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Abstract: This paper was focused on the solvability of a class of doubly critical sub-Laplacian problems
on the Carnot group G:

−∆Gu − µ
ψ2(ξ)u
d(ξ)2 = |u|

p−2u + ψα(ξ)
|u|2

∗(α)−2u
d(ξ)α

, u ∈ S 1,2(G).

Here, p ∈ (1, 2∗], α ∈ (0, 2), µ ∈ [0, µG), 2∗ = 2Q
Q−2 , and 2∗(α) = 2(Q−α)

Q−2 . By means of variational
techniques, we extended the arguments developed in [1]. In addition, we also established the existence
result for the subelliptic system which involved sub-Laplacian and critical homogeneous terms.

Keywords: doubly critical problem; carnot group; hardy potential; pohozaev identity; variational
method

1. Introduction

Recently, Filippucci et al. [1] analyzed the following quasilinear elliptic problem with multiple
critical terms on the entire RN:

−∆pu − µ
u
|x|p
= up∗−1 +

up∗(s)−1

|x|s
, u > 0, u ∈ W1,p(RN), (1.1)

where ∆p := div(|∇u|p−2∇u) is the p-Laplacian operator, N ≥ 3, p ∈ (1,N), s ∈ (0, p), µ ∈ [0, ( N−p
p )2),

the value p∗ = N p
N−p denotes the critical Sobolev exponents, and p∗(s) = p(N−s)

N−p denotes the critical Hardy-
Sobolev exponents. The Eq (1.1) with double critical terms induces more difficulties, and analyzing the
structure of the Palais-Smale sequence approaching zero weakly and constructing a new Palais-Smale
sequence at a critical value to weakly converge (PS) sequences to a nontrivial function; the authors
prove that the Eq (1.1) has at least one positive solution in W1,p(RN). For a similar bi-harmonic problem
involving two critical nonlinearities, refer to [2]. The author achieved the same result as in [1].
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Later on, Ghoussoub and Shakerian [3] investigated the existence of nontrivial solutions for a
fractional Laplacian problem involving critical exponents, namely,

(−∆)su − µ
u
|x|2s = |u|

2∗s−2u +
|u|2

∗
s(α)−2u
|x|α

, u ∈ W s,2(RN), (1.2)

where s ∈ (0, 1), 0 ≤ µ < µH, α ∈ (0, 2s), 2∗s =
2N

N−2s , and 2∗s(α) = 2(N−α)
N−2s are the critical exponents and

µH = 22s Γ
2( N+2s

4 )
Γ2( N−2s

4 )
is the best Hardy constant. Due to the nonlocal nature of the fractional Laplace operator,

this problem poses more difficulties and, as a result, the authors chose not to study the problem (1.2)
directly. Instead, the authors utilized Caffarelli and Silvestre’s s-harmonic extension method [4] to
convert (1.2) into a local problem. Again, the fundamental approach utilized by Chen [5] to demonstrate
the existence of a positive solution to the following fractional Laplacian problem with both critical
nonlinearities having the same singularities at origin in enter space RN:

(−∆)su − µ
u
|x|2s =

|u|2
∗
s(α)−2u
|x|α

+
|u|2

∗
s(β)−2u
|x|β

, u ∈ W s,2(RN), (1.3)

where s ∈ (0, 1), 0 ≤ µ < µH, α, β ∈ (0, 2s), and 2∗s(·) =
2(N−·)
N−2s denotes the fractional critical Sobolev-

Hardy exponent.
Subsequently, Assuncão et al. [6] extended the Eq (1.3) to the following fractional p-Laplacian

problem involving critical Hardy-Sobolev terms in RN:

(−∆p)su − µ
|u|p−2u
|x|sp =

|u|p
∗
s(α)−2u
|x|α

+
|u|p

∗
s(β)−2u
|x|β

, u ∈ W s,p(RN), (1.4)

where s ∈ (0, 1), p ∈ (1,+∞), sp < N, α, β ∈ (0, sp), µ ∈ [0, µH,p), and p∗s(α) = p(N−α)
N−ps , p∗s(β) = p(N−β)

N−ps
denote the critical Hardy-Sobolev exponents. Using a refined version of the concentration-compactness
principle and the mountain pass theorem, the authors demonstrate that the problem (1.4) has a nontrivial
weak solution in W s,p(RN).

We recall that the Hardy inequality on the Stratified Lie group was first introduced in the pioneering
work of D’Ambrosio [7, 8], Han et al. [10], and Niu et al. [9]. With these inequalities, the subelliptic
problem on the Stratified Lie group has received special attention in the past several years. For example,
Lioudice [11–14] studied the version of Sobolev and Hardy-Sobolev inequalities on the Stratified
Lie group and showed the existence result for the Brezis-Nirenberg type equation. Zhang [15–17]
investigated the multiplicity of nontrivial solutions of subelliptic equations with critical Hardy-Sobolev
exponents. In [18–20], the authors studied existence and asymptotic behavior of nontrivial solutions
of a series of problems in general open subsets Ω of the Heisenberg group Hn, possibly unbounded
or even Hn. For the results of the subellipse problem on more general homogeneous groups, we refer
to [21–23] and references therein. Finally, we suggest [24] to the reader which is interested on the
fractional Laplacian on the Heisenberg group.

Motivated by the results mentioned above, in this article we are interested in finding solutions to the
following sub-Laplacian problem with Hardy-type potentials and critical terms on Carnot group G:

−∆Gu − µ
ψ2(ξ)u
d(ξ)2 = |u|

p−2u + ψα(ξ)
|u|2

∗(α)−2u
d(ξ)α

, ξ ∈ G, (1.5)
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where −∆G is the sub-Laplace operator on the Carnot group, d(ξ) is the natural gauge on G, the weight
function ψ is defined as ψ(ξ) = |∇Gd(ξ)|, the parameters p ∈ (1, 2∗], α ∈ (0, 2), µ ∈ [0, µG), and 2∗ = 2Q

Q−2

is the critical Sobolev exponent, 2∗(α) = 2(Q−α)
Q−2 is the critical Hardy-Sobolev exponent, µG = ( Q−2

2 )2 is
the best Hardy constant and Q denotes the homogeneous dimension of the space G with respect to the
dilation δγ; see Section 2. The space S 1,2(G) denotes the completion of C∞0 (G) with respect to norm

∥u∥ =
( ∫
G

|∇Gu|2dξ
) 1

2
.

