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Abstract: The rapid development of urban informatization has led to a deep integration of advanced 
information technology into urban life. Many decision-makers are starting to alleviate the adverse 
effects of this informatization process through risk assessment. However, existing methods cannot 
effectively analyze internal and hierarchical relationships because of the excessive number of 
indicators. Thus, it is necessary to construct an indicator’s dependency graph and conduct a 
comprehensive hierarchical analysis to solve this problem. In this study, we proposed a graph-based 
two-level indicator system construction method. First, a random forest was used to extract the 
indicators’ dependency graph from missing data. Then, spectral clustering was used to separate the 
graph and form a functional subgraph. Finally, PageRank was used to calculate the prioritization for 
each subgraph’s indicator, and the two-level indicator system was established. To verify the 
performance, we took China’s 25 smart cities as examples. For the simulation of risk level prediction, 
we compared our method with some machine learning algorithms, such as ridge regression, Lasso 
regression, support vector regression, decision trees, and multi-layer perceptron. Results showed that 
the two-level indicator system is superior to the general indicator system for risk assessment. 

Keywords: smart city; information security; risk assessment; two-level indicator system construction; 
machine learning 
 

1. Introduction  

The application of advanced information technologies such as the Internet of Things, cloud 
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computing, and big data have profoundly affected the development pattern of cities. While people 
enjoy the convenience they bring, they also face increasingly hazardous information security problems, 
such as virus flooding, hacker attacks, and network fraud. Driven by economic, political, military, and 
other interests or even due to non-malicious events such as technical flaunts and pranks, attacks such 
as information theft, tampering, and destruction occasionally occur. Attack methods vary, and 
information attacks have evolved from traditional external attacks to internal ones, forming a trend of 
combined internal and external threats [1]. 

For a long time, information security has been of great interest, being studied in many fields such 
as politics, business, and academia; more and more researchers have focused on the risk assessment 
and management of information security [2–4]. In the process of urban development, information 
security problems also exist and gradually increase with the development of urban information. The 
construction of a smart city is a complex system project, and factors (risk indicators) such as 
technology development and application of smart devices, communication between devices, software 
platform security, data storage and encryption, and people’s information security education are all 
issues that need to be considered. Many cities blindly carry out the construction of smart cities without 
evaluating their real needs and without overall planning; this results in the construction of smart cities 
that seem to be prosperous, but, in fact, have a chaotic internal management. Thus, there is an urgent 
need to construct indicator systems that can clearly distinguish the functions of each information 
security risk indicator. However, due to the excessive number of indicators involved, these functions 
are messy and indistinguishable, and the construction of an indicator system consistently encounters 
difficulties. Therefore, this paper evaluates a method for constructing a two-level indicator system of 
information security risk assessment based on graphs and tries to explore related issues to provide a 
basis for information security decisions. 

Risk assessment is the foundation of information security management, providing theoretical 
support for the protection of critical information assets and the avoidance of security risks. Information 
security risk assessment requires actively identifying information security risks, studying the basic 
elements (indicators) of such information security risks, quantifying them, and balancing decision-
making behaviors between the assets to be protected and the costs. The so-called information security 
risk refers to information danger and loss and its impact on the organization, caused by a security 
incident due to a system vulnerability, either man-made or due to natural threats. 

Information security risks are characterized by randomness, fuzziness, and uncertainty, which 
makes it difficult to establish mathematical models to analyze them. In 1998, Finne [5] proposed a 
conceptual model that clearly pointed out that information security risks are a function of information 
assets, threats, and vulnerabilities, being defined by the possibility of and potential for loss of 
information assets caused by threats or vulnerabilities. Information security risk assessment is a 
comprehensive assessment of threats, vulnerabilities, and information assets. Most information 
security risk assessments since then have followed this line of thinking. 

From the literature analysis, information security risk assessment methods can be summarized 
into the following categories:  

1) Fault tree–based hazard analysis. Herzog and Shahmehri [6] used fault tree analysis (FTA) 
to investigate the harmful events of information security risks. They used the monitor and control 
system (MCS) combination and transmission path of all minimum cut sets of the fault tree to identify 
events and their consequences and find out the sets of factors leading to information risks, using the 
structure function in the form of minimum cut set to describe the fault tree. Zhu et al. [7] proposed a 
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new risk assessment model based on the belief rule base (BRB) system and FTA, which establishes 
FTA rules based on the BRB and expands the knowledge base through the FTA algorithm. In 
addition, the model is optimized to reduce the uncertainty in the model. However, the calculation 
of the fault tree is complicated and is not suitable for information security risk assessment with 
many security events. 

2) Fuzzy comprehensive evaluation method [8,9]. In this field, fuzzy theory and analytic 
hierarchy processes have gained some interest. Most literature focuses on the analytic hierarchy 
process, fuzzy comprehensive evaluation method, and their combination. The main idea is to organize 
the information system and risk impact hierarchically, establish corresponding evaluation indicators, 
determine the weight of each indicator through an analytic hierarchy process, and adopt a multi-
attribute decision-making method to comprehensively evaluate the risk of the information system.  

