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Abstract: In fault detection, feedback control, and other fields, real-time differential estimation of
a given signal in a complex noise environment is an important but challenging task. In this paper, a
discrete-time fast nonlinear tracking differentiator (FNTD) based on hyperbolic tangent functions was
proposed. To start, the differential signal acquisition problem was equated to the time-optimal control
(TOC) law for constructing a double-integral system using a state feedback approach. Next, the FNTD
algorithm based on the hyperbolic tangent function was presented by utilizing the isochronic region
(IR) method in the discrete time domain. Then, the frequency-domain characteristics of the FNTD
were analyzed and the rule for tuning the parameters was provided by the frequency scan test method.
Finally, the simulation results demonstrated that the proposed FNTD had fast and accurate tracking
performance, as well as excellent filtering and differential extraction capability compared with other
differentiators.

Keywords: fast nonlinear tracking differentiator (FNTD); isochronic region (IR) method; control
synthesis function (CSF); frequency-domain characteristics; frequency scan test

1. Introduction

Real-time differentiation estimation of measured signals is critical and challenging in signal pro-
cessing, fault diagnosis, fault control, and many other fields [1–4]. In practice, engineers often use the
numerical difference method to directly approximate the differential of a measurement signal. When
the sampling period T is reduced, the approximation accuracy of the differential signal tends to in-
crease. However, differential operations inherently capture the rate of change of a signal, thus in the
presence of noise, minor fluctuations in the noise can be greatly magnified through these operations.
This magnification can lead to distortions in the differential results, potentially compromising the ac-

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2024238


5158

curacy and reliability of the overall system [5]. Specifically when it comes to proportional-integral-
derivative (PID) control, a method that has been extensively employed since the previous century,
engineers frequently resort to directly utilizing the numerical difference method to acquire differential
information. However, this approach is highly susceptible to signal noise, often leading to distortions
in the differential results [6]. In the absence of a superior differentiator, PID control frequently degen-
erates into PI control in numerous instances, resulting in a significant decline in the feedback control
effect. This underscores the need for fast and accurate differentiation techniques to ensure optimal
performance in PID control systems [7].

To deal with this, researchers have proposed many different approaches for differentiator design
such as the high-gain observer via differentiator [8, 9], the robust exact differentiation based sliding
mode [10, 11], the robust differentiator based extended Kalman filter [12], adaptive tracking differen-
tiator [13,14], and so on [15–17]. Among them, the linear high-gain differentiator, designed by Kahlil,
provides derivatives of signals from 1 to n-1, but each derivative may contain disturbances, leading
to poor anti-interference ability [18]. Linear tracking differentiator (TD) converges faster when the
system state is far from the equilibrium point, but slower as it approaches [19]. Levant introduced
a second-order sliding mode TD, which exhibits strong robustness and high precision. However, the
rapid switching of system variables with small amplitudes near the sliding mode surface can easily lead
to chattering [20]. Wang and Zhang developed a hybrid TD, integrating linear and nonlinear elements,
which exhibits rapid convergence and superior noise suppression, making it suitable for aircraft speed
detection [21, 22].

Furthermore, Han initially proposed a nonlinear TD that utilizes the method of time optimal control
(TOC), commonly referred to as f han-TD [1,23]. The TOC law of f han-TD is not strictly a bang-bang
control as it incorporates a linear region to facilitate a smoother transition to the extreme value [24].
Equipped with this unique characteristic, f han-TD not only efficiently tracks the output signal with
minimal delay but also effectively retrieves the differentiation from signals contaminated by noise and
discontinuities. In practical applications, f han-TD, along with an extended state observer and transient
profile generator, forms an automatic disturbance rejection controller (ADRC). This controller has been
successfully employed in various scenarios, including speed control of permanent-magnet synchronous
motors [25,26] and induction motor drives [9,27], vehicle suspension displacement detection [28], and
improved Tornambe controller for pneumatic muscle actuators [29].