Problem (1.5) is related to the following Hardy-type inequality (see [8, 25]):

µG

∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ ≤
∫
G

|∇Gu|2dξ, ∀u ∈ C∞0 (G), (1.6)

where µG = ( Q−2
2 )2 is the best constant in this context. By using (1.6), it can be shown that the operator

L := −∆G · −µ
ψ2·

d(ξ)2 is positive for all µ < µG and, therefore, we can define the following equivalent norm
of S 1,2(G):

∥u∥µ =
( ∫
G

(|∇Gu|2 − µ
ψ2(ξ)|u|2

d(ξ)2 )dξ
) 1

2
.

Additionally, according to Folland and Stein [26], the following Sobolev-type inequality holds:

S
( ∫
G

|u|2
∗

dξ
) 2

2∗
≤

∫
G

|∇Gu|2dξ, ∀u ∈ C∞0 (G), (1.7)

where the best constant in (1.7) is achieved; refer to [27, 28]. However, only the explicit form of the
minimizers is known for the Iwasawa-type group class. For α ∈ [0, 2), from (1.6) and (1.7), the following
Sobolev-Hardy inequality holds: There exists a positive constant C(Q, α), depending on Q and α, such that

( ∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ

) 2
2∗(α)
≤ C(Q, α)

∫
G

|∇Gu|2dξ, ∀u ∈ C∞0 (G). (1.8)

The energy functional related to (1.5) takes the following form:

Φ(u) =
1
2

∫
G

(|∇Gu|2 − µ
ψ2(ξ)|u|2

d(ξ)2 )dξ −
1
p

∫
G

|u|pdξ −
1

2∗(α)

∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ. (1.9)

Using the previously mentioned inequalities (1.6) and (1.8), it is straghtforward to show that the
functional Φ is well-defined in S 1,2(G) and I ∈ C1(S 1,2(G),R). A function u ∈ S 1,2(G) is said to be a
nontrivial solution of (1.5) if u , 0, and ⟨Φ′(u), ϕ⟩ = 0 for all ϕ ∈ S 1,2(G), where Φ′(u) denotes the
Fréchet derivative of functional Φ at u.

Now, we can state our result.

Theorem 1.1. Let α ∈ (0, 2) and µ ∈ (−∞, µG). If u ∈ S 1,2(G) is a weak solution of (1.5) where
1 < p < 2∗, then u ≡ 0.

The result of Theorem 1.1 tells us that we need to discuss the existence of solutions to the Eq (1.5) at
p = 2∗. The conclusion is as follows:
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Theorem 1.2. Let Q ≥ 3, α ∈ (0, 2), µ ∈ [0, µG), and p = 2∗. Then, there exists a weak nontrivial
solution u ∈ S 1,2(G) to problem (1.5).

Furthermore, continuing in the same spirit as problem (1.5) with p = 2∗, we consider the following
subelliptic system with critical homogeneous terms

− ∆Gu − µ
ψ2(ξ)u
d(ξ)2 =

λ

2∗
Hu(u, v) +

η

2∗(α)
ψα(ξ)Qu(u, v)

d(ξ)α
, ξ ∈ G,

− ∆Gv − µ
ψ2(ξ)v
d(ξ)2 =

λ

2∗
Hv(u, v) +

η

2∗(α)
ψα(ξ)Qv(u, v)

d(ξ)α
, ξ ∈ G,

(1.10)

where λ > 0, η > 0, Hu, Hv, Qu, and Qv are the partial derivatives of the 2-variable C1-functions H(u, v)
and Q(u, v), respectively.

Before stating our result, we need the following assumptions.

(H1) Hu(u, 0) = Hu(0, v) = Hv(u, 0) = Hv(0, v) = Qu(u, 0) = Qu(0, v) = Qv(u, 0) = Qv(0, v) = 0, where
u, v ∈ R+.

(H2) H ∈ C1(R+ × R+,R+) and Q ∈ C1(R+ × R+,R+) are positively homogeneous of degrees 2∗ and
2∗(α), respectively, i.e., H(tu, tv) = t2∗H(u, v) and Q(tu, tv) = t2∗(α)Q(u, v) hold for all t ≥ 0 and u,
v ∈ R+.

Now, we work on the product space W = S 1,2(G) × S 1,2(G) with respect to the norm ∥(u, v)∥ =
(∥u∥2µ + ∥v∥

2
µ)

1
2 , and get the following existence result for system (1.10).

Theorem 1.3. Suppose that µ ∈ [0, µG), α ∈ (0, 2), λ > 0, η > 0, and (H)1, (H2) hold. Then, the
system (1.10) has a nontrivial weak solution in W.

Remark 1.1. By Theorem 1.3, the existence of solutions to (1.10) is obvious in either of the following
cases: (i) λ = 0, η > 0, α ≥ 0; (ii) λ > 0, η = 0, α ≥ 0; (iii) α = 0, λ > 0, η > 0.

The proof of Theorems 1.2 and 1.3 follow several ideas that have appeared in [1, 3, 6]. However,
since we consider the subelliptic problem on Carnot group G and since problem (1.5) or (1.10) contains
critical nonlinearities in the sense of the Hardy-Sobolev embeddings, it follows that the Hardy-Sobolev
embedding S 1,2(G) ↪→ L2∗(α)(G, ψα

d(z)α dz) (0 ≤ α < 2) is non-compact. This poses several difficulties to
prove that bounded Palais-Smale in Banach space S 1,2(G) have at least a subsequence that converges
strongly to a nontrivial function in this space. Clear enough, the presence of multiple Sobolev critical
nonlinearities also contributes to the difficulties in the proof of the theorem. Based on some estimates
proved by Zhang [15, 16], we managed to overcome these difficulties and prove a refined version of the
concentration-compactness principle.