3) Knowledge-based information security risk assessment [10,11]. This mainly relies on the 
experience gained from security experts to solve the risk assessment problem of similar scenarios. The 
advantage of this approach is that it can directly provide recommended protection measures, structural 
frameworks, and implementation plans.  

4) Model-based information security risk assessment. The model-based method can model all risk 
factors in the internal mechanism of the information system and all abnormal or harmful behaviors 
between the system and the external environment to complete the qualitative and quantitative analysis 
of the system’s vulnerability and security threats [12–16]. A typical approach is CORAS [17], which 
provides a way to use case diagrams in UML and their extensions (improper use case diagrams) for 
risk analysis. In this approach, malicious or misused behaviors that could compromise the benefits and 
security of the system or other actors are modeled using improper use case diagrams. Similarly, 
Alfakeeh et al. [18] used the hesitant fuzzy-based AHP-TOPSIS technique to estimate the risks of 
various web applications for improving security durability. This approach would help to design and 
incorporate security features in web applications that would then be able to battle threats on their own. 

In addition, many neural network algorithms are also used in this field due to their powerful nonlinear 
processing and learning abilities [19]. In 2021, Song and Xu [20] proposed a PSO-BPNN (particle swarm 
optimization-BPNN) model for information security risk assessment. In this method, PSO was used to 
find the best initial value before network iteration to address the slow convergence and accuracy 
problems of BPNN. In summary, although the aforementioned methods have achieved excellent 
results, the widespread use of neural networks still poses a huge challenge because of the black 
box problem (i.e., unclear intermediate process). 

According to the above literature, a certain research progress has been made. However, it should 
be noted that due to the comprehensive effect of technology, governance, manpower, and external 
economic, social, ecological, and other factors, the construction of smart cities still faces a large 
number of complex problems. Among the existing research results, most studies only consider the 
perspective of information technology, and few analyze multiple perspectives. In addition, the 
determination of information security risks rarely considers the ambiguity of information risk 
indicators in the decision-making process and the uncertainty, both the extral uncertainty when experts 
make decisions and the internal uncertainty when experts make decisions on the same target at different 
times. While several existing approaches aim to resolve such ambiguity and uncertainty, more and 
more indicators are added to information security risks as the reality becomes more complex, which 
greatly deepens the impact of ambiguity and uncertainty. 

This paper believes that one of the external reasons for the low accuracy of smart city information 
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security risk assessments is that most methods can only treat each risk indicator equally and cannot 
analyze the internal relationship between them. Although a number of approaches have recently 
emerged to utilize the two-level indicator body system, they all require extensive industry experience. 
In addition, obtaining relevant data is difficult. Therefore, we propose a method to construct a two-
level indicator system of information security risk assessment based on graphs. First, the dependent 
network among indicators is constructed using the random forest algorithm to overcome the indicator 
uncertainty brought by data. Then, based on spectral clustering and the PageRank algorithm, the 
network is separated and the important relationships among the subgraphs are investigated. Finally, an 
adaptive multi-layer indicator system is constructed, which provides a way to clearly divide indicator 
relations and overcome fuzziness and uncertainty. 

2. Methods 

Information security risk assessment is the process of assessing the security attributes (e.g., 
confidentiality, integrity, and availability) of information systems and the information they process, 
transmit, and store. The construction of an information security risk assessment indicator system aims 
to predict possible risks and put forward corresponding solutions. However, the number of indicators 
multiplies with the expansion of the urban information security risk system, and the dependence 
relationship among those indicators becomes complicated. How to identify the core evaluation 
indicator from the complex system is the key task. In this paper, a graph-based two-level risk 
assessment indicator system construction method is proposed (Figure 1). In this method, the risk 
indicator is taken as the node, and the relationship between the indicators is taken as the edge to build 
a graph (network) of indicator relationships. Specifically, the method first uses a random forest to 
extract the interactive network of indicators from the dataset; then, the subgraph for the construction 
of the two-level indicator system is obtained. Next, the PageRank algorithm is used to search the core 
indicators’ prioritization and analyze the two-level indicator system. Finally, taking China’s 25 smart 
cities as examples, the general indicator system and the two-level indicator system are input into 
machine learning algorithms such as ridge regression (Ridge), Lasso regression (Lasso), support vector 
regression (SVR), decision trees, and multi-layer perceptron (MLP) for a simulation application, and 
results are obtained. 

2.1. Random forest regression-based indicator dependency network construction 

In the construction of the indicator system of a smart city, the main difficulties are the lack of 
system explainability and the curse of dimensionality caused by a large number of indicators as well 
as the ambiguity and uncertainty brought by missing data. To eliminate the influence of these factors 
on the results as much as possible, the random forest regression algorithm is used to read the original 
data when obtaining key characteristic variables for subsequent processing. 