In the TD algorithms, the control synthesis function (CSF) plays a crucial role in achieving fast
speed, low delay, and high accuracy. Han [1, 23] derived the general form of the control synthesis
function of f han-TD by the state feedback method. Xie et al. [30, 31] constructed a simple linear
function, referred to as f ast-TD, by examining the boundary characteristic points of the linear area,
where the control law takes non-extreme values. It should be noted that the f ast-TD algorithm avoids
the complex root operation. Zhang et al. [32] chose the appropriate control quantity based on the initial
point position, determined the corresponding boundary and characteristic curves, and further derived a
linearization criterion to introduce a TD featuring a straightforward structure.

An improved CSF can enable the differentiator to achieve better signal tracking and differential ex-
traction results. From the perspective of the CSF, this paper introduces a novel fast nonlinear tracking
differentiator (FNTD) with the hyperbolic tangent function. This TD employs a state feedback ap-
proach to determine the boundary curve of the linear region, the control characteristic curve, and the
control laws governing both the reachable area and the linear area.
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This paper is organized as follows: Section 2 introduces the background of the TOC problem,
providing a foundation for the subsequent discussions. In Section 3, the derivation of the FNTD al-
gorithm is presented, utilizing the isochronic region (IR) method. Section 4 offers a practical rule
for adjusting the parameters of FNTD based on frequency-sweep testing. In Section 5, a comparative
analysis is conducted to demonstrate the superiority of FNTD in terms of convergence speed, track-
ing performance, differentiation accuracy, and filtering capabilities when compared to other tracking
differentiators. Finally, Section 6 summarizes the key findings and contributions of this paper.

2. TOC problem description

In this section, we review some fundamental concepts related to the TOC problem. This is cru-
cial for understanding the theoretical foundation of the tracking differentiator algorithms that will be
discussed later in the paper.

The first-order high-pass filter, often employed as a classical differentiator in servo control systems,
has a transfer function that characterizes its response to input signals. The output of the differentiator
can be expressed as

y = w(s)v =
s

T s + 1
v =

1
T

(1 −
1

T s + 1
)v (2.1)

where T represents a relatively small time constant, v denotes the input to the differential system, y is
the system output, and w(s) represents the transfer function. Equation (2.1) can be rewritten as

y =
1
T

(v −
v

T s + 1
) (2.2)

Define v
T s+1 as the differential signal v′(t), then

y(t) =
1
T

(v(t) − v
′

(t)) (2.3)

According to the definition of derivative, we have

v
′

(t) ≈ v(t − T ) (2.4)

From (2.3) and (2.4), we have

y(t) ≈
1
T
∗ (v(t) − v(t − T )) ≈ v̇(t) (2.5)

and when the time constant T is smaller, the output signal y gets closer to the differential signal v
′

(t).
Assuming that the measured signal is only coupled with the random noise signal r(t), from (2.5) we

have
y(t) =

1
T

(v(t) + r(t) − (v
′

(t) + r
′

(t))) (2.6)

which satisfies the following equation:

dy
dt
= −

1
T

(y − (v(t) + r(t))) (2.7)
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The solution to the above differential equation is

y(t) = v̇(t) +
1
T

r(t) (2.8)

From (2.8), the noise in the signal is amplified by 1/T . In order to eliminate or reduce the noise
amplification effect, the above equation can be rewritten as

v(t) ≈
v (t − τ1) − v (t − τ2)

τ2 − τ1
, 0 < τ1 < τ2 (2.9)

The time constants of the two inertial links are denoted by τ1 and τ2. The transfer function corre-
sponding to the above equation is

y =
s

τ1τ2s2 + (τ1 + τ2) s + 1
v (2.10)

The equivalent state space realization of (2.10) is
x1 = x2

x2 = −
1
τ1τ2

(
x1 − ν(t)

)
−
τ1 + τ2

τ1τ2
x2

y3 = x2

(2.11)

where x1 and x2 are the state variables and y is the output variable. Equation (2.11) can be rewritten as
the following general form [1]: ẋ1 = x2

ẋ2 = f (x1 − v(t), x2)
(2.12)

When the above differential equation has a solution, it is guaranteed that x1 converges to v(t) and x2

converges to v̇(t), then (2.12) constitutes a differentiator. It was the desire to find a differentiator that
gave birth to the time-optimal control based tracking differentiator as presented in the following.