The article is organized as follows. In Sections 2 and 3, some preliminary results together with our
main results are verified. Meanwhile, for existence of nontrivial weak solutions, Theorems 1.2 and 1.3
will be proved in Sections 4 and 5, respectively.

2. Preliminary results

First, we will provide a brief overview of Carnot groups. For a more comprehensive treatment of
this topic, please reference the monographs [29, 30] and the papers [26, 31]. A Carnot group (G, ◦),
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also known as a stratified Lie group, is defined as a connected, simply connected nilpotent Lie group,
whose Lie algebra g is stratified. Specifically, this means that g can be decomposed as g = ⊕k

i=1Vi, where
[V1,Vi] = Vi+1 for i = 1, · · · k − 1 and [V1,Vk] = {0}. The number k is called the step of the group G. In
this context, the symbol [V1,Vi] represents the subalgebra of g generated by the commutators [X,Y],
where X ∈ V1, Y ∈ Vi and the last bracket denotes the Lie bracket of vector fields, i.e., [X,Y] = XY −YX.

By means of the natural identification of G with its Lie algebra via the exponential map (which
we shall assume throughout), it is reasonable to assume that G is a homogeneous Lie group on
RN = RN1 × RN2 × · · · × RNk , where Ni denotes the dimensionality of Vi, and is equipped with a set of
group-automorphisms called δγ : G→ G. These automorphisms take the form of

δγ(ξ) = δγ(ξ(1), ξ(2), · · · , ξ(k)) = (γ1ξ(1), · · · , γkξ(k)), γ > 0,

where ξ(i) ∈ RNi for i = 1, 2, · · · , k. Here, N =
∑k

i=1 Ni is called the topological dimension of G and δγ
is called the dilations of G. Under these automorphisms {δγ}γ>0, the homogeneous dimension of G is
expressed as Q =

∑k
i=1 i · dimVi. From now on, we will assume that Q ≥ 3 throughout this paper. It is

noteworthy that if Q ≤ 3, G must be the ordinary Euclidean space G = (RQ,+).
Let {X1, · · · , XN1} be a basis of V1, then the second-order differential operator

∆G :=
N1∑
i=1

X2
i

is referred to as a sub-Laplacian on G. We now use the notation of ∇G := (X1, · · · , XN1) to denote the
horizontal gradient, and the divergence with respect to the vector fields X j is defined by

divGh :=
N1∑
j=1

X jh j, ∀h = (h1, h2, · · · , hN1).

The homogeneous norm on G, which conforms to a fixed homogeneous structure, is a continuous
function represented by d : G→ [0,+∞). This function is smooth away from the origin and satisfies
d(δγ(ξ)) = γd(ξ) for γ > 0, d(ξ−1) = d(ξ), d(ξ) = 0 iff ξ = 0. When Q ≥ 3, the function

Γ(ξ) =
C

d(ξ)Q−2 , ∀ξ ∈ G

is a fundamental solution of the sub-Laplacian on Carnot group G with the pole at 0, where C > 0 is a
suitable constant. In addition, the left translation on G is defined by

τξ : G→ G, τξ(ξ′) = ξ ◦ ξ′, ∀ξ, ξ′ ∈ G,

and we can verify that ∇G and ∆G satisfy the following results:

∇G(u ◦ τz) = ∇Gu ◦ τz, ∇G(u ◦ δγ) = γ∇Gu ◦ δγ,

∆G(u ◦ τz) = ∆Gu ◦ τz, ∆G(u ◦ δγ) = γ2∆Gu ◦ δγ.

The k (k ≥ 2)-step Carnot group G and the Euclidean space RN differ in numerous essential ways. For
instance, the basis level vector field on G is noncommutative, meaning that there exist 1 ≤ i, j ≤ m such
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that the Poisson bracket [Vi,V j] , 0. In constrast, RN is an exchange group with a step number 1, which
means that for any i, j = 1, 2, · · · , dim(V1), whose Poisson brackets satisfy [ ∂

∂xi
, ∂
∂x j

] = 0. Therefore,
there are several significant differences between the operator on Carnot group and on the Euclidean
space. For example, the Laplace operator on G is ∆G =

∑dim(V1)
i=1 X2

i , which is a point-by-point degenerate
elliptic operator. In contrast, the Laplace operator on RN , ∆ =

∑N
i=1

∂2

∂x2
i

is a uniformly elliptic operator.
Therefore, the study of partial differential equations on the Carnot group is of theoretical importance.

By (1.6) and (1.8), the following best Hardy-Sobolev constant is well-defined:

S µ,α = inf
u∈S 1,2(G)\{0}

∫
G

(|∇Gu|2(ξ) − µψ
2 |u|2

d(ξ)2 )dξ( ∫
G

ψα(ξ)|u|2∗(α)

d(ξ)α dξ
) 2

2∗(α)

. (2.1)

For µ ∈ [0, µG), it can be inferred from [15] that S µ,α is achieved by the extremal functions

Uε,µ,α(ξ) = ε−
Q−2

2 Uµ,α(δ 1
ε
(ξ)), ∀ε > 0, (2.2)

where Uµ,α is a ground state solution of

−∆Gu − µ
ψ2(ξ)u
d(ξ)2 =

ψα(ξ)|u|2
∗(α)−2u

d(ξ)α
, ξ ∈ G\{0}. (2.3)

Furthermore, for all ε > 0, the function Uε,µ,α(ξ) solves the Eq (2.3) and satisfies∫
G

(
|∇GUε,µ,α|

2 − µ
ψ2(ξ)|Uε,µ,α|

2

d(ξ)2

)
dξ =

∫
G

ψα(ξ)|Uε,µ,α|
2∗(α)

d(ξ)α
dξ = (S µ,α)

Q−2
2−α .

We note that the explicit form of the Hardy-Sobolev extremals is unknown in any Carnot group, except
for the trivial Euclidean case. However, the pure Sobolev extremals (when µ = α = 0) are known to be
expressed solely in the Iwasawa-type group, as seen in [27, 32].

