 ,

x.v̂(i)2 = 0, y.v̂(i)2 = qiv̂(i)2 , z.v̂(i)2 = 0.

(4) Let Pi, i ∈ Zn. The 2-dimensional indecomposable Ĥ2n2-module with basis ŵ(i)
1 , ŵ(i)

2 , the actions
of Ĥ2n2 on Pi are

x.ŵ(i)
1 = 0, y.ŵ(i)

1 = qiŵ(i)
1 , z.ŵ(i)

1 = ŵ(i)
2 ,

x.ŵ(i)
2 = qiŵ(i)

2 , y.ŵ(i)
2 = 0, z.ŵ(i)

2 = 0.

In fact,
ind-Â1 = {M̂i, N̂i, Li, Pi|i ∈ Zn}.

(5) Let Q be a 1-dimensional irreducible Ĥ2n2-module with basis û, the actions of Ĥ2n2 on Q are

x.û = 0, y.û = 0, z.û = 0.
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(6) Let R be the 2-dimensional indecomposable Ĥ2n2-module with basis û1, û2, the actions of Ĥ2n2 on
R are

x.û1 = 0, y.û1 = 0, z.û1 = û2,
x.û2 = 0, y.û2 = 0, z.û2 = 0.

In fact,
ind-Â2 = {Q, R}.

Therefore, we have

Proposition 5.1. The set

G = {Sm,Si, j,M̂s, N̂s,Ls,Ps,Q,R | m ∈ Z2n,0 ≤ i < j ≤ n−1,s ∈ Zn}

forms a complete list of non-isomorphic indecomposable Ĥ2n2-modules.

Also, we have several lemmas as follows. As an example, we only give the proof of the first one.

Lemma 5.2. For all i, i′ ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) Li ⊗Sm � M̂m+i(mod n)⊕ N̂m+i(mod n);
(2) Sm ⊗Li � Lm+i(mod n);
(3) Li ⊗Ss,t � M̂i+s(mod n)⊕ M̂i+t(mod n)⊕ N̂i+s(mod n)⊕ N̂i+t(mod n);
(4) Ss,t ⊗Li � Li+s(mod n)⊕Li+t(mod n);
(5) Li ⊗Li′ � M̂i+i′(mod n)⊕ N̂i+i′(mod n)⊕Q⊕Q;
(6) Li ⊗Pi′ � M̂i+i′(mod n)⊕ N̂i+i′(mod n)⊕Q⊕Q;
(7) Pi′ ⊗Li � R⊕ M̂i+i′(mod n)⊕ N̂i+i′(mod n);
(8) Li ⊗Q � Q⊗Li � Q⊕Q;
(9) Li ⊗R � R⊗Li � Q⊕Q⊕Q⊕Q.

Proof. (1) In G , considering the tensor product Li ⊗Sm for i ∈ Zn, m ∈ Z2n, we have

x.(v̂(i)1 ⊗ vm) = qi+mv̂(i)1 ⊗ vm, y.(v̂(i)1 ⊗ vm) = 0, z.(v̂(i)1 ⊗ vm) = 0,
x.(v̂(i)2 ⊗ vm) = 0, y.(v̂(i)2 ⊗ vm) = qi+mv̂(i)2 ⊗ vm, z.(v̂(i)2 ⊗ vm) = 0.

Hence, Li ⊗Sm � N̂i+m(mod n)⊕ M̂i+m(mod n).
(2) Considering the tensor product Sm ⊗Li for i ∈ Zn, m ∈ Z2n, we have

x.(vm ⊗ v̂(i)1 ) = qi+mvm ⊗ v̂(i)1 , x.(vm ⊗ v̂(i)2 ) = 0,
y.(vm ⊗ v̂(i)1 ) = 0, y.(vm ⊗ v̂(i)2 ) = qi+mvm ⊗ v̂(i)2 ,

z.(vm ⊗ v̂(i)1 ) = 1
nσ(m)q

m2
2

n
∑

i′, j′=1
q−i′ j′+mi′+i j′vm ⊗ v̂(i)2 , z.(vm ⊗ v̂(i)2 ) = 0.

Let π1 = vm ⊗ v̂(i)1 , π2 =
1
nσ(m)q

m2
2

n
∑

i′, j′=1
q−i′ j′+mi′+i j′vm ⊗ v̂(i)2 , then

x.π1 = qi+mπ1, y.π1 = 0, z.π1 = π2,

x.π2 = 0, y.π2 = qi+mπ2, z.π2 = 0.
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Thus, Sm ⊗Li � Li+m(mod n).