The random forest [21] is a kind of ensemble learning, which can perform data prediction by 
integrating multiple decision trees. The most important advantages of the random forest applied to indicator 
system construction are as follows: First, it is a bootstrap sampling method, which makes it more robust 
against missing and unbalanced data. Second, it randomly selects features to divide data space, making it 
insensitive to multivariate collinearity. From a mathematical point of view, if the risk level of a city is 
regarded as a linear combination of all risk indicators, then the multivariate collinearity problem is reflected 
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as a fuzzy problem among indicators; that is, since each variable cannot be accurately distinguished, one 
indicator is linearly represented by another indicator. Third, it can calculate the importance of variables 
(usually via the Gini coefficient and minimum variance), which makes it a good method for clarifying the 
role of all indicators in the data. These three points make up for the most common errors in the construction 
of a smart city indicator system. Therefore, it has unique advantages for extracting indicator dependency 
networks from origin data. The basic steps of random forest regression are as follows: 

1) Bootstrap sampling: Let 𝐷 ൌ ሼ𝑋;𝑌ሽ be the origin dataset, which includes n samples X and n 
real values Y. Then, m (m < n) samples and their real values are randomly extracted from 𝐷, and the 
sub-dataset 𝐷௦௨௕ ൌ ሼ𝑋 ൌ ሺ𝑥ଵ, 𝑥ଶ,⋯ , 𝑥௠ሻ,𝑌 ൌ ሺ𝑦ଵ,𝑦ଶ,⋯ ,𝑦௠ሻሽ  is constructed (repeat K times to 
obtain K sub-datasets). 

 

Figure 1. The flowchart of the information security risk assessment. Step 1. Construction 
of an indicator dependency network. There are 16 random forests in total, and each random 
forest constructs a dependency relationship between an indicator and other indicators. Step 2. 
Network segmentation. The network is divided into K subgraphs by spectral clustering. 
Step 3. Second-level indicator search. PageRank is run on K subgraphs to find the core 
indicator and take it as the second-level indicator. Finally, the two-level indicator system 
is constructed. 

2) Training decision tree: Training K decision trees based on K sub-datasets; the minimum 
variance is used to determine the optimal segmentation variable 𝑓௢௣௧ and the optimal segmentation 
point 𝑒௢௣௧ , and the optimal segmentation variable is used as the optimal feature to construct the 
decision tree. The calculation method of minimum variance is as follows: 

 min
௙೚೛೟,௘೚೛೟

ሾmin
௖భ

∑ ሺ𝑦௜ െ 𝑐ଵሻଶ௬೔∈௙ሺோభሻ ൅ min
௖భ

∑ ሺ𝑦௜ െ 𝑐ଶሻଶ௬೔∈௙ሺோమሻ ሿ  (1) 

 𝑅ଵ ൌ ሼ𝑥|𝑥ሺ௙೚೛೟ሻ ൑ 𝑒௢௣௧ሽ, 𝑅ଶ ൌ ሼ𝑥|𝑥൫௙೚೛೟൯ ൐ 𝑒௢௣௧ሽ  (2) 

 𝑐௠ ൌ ଵ

|ோ೘|
∑ 𝑦௜௬೔∈௙ሺோ೘ሻ ,𝑚 ൌ 1,2  (3) 
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where 𝑓ሺ∙ሻ indicates that data are mapped to the corresponding 𝑦 value in the dataset. 𝑅ଵ and 𝑅ଶ 
are the result of data segmentation when the current partition variable and partition point are used as 
the optimal value. The implied operation in formula (2) is that every time the variable 𝑓௢௣௧ is used as 
the segmentation variable, the value of the data on this feature needs to be sorted in ascending order 
before 𝑒௢௣௧ is selected. 

3) Average vote: K decision trees are combined to form a random forest, and the mean prediction 
results of K decision trees are returned as the prediction results of the random forest. 

The index system is too complicated, and the relationship between indicators is ambiguous. 
Constructing an indicator dependency graph can help us deal with and evaluate the indicator system 
visually and conveniently support decision-making. The idea adopted in this paper is to build the 
indicator dependency graph based on the indicator importance obtained by the random forest. The 
details are as follows: 

1) Each indicator in the original data is taken as a linear combination of other indicators and, in 
turn, is fit by the random forest. 

2) According to the characteristics of the random forest, the importance of other indicators to the 
target indicator is obtained. 

3) The importance of all indicators to other indicators is regarded as the relative weight between 
them, and the indicator dependency graph is constructed. 

2.2. Clinical trial registration 

Although the existing indicator relationship network can express the dependence of each indicator, 
it cannot reflect the importance degree or type of the indicator. So far, all indicators in the network are 
equal, collectively referred to as first-level indicators. In this section, we need to separate these 
indicators into different categories and levels and identify second-level indicators. Graph-based 
clustering algorithms can be used to separate graphs to achieve the effect of indicator classification. In 
this paper, a spectral clustering algorithm is used to cluster indicators to realize the automatic 
segmentation of indicator dependency networks [22]. 