For µ ∈ (−∞, µG) and α ∈ (0, 2), (H2) shows that the following best Hardy-Sobolev constants are
well-defined:

S H(µ, 0) = inf
(u,v)∈W\{(0,0)}

∫
G

(|∇Gu|2 + |∇Gv|2 − µψ
2(ξ)(|u|2+|v|2)

d(ξ)2 )dξ

(
∫
G

H(u, v)dξ)
2

2∗
, (2.4)

S Q(µ, α) = inf
(u,v)∈W\{(0,0)}

∫
G

(|∇Gu|2 + |∇Gv|2 − µψ
2(ξ)(|u|2+|v|2)

d(ξ)2 )dξ

(
∫
G

ψαQ(u,v)
d(ξ)α dξ)

2
2∗(α)

. (2.5)

These constants are crucial for the study of (1.10); we then have the following result.

Theorem 2.1. Assume that α ∈ (0, 2), µ ∈ (−∞, µG), and (H2) holds. Then,

(i) S H(µ, 0) = M−1
H S µ,0 and S Q(µ, α) = M−1

Q S µ,α, where MH, MQ are defined by

MH := max{H(u, v)
2

2∗ : (u, v) ∈ R2 and |u|2 + |u|2 = 1}; (2.6)

MQ := max{Q(u, v)
2

2∗(α) : (u, v) ∈ R2 and |u|2 + |u|2 = 1}. (2.7)
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(ii) For µ ∈ [0, µG), S H(µ, 0) has the minimizers (s1Uε,µ,0(ξ), t1Uε,µ,0(ξ)), S Q(µ, α) has the minimizers
(s2Uε,µ,α(ξ), t2Uε,µ,α(ξ)), where Uε,µ,α(ξ) are defined as in (2.2) and (s1, t1), (s2, t2) are constants
given in (2.8), (2.9), respectively.

Now, we study S H(µ, 0), S Q(µ, α) and verify Theorem 2.1. First, we give some preliminary results.

Proposition 2.1. ( [33]) Let H ∈ C1(R × R,R+) and Q ∈ C1(R × R,R+) be positively homogeneous of
degrees 2∗ and 2∗(α), respectively. Then, there exist MH, MQ > 0 such that

H(u, v) ≤ (MH(|u|2 + |v|2))
2∗
2 ,

Q(u, v) ≤ (MQ(|u|2 + |v|2))
2∗(α)

2 ,

where MF and MQ are given in (2.6) and (2.7), respectively. Moreover, there exist (si, ti) ∈ R+ × R+

(i = 1, 2), such that MF and MQ are achieved respectively, that is,

MH = H(s1, t1)
2

2∗ , s2
1 + t2

1 = 1; (2.8)

MQ = Q(s2, t2)
2

2∗(α) , s2
2 + t2

2 = 1. (2.9)

Proof of Theorem 2.1. We only show the proof for S Q(µ, α).
(i) Let {Un} ⊂ S 1,2(G) \ {0} be a minimizing sequence for S µ,α and (s2, t2) be defined as in (2.9).

Choosing (un, vn) = (s2Un, t2Un) in (2.5), we have

(s2
2 + t2

2)
∫
G

(|∇GUn|
2 − µψ

2(ξ)|Un |
2

d(ξ)2 )dξ

|Q(s2, t2)|
2

2∗(α)
( ∫
G

ψα(ξ)|Un |2
∗(α)

d(ξ)α dξ
) 2

2∗(α)

≥ S Q(µ, α). (2.10)

Taking n→ ∞ in (2.10), by (2.9) we have

S Q(µ, α) ≤ M−1
Q S µ,α. (2.11)

On the other hand, let {(un, vn)} ⊂ W\{(0, 0)} be a minimizing sequence for S Q(µ, α). From Q(tu, tv) =
t2∗(α)Q(u, v) and Proposition 4 of [33], we have that∫

G

ψα(ξ)Q(un, vn)
d(ξ)α

dξ =
∫
G

(ψ(ξ)
d(ξ)

) α·2∗(α)
2∗(α) Q(un, vn)dξ

=

∫
G

Q
((ψ(ξ)

d(ξ)

) α
2∗(α) un,

(ψ(ξ)
d(ξ)

) α
2∗(α) vn

)
dξ

≤ Q
(∥∥∥∥∥(ψ(ξ)

d(ξ)

) α
2∗(α) un

∥∥∥∥∥
L2∗(α)(G)

,

∥∥∥∥∥(ψ(ξ)
d(ξ)

) α
2∗(α) vn

∥∥∥∥∥
L2∗(α)(G)

)
. (2.12)

Set

θ :=
[∥∥∥∥(ψ(ξ)

d(ξ)

) α
2∗(α) un

∥∥∥∥2

L2∗(α)(G)
+

∥∥∥∥(ψ(ξ)
d(ξ)

) α
2∗(α) vn

∥∥∥∥2

L2∗(α)(G)

]− 1
2

.

Then, ∥∥∥∥θ(ψ(ξ)
d(ξ)

) α
2∗(α) un

∥∥∥∥2

L2∗(α)(G)
+

∥∥∥∥θ(ψ(ξ)
d(ξ)

) α
2∗(α) vn

∥∥∥∥2

L2∗(α)(G)
= 1. (2.13)
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From (2.1), (2.12), (2.13), and (2.9), it follows that∫
G

(|∇Gun|
2 + |∇Gvn|

2 − µψ
2(ξ)(|un |

2+|vn |
2)

d(ξ)2 )dξ

(
∫
G

ψα(ξ)Q(un,vn)
d(ξ)α dξ

) 2
α+β

≥ S µ,α

(
∫
G

ψα(ξ)|un |
2∗(α)

d(ξ)α dξ)
2

2∗(α) + (
∫
G

ψα(ξ)|vn |
2∗(α)

d(ξ)α dξ)
2

2∗(α)[
Q

(∥∥∥∥(ψ(ξ)
d(ξ) )

