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Abstract: Portfolio optimization is an important financial task that has received widespread attention
in the field of artificial intelligence. In this paper, a novel deep portfolio optimization (DPO) framework
was proposed, combining deep learning and reinforcement learning with modern portfolio theory. DPO
not only has the advantages of machine learning methods in investment decision-making, but also
retains the essence of modern portfolio theory in portfolio optimization. Additionaly, it was crucial to
simultaneously consider the time series and complex asset correlations of financial market information.
Therefore, in order to improve DPO performance, features of assets information were extracted and
fused. In addition, a novel risk-cost reward function was proposed, which realized optimal portfolio
decision-making considering transaction cost and risk factors through reinforcement learning. Our
results showed the superiority and generalization of the DPO framework for portfolio optimization
tasks. Experiments conducted on two real-world datasets validated that DPO achieved the highest
accumulative portfolio value compared to other strategies, demonstrating strong profitability. Its
Sharpe ratio and maximum drawdown also performed excellently, indicating good economic benefits
and achieving a trade-off between portfolio returns and risk. Additionally, the extraction and fusion of
financial information features can significantly improve the applicability and effectiveness of DPO.

Keywords: portfolio optimization; transaction costs; risk management; deep learning; reinforcement
learning

1. Introduction

Portfolio management process can be viewed as an information process and an execution process.
The difference between information value and execution cost is the value investors want to capture. The
goal of portfolio management is to dynamically allocate and maximize returns in portfolio. The success
of investors largely depends on maintaining a good portfolio balance. However, this task is difficult for
investors. With the development of big data and artificial intelligence (AI) trends, intelligent portfolio
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selection methods based on deep learning (DL) [1] and machine learning (ML) methods [2, 3] have
been proposed and have achieved results.

Although recent trends in AI have brought solutions to the investment industry, portfolio
management is still largely based on linear models and modern portfolio theory (MPT). MPT
suggests that portfolios focus more on risk than returns [4]. The covariance between various
investment returns is introduced into the portfolios to measure risk. Portfolios are determined by the
various securities and their weights. MPT relies on accurate predictions of market prices and certain
restrictive assumptions (such as the assumption that the probability distribution of past asset returns
fully represents the future), and studies the mean-variance portfolio selection problem. MPT does not
assume transaction costs in the portfolio trading process [4]. Transaction costs are important in
portfolio trading as they can easily erode the returns of trading strategies. Simultaneously, transaction
costs analysis helps to better manage portfolios [5]. When considering transaction costs, a portfolio
optimal strategy is achieved by optimizing the expected rebalancing of logarithmic returns [6], but
this work overlooks the risk in the portfolio trading process. Risk management is essential within the
framework of portfolio selection or asset allocation [7]. Therefore, it is imperative for portfolio
investors to improve MPT and methods to more effectively achieve their objectives. Essentially, asset
portfolio optimization involves continuous decision-making. That is to say, it continuously reallocates
some funds into assets based on the historical information to achieve investment goals.

Reinforcement learning (RL) is an appropriate framework for dealing with complex data and
challenging decision-making processes [8]. It can be effectively applied to solve problems related to
decision process construction [9]. The process of asset trading can be naturally expressed as the
process of RL. In the process of asset portfolio management, the agent takes action on the
environment based on the observation of its state. As a result of accessing the state and taking action,
the agent receives reward. In specific asset trading cases, the environment can be considered as the
recent trading information of assets, actions are the trades that remove some assets held by the agent
and obtain new assets, rewards are scalar functions of the gains or losses obtained by the agent taking
these actions, and the agent can be thought of as an algorithm that interacts with the market by
observing environment, balancing portfolios, and making decisions. Its objective is to maximize
returns and minimize risk.

However, the complexity of portfolio selection also makes portfolio management challenging.
Although attempts have been made to apply RL to financial portfolio management, these approaches
may be limited in practice.

1) Environmental uncertainty. It includes two aspects: First, the inherent non-stationarity of
financial market, which is characterized by high noise, randomness, and chaos. Second, the
uncertainty caused by distribution shifts between training data and test data. Financial investments are
highly sensitive to market fluctuations, and most existing models cannot adapt to the non-stationarity
of the market and distribution shifts between data. To address these challenges, we propose a novel
deep portfolio optimization (DPO) framework for portfolio optimization. First, the DPO framework is
a universal framework with theoretical generalizability. It combines portfolio theory with RL learning
paradigm and is not limited to any specific market. DPO can adapt to the inherent non-stationarity of
financial markets and uses financial data information to explore optimal portfolio decisions. Second,
our DPO framework employs RL and DL to optimize portfolio problems. DPO combines
convolutional neural network (CNN) and recurrent neural network (RNN) modules within the RL
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framework, utilizing these two modules to learn and extract features from financial information in a
targeted manner. The CNN module learns local time features to study asset correlations, while the
RNN module learns long-sequence time features to study sequential correlations. They address the
lag issue in distribution shifts between data, improving the performance of DPO. Third, we
empirically test the effectiveness and generalizability of the DPO framework. We tested and
performed well on two real-world datasets: the cryptocurrency dataset and the Chinese A-share
dataset. The performance of DPO surpasses baseline models in terms of accumulative portfolio value
(APV). Empirical results confirm that DPO can address the challenges posed by environmental
uncertainty.

2) Transaction costs and risk. The practicality principle of financial markets requires controlling
transaction costs and risk. On one hand, neglecting transaction costs in investment decisions may lead
to aggressive trading and introduce bias in estimating returns. On the other hand, ignoring the risk due
to fluctuations in returns may lead to disastrous results in practice. Most existing methods only focus
on one of these aspects without simultaneously constraining both influencing factors, which may limit
their practical performance. Therefore, to assess the economic significance of portfolio performance,
it is essential to incorporate transaction costs and risk into the analysis. We adopt the reward shaping
method and propose a reward function that considers transaction costs and risk factors. Applying RL
to optimize this reward function makes it easier to achieve higher returns and incur smaller risk losses.
The performance of DPO on two real-world datasets also exceeds that of baseline models in terms of
Sharpe ratio (SR) [10] and maximum drawdown (MDD) [11]. The empirical validation confirms the
rationality and usefulness of the shaped reward function within the DPO framework.

Our contributions are as follows:
1) A novel DPO framework is proposed, combining portfolio theory, DL methods, and RL learning

paradigm. DPO leverages the advantages of financial theory and RL, focusing on risk premiums and
transaction costs to improve the robustness of portfolio optimization.

2) The performance of the DPO framework is improved by applying DL. Extracting and fusing
features from financial information using CNN and RNN is highly effective in improving the
performance of DPO. Empirical experiments are conducted on real datasets to make optimal portfolio
decisions.

3) A novel reward function is proposed, which is grounded in MPT and thoroughly considers
transaction costs and risk volatility in the portfolio decision-making process. By shaping the reward
function in RL, DPO can achieve maximum cumulative returns while controlling transaction costs
and risk.