(3) Considering the tensor product Li ⊗Ss,t for i ∈ Zn and 0 ≤ s < t ≤ n−1, we have

x.(v̂(i)1 ⊗ vst
1 ) = qi+sv̂(i)1 ⊗ vst

1 , y.(v̂(i)1 ⊗ vst
1 ) = 0, z.(v̂(i)1 ⊗ vst

1 ) = 0,
x.(v̂(i)1 ⊗ vst

2 ) = qi+t v̂(i)1 ⊗ vst
2 , y.(v̂(i)1 ⊗ vst

2 ) = 0, z.(v̂(i)1 ⊗ vst
2 ) = 0,

x.(v̂(i)2 ⊗ vst
1 ) = 0, y.(v̂(i)2 ⊗ vst

1 ) = qi+sv̂(i)2 ⊗ vst
1 , z.(v̂(i)2 ⊗ vst

1 ) = 0,
x.(v̂(i)2 ⊗ vst

2 ) = 0, y.(v̂(i)2 ⊗ vst
2 ) = qi+t v̂(i)2 ⊗ vst

2 , z.(v̂(i)2 ⊗ vst
2 ) = 0.

Hence, Li ⊗Ss,t � M̂i+s(mod n)⊕ M̂i+t(mod n)⊕ N̂i+s(mod n)⊕ N̂i+t(mod n).
(4) Considering the tensor product Ss,t ⊗Li for all i ∈ Zn and 0 ≤ s < t ≤ n−1, we have

x.(vst
1 ⊗ v̂(i)1 ) = qi+svst

1 ⊗ v̂(i)1 , y.(vst
1 ⊗ v̂(i)1 ) = 0,

z.(vst
1 ⊗ v̂(i)1 ) = 1

n

n
∑

i′, j′=1
q−i′ j′+i′t+tivst

2 ⊗ v̂(i)2 ,

x.(vst
2 ⊗ v̂(i)1 ) = qi+tvst

2 ⊗ v̂(i)1 , y.(vst
2 ⊗ v̂(i)1 ) = 0,

z.(vst
1 ⊗ v̂(i)1 ) = 1

n

n
∑

i′, j′=1
q−i′ j′+st+i′s+tivst

1 ⊗ v̂(i)2 ,

x.(vst
1 ⊗ v̂(i)2 ) = 0, y.(vst

1 ⊗ v̂(i)2 ) = qi+tvst
1 ⊗ v̂(i)2 ,

z.(vst
1 ⊗ v̂(i)2 ) = 0,

x.(vst
2 ⊗ v̂(i)2 ) = 0, y.(vst

2 ⊗ v̂(i)2 ) = qi+svst
2 ⊗ v̂(i)2 ,

z.(vst
2 ⊗ v̂(i)2 ) = 0.

Let
π3 = vst

1 ⊗ v̂(i)1 , π4 =
1
n

n
∑

i′, j′=1
q−i′ j′+i′t+tivst

2 ⊗ v̂(i)2 ,

π5 = vst
2 ⊗ v̂(i)1 , π6 =

1
n

n
∑

i′, j′=1
q−i′ j′+st+i′s+tivst

1 ⊗ v̂(i)2 ,

then

x.π3 = qi+sπ3, y.π3 = 0, z.π3 = π4,
x.π4 = 0, y.π4 = qi+sπ4, z.π4 = 0,
x.π5 = qi+tπ5, y.π5 = 0, z.π5 = π6,

x.π6 = 0, y.π6 = qi+tπ6, z.π6 = 0,

it follows that Ss,t ⊗Li � Li+s(mod n)⊕Li+t(mod n).
The remaining statements can be proven similarly. □

Lemma 5.3. For i, i′ ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) M̂i ⊗Sm � Sm ⊗ M̂i � M̂m+i(mod n);
(2) M̂i ⊗Ss,t � Ss,t ⊗ M̂i � M̂i+s(mod n)⊕ M̂i+t(mod n);
(3) M̂i ⊗ M̂i′ � M̂i+i′(mod n);
(4) M̂i ⊗Ni′ � Ni′ ⊗ M̂i � Q;
(5) M̂i ⊗Li′ � Li′ ⊗ M̂i � Q⊕ M̂i+i′(mod n);
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(6) M̂i ⊗Pi′ � Pi′ ⊗ M̂i � Q⊕ M̂i+i′(mod n);
(7) M̂i ⊗Q � Q⊗ M̂i � Q;
(8) M̂i ⊗R � R⊗ M̂i � Q⊕Q.