α
2∗(α) un

∥∥∥∥
L2∗(α)(G)

,
∥∥∥∥(ψ(ξ)

d(ξ) )
α

2∗(α) vn

∥∥∥∥
L2∗(α)(G)

)] 2
2∗(α)

= S µ,α

∥∥∥∥(ψ(ξ)
d(ξ) )

α
2∗(α) un

∥∥∥∥2

L2∗(α)(G)
+

∥∥∥∥(ψ(ξ)
d(ξ) )

α
2∗(α) vn

∥∥∥∥2

L2∗(α)(G)[
Q

(∥∥∥∥(ψ(ξ)
d(ξ) )

α
2∗(α) un

∥∥∥∥
L2∗(α)(G)

,
∥∥∥∥(ψ(ξ)

d(ξ) )
α

2∗(α) vn

∥∥∥∥
L2∗(α)(G)

)] 2
2∗(α)

(2.14)

= S µ,α

∥∥∥∥θ(ψ(ξ)
d(ξ) )

α
2∗(α) un

∥∥∥∥2

L2∗(α)(G)
+

∥∥∥∥θ(ψ(ξ)
d(ξ) )

α
2∗(α) vn

∥∥∥∥2

L2∗(α)(G)[
Q

(∥∥∥∥θ(ψ(ξ)
d(ξ) )

α
2∗(α) un

∥∥∥∥
L2∗(α)(G)

,
∥∥∥∥θ(ψ(ξ)

d(ξ) )
α

2∗(α) vn

∥∥∥∥
L2∗(α)(G)

)] 2
2∗(α)

≥
1

|Q(α2, β2)|
2

2∗(α)

S µ,α = M−1
Q S µ,α.

Passing to the limit in the above inequality (2.14), we have

M−1
Q S µ,α ≤ S Q(µ, α),

which together with (2.11) implies that

S Q(µ, α) = M−1
Q S µ,α.

(ii) From (i), (2.4), and (2.5), the desired result follows. □

3. Nonexistence result when p < 2∗

In order to prove Theorem 1.1, we first establish it under an additional assumption.

Proposition 3.1. Let α ∈ (0, 2) and µ ∈ (−∞, µG). If u ∈ Lp(G) is a weak solution of (1.5) with
p ∈ (1, 2∗), then u ≡ 0.

Proof. Let ϕ, ζ ∈ C1(G, [0, 1]) and satisfy ϕ(t) = 1 for t ≥ 2, ζ(t) = 1 for t ≤ 1. Let ηε,R(ξ) = ϕε(ξ)ζR(ξ)
for ε > 0 and R > 0, where

ϕε(ξ) = ϕ(
d(ξ)
ε

), ζR(ξ) = ζ(
d(ξ)

R
).

Let u ∈ S 1,2(G) be a weak solution of (1.5) with 1 < p < 2∗. Then, u is smooth away from the origin
and Zuηε,R ∈ C1

0(G). By multiplying the Eq (1.5) with Zuηε,R and integrating by parts, we get

−

∫
G

∆u · Zuηε,Rdξ = µ
∫
G

ψ2(ξ)u
d(ξ)2 Zuηε,Rdξ +

∫
G

ψα(ξ)|u|2
∗(α)−2u

d(ξ)α
Zuηε,Rdξ +

∫
G

|u|p−2uZuηε,Rdξ.

(3.1)
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Proceeding similarly as proved in [14, Theorem 4.1], we can show that

lim
R→∞

lim
ε→0

LHS of (3.1) = −
Q − 2

2

∫
G

|∇Gu|2dξ. (3.2)

and

lim
R→∞

lim
ε→0

RHS of (3.1) = −
Q − 2

2
µ

∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ −
Q − 2

2

∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ

−
Q
p

∫
G

|u|pdξ.
(3.3)

Therefore, substituting back (3.3) and (3.2) in (3.1), we obtain

Q − 2
2

(∫
G

|∇Gu|2dξ − µ
∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ −
∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ

)
=

Q
p

∫
G

|u|pdξ. (3.4)

On the other hand, since u ∈ Lp(G) is a solution of (1.5), we have∫
G

|∇Gu|2dξ = µ
∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ +
∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ +

∫
G

|u|pdξ,

which together with (3.4) implies that(
Q − 2

2
−

Q
p

) ∫
G

|u|pdξ = 0. (3.5)

As p < 2∗, i.e., Q−2
2 −

Q
p < 0, (3.5) implies u ≡ 0. This completes the proof. □

Proof of Theorem 1.1. According to Proposition 3.1, once we prove u ∈ Lp(G), the proof of Theorem 1.1
follows.

Now, let ηε,R ∈ C∞0 (G \ {0}) be a cutoff function as in the proof of Proposition 3.1. Choosing ηε,Ru as
the test function, we get∫

G

∇Gu∇G(ηε,Ru)dξ = µ
∫
G

ψ2(ξ)|u|2ηε,R
d(ξ)2 dξ +

∫
G

ψα(ξ)|u|2
∗(α)ηε,R

d(ξ)α
dξ +

∫
G

|u|pηε,Rdξ. (3.6)

Hence,∫
G

|u|pηε,Rdξ ≤ µ
∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ +
∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ +

∫
G

|∇Gu|2dξ +
∫
G

|u||∇Gu||∇Gηε,R|dξ. (3.7)

Since u ∈ S 1,2(G), there exists a constant C > 0 such that
∫
G
|∇Gu|2dξ ≤ C. Then, based on

the Hardy inequality and the Sobolev-Hardy inequality, we can conclude that
∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ ≤ C1 and∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α dξ ≤ C2, where C1 > 0 and C2 > 0 are constants. In order to prove u ∈ Lp(G), our aim is to
show that

∫
G
|u||∇Gu||∇Gηε,R|dξ are uniformly bounded by a constant independent of ε and R. To see this,∫

G

|u||∇Gu||∇Gηε,R|dξ =
∫
G

|u||∇Gu||ζR∇Gϕε + ϕε∇GζR|dξ

≤

∫
ε≤d(ξ)≤2ε

|u||∇Gu|
c|∇Gd(ξ)|
|ε|

dξ +
∫

R≤d(ξ)≤2R
|u||∇Gu|

c|∇Gd(ξ)|
R

dξ

= 2c
∫
ε≤d(ξ)≤2ε

|u||∇Gu|
ψ(ξ)
d(ξ)

dξ + 2c
∫

R≤d(ξ)≤2R
|u||∇Gu|

ψ(ξ)
d(ξ)

dξ.