The remaining parts of this paper are organized as follows. Section 2 reviews related work on
portfolio optimization using DL methods and RL, focusing on transaction costs and risks in portfolio
trading. Section 3 introduces the architecture of DPO, which includes DL modules, the RL framework,
and the risk-cost reward function. Section 4 presents the experimental results. Section 5 presents the
conclusions of the paper.

2. Related work

The prediction task of financial time series is very difficult and challenging due to the high noise,
high frequency, and generally accepted semi-strong form of market efficiency in the stock
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market [12]. Therefore, stock prediction holds significant importance. There is increasing attention
from both academia and investors on portfolio forecasting. There has been a considerable amount of
research endeavors to utilize AI and ML to predict stock market returns and volatility.

2.1. Portfolio optimization based on CNN or RNN

With the availability of large-scale market data and the rapid development of DL applications in
big data, it is natural to utilize DL models to explore potential patterns in portfolio management.
Financial information has the periodicity and tendency of time series. Schmidhuber [13] believed that
deep artificial neural network (including RNN) was widely used in the fields of pattern recognition
and ML. In temporal data analysis, RNN can be used to extract and capture these complex temporal
features, and is used for prediction and classification of time series. Fischer and Krauss [14] used
RNN to predict the trend of S&P 500 index components from 1992 to 2015. Compared with
application benchmarks, RNNs have better prediction performance and are largely robust in their
impact on microstructure. Vidal and Kristjanpoller [15] believed that predicting the future volatility of
assets was important and significantly improved the prediction of portfolio volatility by adopting DL
methods. It provided various information related to the characteristics of series, taking different lags
of profitability as inputs, enabling it to learn and gain returns from the temporal structure. Ma et
al. [16] utilized ML models such as random forest, support vector regression, long short-term memory
(LSTM), deep multilayer perceptron, and CNN to optimize portfolios.

Existing techniques for training neural network models to predict market behavior have shown their
effectiveness in asset price forecasting and asset allocation [17]. However, the lack of interaction
between DL models and the market puts them at a disadvantage in decision-making problems such as
portfolio management.

2.2. Portfolio optimization based on RL

Due to the continual updates of financial market information, numerous researches employ RL
techniques to make timely and continual decisions. RL has already achieved some success in
addressing continuous decision-making problems [18]. RL has been widely applied in the financial
field. Almahdi and Yang [8] proposed a recurrent RL method that used a continuous risk adjusted
performance objective function (Calmar ratio) to obtain buy and sell signals and asset allocation
weights. They used a portfolio composed of exchange-traded funds traded on the most active
exchanges. The results showed good performance of portfolio optimization. Jiang et al. [1] used a
model-free deterministic policy gradient (DPG) to dynamically optimize a cryptocurrency portfolio.
The research maximized cumulative returns through RL, utilizing price information and the DPG
method to make more profitable decisions. Similarly, Jang and Seong [19] used the deep deterministic
policy gradient (DDPG) and optimized asset portfolios. They addressed the portfolio problem by
inputting Tucker decomposition of technical analysis and stock returns.

However, existing researches in portfolio optimization lack integration with actual economic
benefits, focusing solely on technical aspects [16–18]. This gap leads to biases in investment returns
and limits the effectiveness of portfolio decision-making.

Electronic Research Archive Volume 32, Issue 9, 5176–5200.



5180

2.3. Transaction costs and risk in portfolio optimization problems

In order to assess the realistic significance of portfolio performance, it is ultimately necessary to
include transaction costs and risk factors in the analysis. Compared to previous research on financial
markets, the strong liquidity of the cryptocurrency market and the Chinese market is the most important
predictive factor [3, 9], which prompts us to carefully study the impact of transaction costs and risk
factors.

Transaction costs are related to buying and selling business, whether it is creating an initial portfolio
with cash or rebalancing an existing portfolio. In the financial market, transaction costs mainly consist
of three parts: commission, stamp tax, and slippage. Due to liquidity issues, it is difficult to execute all
trades at predetermined prices [3]. Obviously, neglecting these costs can lead to inefficient portfolio
management, as they heavily impact realized returns [20].

Recently, RL has been applied to solve portfolio optimization problems. Ma and Li [21] adopted a
robust portfolio selection problem using DL with limited attention. The agent can access risk-free
assets and stocks in the financial market and achieve higher expected returns. However, these methods
ignore asset correlation when extracting portfolio features and do not control the costs during the
optimization process, resulting in limited performance. Garcı́a-Galicia et al. [22] proposed managing
and optimizing portfolios in the context of continuous-time RL. However, this work ignores the
influence of risk factors on portfolio selection. Investors are concerned about risk and returns. MPT is
about optimizing investor behavior [23]. Ban et al. [24] adopted two ML methods, which introduced
performance-based regularization to optimize portfolio returns. Due to the drawbacks of investor
irrationality in MPT, we shape a reward function to optimize risk and transaction costs, with the aim
of constraining the estimated sample variance of portfolio returns and risk, so that the estimation error
can develop in a less correlated direction. Therefore, we focus on the trade-off between portfolio risk
and robustness, which improves the stability of portfolio allocation and reduces portfolio risk.

To sum up, this paper applies the RL learning paradigm to interact with market information for
portfolio optimization. DL modules are utilized to analyze the temporal and asset correlations of
financial information in investment strategies. Additionally, the focus is on the trade-off between
portfolio returns and risk volatility to achieve maximum expected returns.

3. Methodology

This section describes the process of combining MPT with RL and constructing a portfolio
optimization framework. To begin, the general architecture is introduced and the portfolio task is
described in detail. Then, the DL modules are presented. Additionally, the RL framework applicable
to portfolio tasks is introduced. Finally, the risk-cost reward function proposed by combining
portfolio theory is described.

3.1. Problem formulation

Portfolio management is a fundamental financial planning task that aims to maximize returns or
minimize risk through asset allocation. We consider a portfolio selection task for n+1 assets in the time
t in a financial market, including one risk-free asset and n risky assets. In time t, we represent the prices
of all assets as pt ∈ R

(n+1)×d
+ , where each row pi,t ∈ R

d
+ represents the features of the asset, and d = 4
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represents the number of prices. Specifically, we consider four types of asset prices, namely opening
price, highest price, lowest price, and closing price. The asset price information from two real-world
markets (the cryptocurrency market and Chinese A-share market) exhibit both temporal correlations
and asset correlations. They can be summarized into more prices to obtain more information, making
the price vector pt = {pt−k, . . . , pt−1}, where k is the length of the price sequence. pi,t represents the
closing price of the i asset at time t, where i = {1, . . . , n}, n is the number of assets in the investment
portfolio. Price vector pt is composed of the closing prices of all n assets. Similarly, pH

t and pL
t

represent the highest and lowest prices during time t. In portfolio problems, assets are not entirely used
for investment. Specifically, when making portfolio decisions, it is not necessary to purchase every
asset. Instead, we should observe market conditions and interact with market information to make
optimal choices. Not all assets need to be included in the investment decisions.