Lemma 5.4. For all i, i′ ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) N̂i ⊗Sm � Sm ⊗ N̂i � N̂m+i(mod n);
(2) N̂i ⊗Ss,t � Ss,t ⊗ N̂i � N̂i+s(mod n)⊕ N̂i+t(mod n);
(3) N̂i ⊗ N̂i′ � N̂i+i′(mod n);
(4) N̂i ⊗Li′ � Li′ ⊗ N̂i � N̂i+i′(mod n)⊕Q;
(5) N̂i ⊗Pi′ � Pi′ ⊗ N̂i � Q⊕ N̂i+i′(mod n);
(6) N̂i ⊗Q � Q⊗ N̂i � Q;
(7) N̂i ⊗R � R⊗ N̂i � Q⊕Q.

Lemma 5.5. For all i, i′ ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) Pi ⊗Sm � Pm+i(mod n);
(2) Sm ⊗Pi � M̂m+i(mod n)⊕ N̂m+i(mod n);
(3) Pi ⊗Ss,t � P̂i+s(mod n)⊕ P̂i+t(mod n);
(4) Ss,t ⊗Pi �Mi+s(mod n)⊕Mi+t(mod n)⊕Ni+s(mod n)⊕Ni+t(mod n);
(5) Pi ⊗Pi′ � M̂i+i′(mod n)⊕ N̂i+i′(mod n)⊕Q⊕Q;
(6) Pi ⊗Q � Q⊗Pi � Q⊕Q;
(7) Pi ⊗R � R⊗Pi � Q⊕Q⊕Q⊕Q.

Lemma 5.6. For all i ∈ Zn, m ∈ Z2n and 0 ≤ s < t ≤ n−1, we have

(1) Q⊗Sm � Sm ⊗Q � Q;
(2) Q⊗Ss,t � Ss,t ⊗Q � Q⊕Q;
(3) Q⊗Q � Q;
(4) Q⊗R � R⊗Q � Q⊕Q;
(5) R⊗Sm � Sm ⊗R � Q⊕Q;
(6) R⊗Si j � Si j ⊗R � Q⊕Q⊕Q⊕Q;
(7) R⊗R � Q⊕Q⊕Q⊕Q.

Let
a = [s1], b = [sn+1], c = [s0,1], d′ = [M̂0], e′ = [N̂0], f ′ = [L0], g′ = [P0].

Then, we have the following result.

Lemma 5.7. For all i, i′ ∈ {1,2, · · · ,n−1}, the following statements hold in r(Ĥ2n2).

(1) If n is odd, then

(a) [M̂i] = bid′ = d′bi and [M̂0] = bnd′ = d′bn = d′;
(b) [N̂i] = bie′ = e′bi and [N̂0] = bne′ = e′bn = e′;
(c) [Li] = bi f ′, and [L0] = bn f ′ = f ′;
(d) [Pi] = g′bi, and [P0] = g′bn = g′;
(e) [Q] = e′d′ = d′e′;
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(f) [R] = g′ f ′−d′− e′;
(g) f ′b = bg′ = b(d′+ e′);
(h) cd′ = d′c = d′+bd′, ce′ = e′c = e′+be′, c f ′ = f ′+b f ′, f ′c = cg′ = d′+ e′+bd′+be′ and

g′c = g′+g′b;
(i) d′2 = d′, e′2 = e′, f ′g′ = g′2 = f ′2 = d′+e′+2e′d′, d′ f ′ = f ′d′ = d′g′ = g′d′ = d′+e′d′, and

e′ f ′ = f ′e′ = e′g′ = g′e′ = e′+ e′d′.