(3.8)
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Here, we use the fact that 1
ε
≤ 2

d(ξ) in the first integral and 1
R ≤

2
d(ξ) in the second integral. By the Hölder

inequality and the Hardy-Sobolev inequality, for u ∈ S 1(G), there exist C1, C2 > 0 such that∫
ε≤d(ξ)≤2ε

|u||∇Gu|
ψ(ξ)
d(ξ)

dξ ≤
∫
G

ψ(ξ)|u|
d(ξ)

|∇Gu|dξ

≤

(∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ
) 1

2
(∫
G

|∇Gu|2dξ
) 1

2

≤ C1 < +∞,

(3.9)

and ∫
R≤d(ξ)≤2R

|u||∇Gu|
ψ(ξ)
d(ξ)

dξ ≤
∫
G

ψ(ξ)|u|
d(ξ)

|∇Gu|dξ

≤

(∫
G

ψ2(ξ)|u|2

d(ξ)2 dξ
) 1

2
(∫
G

|∇Gu|2dξ
) 1

2

≤ C2 < +∞.

(3.10)

So, from (3.9), (3.10), (3.8), and (3.7), we get
∫
G
|u|pηε,Rdξ ≤ C, where C is a positive constant

independent of ε and R. Therefore, letting ε → 0 and R → ∞, we obtain that u ∈ Lp(G). Hence, the
Theorem 1.1 follows. □

4. Proof of Theorem 1.2

This section is devoted to proving the Theorem 1.2. To begin with, we use the following mountain
pass lemma of Ambrosetti and Rabinowitz [34] to prove Theorem 1.2.

Lemma 4.1. Let (E, ∥ · ∥E) be a Banach space and I ∈ C1(E,R), satisfying the following conditions:

(i) I(0) = 0.
(ii) There exist a > 0, R > 0 such that I(u) ≥ a for all u ∈ E with ∥u∥E = R.

(iii) There exists u0 ∈ E\{0} such that lim supt→∞ I(tu0) < 0.

Let t0 > 0 be a real number such that ∥t0u0∥E > R and I(t0u0) < 0. Define

c := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

where
Γ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = t0u0}.

Then, c ≥ a > 0 and there exists a (PS )-sequence {un} ⊂ E for I at the level c, i.e.,

lim
n→∞

I(un) = cu, lim
n→∞

I′(un) = 0 strongly in E′.

Proposition 4.1. Let µ ∈ [0, µG), α ∈ (0, 2), and p = 2∗. Then, there is a (PS )-sequence {un} ⊂ S 1,2(G)
for Φ at some c ∈ (0, c∗), i.e.,

lim
n→∞
Φ(un) = c and lim

n→∞
Φ′(un) = 0 strongly in (S 1,2(G))′,

where

c∗ := min
{ 1
Q

(S µ,0)
Q
2 ,

2 − α
2(Q − α)

(S µ,α)
Q−α
2−α

}
. (4.1)
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The proof of Proposition 4.1 follows from the next results.

Lemma 4.2. The energy functional Φ verifies the hypotheses of Lemma 4.1 for any u ∈ S 1,2(G)\{0}.

Proof. Clearly, Φ ∈ C1(S 1,2(G),R) and Φ(0) = 0. By (2.1), we have

Φ(u) ≥
1
2
∥u∥2µ −

1

2∗(S µ,0)
2∗
2

∥u∥2
∗

µ −
1

2∗(α)(S µ,α)
2∗(α)

2

∥u∥2
∗(α)
µ

=
(1
2
−
∥u∥2

∗−2
µ

2∗(S µ,0)
2∗
2

−
∥u∥2

∗(α)−2
µ

2∗(α)(S µ,α)
2∗(α)

2

)
∥u∥2µ.

(4.2)

Since 2∗ > 2 and 2∗(α) > 2 for all α ∈ (0, 2), there exist R > 0 and a > 0 such that Φ(u) ≥ a for all
u ∈ S 1,2(G) with ∥u∥µ = R small enough.

Let u0 ∈ S 1,2(G)\{0}. For t > 0, we have

Φ(tu0) :=
t2

2
∥u0∥

2
µ −

t2∗

2∗

∫
G

|u0|
2∗dξ −

t2∗(α)

2∗(α)

∫
G

ψα(ξ)|u0|
2∗(α)

d(ξ)α
dξ,

which implies that Φ(tu0) → −∞ as t → +∞. So, there exists tu0 > 0 such that ∥tu0u0∥µ > R and
Φ(tu0) < 0 for all t > tu0 .

Now, we can define
cu0 := inf

γ∈Γu0

sup
t∈[0,1]
Φ(γ(t)),

where Γu0 := {γ ∈ C([0, 1], S 1,2(G)) : γ(0) = 0 and γ(1) = tu0u0}. Consequently, Φ possesses the
hypotheses of Lemma 4.1. □

From Lemmas 4.1 and 4.2 , for u ∈ S 1,2(G) \ {0}, we define

cu := inf
γ∈Γu

sup
t∈[0,1]
Φ(γ(t)),

where
Γu := {γ ∈ C([0, 1], S 1,2(G)) : γ(0) = 0 and γ(1) = tuu}.

Then, cu ≥ a > 0 for u ∈ S 1,2(G) \ {0}, and there is a (PS )-sequence {un} ⊂ S 1,2(G)\{0} for Φ at level cu,
that is,

lim
n→∞
Φ(un) = cu and lim

n→∞
Φ′(un) = 0 strongly in (S 1,2(G))′.