Spectral clustering divides weighted, undirected graphs into two or more optimal subgraphs so 
that the internal subgraphs are as similar as possible and the distance between subgraphs is as far as 
possible. The use of spectral clustering to condense indicators has the following advantages: First, 
clustering based on dependency graphs can simultaneously consider the whole indicator system rather 
than the relationship between two indicators. Second, according to the idea of graph segmentation, the 
obtained indicators are grouped into many independent modules, which is convenient for decision-
makers to clearly understand the functions of indicators and the boundaries between indicators. The 
algorithm flow is as follows: 

1) Build an adjacency matrix 𝑊 ൌ ሾ𝑤௜௝ሿ௡ൈ௡ and degree matrix 𝐷 ൌ 𝑑𝑖𝑎𝑔ሺ𝑑ଵ,𝑑ଶ,⋯ ,𝑑௡ሻ from 

the indicator dependency network, where 𝑑௜ ൌ ∑ 𝑤௜௝
௡
௝ୀଵ ; 

2) Construct the standardized Laplacian matrix 𝐿෨ ൌ 𝐷ିଵ/ଶ𝐿𝐷ିଵ/ଶ, where 𝐿 ൌ 𝐷 െ𝑊; 
3) Obtain eigenvector matrix 𝐹 from 𝐿෨ and normalize it; 
4) Take each row in 𝐹 as the data of sample (indicators) and put it into the K-means algorithm; 
5) Obtain clusters 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎଵ, 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎଶ,⋯ , 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ௄. 
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2.3. PageRank-based two-level indicator system construction 

The cluster obtained through spectral clustering cannot determine the cluster center, consequently 
preventing us from determining the key indicator of the divided sub-indicator system. Depending on the 
PageRank algorithm and the indicator dependency graph, we can determine the most critical indicator in 
the indicator system. In this paper, we use the PageRank algorithm to obtain indicators’ prioritization for 
each subgraph obtained through spectral clustering as a substitute for secondary indicators. 

The PageRank algorithm is a representative algorithm of graph link analysis. It was originally 
used as a calculation method for the importance of internet pages and in page ranking of the Google 
search engine [23]. The basic principle is the first-order Markov chain, which describes the behavior 
of random visits to nodes along the digraph. Under certain conditions, the probability of visiting each 
node will converge to the stationary distribution. Then, the stationary probability value of each node 
is its PageRank value: the higher the PageRank value, the more important the webpage. The main steps 
of the PageRank algorithm are as follows: 

1) Build an adjacency matrix 𝑊 ൌ ሾ𝑤௜௝ሿ௡ൈ௡ based on weighted undirected graphs. 
2) Obtain the transition probability matrix by normalizing 𝑊 so that the transition matrix has 

the following properties: 

 ∑ 𝑤௜௝
௡
௝ୀଵ ൌ 1 , 𝑖 ൌ 1,2,⋯ ,𝑛  (4) 

 0 ൑ 𝑤௜௝ ൑ 1  (5) 

3) Randomly initialize a unit vector 𝑃ሺ଴ሻ ൌ ሾ𝑝௜௝ሿଵൈ௡; 

4) Iteratively simulate the Markov chain 

 𝑃ሺ௧ାଵሻ ൌ 𝑃ሺ௧ሻ𝑊  (6) 

Once 𝑡 → ∞ , 𝑃ሺ௧ାଵሻ  will converge to a stable distribution at which point 𝑃ሺ௧ାଵሻ  describes the 
PageRank value of each indicator. 

For each subgraph segmented in the previous step, we conducted PageRank on them to search for 
key indicators. Finally, based on the indicator prioritization and subgraph, the following formula is 
used to construct the two-level indicators (imaginary) and their data: 

 𝐼𝑛𝑑2𝑛𝑑ሺ𝑖ሻ ൌ ∑ ൫1 െ 𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘ሺ𝑖𝑛𝑑ሻ൯ ∗ 𝑋ሺ𝑖𝑛𝑑ሻ, 𝑖 ൌ 1,2,⋯ ,𝐾௜௡ௗ∈ௌ௨௕ீ௥௔௣□೔
  (7) 

where 𝐼𝑛𝑑2𝑛𝑑ሺ𝑖ሻ represents the expression data of second-level indicators. 𝐼𝑛𝑑 is the indicator in the 
four subgraphs, and 𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘ሺ𝑖𝑛𝑑ሻ  and 𝑋ሺ𝑖𝑛𝑑ሻ  are the PageRank value of the indicator and the 
corresponding expression data, respectively. In this formula, 𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘ሺ𝑖𝑛𝑑ሻ  is not used as the 
coefficient instead of 1 െ 𝑃𝑎𝑔𝑒𝑅𝑎𝑛𝑘ሺ𝑖𝑛𝑑ሻ  because PageRank selects key vertices based on the 
maximum entry degree or the maximum weight, which means that these vertices are highly likely to be 
calculated by other vertices. Therefore, multicollinearity, which will affect the final result, is a potential 
risk, and we should weaken it. 
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3. Case study 

3.1. Problem description 

As for the construction of a smart city information security indicator system, few current practices 
exist to convert it into a graph. In this paper, the original data were input, and the dependency graph 
among indicators was constructed by calculating the feature importance in the random forest. On this 
basis, the construction of the indicator system was converted into the field of graph analysis. 
Subsequently, spectral clustering and PageRank were used to analyze and obtain the two-level 
indicator system. The advantages of doing so are as follows: First, the expression of the indicator 
system is more intuitive, and the relationship between all indicators can be clearly understood. Second, 
the system facilitates systematic analysis of all indicators. Third, it has strong extensibility, convenient 
for further inferring the direction of indicators (causality). 

