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Abstract: In this paper, we propose a new viral infection model by incorporating a new compartment
for follicular dendritic cell (FDC), nonlinear incidence, CTL immune response, and two intracellular
delays. The main purpose of the paper is to make an improvement and supplement to the global dy-
namics of the model proposed by Callaway and Perelson (2002), in which global stability has not been
studied. The global stabilities of equilibria are established by constructing corresponding Lyapunov
functionals in terms of two threshold parameters, R0 and R1. The obtained results imply that both
nonlinear incidence and intracellular time delays have no impact on the stability of the model.
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Lyapunov functionals

1. Introduction

Samples cannot always be taken frequently from patients, or detection techniques of the virus may
not be accurate, and testing specific hypotheses based on clinical statistic data is a challengeable task,
which justifies the key role played by mathematical models in this area. Mathematical models have
been proposed to understand the in vivo infection dynamics of viruses. Particularly, theses within-host
viral infection models were used to describe the viral infection process, estimate some key parameters,
and provide support for research and development of antiviral drugs [1–4]. The classical viral dynam-
ics can be described by the differential equations of three compartments: the uninfected target cells,
the infected cells, and the free virus. Sometimes, a fourth compartment corresponding to the immune
response was introduced into the model [5–8]. One of the main immune responses is the cytotoxic
T-lymphocyte cells (CTLs), which play a crucial role in antiviral defense by attacking virus-infected
cells in most virus infections. A basic and simple model with CTL immune response was proposed to
explore the interaction between the CTLs and infected cells [5]. Then many kinds of models with im-
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mune response were further developed to investigate the impact of immune response on the dynamics
of virus infection [6–8] and references therein.

Though antiretroviral therapy can effectively suppress viral replication to a low level, it cannot erad-
icate the virus permanently. An reliable and possible explanation is that there exists a viral reservoir,
which is a possible impediment to virus eradication. Currently, researchers have shown that follicular
dendritic cells (FDC) reside in secondary lymphoid organs known as germinal centers and bind HIV-
antibody complexes, thus creating an archive of infectious viruses that can perpetuate infection. As
such, HIV trapped on FDC is thought to be a significant viral reservoir [9–13]. Even with antiretroviral
therapy, the FDC can still provide a suitable microenvironment for ongoing infection and impair the B
cell response [14–17]. It is thus important to consider this factor in viral infection models, and some
earlier studies of FDC can be found in [9–11]. For example, Callaway and Perelson [11] proposed the
following simple model with FDC to understand what the effect FDC could have on the steady state
viral load: 

dT
dt
=λ − dT − (1 − ε)kTV,

dI
dt
=(1 − ε)kTV − δI,

dV
dt
=NδI − (c1 + µ)V + αW,

dW
dt
=µV − (α + c2)W,

(1.1)

where T (t), I(t), V(t), and W(t) are the concentrations of uninfected target cells, infected cells, free
viruses, and virus particles bound to FDC at time t, respectively. λ is a constant production rate
of uninfected cells that die at a rate d. The uninfected cells are infected by free virus at a rate of
(1 − ε)kTV , where ε represents the efficacy of RT inhibitors. The infected cells produce virions at a
rate NδI and die at a rate δ, where N is the number of virions produced by an infected cell during its
life span (burst size). The virions are cleared at a rate of c1. FDC binds free virus at rate µ, bound virus
dissociates from FDC at rate α, and bound virus is cleared at rate c2.

In addition, it needs to go through a period between initial viral entry into a cell and subsequent viral
production, and a maturation time is necessary for the released virions before they become infectious.
Moreover, as pointed out by Ciup et al. [18], allowing for time delays in the models better predicts viral
load data when compared to models without delays. Thus taking time delays into account makes the
models more realistic. Then motivated by [11], a general viral infection model with two intracellular
time delays and CTL immune response takes as follows:

dT
dt
=λ − dT − (1 − ε)kT f (V),

dI
dt
=(1 − ε)kT (t − τ1) f (V(t − τ1)) − δI − rIZ,

dV
dt
=NδI(t − τ2) − (c1 + µ)V + αW,

dW
dt
=µV − (α + c2)W,

dZ
dt
=pIZ − qZ,

(1.2)
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where Z(t) be the concentrations of CTLs at time t. The uninfected cells are infected by free virus
at a rate of (1 − ε)kT f (V). The infected cells are cleared by CTLs at a rate of rIZ. The CTLs are
proliferated at a rate pIZ and decay at a rate q. τ1 represents the time period from being infected
to becoming productive infected cells, and τ2 represents the time necessary for the newly produced
virions to become mature. Throughout this paper, we assume that the incidence function f (V) satisfies
the following conditions:

f (0) = 0, f ′(V) > 0, f ′′(V) ≤ 0. (1.3)