In addition to the n asset portfolios, we introduce into pt the price vector p0,t of an extra dimension
(the first dimension indexed by 0), representing the risk-free asset price at time t. Assuming that the
price of risk-free asset changes little and ignoring the influence of inflation or deflation factors, it can
be considered that the asset is risk-free, and its price remains unchanged, that is, p0,t = 1, {∀t|p0,t = 1}.
It has little impact on the learning process and we exclude risk-free asset from the input. When the
price vector pt ∈ R

m×n×4 is normalized with respect to risk-free asset value for all time variables, p0,t

remains constant for all continuous time t.
The change in asset prices over time during time t, yt =

pt+1
pt

is represented as the price relative
vector, specifically represented as

yt =
pt+1

pt
= (1,

p1,t+1

p1,t
, . . . ,

pn,t+1

pn,t
)⊤ (3.1)

To facilitate mathematical expression of the process of asset reallocation in portfolio optimization,
we introduce the weight score of asset reallocation

wt = (w0,t,w1,t, . . . ,wn,t)⊤ (3.2)

where wi,t (t , 0) is the weight score of the i asset, and w0,t is the weight score of risk-free asset at the
end of time t. Assets will be reallocated into portfolios based on the weight assigned to each asset, that
is,
∑n

i=0 wi,t = 1.
In the experiments of this paper, the agent in RL sells or buys assets based on the difference of wt

and wt−1 between the time step t − 1 and t in order to rebalance the portfolio.

3.2. DL modules

3.2.1. Correlation feature module

The correlation between assets in the financial market reveals the relationship between macro
market trends and individual assets. We use CNN to asymptotically extract asset correlations without
altering the structure of asset features. By employing highly reusable convolutional kernels, we can
extract asset correlations quickly and with reduced risk of overfitting. The correlation feature module
uses CNN to analyze the correlations between features at the current time point and adjacent time
points in local observations, thereby extracting asset correlation features. This allows us to obtain
more reliable price information.
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The input is asset price information vectors, and the output is the correlation feature vectors of
each asset. Considering the characteristics of stocks, we use a 1D CNN to extract asset correlation
feature vectors, applying a convolutional kernel (size 1×3) to each stock for correlation feature vectors
extraction. Fully considering the correlations between financial assets helps to obtain more information
about asset movements, leading to better portfolio decisions.

3.2.2. Sequence feature module

Stock data in financial markets is characterized by high noise and temporal correlation. Considering
these characteristics, we select LSTM to extract features from historical financial market information.
The price sequence of assets reflects the price changes of each asset. We process historical price
sequences using the sequence feature module. The sequence feature module uses LSTM to analyze the
temporal correlation of financial data, extract temporal features, and optimize the portfolio.

We use LSTM to analyze and store the temporal information of financial assets. The input is asset
price information vectors, and the output is the temporal feature vectors of each asset. Memory units
and gates are used to store information over a long period, and the output represents the feature vectors
of each financial asset. We concatenate the feature vectors of each asset to form an overall feature
distribution, thereby achieving the extraction of feature vectors from financial temporal information.
The sequence feature module can extract robust sequential features, helping to capture more price
information and enabling the portfolio to achieve higher returns.

3.3. RL framework

Portfolio optimization is a continuous decision-making process. RL includes policy-based and
value-based methods. Policy-based methods aim to directly learn and optimize the policy, enabling
actions to be chosen in a given state to maximize cumulative rewards. Policy-based methods are
particularly well-suited for handling problems with continuous action spaces, as they can flexibly
output deterministic actions. Value-based methods suit for discrete action spaces. Therefore, in the
portfolio optimization task, we select a policy-based method to make decisions.

We can formulate the optimization process of portfolio management as a generalized RL process,
indicating that the next state only depends on the current state and action. We can describe the portfolio
optimization problem as a tuple (S , A, P,R), where S is the state, A is the action, and R is the reward,
determined by the reward function S × A → R, where P is the state transaction, representing the
probability that the agent performs action at in state st and moves to the next state st+1. Action A
does not affect the transaction state P, that is, the transaction state transition only depends on the
environment.

DPG is an algorithm within the learning paradigm of RL. It is a policy-based method that focuses
on learning and optimizing the gradient of deterministic policies. DPG can solve continuous decision-
making problems and exhibits well robustness. We use the DPG method to learn deterministic portfolio
strategies. We represent the optimal strategy at each step using a probability distribution function,
sample actions according to this distribution to obtain the current optimal action value, and then solve
the deterministic policy gradient to derive the optimal portfolio strategy.

We use deep neural networks to directly output the policy function π(s), which represents the action
to be taken in state s. The chosen policy is deterministic, meaning that the action to be executed in a
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given state s is definite and unique, described as a = µ(s).
Due to the nonstationary nature of the financial market environment, we train DPO by directly

optimizing the reward function and utilizing policy gradient methods. The policy is a mapping from
state space to action space πθ : S → A, The strategy gradient is represented by the parameter
probability distribution πθ(a|s) = P(a|s; θ), and we select action a from the action space of state s
according to the parameter vector θ. For a deterministic policy a = µθ(s) , this choice is generated
deterministically by the strategy from a state. Due to returns rγt is defined as the total discount returns
from time step t,

rγt =
∞∑

k=t

γk−tr(sk, ak) (3.3)

where r is the reward function and γ is the discount factor, and 0 < γ < 1. We define the performance
objective as

J(µθ) = E[rγ1 |µ] (3.4)

It is the expected ρµ(s) of the discounted state distribution.

J(µθ) =
∫

s
ρµ(s)r(s, µθ(s))ds = Es∼ρµ[r(s, µθ(s))] (3.5)

Considering the time interval from 1 to T , the corresponding objective function is

JT (µθ) =
T∑

t=1

γtr(st, µθ(st)) (3.6)

The objective in the above equation is a typical Markov decision process objective function.
However, it should be noted that this type of function does not match the optimization objectives of
portfolio [25], as returns accumulates at time t and will be reconfigured at time t + 1. We use the
cumulative product of portfolio value instead of summing up:

JT =

T∏
t=1

J0rt (3.7)

It is more suitable for portfolio optimization tasks. Therefore, the objective function is

JT (µθ) = J0

T∏
t=1

r(st, µθ(st)) (3.8)

where J0 is a constant.

3.4. Risk-cost reward function

In the portfolio optimization task, RL is a learning paradigm used to describe and solve the problem
of an agent interacting with the financial environment to learn strategies for maximizing returns and
minimizing risk. The reward function is an essential component of the learning objective function in
RL, representing the feedback signal received by the agent upon achieving a goal in the environment.
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It directly influences the agent’s learning process. The effectiveness of portfolio optimization is a result
of the combined influence of RL and the risk-cost reward function.