(2) If n is even, then

(a) [M̂i] = aid′ = d′ai and [M̂0] = and′ = d′an = d′;
(b) [N̂i] = aie′ = e′ai and [N̂0] = ane′ = e′an = e′;
(c) [Li] = ai f ′ and [L0] = an f ′ = f ′;
(d) [Pi] = g′ai and [P0] = g′an = g′;
(e) [Q] = e′d′ = d′e′;
(f) [R] = g′ f ′−d′− e′;
(g) f ′a = ag′ = a(d′+ e′);
(h) bd′ = d′b = ad′, be′ = e′b = ae′, b f ′ = a f ′, bg′ = f ′b = f ′a and g′b = g′a;
(i) cd′ = d′c = d′+ad′, ce′ = e′c = e′+ae′, c f ′ = f ′+a f ′, f ′c = cg′ = d′+ e′+ad′+ae′ and

g′c = g′+g′a;
(j) d′2 = d′, e′2 = e′, f ′g′ = g′2 = f ′2 = d′+e′+2e′d′, d′ f ′ = f ′d′ = d′g′ = g′d′ = d′+e′d′ and

e′ f ′ = f ′e′ = e′g′ = g′e′ = e′+ e′d′.

Corollary 5.8. (1) If n is odd, the set{
bk|1 ≤ k ≤ 2n

}⋃{
cib j|1 ≤ i ≤ n−1

2 ,1 ≤ j ≤ n
}⋃

{bsd′,bse′,bs f ′,g′bs,de,g′ f ′−d′− e′|1 ≤ s ≤ n}

forms a Z-basis of r(Ĥ2n2).
(2) If n is even, the set{

aib j|1 ≤ i ≤ n, j = 1,n
}⋃{

cib j|1 ≤ i < n
2 ,1 ≤ j ≤ n

}⋃{
c

n
2 b j|1 ≤ j < n

2 , j = n
}⋃

{asd′,ase′,as f ′,g′as,d′e′,g′ f ′−d′− e′|1 ≤ s ≤ n}

forms a Z-basis of r(Ĥ2n2).

Proof. By Lemmas 5.3–5.7, we see that [S0] is no longer the identity of r(Ĥ2n2). By Lemma 2.3,
[S0] = [S2n], and if n is odd, the set{

bk|1 ≤ k ≤ 2n
}⋃{

cib j|1 ≤ i ≤ n−1
2

,1 ≤ j ≤ n
}

corresponds one-to-one to the set of irreducible Ĥ2n2-modules

{[Si]|1 ≤ i ≤ 2n}
⋃{

[Si, j]|0 ≤ i < j ≤ n−1
}

;

if n is even, the set{
aib j|1 ≤ i ≤ n, j = 1,n

}⋃{
cib j|1 ≤ i <

n
2
,1 ≤ j ≤ n

}⋃{
c

n
2 b j|1 ≤ j <

n
2
, j = n

}
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corresponds one-to-one to the set of irreducible Ĥ2n2-modules{
[Si], [Si, j]|1 ≤ i ≤ 2n,0 ≤ i < j ≤ n−1

}
.

On the other hand, if n is odd, we have

[M̂s] = bsd′ = d′bs, and [M̂0] = bnd′ = d′bn = d′,

[N̂s] = bse′ = e′bs, and [N̂0] = bne′ = e′bn = e′,
[Ls] = bs f ′, and [L0] = bn f ′ = f ′,
[Ps] = g′bs, and [P0] = g′bn = g′,
[Q] = e′d′ = d′e′, [R] = g′ f ′−d′− e′

by Lemma 5.7, where 1 ≤ s ≤ n−1. Hence, the set{
bsd′,bse′,bs f ′,g′bs,d′e′,g′ f ′−d′− e′|1 ≤ s ≤ n

}
corresponds one-to-one to the set of indecomposable Ĥ2n2-modules{

[M̂s], [N̂s], [Ls], [Ps], [Q], [R]
∣∣0 ≤ s ≤ n−1

}
.

The remaining can be proven in a similar ways. □

By Lemma 5.3–5.7, we see that r(Ĥ2n2) is a noncommutative ring without an identity. Let r∗(Ĥ2n2)
be the ring with the identity extended from the ring r(Ĥ2n2) in the natural way. For the general definition
one can refer to Section 2. Therefore, r∗(Ĥ2n2) is a ring with the identity (1,0) and

r(Ĥ2n2) � {(0,α)|α ∈ r(Ĥ2n2)} ⊆ r∗(Ĥ2n2).

Now, we can explicitly describe r∗(Ĥ2n2) by generators with relations.