Based on condition (1.3), it follows that

f ′(V)V ≤ f (V) ≤ f ′(0)V, for V ≥ 0. (1.4)

The initial conditions for model (1.2) are

T (θ) = φ1(θ), I(θ) = φ2(θ),V(θ) = φ3(θ),W(θ) = φ4(θ),Z(θ) = φ5(θ), (1.5)

where τ = max{τ1, τ2} and (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ)) ∈ C([−τ, 0],R5
+). It is obviously that the

model (1.2) includes the model [11] as an special case, in which the global dynamics that has not been
investigated will be solved in this paper.

The rest of the paper is organized as follows: In Section 2, we derive the basic reproduction number
for the viral infection, the basic reproduction number for the immune response, and the existence of
equilibria. In Section 3, we prove that the global dynamics of the model are determined by the two
threshold parameters. Simulations are carried out to validate the obtained results in Section 4. A
summary and a discussion are presented in Section 5.

2. Preliminary results and thresholds

Some preliminary results will be presented in this part before analyzing the dynamics of model
(1.2). According to literature [19], it is easy to show that the solutions of model (1.2) are non-negative.
Moreover, let P1(t) = T + I(t + τ1) + r

pZ(t + τ1), then we have

P′1 = λ − dT − δI(t + τ1) −
r
p

qZ(t + τ1) ≤ λ − m1P1(t),

which implies that lim sup
t→+∞

P1(t) ≤
λ

m1
, where m1 = min{d, δ, q}. Then, let P2(t) = V(t) + W(t), it

follows that P′2(t) ≤
Nδλ
m1
− m2P2(t), which leads to that lim sup

t→+∞
P2(t) ≤

Nδλ
m1m2

with m2 = min{c1, c2}.

Therefore, the above analysis leads to the following result.

Lemma 2.1. The solutions (T (t), I(t),V(t),W(t),Z(t)) of model (1.2) with initial conditions (1.5) are
non-negative and ultimately bounded.

It is easily seen that the model (1.2) possesses an infection-free equilibrium E0 = (T0, 0, 0, 0, 0) with

T0 =
λ

d
. Define the basic reproduction number for viral infection R0 of model (1.2) as

R0 =
λ(1 − ε)k f ′(0)N(α + c2)

d(c1α + c1c2 + c2µ)
.
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When Z = 0, an immune-inactivated equilibrium E1 = (T1, I1,V1,W1, 0) exists if T1, I1,V1,W1 > 0
satisfy

λ − dT1 = (1 − ε)kT1 f (V1) = δI1 =
c1α + c1c2 + c2µ

N(c2 + α)
V1 =

c1α + c1c2 + c2µ

Nµ
W1. (2.1)

Since T1,V1 > 0, it then follows from (2.1) that V1 ≤
λN(c2+α)

c1α+c1c2+c2µ
=: Ṽ . In order to show the existence

of E1, we define

F(V) =
d(c1α + c1c2 + c2µ)V

kN(1 − ε)(c2 + α) f (V)
+

c1c2 + c1α + c2µ

N(c2 + α)
V − λ.

Together with (1.3) and (1.4), it follows that F′(V) > 0. Moreover, for R0 > 1 a simple calculation
gives

lim
V→0+

F(V) =
λ(1 − R0)
R0

> 0, F(Ṽ) =
dλ

(1 − ε)k f (Ṽ)
> 0.

Thus, if R0 > 1, there exists V1 ∈ (0, Ṽ) such that F(V1) = 0. This proves the existence of E1 when
R0 > 1.