To verify the performance of the method, 25 smart cities in China were selected for information 
security risk assessment. Meanwhile, to avoid excessive data loss due to the low degree of urban 
intelligence, four levels were selected: 4 first-tier cities, 11 new first-tier cities, 9 second-tier cities, 
and 1 third-tier city (Supplementary material 1). Table 1 lists the risk indicators. A1–A16 are risk 
indicators, covering the four categories of people, platform, policy, and data. A17 is the city’s 
comprehensive risk level as Y in the method. 

Table 1. Description of the indicators. 

A1 Communication network construction A10 Data encryption and recovery 

A2 Network resource connection A11 Data backup technology 

A3 Urban cloud platform construction A12 Data opening service level 

A4 Legitimacy of information content A13 Research and development spending 

A5 Authenticity of information content A14 Firewall reliability 

A6 Controllability of information content A15 Operating system security 

A7 Safety education and training A16 Vulnerability threat repair rate 

A8 Safety knowledge promotion A17 Comprehensive development level of the city 

A9 Public safety consciousness   

3.2. Information security risk assessment 

3.2.1. Random forest regression-based indicator dependency network construction 

To construct the interactive network of indicators, we take each indicator in A1–A16 as 𝑦 and 
others as 𝑥 to construct a set of regression equations 

 ൞

𝐴ଵ ൌ 𝑓ଵሺ𝐴ଶ,𝐴ଷ,⋯ ,𝐴ଵ଺ሻ
𝐴ଶ ൌ 𝑓ଶሺ𝐴ଵ,𝐴ଷ,⋯ ,𝐴ଵ଺ሻ

⋯⋯
𝐴ଵ଺ ൌ 𝑓ଵ଺ሺ𝐴ଵ,𝐴ଶ,⋯ ,𝐴ଵହሻ

  (8) 
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where each equation in the system describes the relationship between the target indicator and other 
indicators and is nonlinear and extensive (we do not assume that it satisfies any fixed form). However, 
mathematically solving it is nearly impossible. Fortunately, random forests can build tree mappings 
from the data domain (𝑋) to the value domain (𝑌). Accordingly, we trained random forests to preserve 
these equations in a structured form instead of a mathematical formula. 

The training of this model involves the setting of an important parameter n_estimators (i.e., the 
number of decision trees). We test the performance of this parameter within a range of 1–50 according 
to the 𝐹𝑖𝑡𝑆𝑐𝑜𝑟𝑒 and select the largest one as the final parameter: 

 𝐹𝑖𝑡𝑆𝑐𝑜𝑟𝑒 ൌ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛ሺ𝑅ଶሻ െ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛ሺ𝑀𝑆𝐸ሻ  (9) 

 𝑅ଶ ൌ
∑ ሺ௬ഢෝି௬തሻమ
೙
೔సభ

∑ ሺ௬೔ି௬തሻమ
೙
೔సభ

  (10) 

 𝑀𝑆𝐸 ൌ ଵ

௡
∑ ሺ𝑦పෝ െ 𝑦௜ሻଶ
௡
௜ୀଵ   (11) 

where 𝐹𝑖𝑡𝑆𝑐𝑜𝑟𝑒 describes how well the model fits the data, 𝑅ଶ is the coefficient of determination, 
MSE is the mean square error, and 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛ሺ∙ሻ is a normalization operation. The combination 
of 𝑅ଶ and MSE can be used to measure the degree to which the model can be interpreted for variables 
whilst improving its accuracy. The indicators for the 50 different scenarios are as follows (Figure 2): 

 

Figure 2. FitScore of the parameter n_estimators in the range of 1–50. (a) Records the 
value of MSE, 𝑅ଶ, and FitScore; (b) shows the FitScore in the form of a bar chart. The 
higher the FitScore, the better the result. 

As can be seen from the figure, the optimal parameter should be n_estimators=3 (𝐹𝑖𝑡𝑆𝑐𝑜𝑟𝑒 ൌ 0 
when n_estimators=1). Therefore, the number of decision trees in this paper is 3 to train 16 equations. 

In the second step, based on the trained model, nodes of the tree are retrieved to obtain the 
contribution of each indicator to the target (the indicator has no contribution to itself). Finally, the 
contribution between 16 groups of indicators is used to construct the weighted dependency graph 
between indicators (Figure 3). 
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Figure 3. Weight dependency graph between indicators. Only edges larger than the 
average value are displayed, and the thicker the line, the greater the weight of the edge. 