Theorem 5.9. Assume that n ∈N and n ≥ 2, we have the following statements:

(1) if n is odd, then r∗(Ĥ2n2)�Z⟨y,z,α,β ,γ,δ ⟩/J1, where I1 is the ideal generated by the following
set

T1 =



y2n+1 − y, yz− zy, zyn − z, Bm+1(y,z)− ym+1Bm(y,z),
yα −αy; ynα −α, yβ −βy, ynβ −β , ynγ − γ, δyn −δ ,
αβ −βα, γy− yδ , yδ − y(α +β ), zα −αz,
αz−α − yα, zβ −β z, β z−β − yβ , zγ − γ − yγ, γz− zδ ,

zδ −α −β − yα − yβ , δ z−δ −δy, α2 −α, β 2 −β , γδ −δ 2,
γ2 −δ 2, δ 2 −α −β −2αβ , αγ − γα, γα −αδ , αδ −δα,
δα −α −αβ , βγ − γβ , γβ −βδ , βδ −δβ , δβ −β −αβ .


m:= n−1

2

;

(2) if n= 2, then r∗(Ĥ2n2)�Z⟨x,y,z,α,β ,γ,δ ⟩/J2, where I2 is the ideal generated by the following
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set

T2 =



y3 − y, x3 − x, xy− yx, xz− zx, yz− zy,
x2 − y2, zx− zy, z− zy, z2 − x− y− xy− y2,
xα −αx, x2α −α, xβ −βx,x2β −β , x2γ − γ, δx2 −δ , αβ −βα,
γx− x(α +β ), xδ − γx, yα −αy, yα − xα, yβ −βy, yβ − xβ ,
yγ − xγ, yδ − γy, γy− γx, δy−δx, zα −αz, zα −α − xα,
zβ −β z, zβ −β − xβ , zγ − γ − xγ, γz− zδ , zδ −α −β − xα − xβ ,
δ z−δ −δx, α2 −α, β 2 −β , γδ −δ 2, γ2 −δ 2, δ 2 −α −β −2αβ ,
αγ − γα, γα −αδ ,αδ −δα, δα −α −αβ , βγ − γβ ,
γβ −βδ , βδ −δβ , δβ −β −αβ .


;

(3) if n > 2 is even, then r∗(Ĥ2n2) � Z⟨x,y,z,α,β ,γ,δ ⟩/J3, where I3 is the ideal generated by the
following set

T3 =



xn+1 − x, yn+1 − y, xy− yx, xz− zx, yz− zy, x2 − y2, zx− zy,
Dm+1(y,z,x)− ym+1Dm−1(y,z,x), Dm+1(y,z,x)− ymDm(y,z,x),
xα −αx, xnα −α, xβ −βx,xnβ −β , xnγ − γ, δxn −δ , αβ −βα,
γx− x(α +β ), xδ − γx, yα −αy, yα − xα, yβ −βy, yβ − xβ ,
yγ − xγ, yδ − γy, γy− γx, δy−δx, zα −αz, zα −α − xα,
zβ −β z, zβ −β − xβ , zγ − γ − xγ, γz− zδ , zδ −α −β − xα − xβ ,
δ z−δ −δx, α2 −α, β 2 −β , γδ −δ 2, γ2 −δ 2, δ 2 −α −β −2αβ ,
αγ − γα, γα −αδ ,αδ −δα, δα −α −αβ , βγ − γβ ,
γβ −βδ , βδ −δβ , δβ −β −αβ .


m:= n

2

.

Proof. It is easy to see that r∗(Ĥ2n2) is a noncommutative ring.
(1) Let π : Z⟨y,z,α,β ,γ,δ ⟩ → Z⟨y,z,α,β ,γ,δ ⟩/J1 be the natural epimorphisms and a = π(a) for

any a ∈ Z⟨y,z,α,β ,γ,δ ⟩.
By Lemma 5.7(1) and Corollary 5.8(1), if n is odd, r(Ĥ2n2) is generated as a ring by b,c,d′,e′, f ′,g′,

and any element of r(Ĥ2n2) can be written as

∑
k1+k2+···+k6>0

ρk1k2···k6bk1ck2d′k3e′k4 f ′k5g′k6

where ρk1k2···k6,k1,k2, · · · ,k6 ∈ Z. Therefore,

r∗(Ĥ2n2) =

{
(k, ∑

k1+k2+···+k6>0
ρk1k2···k6bk1ck2d′k3e′k4 f ′k5g′k6)

∣∣∣ρk1k2···k6,k1,k2, · · · ,k6,k ∈ Z

}
.