Lemma 4.3. Let µ ∈ [0, µG), α ∈ (0, 2), and p = 2∗. Then, there exists a u ∈ S 1,2(G) \ {0} such that
0 < cu < c∗, where c∗ is defined in (4.1).

Proof. Let u(ξ) = Uε,µ,0(ξ) be the extremal function of S µ,0 as in (2.2). By the definition of cu, we get

0 < cu ≤ sup
t≥0
Φ(tu) ≤ sup

t≥0
f (t), (4.3)

where f : R+ → R is defined by

f (t) :=
t2

2
∥u∥2µ −

t2∗

2∗

∫
G

|u|2
∗

dξ.
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Note that

sup
t≥0

f (t) =
1
Q

 ∥u∥2µ
(
∫
G
|u|2∗dξ)

1
2∗


2∗

2∗−2

=
1
Q

(S µ,0)
Q
2 ,

this and (4.3) imply that

0 < cu ≤
1
Q

(S µ,0)
Q
2 .

Now, we will show that the equality does not hold in (4.3). Otherwise, we would have that
supt≥0Φ(tu) ≤ supt≥0 f (t). Let t1, t2 > 0 where supt≥0Φ(tu) and supt≥0 f (t) are attained, respectively.
We get

f (t2) = Φ(t1u) = f (t1) −
t2∗(α)
1

2∗(α)

∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ,

which implies that f (t2) < f (t1) since u , 0 and t1 > 0. This contradicts the fact that t2 is the unique
maximum point of f . Thus,

cu ≤ sup
t≥0
Φ(tu) < sup

t≥0
f (t) =

1
Q

(S µ,0)
Q
2 .

Similarly,

cu ≤ sup
t≥0
Φ(tu) < sup

t≥0

( t2

2
∥u∥2µ −

t2∗(α)

2∗(α)

∫
G

ψα(ξ)|u|2
∗(α)

d(ξ)α
dξ

)
=

2 − α
2(Q − α)

(S µ,α)
Q−α
2−α .

This completes the proof of Lemma 4.3. □

Proof of Proposition 4.1. From Lemmas 4.1, 4.2, and 4.3, it follows the conclusions of Proposition 4.1
for a suitable u ∈ S 1,2(G)\{0}. □

Proposition 4.2. Let µ ∈ [0, µG), α ∈ (0, 2), and p = 2∗, and let {un} ⊂ S 1,2(G) be a (PS )c-sequence at
some c ∈ (0, c∗). If un ⇀ 0 weakly in S 1,2(G) as n→ ∞, then there exists ε0 > 0 such that for r > 0, one
of the following limits is valid:

lim
n→∞

∫
B d(0,r)

|un|
2∗dξ = 0, or lim

n→∞

∫
Bd(0,r)

|un|
2∗dξ ≥ ε0,

where Bd(0, r) denotes the ball with center at 0 and radius r with respect to the gauge d.

Lemma 4.4. Let µ ∈ [0, µG), α ∈ (0, 2), and p = 2∗, and let {un} be a (PS )c-sequence for Φ with
c ∈ (0, c∗). If un ⇀ 0 in S 1,2(G) as n → ∞, then for every compact subset Ω ⊂⊂ G \ {0}, up to a
subsequence, we have

lim
n→∞

∫
Ω

ψ2(ξ)|un|
2

d(ξ)2 dξ = 0, lim
n→∞

∫
Ω

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ = 0, (4.4)

and
lim
n→∞

∫
Ω

|∇Gun|
2dξ = 0, lim

n→∞

∫
Ω

|un|
2∗dξ = 0. (4.5)
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Proof. Let Ω ⊂⊂ G \ {0} be a fixed compact subset. Since the embedding S 1,2(G) ↪→ Lp(Ω) is compact
for any p ∈ [1, 2∗), and ψ2(ξ)

d(ξ)2 , ψα(ξ)
d(ξ)α are bounded on Ω, (4.4) follows at once being 2∗(α) < 2∗ and un ⇀ 0

in S 1,2(G).
Now, we verify (4.5). Arguing as the proof of Proposition 2 in [1], let ϕ ∈ C∞0 (G \ {0}) be a cutoff

function satisfying suppϕ ⊂⊂ G \ {0}, 0 ≤ ϕ ≤ 1, and ϕ = 1 for all z ∈ Ω. Then, from (4.4) we have

on(1) = ⟨Φ′(un), ϕ2un⟩

=

∫
G

∇Gun∇G(ϕ2un)dξ − µ
∫
G

ϕ2ψ
2(ξ)|un|

2

d(ξ)2 dξ −
∫
G

ϕ2|un|
2∗dξ −

∫
G

ϕ2ψ
α(ξ)|un|

2∗(α)

d(ξ)α
dξ

=

∫
G

ϕ2|∇Gun|
2dξ +

∫
G

2ϕun∇Gun∇Gϕdξ −
∫
G

ϕ2|un|
2∗dξ

=

∫
G

|∇G(ϕun)|2dξ −
∫
G

|un∇Gϕ|
2dξ −

∫
G

ϕ2|un|
2∗dξ,

(4.6)

where on(1). From now on, it is such that on(1)→ 0 as n→ ∞. By the Hölder inequatity and un ⇀ 0 in
S 1,2(G), we have

lim
n→∞

∫
G

|un∇Gϕ|
2dξ = lim

n→∞

∫
suppϕ
|un∇Gϕ|

2dξ = 0. (4.7)

Combining with (4.6) and (4.7), there holds∫
G

|∇G(ϕun)|2dξ =
∫
G

ϕ2|un|
2∗dξ + on(1)

=

∫
G

|un|
2∗−2(ϕ2|un|

2)dξ + on(1)

≤
( ∫
G

|un|
2∗dξ

) 2∗−2
2∗

( ∫
G

|ϕun|
2∗dξ

) 2
2∗
+ on(1)

≤
( ∫
G

|un|
2∗dξ

) 2∗−2
2∗ 1

S µ,0

∫
G

|∇G(ϕun)|2dξ + on(1),

that is, (
1 −

1
S µ,0

( ∫
G

|un|
2∗dξ

) 2∗−2
2∗

) ∫
G

|∇G(ϕun)|2dξ ≤ on(1). (4.8)