3.4.1. Mean-variance portfolio

We propose a reward function combined with MPT to construct a portfolio strategy that matches
investors’ expected returns and risk tolerance. At the theoretical level of portfolio theory, we
demonstrate and test the importance of the proposed reward function in portfolio optimization,
considering transaction costs and risk factors.

We discuss the mean-variance problem:

min
wi,t
{

n∑
i, j=1

wi,tw j,tσi, j −

n∑
i=1

wi,tυi,t} (3.9)

s.t.
n∑

i=0

wi,t = 1 (3.10)

wi,t ≥ 0 (3.11)

In Eq (3.9), wi,t ∈ R
N is the weight vector of the portfolio. σi, j ∈ R

N×N is the covariance matrix of
the estimated returns of assets i and j, and υi,t ∈ R

N is the estimated mean of the estimated returns of
assets. In other words, υi,t ∈ R

N is the expected return in time t. The first two items in Eq (3.9) capture
the portfolio’s risk-returns trade-off: the first is the portfolio return variance

∑n
i, j=1 wi,tw j,tσi, j, and the

second is the portfolio return mean
∑n

i=1 wi,tυi,t.
To the best of our knowledge, it is the first time we combine the classical mean-variance model

with RL while considering transaction costs and risk factors during the trading process. The reward
function focuses on transaction costs and risk, which not only reduces the impact of estimation errors
but also minimizes frequent trading, thereby improving portfolio returns.

3.4.2. Rewards in portfolio

As mentioned earlier, the total asset weight vector wt = (w0,t,w1,t, . . . ,wn,t)⊤ at time step t represents
the asset weight. What the agent needs to do is to reallocate assets, that is, adjust ãt.

In time step t, we expect to reallocate the weight

at = (a0,t, a1,t, . . . , an,t)⊤ (3.12)

s.t.
n∑

i=0

ai,t = 1 (3.13)

where Eq (3.12) is the action vector in the model.
By taking action on time step t, the asset allocation vector will be affected by price changes yt. At

the end of the time, the allocation vector ãt is

ãt =
yt ⊗ at

yt · at
(3.14)
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where ⊗ is the multiplication of elements. In the t step, after making decision at, we need to rebalance
ãt to at from the current portfolio strategy, where ãt and at are the asset allocation vectors before and
after rebalancing.

In addition, the reward function for each time step can be defined in terms of the profits obtained by
the agent. The fluctuation in the value of each asset is ai,t · yi,t. Therefore, the total returns for time step
t are at · yt.

To start, we combine MPT with the RL learning paradigm, considering transaction costs and risk
factors during the trading process. By leveraging the advantages of MPT and using the DPG algorithm,
we obtain the optimal portfolio vector wt. In addition, we combine the reward function with MPT,
incorporating it during the function shaping process, so that the agent considers the impact of MPT
on the optimal portfolio strategy during learning. The purpose of combining financial theory into the
reward function shaping is to make the agent’s decisions more realistic and economically meaningful,
with practical applicability. Finally, in the portfolio optimization task, the optimization of the portfolio
is the result of the combined effects of RL and the risk-cost reward function. The asset vector wt is
optimized through the action vector at. Specifically, wt is derived from the reward function shaped by
MPT and the RL learning paradigm, where the agent interacts with the environment by analyzing the
financial market state, taking actions, and receiving rewards. Through continuous optimization, the
agent achieves optimal portfolio decisions.

Transaction costs can easily erode the returns of trading strategies. They can generally be modeled
by the norm of portfolio transaction vectors [5, 25]. We use the one-norm transaction costs of the
portfolio transaction vectors. Using the DPO framework and mean-variance portfolio theory, we
demonstrate that portfolio optimization with one-norm transaction costs can reduce the impact of
estimation errors and achieve optimal portfolio strategies in real-world scenarios.

Consider transaction costs,

ct = δ

T∑
t=2

∥at − ãt∥1 (3.15)

rt = r(st, at) = at · yt − δ

T∑
t=2

∥at − ãt∥1 (3.16)

where ct is the transaction cost incurred by the portfolio during trading.
Consider the risk factors,

φ2(rt) =
T∑

t=1

ai,ta j,tσi, j (3.17)

φ2ln (rt) is the trade-off between risk and returns. The objective of the agent is to maximize the
accumulative portfolio value, which is equivalent to maximizing the sum of logarithmic values. Finally,
the reward function with time step t is obtained:

ln (rt) = r(st, at) (3.18)

The accumulative return R:
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R(s1, a1, . . . , sT , aT ) = JT =
1
T

T∑
t=1

ln (rt) − κφ2ln (rt) −
δ

T − 1

T∑
t=2

∥at − ãt∥1 (3.19)

s.t.
n∑

i=1

= 1 (3.20)

In the objective function 3.19, the first term is the returns of the portfolio during period T , the
second term is the risk measure of the portfolio returns, and the third term is the one-norm transaction
costs term. κ≥0, δ≥0 are the risk aversion parameter and transaction costs parameter.

Considering the µθ policy, our goal is to maximize the objective function parameterized by θ, which
can be written as

µθ∗ = arg max
µθ

JT (µθ) = arg max
µθ

 1
T

T∑
t=1

ln (rt) − κφ2ln (rt) −
δ

T − 1

T∑
t=2

∥at − ãt∥1

 (3.21)

∇θµθ(τ) =
1
T

T∑
t=1

∇θ ln µθ(at, st) (3.22)

θ ← θ + λ∇θµθ(τ) (3.23)

where λ is the learning rate. In Eq (3.21), the optimal policy µθ∗ is learned by the agent, where
µθ∗ conforms to the objective function. The agent optimizes the objective function 3.19, which is
constructed through the parameter θ. Due to the denominator T , the equation is properly normalized
for data of different lengths T , which also makes it possible to train mini-batch in a sampling period.
In order to achieve the expected returns of the portfolio, we adjust the portfolio weight to minimize
risk loss κφ2ln (rt) and cost loss δ

T−1

∑T
t=2 ∥at − ãt∥1 . In other words, when κ and δ are sufficiently small,

the returns of the strategy approach the theoretical optimal for the risk-cost reward.

3.5. DPO

1) Process of DPO. Financial markets consist of financial assets and their related information. It is
crucial to optimize portfolios by fully utilizing information such as historical asset prices and factors
influencing market changes in the financial market. Therefore, we propose DPO, which applies DL
modules and combines MPT with an RL framework to make optimal portfolio decisions. Figure 1
shows our framework.