We defined a Z-map
Φ : Z⟨y,z,α,β ,γ,δ ⟩ → r∗(Ĥ2n2)

as
Φ(1) = (1,0), Φ(y) = (0,b), Φ(z) = (0,c), Φ(α) = (0,d′),

Φ(β ) = (0,e′), Φ(γ) = (0, f ′), Φ(δ ) = (0,g′).
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It is easy to get that Φ can be extended to a ring epimorphism in the natural way. In fact, any υ ∈
Z⟨y,z,α,β ,γ,δ ⟩ can be written as

υ = k1Z⟨y,z,α,β ,γ,δ ⟩+ ∑
k1+k2+···+k6>0

ρk1k2···k6yk1zk2α
k3β

k4γ
k5δ

k6 ,

where ρk1k2···k6,k1,k2, · · · ,k6,k ∈ Z. Thus,

Φ(υ) = (k, ∑
k1+k2+···+k6>0

ρk1k2···k6bk1ck2d′k3e′k4 f ′k5g′k6).

By Lemma 5.7(1), one sees that Φ(ω) = (0,0) for all ω ∈ T1. Hence, Φ(J1) = (0,0) and Φ induces
a unique ring epimorphism

Φ : Z⟨y,z,α,β ,γ,δ ⟩/J1 → r∗(Ĥ2n2)

with Φ(ν) = Φ(ν) for all ν ∈ Z⟨y,z,α,β ,γ,δ ⟩.
We note that the ring r∗(Ĥ2n2) is the free Z-module of rank 6n+3+ n(n−1)

2 , with the Z-basis

{(1,0)}∪
{
(0,bk)|1 ≤ k ≤ 2n

}
∪
{
(0,cib j)|1 ≤ i ≤ n−1

2 ,1 ≤ j ≤ n
}

∪{(0,bsd′),(0,bse′),(0,bs f ′),(0,g′bs),(0,de),(0,g′ f ′−d′− e′)|1 ≤ s ≤ n} .

So we can define a Z-module homomorphism:

Ψ : r∗(Ĥ2n2)→ Z⟨y,z,α,β ,γ,δ ⟩/J1

by
Ψ((1,0)) = 1, Ψ((0,bk)) = yk, Ψ((0,cib j)) = ziy j, Ψ((0,bsd′) = ys

α,

Ψ((0,bse′)) = ys
β , Ψ((0,bs f ′)) = ys

γ, Ψ((0,g′bs)) = δys,

Ψ((0,de)) = αβ , Ψ((0,g′ f ′−d′− e′)) = γδ −α −β ,

where 1 ≤ k ≤ 2n,1 ≤ i ≤ n−1
2 ,1 ≤ j ≤ n and 1 ≤ s ≤ n. Obviously, as the Z-module,

Z⟨y,z,α,β ,γ,δ ⟩/J1 is generated by the set

S = {1}∪
{

yk|1 ≤ k ≤ 2n
}
∪
{

ziy j|1 ≤ i ≤ n−1
2 ,1 ≤ j ≤ n

}
∪
{

ysα,ysβ ,ysγ,δys,αβ ,γδ −α −β , |1 ≤ s ≤ n
}
.

For any a ∈ S, we see that ΨΦ(a) = a. Hence ΨΦ = id, which implies that Φ is a monomorphism, and
hence Φ is an isomorphism.

The proofs of the remaining statements are similar. □

Remark 5.10. By Theorems 4.6 and 5.9, as the rings, it is easy to see that

(1) if n is odd, then

r(H2n2) � r(H2n2)/⟨α,β ⟩ � r∗(Ĥ2n2)/⟨α,β ,γ,δ ,y2n −1⟩;

(2) if n is even, then

r(H2n2) � r(H2n2)/⟨α,β ⟩ � r∗(Ĥ2n2)/⟨α,β ,γ,δ ,yn −1,xn −1⟩.
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6. Conclusions

We have described the representation rings of two classes of ∆-associative algebras, H2n2 and Ĥ2n2 ,
extended from Hopf algebra H2n2 of Kac-Paljutkin type. It may be interesting to consider the category
of representations of these representation rings, as this could be helpful in understanding the invariants
of the more general tensor categories. It is challenging to consider non-Hermitian linear systems over
these rings, similar to non-Hermitian quaternion linear systems over the quaternion algebra. Readers
are referred to related works, such as [32–34].
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