The double-integral system is defined asẋ1 = x2,

ẋ2 = u,
|u| ≤ r (2.13)

where u is the control signal and r is a constant constraint of the control input.
The task of finding a control law that steers any initial state [x1(0), x2(0)] of a system (2.13) to

the origin in the shortest possible time is known as the TOC problem. Solving this problem involves
determining the optimal control strategy that minimizes the time required for the system to reach its
destination.

The solution to this problem is [33–35]

u(t) = −rsign(s) (2.14)

where the switching function s is

s =


x1(t) + x2(t)|x2(t)|

2r x1(t) + x2(t)|x2(t)|
2r , 0

x2(t) x1(t) + x2(t)|x2(t)|
2r = 0, x(t) , 0

0 x1(t) + x2(t)|x2(t)|
2r = 0, x(t) = 0

(2.15)
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Substitute x1(t) with x1(t) − v(t) and x2(t) with x2(t) − v̇(t), respectively, in (2.15), which is easily
extended to a tracking problem as follows:

s =


x1(t) − v(t) + x2(t)|x2(t)|

2r x1(t) − v(t) + (x2(t)−v̇(t))|x2(t)−v̇(t)|
2r , 0

x2(t) x1(t) − v(t) + (x2(t)−v̇(t))|x2(t)−v̇(t)|
2r = 0, x(t) , 0

0 x1(t) − v(t) + (x2(t)−v̇(t))|x2(t)−v̇(t)|
2r = 0, x(t) = 0

(2.16)

where v(t) and v̇(t) are the desired state trajectory and its derivative. Note that the conditions x(t) =
0 and x1(t) + x2(t)|x2(t)|

2r = 0 are hard to achieve in the noisy environment.

Remark 2.1. From (2.8), the noise in the original signal could be amplified by 1/T. To reduce the noise
amplification effect, it is proposed here that a tracking differentiator can be designed which guarantees
that x1 converges to v(t) and x2 converges to v̇(t). The issue of extracting the differential information
of real signals is first transformed into designing a rapid TD problem, then it is reduced to solving the
problem of the TOC issue in the shortest time.

3. FNTD algorithm design

Given that the majority of control algorithms are nowadays implemented in the discrete-time do-
main, there is a desire to identify the TOC law for a discrete-time double-integrator plant, aiming to
construct a TD. This problem, referred to as the discrete-time optimal control (DTOC) problem, was
first proposed by Han [1]. However, directly discretizing the solution from continuous TOC can be
problematic due to high-frequency chattering in the control signals.

In this section, the construction of a FNTD based on the hyperbolic tangent function is proposed by
the IR method. The FNTD algorithm is a discrete time closed-form solution to the TOC problem.

For a discrete-time double-integral system

x(k + 1) = Ax(k) + Bu(k), |u(k)| ≤ r (3.1)

where A =
[
1 h
0 1

]
, B =

[
0
h

]
, and h is the sampling period, x(k) = [x1(k), x2(k)]T .

Definition 3.1. (DTOC Problem). For the system (3.1) and its initial state x(0), there exists at least one
control sequence u(k∗), |u(k)| ≤ r, k ≤ N, such that k∗ = min {k|x(k) = 0}, where N is a finite number.

Definition 3.2. (IR G(k)). For any x(0) ∈ G(k), ∃u(0), u(1), . . . , u(k) makes the solution of (3.1) satisfy
x(k) = 0.

Remark 3.1. The whole phase plane is divided into two regions G(k) and R2 −G(k).

Proof. For a DTOC problem, we need to find the control sequence u(0), u(1), . . . , u(k) that makes
x(k) = 0 for any x(0). The proof is divided into two parts:

(i) Determine G(k).
(ii) ∀x(0) ∈ G(k) and ∀x(0) < G(k); find the function of u(k) that satisfies x(k) = 0.
To begin, examine G(k). For (3.1), we have the iteration formula of x(k)

x(k) = Akx(0) + Ak−1Bu(0) + . . . + ABu(k − 2) + Bu(k − 1) (3.2)
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For x(k)=0, we can solve x(0)

x(0) = −A−1Bu(0) − A−2Bu(1) − . . .A−kBu(k − 1) (3.3)

With A−k =

[
1 −kh
0 1

]
, (3.3) can be rewritten as

x(0) =
k∑

i=1

[
ih2

−h

]
u(i − 1) (3.4)

So, the IR G(k) is

G(k) =
k∑

i=1

[
ih2

−h

]
u(i − 1), |u(i) ≤ r| (3.5)

Case 1: When x(0) ∈ G(1). From (3.5), we have

G(1) =
[
h2

−h

]
u(0) (3.6)

that is, G(1) is a line that satisfies x1(0) + hx2(0) = 0, |x2(0)| ≤ hr. As shown in Figure 1, G(1) is a line
connecting a1 and a−1.