We use deep neural networks to extract features from financial information, construct a policy
network, and optimize a portfolio using DPG to dynamically allocate assets based on market trends.
Considering the characteristics of data and the scope of research, we need to study a decision-making
process that takes into account the temporal and complexity of capital. Our DL modules include the
sequence feature module and correlation feature module. They extract and learn features of asset
information, respectively, and then integrate the temporal and correlation features of financial assets
into the framework of RL to achieve the optimal portfolio strategy. Additionally, we focus on
transaction costs and risk factors in the trading process, emphasizing the importance of traditional

Electronic Research Archive Volume 32, Issue 9, 5176–5200.



5187

financial theory. We propose a reward function based on MPT, aiming to enhance the stability of DPO
framework’s performance. A stable reward function prevents the agent from excessive trading,
manages risk, and makes optimal portfolio decisions.

Figure 1. Process of DPO, which applies DL modules and combines MPT with the RL
learning paradigm to make optimal portfolio decisions. Financial information includes the
assets price information from two real-world markets. DL modules extract and fuse the
temporal and asset correlation features of financial information. Reward function combines
MPT, considering transaction costs and risk factors during the trading process. The DPG
method is used to achieve the optimal portfolio decision-making. The optimization of
portfolio is the result of the combined effects of DL modules, the risk-cost reward function,
and the RL learning paradigm.

2) Architecture of DPO. In the preceding section, we introduced the DPO framework. In this
section, we will provide a detailed description of the architecture of DPO, as shown in Figure 2. DPO
combines MPT and utilizes the DL method and DPG learning paradigm to construct the policy
network.

To begin, the input is the price vector of financial assets. The price vector consists of the
normalized prices of stocks over time T . Next, the correlation feature module and the sequence
feature module are used to extract features from the price vector. In the correlation feature module,
considering the correlation between stock assets, we utilize CNN with a horizontal kernel to analyze
the correlation between each stock at the current time point and adjacent time points, extracting
information regarding asset correlation features. To provide more robust information for the current
price features, the portfolio weights wt−1 from the previous trading period are incorporated into the
correlation feature module, and a risk-free asset is introduced into the module to extract asset
correlation features. In the sequence feature module, considering the temporal correlation of stock
prices, we use LSTM to analyze the sequential correlation of each stock’s continuous time series,
extracting information regarding time series features. Similarly, the portfolio weights wt−1 from the
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previous trading period are incorporated into the sequence feature module, and a risk-free asset bias is
introduced into the module to extract asset sequence features. In addition, to enhance the effectiveness
of information extraction by the DL modules, the element-wise addition approach is used to fuse
feature vectors from price time series and asset correlation. Finally, the features from the DL modules
are combined using the DPG method, ultimately outputting the optimal portfolio strategy through
softmax. By considering transaction costs and risk factors in portfolio decision-making, we can
effectively avoid biased trading induced by aggressive trades and profit fluctuations.

Figure 2. Architecture of DPO, where DL modules consist of the correlation feature module
and sequence feature module. ⊕ is an element-wise addition approach to fuse the feature
information from time series of price and assets correlation. Risk-cost reward function
combines with MPT.

4. Results

4.1. Datasets and setup

DPO is a generalizable framework that is not limited to any particular market. To test its
profitability and effectiveness, we empirically evaluated the applicability of the DPO framework on
two real datasets: the cryptocurrency market and the Chinese A-share market. Additionally, we
present the experimental setup.

4.1.1. Cryptocurrency

Cryptocurrencies have a considerable impact on emerging economies and the global economy. We
evaluated DPO on a real cryptocurrency dataset. We set Bitcoin as risk-free cash [1,9] and select the 11
cryptocurrencies with the highest monthly trading volume. The cryptocurrency dataset contains prices
for 12 different cryptocurrencies from 2015-07-01 to 2017-07-01. For each cryptocurrency, prices are
recorded every 30 minutes. The dataset is divided into two sets: a training set and a testing set. We
chronologically split 92% of the dataset as the training portion,with the remaining data used for testing.
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If there is missing data for any cryptocurrency, the data for each date was filled in using the backfill
method. The testing set is from 2017-05-03 12:00:00 to 2017-07-01 00:00:00. Except for cash assets,
all assets contain the opening prices, closing prices, highest prices, and lowest prices.

4.1.2. Chinese A-share

The scale and uniqueness of the Chinese stock market make it highly attractive for academic
research. We evaluated DPO on a real Chinese A-share dataset. We obtained the trading prices of all
A-share stocks listed on Shanghai and Shenzhen stock exchanges every 5 minutes from
EastMoney.com [https://www.eastmoney.com], and selected 9 stocks with high trading volume and
good liquidity from 2023-06-27 to 2024-03-07. The trading hours of the Chinese stock market are
from 9:30 am to 11:30 am and from 1:00 pm to 3:00 pm every Monday to Friday. No trading is
allowed on Saturdays, Sundays, and holidays announced by the Shanghai Stock Exchange and
Shenzhen Stock Exchange. We collect trading data every 5 minutes, resulting in 48 data points per
trading day. For each stock, we record the prices every 30 minutes. Similar to the way the
cryptocurrency dataset is processed, we chronologically split 95% of the dataset as the training
portion and the remaining data as the testing portion. The testing set is from 2024-02-21 14:05:00 to
2024-03-07 14:35:00. We set the Chinese government bond as the risk-free rate. Except for the
risk-free rate, all assets contain four prices.

In addition, due to the characteristics of the Chinese stock market, the temporal continuity of the
Chinese A-share dataset is lower than that of the cryptocurrency dataset. Therefore, when conducting
portfolio optimization experiments, we preprocess the Chinese A-share dataset by adopting an effective
time concatenation method to ensure that the database stores a continuous 5-minute dataset. The
advantage of this data processing method is that it ensures the temporal continuity of input data during
the training process, thereby avoiding the negative impact of invalid data on the performance of the
training model.

4.1.3. Setup

DPO was trained using a PC configured with i7-10700, Geforce GTX 1080Ti 11 GB, 32 GB RAM,
250 GB SSD, and 2 TB HDD. For both of datasets, the number of the total training steps is 8 × 104,
batch size is set to 128, and the learning rate is 2.8 × 10−4 with the optimization as Adam.

For the correlation feature module, we set up a convolution operation with only 3 convolution
kernels to get 3 feature maps, and the size of each kernel is 1 × 3. The stride is 1 × 1 and filled with
padding. Then, we utilize 10 convolutional kernels with a size of 1 × w for convolutional calculations
to acquire 10 feature maps, each with a size of 1 × n, where w represents the width of the feature
maps obtained from the previous convolutional operation, and n denotes the number of selected assets.
Finally, we concatenate the 10 feature maps obtained at time t with the portfolio weights from the
previous time t− 1, and convolve them using a 1× 1 kernel to ultimately obtain a portfolio feature map
containing historical information. For the sequence feature module, we set up a multilayer perception
network with 10 neurons. Then, we concatenate the weight information from time t − 1 and perform
the same 1 × w convolution operation as in the correlation feature module. The activation function of
both modules is ReLU, which is a nonlinear activation function capable of learning and representing
more complex functions. It is worth noting that, due to variations in data volume and constraints, we
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select the last 8% of the data from the cryptocurrency dataset for testing, and the last 5% of the data
from the Chinese A-share dataset for testing.