3.2.2. Random forest regression-based indicator dependency network construction 

We obtained an indicator dependency graph that contains the relationships between the indicators. 
For the time being, all vertices in the graph are regarded as first-level indicators, and there is no 
difference in their classification and function. To construct a two-level indicator system, a direct idea 
is to divide indicators into multiple categories according to their roles or properties and then select an 
indicator from each category as a second-level indicator or generate a new indicator as a second-level 
indicator. In this study, we choose the latter and then take the first-level indicators under this category 
as sub-indicators of the second-level indicator. 

On the premise of an input network graph, the most suitable way to classify vertices is network 
segmentation. By the network segmentation algorithm, the indicator dependency graph can be divided 
into several subgraphs. The vertices in different subgraphs are different categories of indicators. There 
are many network segmentation algorithms to choose from. After considering the segmentation effect 
and algorithm difficulty comprehensively, we choose a spectral clustering algorithm (for details, refer 
to Section 2.2). Moreover, since the input required by the algorithm is an undirected graph, and the 
indicator dependency graph is a directed graph, we have modified it. Let 𝑊 be the weight matrix of 
the indicator dependency graph and 𝑊்  be the transposed matrix. Then, the input of spectral 
clustering is 

 𝑊෩ ൌ ௐାௐ೅

ଶ
  (12) 

Finally, the results of spectral clustering are as follows: the indicator dependency graph is di
vided into four independent subgraphs according to the preset clustering parameter K = 4. They 
are 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ ൌ ሾA14, A15, A16ሿ ,  𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଶ ൌ ሾA1, A2, A3, A6ሿ ,  𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଷ ൌ ሾA4, A7, A9,
A13ሿ, and 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎସ ൌ ሾA5, A8, A10, A11, A12ሿ. 

Take 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ ൌ ሾA14, A15, A16ሿ  and 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଶ ൌ ሾA1, A2, A3, A6ሿ , for example. In 
𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ, fire reliability (A14), operating system security (A15), and vulnerability threat repair 
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rate (A16) reflect the security of the platform. The security of the platform can be taken as a 
second-level indicator, and this is consistent with reality. In a computer platform, security is affected 
by both internal and external aspects. From the outside, computer viruses are often wrapped in normal 
data to enter the system deceptively, and the reliability of the firewall is a layer of protection to prevent 
information security problems. Internally, whether there is a backdoor inside the operating system or 
there are loopholes in the system code, the system’s defense against information security attacks and 
the repair rate after the attack are also important factors affecting information security. In 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଶ, 
communication network construction (A1), network resource connection (A2), and urban cloud 
platform construction (A3) control the generation and transmission of information from the perspective 
of the system and screen the information content layer upon layer to ensure the content security of 
urban information. This is also consistent with the facts. 

Finally, with the analysis of 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଷ  and 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎସ , we conclude that these four 
subgraphs correspond to four aspects that affect information security, thus determining the basic 
composition of the two-level indicator system: platform security, information authenticity, information 
controllability, and information legitimacy. All 16 indicators work together to ensure the functions of 
these four aspects, and ultimately act on the whole indicator system, affecting the level of information 
security in the city. 

3.2.3. PageRank-based two-level indicator system construction 

The indicator subset obtained through spectral clustering can somewhat represent the second-
level indicator system, but the core indicator of the four subsystems needs to be further determined to 
associate with the final urban information security risk. 

The content of second-level indicators has been preliminarily determined through analysis in 
the previous section, so the content of this section focuses on obtaining the data of second-level 
indicators because those are generated rather than selected from the existing 16 indicators. A feasible 
method is to sum the data of all first-level indicators in the subgraph by weight as the data of the second-
level indicators; the weight is determined by the PageRank algorithm. For a subgraph (containing m first-
level indicators and their dependencies), let the weight matrix of the subgraph be represented as 
𝑊௜ ; then, we can randomly initialize a unit vector 𝑃ሺ0ሻ ൌ ሾ𝑝௜௝ሿଵൈ௠  and input 𝑃ሺ଴ሻ  and 𝑊௜  to 

iterate through formula (6). Finally, we can obtain a stable 𝑃ሺ௧ାଵሻ , where each component 
represents the PageRank value (i.e., weight) of each indicator in the subgraph (see Section 2.3 for 
details). PageRank results of indicators in the four subgraphs are as follows: Figure 4 shows that the 
core indicators corresponding to 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ，𝑆𝑢𝐺𝑟𝑎𝑝ℎଶ，𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଷ, and 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎସ are the 
security of the operating system (A15), the authenticity of the information content (A5), the 
controllability of the information content (A6), and the public safety consciousness (A9). This 
result is highly consistent with the clustering result shown in Figure 5. The four core indicators 
selected by PageRank are all the vertices with the highest degree or the most edges with high 
weight in the subgraph where they are located. 

Finally, according to Eq (7), four imaginary second-level indicators and their data are 
extracted as second-level indicator entities. 
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Figure 4. PageRank results of the four subgraphs. For each indicator, the higher the 
PageRank value, the more important it is in the subgraph. 