An immune-activated equilibrium E2 = (T2, I2,V2,W2,Z2) exists if T2, I2,V2,W2,Z2 > 0 satisfy the
following equilibrium equations:

T2 =
λ

d + (1 − ε)k f (V2)
, I2 =

q
p
,V2 =

NδI2(c2 + α)
c1α + c1c2 + c2µ

, W2 =
µV2

c2 + α
,

Z2 =
1

rI2

[
λ(1 − ε)k f (V2)

δI2(d + (1 − ε)k f (V2))
− 1

]
=

1
rI2

(R1 − 1).
(2.2)

Thus, an immune-activated equilibrium E2 exists if and only if R1 > 1, where

R1 =
λ(1 − ε)k f (V2)

δI2(d + (1 − ε)k f (V2))
<
λ(1 − ε)k f ′(0)N(c2 + α)

d(c1α + c1c2 + c2µ)
= R0.

Lemma 2.2. S ign{T2 − T1} = S ign{I1 − I2} = S ign{V1 − V2} = S ign{W1 −W2} = S ign{R1 − 1}.

Proof. It follows from (2.1) and (2.2) that

d(T1 − T2) = (1 − ε)k(T2 − T1) f (V2) + (1 − ε)kT1( f (V2) − f (V1)).

Then we have (d+(1−ε)k f (V2))(T1−T2) = (1−ε)kT1( f (V2)− f (V1)), which implies that S ign{T2−T1} =

S ign{V1 − V2}.
Moreover, it follows from (2.1) and (2.2) that S ign{V1 − V2} = S ign{W1 −W2} and

Nδ(I1 − I2) = (c1 + µ)(V1 − V2) − α(W1 −W2) =
(
(c1 + µ)(c2 + α)

µ
− α

)
(W1 −W2),

we then have S ign{I1 − I2} = S ign{V1 − V2} = S ign{W1 −W2}.
Then

R1 − 1 =
(1 − ε)kT2 f (V2)

δI2
− 1 =

(1 − ε)kT2 f (V2)
(c1 + µ)V2 − αW2

−
(1 − ε)kT1 f (V1)

(c1 + µ)V1 − αW1

=
(1 − ε)kN

(c1 + µ)(c2 + α) − αµ

{
(T2 − T1) f (V2)

V2
+ T1

(
f (V2)
V2
−

f (V1)
V1

)}
.

It follows from (1.4) that S ign{V1−V2} = S ign{
f (V2)
V2
−

f (V1)
V1
}, then we have S ign{R1−1} = S ign{V1−

V2} = S ign{I1 − I2}. This completes the proof. □
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3. Global stability analysis

In this part, the global stability of the equilibria E0, E1, and E2 will be established by constructing
Lyapunov functionals, which are motivated by [20–23]. Here, we will use the function φ(x) = 1 +
ln x − x, which satisfies φ(x) ≤ 0 for x > 0 and φ(x) = 0 if and only if x = 1.

Theorem 3.1. If R0 ≤ 1, then the infection-free equilibrium of E0 is globally asymptotically stable.

Proof. Let T (t), I(t),V(t),W(t),Z(t) be any arbitrary positive solution of model (1.2) and recall that

T0 =
λ

d
. Define a Lyapunov functional G1(t) as

G1(t) =φ
(

T
T0

)
+ I(t) +

V(t)
N
+

αW
N(c2 + α)

+
r
p

Z +
∫ t

t−τ1
(1 − ε)kT (θ) f (V(θ))dθ +

∫ t

t−τ2
δI(θ)dθ.

Computing the time derivative of G1(t) along the solution of model (1.2), which leads to

dG1

dt
=dT0

(
1 −

T0

T

) (
1 −

T
T0

)
+ (1 − ε)kT0 f (V) +

(
αµ

N(c2 + α)
−

c1 + µ

N

)
V −

qr
p

Z

≤dT0

(
1 −

T0

T

) (
1 −

T
T0

)
+

c1α + c1c2 + c2µ

N(c2 + α)
(R0 − 1)V −

qr
p

Z.