In addition, we adopt Python as a programming language and implement the proposed DPO using
the TensorFlow. Also, the Tflearn library is used to build, train, and evaluate DPO. We use Pandas
library to handle and manipulate financial datasets, and utilize the NumPy package for scientific
computing. SQLite3 provides a way to work with relational databases directly from Python. The time
library module is used for handling time-related tasks.

4.2. Evaluation

We choose three metrics to measure the performance of portfolio optimization strategies: APV,
SR, and MDD. APV is an intuitive measure of the cumulative change in asset value during the testing
period. SR is the excess return generated by a portfolio for each unit of total risk it bears, which
measures the relationship between returns and risk. MDD is the maximum loss and risk resistance that
a portfolio may face.

1) APV. Given any portfolio management strategy, the APV of assets is evaluated for profitability
considering transaction costs. In the final time range T , it can be expressed as

APV =
υT

υ0
(4.1)

APV is an accumulated value used to quantify the return of a strategy over a time period T .
Normalize the investment portfolio without sacrificing generality, so that the initial return is υ0 = 1
and υT is the portfolio value of time T . Therefore, the higher the value of APV, the better the
profitability of the portfolio. APV mainly considers portfolio returns and does not take into account
the volatility of these returns.

2) SR. The SR is the average return per unit of volatility or total risk over the risk-free rate. It
evaluates the ratio of average return to volatility (standard deviation). It balances the returns and risk
of a portfolio, which can be expressed as

S R =
E[Rp − R f ]√
var(Rp − R f )

(4.2)

where Rp is the portfolio return rate, R f is the risk-free return rate, and the denominator is the standard
deviation of the portfolio excess return rate. In the cryptocurrency market, we set R f = 2% as the
risk-free rate of return. In the Chinese A-share market, we use the Chinese government bond as the
risk-free rate. Therefore, the higher the value of SR, the lower the risk of the portfolio and the better
the profitability.

3) MDD. Although SR considers the volatility of portfolio values, it has no difference in market
upward and downward volatility. However, the downward movement of the market is usually more
important as it can effectively measure the stability of algorithms during market downturns. MDD
represents the maximum loss from peak to trough.

MDD = max
t:τ>t

υt − υτ
υt

(4.3)

where υt and υτ are the portfolio values of the portfolio at time t and time τ. Therefore, the lower the
MDD value, the higher the stability of returns.
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We compare several methods to verify the performance of our method. Best (Best) is holding
only one of the best stocks during the training period. Anti-Correlation (Anticor) uses the principle
of mean regression to continuously transfer wealth from high-performing stocks to anti-correlated
underperforming stocks [26]. Weighted moving average mean regression (WMAMR) is a method of
learning portfolio optimization using equal-weighted moving averages to explore price correlations in
past periods [27]. Robust medical revolution (RMR) strategy is based on improved regression estimator
to construct the optimal portfolios [28].

4.3. Experimental results

DPO is evaluated from the following three aspects: First, the profitability of the model on real
datasets is assessed. Second, the actual economic performance of the model, considering transaction
costs and risk factors, is evaluated. In addition, feature extraction and fusion are crucial in DPO.
To verify the effectiveness of module selection and integration within the DL modules, the ablation
experiment results of different feature extraction methods are compared.

4.3.1. Evaluation on profitability

We empirically test the performance of DPO on different datasets by comparing different models.
Figure 3 shows the APV on the cryptocurrency dataset. Specifically, the results in Figure 3 show that
the Best strategy has a high APV in the early stages, but with the change of trading time, the APV
value fluctuates significantly and no longer shows a growing trend. This shows that the Best strategy
has poor performance in profitability. When investors only hold one stock, it can lead to unstable
returns and high risk, so they need to adopt a portfolio strategy. The APV value of Anticor is stable
with an upward trend, but the overall level is relatively low, showing poor profitability. The APV
values of WMAMR and RMR strategies are higher in the early stage, but show a downward trend in
the later stage. This indicates that as the trading time and number of trades increase, when
considering transaction costs, the two methods may cause excessive costs to erode portfolio returns
due to excessive operations. The DPO method demonstrates good profitability and stability while
considering transaction costs constraints. While other methods demonstrate declining trends over
time, DPO shows the best performance. The results show the effectiveness and superiority of DPO in
portfolio optimization.

In addition, we further validate the profitability of different methods on the Chinese A-share dataset.
Figure 4 shows the APV on the Chinese A-share dataset. The results show that when the amount of
data in the current period is relatively small, the APV of the Best strategy is significantly higher than
that of other strategies. However, as the data volume increases and the trading time changes, the
APV of the Best strategy shows a downward trend, which means that the risk resistance ability of the
Best strategy is weak. This shows that adopting a portfolio strategy is more likely to achieve higher
investment returns. The APV of the Anticor strategy has a low overall return and not a very good
performance in portfolio optimization. In other words, we should dynamically adjust the proportion
of different assets according to the market environment, information characteristics, and other factors.
The APV of the WMAMR strategy shows a downward trend, and as the trading time and frequency
increase, the APV value decreases more. This indicates that when considering transaction costs during
the trading process, the profitability performance of the WMAMR strategy is poor. The APV value of
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the RMR strategy is lower than that of WMAMR, and it also shows a similar trend as the WMAMR
strategy in the later stage. At the same time, we have also verified that the WMAMR and RMR are
not suitable for the Chinese A-share market and do not have universality. Therefore, it is crucial for
portfolio strategies to consider the risk factors and transaction costs during the trading process. The
APV of DPO has been steadily increasing. Due to the impact of transaction costs, the APV values of
most strategies have decreased, while the profitability performance of DPO still performs well.

Figure 3. APV on cryptocurrency dataset. The changes in APV over time for different
portfolio optimization methods. Best is the baseline strategy. Anticor, WMAMR, and RMR
are state of the art strategies. DPO is our strategy.

Figure 4. APV on Chinese A-share dataset. The changes in APV over time for different
portfolio optimization methods. Best is the baseline strategy. Anticor, WMAMR, and RMR
are state of the art strategies. DPO is our strategy.
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We evaluate the profitability of DPO by comparing the APV of different models. From Figures 3
and 4, it can be seen that the portfolio returns of different models accumulate over time, with the DPO
model having the highest APV. The results show that the performance of the DPO method surpasses
that of other methods. DPO performs well on real-world datasets, demonstrating strong generalization
capabilities.