 

Figure 5. Spectral clustering results. 

4. Discussion 

Our goal is to prove that the two-level indicator system is superior to the single-level indicator 
system (the indicator set without any processing). Since we cannot apply it to the actual scene and 
verify the results, we treat it as a regression problem. Moreover, to verify the wide applicability of the 
indicator system we constructed, we use classical machine learning algorithms, such as Ridge, Lasso, 
SVR, decision tree (Dtree), and MLP for the experiment, instead of using some specific methods. 

Specifically, we use the data from the two-level indicator system (including 
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𝐼𝑛𝑑2𝑛𝑑ሺ1ሻ, 𝐼𝑛𝑑2𝑛𝑑ሺ2ሻ, 𝐼𝑛𝑑2𝑛𝑑ሺ3ሻ , and 𝐼𝑛𝑑2𝑛𝑑ሺ4ሻ ) and the data from the single-level indicator 
system (including A1–A16) to fit the risk level of the city (as a regression problem): 

 𝑦 ൌ 𝑓ሺ𝐼𝑛𝑑2𝑛𝑑ሺ1ሻ, 𝐼𝑛𝑑2𝑛𝑑ሺ2ሻ, 𝐼𝑛𝑑2𝑛𝑑ሺ3ሻ, 𝐼𝑛𝑑2𝑛𝑑ሺ4ሻሻ  (13) 

 𝑦 ൌ 𝑓ሺ𝐴1,𝐴2,⋯ ,𝐴16ሻ  (14) 

Then, Ridge, Lasso, SVR, Dtree, and MLP algorithms were fitted to Eqs (13) and (14) to verify 
the effect. The evaluation indicators used were 𝑅ଶ and MSE (Equations 10 and 11). The experimental 
results are as follows (Table 2): 

Table 2. Fitting performance of the single-level and two-level indicator systems. 

Method 
Single-level indicator system Two-level indicator system 

MSE Rଶ MSE Rଶ 

Ridge 0.0041 0.8924 0.0085 0.7749 

Lasso 0.0369 0.0301 0.0366 0.0389 

SVR 0.01 0.84 0.01 0.85 

Dtree 0.0 1.0 0.0 1.0 

MLP 0.0333 0.1263 0.0214 0.4365 

Note: Bold values mark the algorithm’s best performance in the single-level or two-level indicator system. 

As can be seen from Table 2 and Figure 6, when the two-level indicator system is used as input, 
its fitting effect on most algorithms is better than that of the single-level indicator system, and their 
scores are relatively high. The performance values of the two-level indicator system are 0.7749, 0.0389, 
0.85, 1.0, and 0.4365 in terms of 𝑅ଶ and 0.0085, 0.0366, 0.01, 0.0, and 0.0214 for MSE, which shows 
an improvement compared with the single-level indicator system’s performance values (0.8924, 
0.0301, 0.84, 1.0, and 0.1263 for 𝑅ଶ and 0.0041, 0.0369, 0.01, 0.0, and 0.0333 for MSE). As mainly 
reflected in Lasso, SVR, Dtree, and especially MLP, it has made excellent progress; it only has reduced 
performance with Ridge, but the decline is not obvious. All these results prove that our two-level 
indicator system is effective for the commonly used methods. 

 

Figure 6. Fitting performance of single-level and two-level indicator systems. The origin 
is the single-level indicator system, Ind2nd is the two-level indicator system. 
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However, there is an anomaly in which the performance of Lasso and MLP appears to be 
significantly lower than the other methods. This is because they are treated in a special way during the 
evaluation. The algorithms we use are all from Python’s sklearn library, where an alpha parameter 
exists in “linear_model.Lasso” and “neural_network.MLPRegressor”. We also found that the setting 
of this parameter would cause a huge change in the results. Thus, for these two methods, we averaged 
them 100 times by modifying their alpha values in the range of 0–1; they were extremely low because 
of their erratic performance. Figure 7 shows how they perform on MSE and 𝑅ଶ  with an alpha 
between 0 and 1. 

 

Figure 7. Performance of Lasso and MLP when alpha is between 0 and 1. 

As can be seen from Figure 7, only looking at 𝑅ଶ, Lasso’s performance attenuates rapidly 
when the alpha exceeds a certain threshold, whereas the change is relatively slow in the two-level 
indicator system, which also explains why our method can win by a narrow margin. However, the 
optimal performance (𝑅ଶ  = 0.8 when alpha = 0) is not comparable to that of the single-level 
indicator system (𝑅ଶ = 1 when alpha = 0). In fact, Lasso degenerates into classical linear regression 
when alpha = 0, which proves that the performance of the two-level indicator system under the linear 
regression algorithm is also weaker than that of the single-level indicator system. On the other hand, 
there are also abrupt changes in performance in MLP, but our system outperforms the single-level 
indicator system over a long range and equates with the single-level indicator system at the top. Therefore, 
the latter explains why the two-level indicator system is superior to the single-level indicator system in 
MLP. At the same time, it can be seen that the variance of the performance curve of the second-level 
indicator system is the smallest. This means that our method can perform better than the single-level 
index system in both Lasso and MLP in most cases, even though both indicator systems are extremely 
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picky about the alpha when running on Lasso (it only works if the alpha is within a specified small range). 
This is due to the lack of expression ability of Lasso itself. However, no matter what the value is of the 
MLP, we can still get a relatively satisfactory result, for two reasons: First, the performance of the MLP 
itself is better, and it can ensure stable operation no matter what kind of data it faces. Second, from the 
perspective of fitting, our two-level indicator system synthesizes the contribution of all first-level 
indicator systems to the final result, resulting in better results obtained by the model. 