When x(0) ∈ G(1), the time optimal control law is [24]

u(0) = −
x2(0)

h
, |x2(0)| ≤ hr, x1(0) + hx2(0) = 0 (3.7)

Case 2: When x(0) ∈ {x | (x < G(1)) ∩ (x1 + hx2 = 0)}
In this region, x(0) is still on the same line of G(1) but goes beyond points a1,a−1. The corresponding

control signal is [24] u(0) = −rsign(x2(0) − hr) until x(0) enters G(1). Here, using the hyperbolic
tangent function to transition to extreme value [36], we have

u(0) = −rtanh(α(x2(0) − hr)), |x2(0)| ≥ hr, α ∈ R+ (3.8)

where α is a constant; when α is larger, the hyperbolic tangent function is closer to the sign function;
and u approaches the extreme value faster. Additionally, from (3.8), when x(0) is closer to the boundary
curve, u will decrease.

Case 3: When x(0) ∈ G(2).
From (3.5), we have

G(2) =
[
h2

−h

]
u(0) +

[
2h2

−h

]
u(1) (3.9)

as shown in Figure1.
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Figure 1. Illustration of G(1) and G(2).

Let
y = x1 + hx2 (3.10)

Then, the boundaries of G2 are the following four straight lines:
a2b−2 : y = h2r

a−2b2 : y = −h2r

a−2b−2 : y + hx2 = h2r

a2b−2 : y + hx2 = −h2r

(3.11)

When x(0) ∈ G(2), the TOC law is [24]

u(0) = −
x2(0) + y/h

h
, |x2 +

y
h
| ≤ hr, |y| ≤ h2r (3.12)

Case 4: When x(0) ∈ {x | (x < G(2)) ∩ (|y| ≤ h2r)}
In this region, x(0) is not G(2), but it is still on the area surrounded by two parallel lines a2b−2,

a−2b2. Here, u uses the hyperbolic tangent function to transition to the extreme value, that is,

u = −rtanh(α(x2 +
y
h

)), |x2 +
y
h
| > hr, |y| ≤ h2r, α ∈ R+ (3.13)

Case 5: When x(0) ∈ {x | |y| ≥ h2r}
In this region, x0 is located outside the parallel line a2b−2, a−2b2.
From (3.5), the broken line ak, a−k, bk, b−k is defined as

ak =

 k∑
i=1

[ih2

−h

]
u(i − 1), u(i) = r

}
(3.14)
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a−k =

 k∑
i=1

[ih2

−h

]
u(i − 1), u(i) = −r

}
(3.15)

bk =

 k∑
i=1

[
ih2

−h

 u(i − 1), u(0) = r, u(i) = −r for i > 0

 (3.16)

b−k =

 k∑
i=1

[
ih2

−h

 u(i − 1), u(0) = −r, u(i) = r for i > 0

 (3.17)

Here, Γ+0 is defined as the boundary curve formed by connecting . . . , ak, ak−1, . . . , a2, b2, . . . , bk−1,
bk, . . . , and Γ−0 is defined as the boundary curve formed by connecting . . . , b−k, b−(k−1), . . . , b−2, a−2,
. . . , a−(k−1), a−k, . . . . Zhang [28] rewrote the function of Γ+0 and Γ−0 together as Γ0 as follows:

Γ0(x1, x2, r, h) = x2 +
1
2

(
√

h2r2 + 8r|y| − hr)sign(y), |y| ≥ h2r (3.18)

where Γ0 = −hr is the curve Γ−0 , and Γ0 = hr is the curve Γ+0 .
Using the hyperbolic tangent function to substitute the sign function, we have

Γ(x1, x2, r, h, α) = x2 +
1
2

(
√

h2r2 + 8r|y| − hr)tanh(αy), |y| ≥ h2r, α ∈ R+ (3.19)

The boundary curves Γ0 and Γ are shown in Figure 2.