Additionally, it is worth noting that while the DPO strategy outperforms other portfolio strategies
on the Chinese A-share dataset, the returns on the Chinese A-share dataset are lower than those on the
cryptocurrency dataset. We compare the APV of different methods on the two datasets separately,
thoroughly validating the reasons for return differences caused by dataset discrepancies, as detailed
below: 1) The Chinese A-share dataset has a small amount of data and a short time span, resulting in
less wealth accumulation. Due to the trading time characteristics of the Chinese stock market, it is
very difficult to collect 5-minute data, and our data is also very valuable and rare. In order to obtain as
much data as possible, we collected data repeatedly and continuously over a long period of time, but
the amount of data collected is still far less than the amount of cryptocurrency data. Therefore, it is
difficult for us to conduct sufficient training, making it challenging to achieve higher returns during
testing. 2) Compared to short-term investment tasks, the DPO strategy is more suitable for making
portfolio decisions over the medium to long-term. DPO can process and learn market information
characteristics, and make the best portfolio decisions by constantly learning from the current
environment. When considering the transaction costs during the trading process, DPO will not take
excessive tradings and cause economic losses, and can effectively make the trade-off risk and benefits.
Therefore, learning more environmental information is more conducive to obtaining higher returns in
the medium to long-term investment. DPO is more profitable on the cryptocurrency dataset with
longer time spans. Due to the inherent differences in data volume and time span between the two
datasets, DPO results vary between them. Therefore, we comprehensively validate the profitability of
the DPO strategy in different financial environments, and the experimental results consistently
demonstrate the method’s excellent universality and representational performance.

4.3.2. Economic evaluation

We conducted experiments on two real datasets, the cryptocurrency market and the Chinese A-
share market. We not only need to focus on the predicted returns of portfolios, but also consider actual
frictions in the real market, such as transaction costs generated during trading and risk caused by price
fluctuations. It is difficult to infer the economic contribution of a model solely from APV. To evaluate
the economic performance of the models, we evaluate how the returns of each model are translated
into the SR of the portfolio formed based on these returns. We also evaluate the MDD of the portfolio.

In the cryptocurrency market, considering the actual trading situation, the general transaction cost
rate is 0.25% [25]. We consider the impact of transaction costs on the expected return of portfolios.
Table 1 shows the distribution of metrics for different methods on cryptocurrency datasets. The results
in Table 1 indicate that DPO achieves the maximum APV value within the range of transaction cost
rates, which further confirms that the DPO method still has significant profitability in the real market
considering transaction costs and risk.

Specifically, on the cryptocurrency dataset, Table 1 shows that among all the strategies adopted, the
SR and MDD values of the Best strategy showed the worst performance, which is consistent with the
analysis in the previous section that we found a large fluctuation in the Best return curve, indicating
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that when investors only hold one asset, they bear high risk and unstable returns. Therefore, portfolio
optimization is crucial. The SR value of Anticor is relatively high, indicating a strong resistance to risk
fluctuations caused by price fluctuations over time. With a lower MDD value, the optimized portfolio
is more stable than the Best strategy, but a lower APV value indicates a lower return The SR and MDD
values of the WMAMR and RMR strategies show poor performance, indicating that they are unable
to respond effectively to market downturns and have poor performance in adjusting for market and
downside risks. The DPO method has the highest SR value, the lowest MDD value and the highest
APV value. The results indicate that DPO can effectively control transaction costs, perform well in
balancing market risk and returns, and has good representational and economic performance.

In the Chinese A-share market, a reasonable estimate of the transaction cost of the Chinese stock
market during normal times is 25 basis points [3]. Table 2 shows the distribution of metrics for
different methods on Chinese A-share datasets. Table 2 also shows the excellent performance of DPO
considering risk factors and controlling transaction costs.

Table 1. Metrics of different methods on cryptocurrency dataset.
Strategies APV SR MDD
Best 3.2994 0.0292 0.6871
Anticor 4.1815 0.0431 0.3134
WMAMR 4.1981 0.0341 0.6656
RMR 2.1710 0.0235 0.7810
DPO 44.3851 0.0750 0.3332

Table 2. Metrics of different methods on Chinese A-share dataset.
Strategies APV SR MDD
Best 0.9973 –0.0031 0.0633
Anticor 0.9782 –0.1139 0.0332
WMAMR 0.9295 –0.2353 0.0759
RMR 0.8522 –0.4599 0.1457
DPO 1.0044 0.0311 0.0157

On the Chinese A-share dataset, Table 2 shows that the SR value of the Best strategy is higher than
that of other strategies, indicating that the return of the Best strategy has little fluctuation in the short-
term. However, compared to other strategies, Best has a higher MDD value, indicating that this strategy
has a relatively weak ability to control downside risk. The performance of the SR and MDD values for
the Anticor strategy is average, indicating relatively weak economic performance and unstable returns.
However, the SR values for the WMAMR and RMR strategies are both negative, indicating that these
two strategies have a weak ability to control risk. At the same time, the MDD of WMAMR and RMR
strategies are higher than those of other strategies, and their economic performance in the Chinese
market is inferior to that of other strategies. This is generally consistent with the trend of the return
curves shown in the previous section. Therefore, we should adopt different portfolio strategies based
on different market environment information to adapt to changes in different environments. The SR
value of the DPO strategy is higher than that of other portfolio strategies, indicating that in the face
of market fluctuations, the DPO strategy can effectively control risk and enable portfolio returns to
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accumulate stably and continuously. The MDD value of the DPO strategy is the smallest, indicating
that when facing a market downturn, it can be dynamically adjusted in a timely manner according to
the market environment, reflecting the strong economic performance of the DPO strategy.

From Tables 1 and 2, we can see that compared with other strategies, the SR value of the DPO
method is significantly higher than that of other strategies. Therefore, we believe that DPO can better
balance between returns and risk, and obtain higher returns while controlling transaction costs. Tables 1
and 2 also reports the MDD distribution of each algorithm, and the results show that DPO has a very
low MDD when making portfolio selection. The smaller the MDD of the portfolio, the lower the risk
of the portfolio, which means that constraining the volatility of returns helps to control downside risk.

Additionally, it is noteworthy that the MDD of different portfolio optimization strategies is lower
in the Chinese A-share dataset compared to the cryptocurrency dataset. We compared the MDD of
different strategies across the two datasets, fully validating the reasons for the variations in metrics
due to differences in the datasets, as detailed below: First, the real market environments of different
datasets are distinct, and their data characteristics differ. Therefore, when measuring with metrics,
results should be compared within the same dataset. Thus, we compare MDD within the same dataset
to identify portfolio optimization strategies that can more robustly make the trade-off between returns
and risk compared to others. Second, due to the characteristics of the Chinese market, the Chinese
A-share dataset has fewer data points, a shorter time span, and lower price volatility. Given the unique
trading hours of the Chinese stock market, collecting 5-minute data is particularly challenging, and
our data is extremely precious and rare. To gather as much data as possible, we conducted multiple
consecutive collections over a long period. However, the volume of collected data remains much
smaller than that of the cryptocurrency dataset, and the time span of the dataset is also significantly
shorter. Therefore, the short-term price data exhibits low volatility, and the limited data volume makes
it difficult to achieve sufficient training. Nonetheless, testing on different real-world datasets holds
significant importance. Due to the inherent differences in data volume and time span between the two
datasets, the DPO results differ across the two datasets. However, the results consistently demonstrate
the excellent effectiveness, applicability, and generalizability of DPO in real market environments.