Clearly, if R0 ≤ 1, then
dG1

dt
≤ 0, for all T, I,V,W,Z ≤ 0 and

dG1

dt
= 0 is satisfied if and only if

T = T0, I = V = W = Z = 0. Thus, the maximal compact invariant set in {G′1(t) = 0} is the singleton
{E0}. This proves the global stability of E0 by applying the LaSalle invariance principle [24]. □

Theorem 3.2. If R1 < 1 < R0, then the immune-inactivated equilibrium E1 is globally asymptotically
stable.

Proof. Define

G2(t) =φ
(

T
T1

)
+ φ

(
I
I1

)
+

1
N
φ

(
V
V1

)
+

α

N(c2 + α)
φ

(
W
W1

)
+

r
p

Z

+

∫ t

t−τ2
δI1φ

(
I(θ)
I1

)
dθ +

∫ t

t−τ1
(1 − ε)kT1 f (V1)φ

(
T (θ) f (V(θ))

T1 f (V1)

)
dθ.

For convenience, let uτ = u(t− τ). Taking the time derivative of G1(t) along the solution of model (1.2)
and using the equilibrium conditions (2.1) for E1, we have

dG2

dt
=dT1

(
1 −

T
T1

) (
1 −

T1

T

)
+ (1 − ε)kT1 f (V1)

{
3 −

T1

T
−

V
V1
−

V1Iτ2
VI1

−
Tτ1 I1 f (Vτ1)
T1I f (V1)

+
f (V)
f (V1)

+ ln
Tτ1 f (Vτ1)Iτ2

T f (V)I

}
+ rZ(I1 − I2) +

αW1

N

(
2 −

V1W
VW1

−
VW1

V1W

)
=dT1

(
1 −

T
T1

) (
1 −

T1

T

)
+ (1 − ε)kT1 f (V1)

{
φ
(T1

T

)
+ φ

(
Tτ1 I1 f (Vτ1)
T1I f (V1)

)
+ φ

(
V1Iτ2
VI1

)
+ φ

(
f (V1)V
f (V)V1

)
+

(
f (V)
f (V1)

−
V
V1

) (
1 −

f (V1)
f (V)

) }
Electronic Research Archive Volume 32, Issue 8, 5127–5138.
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+ rZ(I1 − I2) +
αW1

N

(
2 −

V1W
VW1

−
VW1

V1W

)
.

From Lemma 2.2, we have I1 − I2 < 0. Moreover,
(

f (V)
f (V1) −

V
V1

) (
1 − f (V1)

f (V)

)
≤ 0 follows from (1.3) and

(1.4). Then, we have
dG2

dt
≤ 0 and

dG2

dt
= 0 if and only if T = T1, I = I1,V = V1,W = W1,Z = Z1.

Thus, the largest compact invariant set of {G′2 = 0} is the singleton {E1}. Therefore, the global stability
of E1 follows from the LaSalle invariance principle [24]. □

Theorem 3.3. If R1 > 1, then the immune-activated equilibrium E2 is globally asymptotically stable.

Proof. Define

G3(t) =φ
(

T
T2

)
+ φ

(
I
I2

)
+
δ + rZ2

Nδ
φ

(
V
V2

)
+

(δ + rZ2)α
Nδ(c2 + α)

φ

(
W
W2

)
+

r
p
φ

(
Z
Z2

)
+

∫ t

t−τ1
(1 − ε)kT2 f (V2)φ

(
T (θ) f (V(θ))

T2 f (V2)

)
dθ +

∫ t

t−τ2
(δ + rZ2)I2φ

(
I(θ)
I2

)
dθ.

Taking the time derivative of G3(t) along the solution of model (1.2) and using the equilibrium condi-
tions (2.1) for E2, we have

dG3

dt
=dT2

(
1 −

T
T2

) (
1 −

T2

T

)
+ (1 − ε)kT2 f (V2)

{
3 −

T2

T
−

V
V2
−

V2Iτ2
VI2

−
Tτ1 I2 f (Vτ1)
T2I f (V2)

+
f (V)
f (V2)

+ ln
Tτ1 f (Vτ1)Iτ2

T f (V)I

}
+
αW2(δ + rZ2)

Nδ

(
2 −

V2W
VW2

−
VW2

V2W

)
=dT2

(
1 −

T
T2

) (
1 −

T2

T

)
+ (1 − ε)kT2 f (V2)

{
φ
(T2

T

)
+ φ

(
Tτ1 I2 f (Vτ1)
T2I f (V2)

)
+ φ

(
V2Iτ2
VI2

)
+ φ

(
f (V2)V
f (V)V2

)
+

(
f (V)
f (V2)

−
V
V2

) (
1 −

f (V2)
f (V)

) }
+
αW2(δ + rZ2)

Nδ

(
2 −

V2W
VW2

−
VW2

V2W

)
.