-5 0 5
-3

0

3

Figure 2. Illustration of G(1), G(2), Γ0 and Γ.

Note that the region surrounded by the boundary curve Γ is misaligned with the G(2), but (3.19) is
valid on the region |y| ≥ h2r. So, the phase plane |y| ≥ h2r is divided into the following two parts:|Γ(x1, x2, r, h)| ≤ hr, x = [x1, x2]T is in the region surrounded by Γ

|Γ(x1, x2, r, h)| ≥ hr, x = [x1, x2]T is outside the region surrounded by Γ
(3.20)

Electronic Research Archive Volume 32, Issue 9, 5157–5175.



5165

According to [24], when x(0) ∈ {x | |y| ≥ h2r}, the control signal is

u =

−rsign(Γ), |Γ| > hr
−r Γhr , |Γ| ≤ hr

(3.21)

Combining (3.12), (3.13), and (3.21), we redefine Γ(x1, x2, r, h) as

Γ(x1, x2, r, h, α) =

x2 +

(√
h2r2+8r|y|−hr

)
2 tanh(αy), |y| > h2r

x2 + y/h, |y| ≤ h2r, α ∈ R+
(3.22)

2x

1x

2y h r= −

2y h r=





2G

Figure 3. Illustration of G(2) and Γ.

The characteristic curves G(2) and Γ of the FNTD algorithm are shown in Figure 3. The complete
FNTD algorithm based on the hyperbolic tangent function coded in a digital computer is as follows:

u = f ntd(x1, x2, r, h, α)
d = rh

d0 = hd

y = x1 + hx2

Γ0 =
√

d2 + 8r |y|

Γ =


x2 +

(Γ0 − d)
2

tanh(αy), |y| > d0

x2 +
y
h
, |y| ≤ d0

f ntd(x1, x2, r, h, α) = −


r tanh(αΓ), |Γ| > d

r
Γ

d
, |Γ| ≤ d

(3.23)
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Changing two adjustable parameters α in (3.23) into independent new variables α1, α2, we rewrite
the FNTD algorithm in a new form,



u = f ntd(x1, x2, r, h, α1, α2)
d = rh

d0 = hd

y = x1 + hx2

Γ0 =
√

d2 + 8r |y|

Γ =


x2 +

(Γ0 − d)
2

tanh(α1y), |y| > d0

x2 +
y
h
, |y| ≤ d0

f ntd(x1, x2, r, h, α1, α2) = −


r tanh(α2Γ), |Γ| > d

r
Γ

d
, |Γ| ≤ d

(3.24)

where x1 is the desired trajectory, x2 is its derivative, h is the filtering factor, and r is the speed factor [1,
23].

Remark 3.2. The tunable parameter α1 primarily influences the shape of the boundary curve, while
α1, α2 jointly modify the control law, thereby altering the tracking speed of the signal.

4. Frequency-domain characteristics analysis

Given a reference signal sequence v(k), k = 0, 1, 2, . . . , the FNTD algorithm based on (3.24) can be
constructed as 

u(k) = f ntd(x1(k) − v(k), x2(k), r, h, α1, α2)
x1(k + 1) = x1(k) + T x2(k)
x2(k + 1) = x2(k) + Tu(k), |u(k)| ≤ r, k = 0, 1, 2, ...

(4.1)

The objective of this section is to show how damping factors α1, α2 affect the outputs of TD in the
frequency domain. For different α1 and α2, we use the method of the frequency-sweep test to get the
Bode diagram and analyze frequency domain characteristics of FNTD.