In summary, by comparing the fitting effects of the constructed two-level indicator system and 
the original single-level indicator system on different algorithms, our idea can be seen as effective: (1) 
The weight network of information security risk assessment indicators established by the random forest 
algorithm can effectively depict the dependency relationship between indicators, which can help us 
understand the whole indicator system more comprehensively and clearly understand the status and 
role of indicators in the whole system. (2) Spectral clustering was carried out based on the weight 
network, and the roles and dependencies of different indicators in the system were further divided. The 
single-level system is divided into the two-level system ( 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ ൌ
ሾA14, A15, A16ሿ,  𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଶ ൌ ሾA1, A2, A3, A6ሿ, 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଷ ൌ ሾA4, A7, A9, A13ሿ, 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎସ ൌ
ሾA5, A8, A10, A11, A12ሿ) and retained their dependency relationship. (3) Finally, PageRank was used 
to lock important indicators, and corresponding core indicators were found to be the security of the 
operating system (A15), the authenticity of the information content (A5), the controllability of the 
information content (A6), and the public security consciousness (A9). Finally, differences among 
algorithm models are compared, showing that the constructed indicator system has better stability and 
accuracy than the original indicator system when applied to common algorithms. This indicator system 
can be applied to most scenarios. In fact, we can attempt to explain this two-level indicator system. We 
only need to put the key indicators searched by PageRank into the subgraph for observation. Taking 
𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଵ as an example, it includes firewall reliability (A14), operating system security (A15), and 
vulnerability threat repair rate (A16). Among these three indicators, the operating system security is 
definitely affected by the other two factors. Given that firewall and vulnerability threats are the most direct 
factors affecting the security of an operating system, this finding is consistent with the logic. Meanwhile, 
as can be seen from Figure 5, this indicator is also directly affected by network resource connection (A2) 
outside the subgraph, and indirectly affected by communication network construction (A1) and urban cloud 
platform construction (A3), which are important external environments to ensure the security of the 
operating system. The same can be said for 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଶ . When the construction of communication 
network platforms and connected resources tends to be stable and secure, it can provide us with continuous 
controllable information. The same goes for 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎଷ and 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎସ. 

5. Conclusions 

With the deepening of urban informatization, the number of indicators for information security 
risk assessment is growing rapidly, and existing models become insufficient in assisting decision-
makers as they cannot effectively analyze the internal dependence of indicators and their levels. To 
solve this problem, we propose a graph-based two-level risk assessment indicator system construction 
method. This method uses the random forest algorithm to extract the dependency network of indicators 
from the dataset and obtains the two-level indicator system through network clustering and PageRank. 
Finally, the single-level indicator system and the constructed two-level indicator system are applied 
and compared using typical algorithms. The results show that the two-level indicator system 
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outperforms the single-level indicator system. 
Specifically, we collected a total of 16 indicators from 25 cities in China and constructed the 

indicators’ dependency network. Then, the subsequent network clustering and PageRank analysis 
showed that the indicator system can be made up of four subnetworks: the security of the operating 
system (A15), the authenticity of the information content (A5), the controllability of the information 
content (A6), and the public security consciousness (A9). Based on the above results, we suggest 
strengthening the construction and security inspection of infrastructure and network facilities to ensure 
that data are running on secure devices. Moreover, backup and recovery technology of information in 
circulation and operation should be strengthened to ensure that information does not lose its original 
meaning or cannot be tampered with. Finally, we offer the following recommendations: (1) enhancing 
security education and information security consciousness of people; (2) encouraging scientific 
production and application of information technology; (3) providing a good external environment for 
the deep integration of science and technology. 

6. Future work 

There are many promising future directions for using deep learning and machine learning methods 
in the construction of smart cities, such as smart city construction, smart management, smart education, 
privacy, and security. We know that training models can provide accurate results when similar feature 
sets and distribution models form training and test data. Researchers should also focus on the 
integration of semantic technologies in smart city applications to enable smart devices to better interact 
with users. For information security reasons, federated learning (FL), differential privacy (DP), and 
secure multi-party computing (SMC) are novel approaches, as they enable encrypted sharing of data 
between different departments. Combining federal learning with smart city applications can provide 
privacy and protection of sensitive information, enhancing the security of information exchange 
between various city departments. 
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