Similar to the proof of Theorem 3.2, we have
dG3

dt
≤ 0 and

dG3

dt
= 0 if and only if T = T2, I =

I2,V = V2,W = W2,Z = Z2. Thus, the largest compact invariant set of {G′2 = 0} is the singleton {E2}.
Therefore, the global stability of E2 follows from the LaSalle invariance principle [24]. □

4. Numerical simulations

In this part, numerical simulations are carried out to validate the obtained results. Here, we select
the function f (V) = V

1+mV . Choosing a certain parameter value of the model (1.2), and a simple
calculation show that R0 = 0.016 < 1, which implies that the infection-free equilibrium E0 is globally
asymptotically stable and the infection dies out (see Figure 1). When choosing parameter values, we
have R1 = 0.1894 < 1 < R0 = 15.9999, then the immune-inactivated equilibrium E1 is globally
asymptotically stable, which means the immune response is not enough to inhibit the infection and the
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virus dominates the infection process, as shown in Figure 2. Moreover, choosing parameter values
such that R1 = 1.8936 > 1, which implies that the immune-activated equilibrium E2 is globally
asymptotically stable, and then immune cells can coexist with viruses within the host, as shown in
Figure 3.
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Figure 1. Let λ = 100, d = 0.05, k = 8 × 10−7,ε = 0.7, N = 100, δ = 0.5, c1 = 3, c2 = 0.01,
µ = 3.6 × 10−5, α = 0.01, p = 0.1, q = 0.2, r = 0.42, m = 0.25, then R0 = 0.016 < 1, which
implies that the infection-free equilibrium E0 is globally asymptotically stable.
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Figure 2. Let λ = 100, d = 0.05, k = 8 × 10−5,ε = 0.7, N = 1000, δ = 0.5, c1 = 3, c2 = 0.01,
µ = 3.6 × 10−5, α = 0.01, p = 0.1, q = 0.2, r = 0.42, m = 0.25, then R1 = 0.1894 < 1 <
R0 = 15.9999, which implies that E1 is globally asymptotically stable.
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Figure 3. Let λ = 1000, d = 0.05, k = 8×10−5,ε = 0.7, N = 1000, δ = 0.5, c1 = 3, c2 = 0.01,
µ = 3.6× 10−5, α = 0.01, p = 0.1, q = 0.2, r = 0.42, m = 0.25, then R1 = 1.8936 > 1, which
implies that E2 is globally asymptotically stable.
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5. Conclusions

In this paper, we studied an improved delayed viral infection model by incorporating nonlinear
incidence and CTL immune response into the proposed model [11]. Thus, the model investigated here
is including some existing literatures. We have shown that the model admits three equilibria E0, E1,
and E2. Moreover, two threshold parameters, R0 and R1 are defined. By constructing corresponding
Lyapunov functionals, we have demonstrated that the infection can be inhibited when R0 ≤ 1. The
infection will persist and the immune response can not be activated when R1 < 1 < R0. Both the
viruses and immune cells can coexist and reach a steady state provided that R1 > 1. The obtained
results reveal that both nonlinear incidence and intracellular delay cannot change the stability of the
model. Besides, the obtained global dynamics of the model are a theoretical supplement to [11], which
has not been considered.

Literatures reveals that cell-to-cell transmission is vital to the spread of viruses in vivo [25–27],
and only virus-to-cell infection is taken into consideration in this paper, and whether the cell-to-cell
infection can retain the stability or not is an interesting question. Besides, the time for activating the
immune response is not included in the model, i.e., the immune time delay. How immune time delays
impact the dynamical behavior of the model is also worth studying. We leave these for future work.
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