Here, to test the frequency domain characteristics of FNTD under ideal conditions, the sinusoidal
signal input does not contain any random noise. T = 0.001, h = 0.001, r = 100, and five groups of
α1, α2 are set as follows: [α1, α2] = [1, 1], [2, 1], [100, 1], [1, 10], [1, 100]. The input signal is v(t) =
sin(2π f t), where f ranges from 0.1Hz to 10Hz with a time step of 0.01 Hz. For each frequency point,
we run 20,000 samples and record the data in the sampling interval [10001, 15000]. The simulation
test results of the amplitude-frequency and phase-frequency curves of the proposed TD are shown in
Figures 4 and 5.
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Figure 4. Frequency-domain characteristics of output x1. (a) Amplitude-frequency charac-
teristics; (b) Phase-frequency characteristics.
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Figure 5. Frequency-domain characteristics of output x2. (a) Amplitude-frequency charac-
teristics; (b) Phase-frequency characteristics.
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From Figure 4, the amplitude-frequency characteristic of the tracking signal approximates an ideal
first-order low-pass filter. When α2 = 1 and α1 increases from 1 to 100, the cutoff frequency also
increases. The FNTD can track the higher frequency of the input signal, and the corresponding
amplitude-frequency characteristic moves right. However, after exceeding the cutoff frequency, the
phase of the input signal quickly decreases to -180°. When α1 = 1, altering α2 has little effect on the
amplitude-frequency characteristic curve.

In Figure 5, the phase-frequency characteristic of the differential signal approximates a band-pass
filter. Before the turning frequency, the phase almost remains 90° ahead. However, the phase quickly
decreases to -90° near the cutoff frequency. When α2 = 1 and α1 increases from 1 to 100, the filtering
ability of differential signals against high-frequency noise is enhanced.

Remark 4.1. From Figures 4 and 5, a bigger α1 enables the improvement of the quality of amplitude-
frequency characteristics, and we can see that the boundary curve has a great impact on the speed of
the signal tracking combined (3.24). Considering the properties of tanh(αy), as α increases, tanh(αy)
approaches 1 from 0 more quickly.

We suggest increasing the parameters α1 and α2 as much as possible to achieve a better control law
as shown below: α1 ≥ 100

α2 ≥ 100
(4.2)

This approach will yield improved simulation results when utilizing the proposed algorithm.

5. Simulation analysis

To verify the effectiveness of the proposed FNTD, in this section, we present simulations comparing
FNTD (denoted as T D0) with the following three differentiators in terms of convergence and filtering
characteristics.

T D1: The classical differentiator [37]ẋ1 = x2

ẋ2 =
1
τ1τ2

(
−(x1 − v(t)) − τ1+τ2

τ1τ2
x2

)
where τ1 and τ2 are tuning parameters.

T D2: The nonlinear differentiator [12]


ẋ1 = x2

ẋ2 = R2
(
− a0(x1 − v(t)) − a1(x1 − v(t))

m
n − b0

x2

R
− b1

( x2

R

)m
n
)

where the parameters R, a0, a1, b0, b1 > 0,m, n > 0 are tunable odd numbers.
T D3: Robust exact differentiator using the sliding-mode technique [20]

ẋ1 = x2 − α|x1 − v|0.5 sign(x1 − v)
ẋ2 = −β sign(x1 − v)
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where α and β are tunable parameters.
We use the Euler method to discretize the state space. In all simulations, we choose the initial state

[x1(0), x2(0)] = [−1, 1] and the sampling period T = 0.01. All parameters are determined by the trial
and error method, which are presented in Table 1.

Table 1. Parameters of four kinds of TDs.

TD parameters
T D0 h = 0.26, r = 1, α1 = 100, α2 = 100
T D1 τ1 = 0.81, τ2 = 1.5
T D2 R = 25, a0 = 0.089, a1 = 0.00001, b0 = 1.93, b1 = 0.00015,m = 8.1, n = 9
T D3 α = 3.7997, β = 0.315

0 2 4 6 8 10
-1

-0.5

0

0 2 4 6 8 10
0

0.5

1

Figure 6. Comparison of the convergence of four TD algorithms. (a) signal-tracking x1; (b)
differentiation acquisition x2.

Table 2. Comparison of convergence of x1 for four TDs.

TD adjusting time overshoot steady state error
T D0 2 s 0 0
T D1 2.4 s 3.4% 0
T D2 4 s 0 0.1%
T D3 3.2 s 6.8% 0

The state trajectories of four differentiators are shown in Figure 6. Additionally, we calculate the
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convergence performance indicators of the four differentiators, as shown in Tables 2 and 3. Compared
with other differentiators, the system with FNTD has the shortest adjusting time and smallest overshoot,
which optimally drives the initial condition to the origin.