4.3.3. Evaluation of ablation results

To evaluate the importance and usefulness of module selection and fusion in the DL modules, we
separately use CNN and LSTM methods to extract features from financial information and conduct
ablation experiments. By observing changes in model performance, we can determine that different
feature extraction modules are crucial for the effectiveness of portfolio decision-making. This approach
helps in understanding the internal workings of the model. The experimental results fully validate the
effectiveness and applicability of different feature extraction modules for portfolio optimization. In
addition, MPT has limitations that may prevent it from fully capturing the complexity and realities of
real financial markets. However, MPT provides a foundational framework for portfolio optimization.
DPO combines the essence of MPT with the advantages of DL methods. Our ablation experiments
validate the effectiveness of combining MPT with different DL methods and RL learning paradigm for
portfolio optimization, while also leveraging the advantages of RL learning paradigm within the MPT
framework.

We compare DPO with extraction methods that use only one module. The only difference between
these variants is the method of feature extraction. DPO-L uses only the sequence feature module,
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employing LSTM to extract the temporal features of financial information. DPO-C uses only the
correlation feature module, employing CNN to extract the correlation features of financial assets.
DPO uses both the sequence feature module and the correlation feature module, simultaneously
considering the temporal correlation of market information and the correlation of assets, combining
these information features into the RL framework to make optimal portfolio decisions.

Figure 5. APV of ablation experiments on cryptocurrency dataset. The changes in APV
over time for different ablation experiment methods. DPO-C uses only the correlation feature
module. DPO-L uses only the sequence feature module. DPO uses both the sequence feature
module and the correlation feature module.

We validated through ablation experiments that module selection and fusion in the DL module
enable the formulation of more effective portfolio strategies and result in better profitability. Figure 5
shows the returns from the ablation experiments in the cryptocurrency dataset. It illustrates the APV
for different feature extraction methods on the cryptocurrency dataset. As shown in Figure 5, the APV
of DPO is the highest. The results show that extracting and integrating features from both the
sequence feature module and the correlation feature module significantly enhance the profitability of
DPO in the cryptocurrency market. Similarly, Figure 6 shows the returns from the ablation
experiments in the Chinese A-share dataset. It illustrates the APV for different feature extraction
methods on the Chinese A-share dataset. As shown in Figure 6, the APV of DPO consistently exceeds
that of DPO-L and DPO-C, indicating the best profitability and stability. The results demonstrate that
simultaneously considering the temporal and correlation features of financial assets in portfolio
optimization significantly improves profitability, highlighting the importance of module selection and
fusion.

First, we evaluate the profitability of DPO with different feature extraction modules. Upon
observing the results in Figures 5 and 6, we find that the APV of DPO-L is higher than that of
DPO-C. This shows that financial price sequence features extracted based on LSTM are more
effective in improving the profitability of portfolio compared to the financial asset correlation features
extracted by CNN. Furthermore, when we combine both the sequence feature module and the
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correlation feature module into the DPO framework, the APV is the highest in both the
cryptocurrency market and the Chinese A-share market. This result demonstrates that appropriate
selection and fusion of DL modules in portfolio optimization can significantly enhance the
performance of portfolio decisions.

Figure 6. APV of ablation experiments on Chinese A-share dataset. The changes in APV
over time for different ablation experiment methods. DPO-C uses only the correlation feature
module. DPO-L uses only the sequence feature module. DPO uses both the sequence feature
module and the correlation feature module.

Second, we evaluate the economic performance of DPO with different feature extraction modules.
Table 3 presents the metrics for the ablation experiments on the cryptocurrency dataset, while Table 4
presents the metrics for the ablation experiments on the Chinese A-share dataset. The results in Tables 3
and 4 show that on real-world datasets, the APV values of DPO, DPO-L, and DPO-C are higher
than those of other strategies. This shows the necessity of employing feature extraction and fusion
module methods. In financial markets, focusing on the temporal features of asset information and asset
correlation is beneficial for improving portfolio return predictions.

Table 3. Metrics for ablation experiments on cryptocurrency dataset.
Strategies APV SR MDD
DPO-C 16.9725 0.0722 0.1901
DPO-L 20.4285 0.0643 0.2633
DPO 44.3851 0.0750 0.3332

In addition, Table 3 displays the SR and MDD of different feature extraction modules on the
cryptocurrency dataset. The highest SR is observed for DPO, indicating that DPO effectively balances
between returns and risk by extracting and processing features from price time series and asset
correlation. DPO achieves maximum portfolio returns while minimizing risk. Table 4 presents the SR
and MDD of different feature extraction methods on the Chinese A-share dataset. This demonstrates
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that the DPO strategy can extract features from different market price information, effectively control
risk caused by price fluctuations, and exhibit good generalization.

Table 4. Metrics for ablation experiments on Chinese A-share dataset.
Strategies APV SR MDD
DPO-C 1.0028 0.0302 0.0100
DPO-L 1.0038 0.0308 0.0137
DPO 1.0044 0.0311 0.0157

5. Conclusions

The proposed DPO, which combines MPT with DL methods and the RL learning paradigm,
effectively makes the trade-off between portfolio returns and risk across different financial markets.
Specifically, DPO extracts and fuses time series features and asset related features of financial market
information by applying DL modules. In addition, a novel risk-cost reward function is proposed by
considering the transaction costs and risk factors of portfolios. The results show that DPO can achieve
maximum predictive returns while controlling transaction costs and risk. Compared with other
baseline strategies, DPO achieves more competitive profitability and better economic performance. It
makes timely decisions based on the features and trends of financial market information, dynamically
reconfigures the portfolio, and achieves portfolio optimization. We not only elucidate more effective
and universal portfolio optimization methods based on RL and MPT but also highlight a new
direction of applying more advanced DL methods to quantitative financial research.

In future studies, we will focus on current limitations and further research. Despite the challenges
in collecting 5-minute data due to the unique trading hours of the Chinese stock market, our data is
extremely valuable and rare. To achieve better returns accumulation and economic performance, we
will accumulate and collect data over a longer period. In addition, further work will explore the
influence of multi-source information, such as price series information, financial market text
information, and assisted question-answering information for prompt-guided AI models (for example,
GPT, which is Generative Pre-trained Transformer and is a DL model developed by OpenAI for
natural language processing tasks), on portfolio decision-making to achieve more stable performance
of the algorithm. We will explore integrating different novel DL modules to extract information from
various types of sources and fuse multi-source information features. This is aimed at enhancing the
versatility and generalization of the model.
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