Table 3. Comparison of convergence of x2 for four TDs.

TD adjusting time overshoot
T D0 2.5 s 0
T D1 3.5 s 1.2%
T D2 4 s 11.5%
T D3 3.8 s 9.5%
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Figure 7. Comparisons of differentiation acquisition when SNR = 100 dB. (a) the transient
process. (b) the steady process.

Table 4. Parameters of three kinds of TDs.

TD parameters
T D0 h = 0.01, r = 230, α1 = 100, α2 = 100
T D1 1/(τ1 ∗ τ2) = 1000, (τ1 + τ2)/(τ1 ∗ τ2) = 0.03
T D3 α = 3, β = 3

In practical engineering, T D1 and T D3 are commonly used, which are compared with T D0(FNTD)
to verify the filtering performance of the proposed TD algorithm. We choose the input signal v(t)=
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awgn(sin(t), SNR), where the function awgn (additive white Gaussian noise) in Matlab adds white
Gaussian noise to the signal. Suppose the initial state is [x1(0), x2(0)] = [0, 0] and the sampling period
is T = 0.01. All parameters of three kinds of TDs are shown in Table 4. To ensure that the differential
signal has sufficient noise suppression performance, the simulation results with different signal-to-noise
ratio (SNR) of Gaussian noise are shown in Figures 7 and 8.
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Figure 8. Comparisons of differentiation acquisition when SNR = 100t dB. (a) the transient
process. (b) the steady process.

When SNR = 100 dB, the transient and steady processes are shown in Figure 7. From Figure 7,
it can be seen that all algorithms have a certain level of noise suppression ability, but compared to
T D0 and T D1, T D3 exhibits a more violent oscillation response. In Figure 7(a), FNTD exhibits the
fastest response speed and the smallest overshoot among the three TD algorithms. T D1 has superior
speed, but with the greatest overshoot. On the other hand, while T D3 displays smaller overshoot, its
response speed is the slowest, as shown in Table 5. During the steady process in Figure 7(b), T D0 has
the shortest tracking phase delay compared with T D1 and D3.

Table 5. Comparison of dynamic performance of differential signals for three TD algorithms
during transient processes when SNR = 100 dB.

TD adjusting time overshoot
T D0 0.02 s 0
T D1 0.25 s 33%
T D3 0.42 s 10%
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From Figure 8(a), when SNR = 100t dB, during the transient process phase, T D3 has the smallest
overshoot and chattering; T D0 is the next, and T D1 has the largest. In Figure 8(b), T D0 is most accurate
in tracking and differentiation compared with T D1 and T D3 in steady process.

Remark 5.1. In Figure 8, a performance comparison simulation experiment of the three differentiators
has been conducted by gradually increasing the SNR. (1) Under low SNR conditions. When SNR ≤ 35
dB, as shown in Figure 8(a), T D0 and T D1 exhibit overshoot and long transient time, using the same
parameters as those for SNR = 100 dB during the transient process. (2) Under high SNR conditions.
From Figure 8(b), it is evident that the three TD algorithms all demonstrate parameter adaptability
in high SNR noise, as seen in Figure 7(b), but among three TD algorithms, T D0 is the smoothest and
most accurate in capturing differential signals, making it more suitable for capturing actual differential
signals in higher SNR noise environments.

In summary, through the performance comparison in various scenarios such as the transition pro-
cess and steady-state process under different noise conditions, the FNTD has achieved superior noise
filtering and differential extraction effects compared to other differentiators.

6. Conclusions

To quickly extract accurate differential signals from contaminated signals, a FNTD algorithm based
on the hyperbolic tangent function is proposed in this paper. To begin, the differential extraction
problem is transformed into a double integral system based on TOC law. Next, using the equal time
zone (IR) method in the discrete time domain, a FNTD algorithm based on the hyperbolic tangent
function is proposed. Then, the frequency domain characteristics of FNTD are analyzed, and the
adjustment rules of parameters are given by the frequency scanning test method. Finally, the simulation
results show that the proposed FNTD has fast and accurate tracking performance, and has excellent
filtering and differential extraction abilities compared with other differentiators.

Future work includes the phase delay compensation algorithm and DTOC-based TD design suitable
for engineering applications.
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