On the other hand,

c + on(1) = Φ(un) −
1
2
⟨Φ′(un), un⟩

=
(1
2
−

1
2∗

) ∫
G

|un|
2∗dξ +

(1
2
−

1
2∗(α)

) ∫
G

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ

≥
1
Q

∫
G

|un|
2∗dξ,

(4.9)

which yields that ∫
G

|un|
2∗dξ ≤ cQ + on(1), (4.10)
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Consequently, this together with (4.8) implies that(
1 −

(cQ)
2∗−2

2∗

S µ,0

) ∫
G

|∇G(ϕun)|2dξ ≤ on(1). (4.11)

If lim
n→∞

∫
G
|∇G(ϕun)|2dξ , 0, it follows from (4.11) that

c ≥
1
Q

(S µ,0)
2∗

2∗−2 =
1
Q

(S µ,0)
Q
2 ≥ c∗.

Then, we have lim
n→∞

∫
G
|∇G(ϕun)|2dξ = 0, which this and ϕ|Ω = 1 imply that

lim
n→∞

∫
Ω

|∇Gun|
2dξ = 0

Therefore, the above equality and Sobolev embedding yield lim
n→∞

∫
Ω
|un|

2∗dξ = 0, and Lemma 4.4 is proved.
□

Remark 4.1. From (4.9), we will get that∫
G

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ ≤

2(Q − α)
2 − α

c + on(1).

Let r > 0 be fixed. From Lemma 4.4, the following quantities are well-defined:

β := lim sup
n→∞

∫
Bd(0,r)

(|∇Gun|
2 − µ

ψ2(ξ)|un|
2

d(ξ)2 )dξ;

γ := lim sup
n→∞

∫
Bd(0,r)

|un|
2∗dξ;

ν := lim sup
n→∞

∫
Bd(0,r)

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ.

(4.12)

Lemma 4.5. Let {un} ⊂ S 1,2(G) be a (PS )c-sequence for Φ with c ∈ (0, c∗). If un ⇀ 0 in S 1,2(G) as
n→ ∞, then

S µ,0 · γ
2

2∗ ≤ β, S µ,α · ν
2

2∗(α) ≤ β, and β ≤ γ + ν. (4.13)

Proof. Let ϕ ∈ C∞0 (G) be a cutoff function such that 0 ≤ ϕ ≤ 1 and ϕ|Bd(0,r) ≡ 1. Then,

S µ,0

( ∫
G

|ϕun|
2∗dξ

) 2
2∗
≤ ∥ϕun∥

2
µ.

As n→ ∞, Lemma 4.4 implies that

S µ,0

( ∫
Bd(0,r)

|un|
2∗dξ

) 2
2∗
≤

∫
Bd(0,r)

(|∇Gun|
2 − µ

ψ2(ξ)|un|
2

d(ξ)2 )dξ + on(1).

Consequently, S µ,0 · γ
2

2∗ ≤ β. The second inequality in (4.13) can be verified similarly.
Notice that ϕun ∈ S 1,2(G) and lim

n→∞
⟨Φ′(un), ϕun⟩ = 0. Via a similar argument as in (4.6), we get that

on(1) =
∫
G

ϕ|∇Gun|
2dξ − µ

∫
G

ϕ
ψ2(ξ)|un|

2

d(ξ)2 dξ −
∫
G

ϕ|un|
2∗dξ −

∫
G

ϕ
ψα(ξ)|un|

2∗(α)

d(ξ)α
dξ,

and the definitions of ϕ and (4.12) deduce that β ≤ γ + ν. Lemma 4.5 is verified. □
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Proof of Proposition 4.2. From (4.13), it follows that S µ,0 · γ
2

2∗ ≤ β ≤ γ + ν, which implies that
S µ,0 · γ

2
2∗ − γ ≤ ν, that is,

γ
2

2∗ (S µ,0 − γ
1− 2

2∗ ) ≤ ν. (4.14)

On the other hand, from (4.10) and c < c∗, we have that

γ ≤ cQ < c∗Q ≤ (S µ,0)
Q
2 = (S µ,0)

1
1− 2

2∗ .

So, S µ,0 − γ
1− 2

2∗ > 0, namely, there is a constant C1 = C1(µ, c,Q) > 0 such that

γ
2

2∗ ≤ C1ν. (4.15)

Similarly,
ν

2
2∗(α) ≤ C2γ, (4.16)

for some constant C2 = C2(µ, c, α,Q) > 0. Then, combining with (4.15) and (4.16), there holds

either γ = ν = 0, or min{γ, ν} ≥ ε0,

where ε0 = ε0(Q, µ, α) is a positive constant. This completes the proof of Proposition 4.2. □

Remark 4.2. The Proposition 4.2 states that every (PS )c-sequence {un} ⊂ S 1,2(G) for Φ with c ∈ (0, c∗)
such that un ⇀ 0 weakly in S 1,2(G) as n→ ∞ verifies one of the following limits:

lim
n→∞

∫
Bd(0,r)

|un|
2∗dξ = 0 or lim

n→∞

∫
Bd(0,r)

|un|
2∗dξ ≥ ε0 > 0

with arbitrary r > 0 and a constant ε0 independent on r.

Proof of Theorem 1.2. Let {un} be a (PS )c-sequence for Φ with c ∈ (0, c∗) such that un ⇀ 0 in S 1,2(G)
as n→ ∞. Then, we have that

∥un∥
2
µ =

∫
G

|un|
2∗dξ +

∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ + on(1), (4.17)

and
c + on(1) = Φ(un) −

1
2
⟨Φ′(un), un⟩

=
1
Q

∫
G

|un|
2∗dξ +

2 − α
2(Q − α)

∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ.

(4.18)

Now, we claim that lim sup
n→∞

∫
G
|un|

2∗dξ > 0. Arguing by contradiction, we assume that
∫
G
|un|

2∗dξ =

on(1). Then, (4.17) and (4.18) imply that

∥un∥
2
µ =

∫
G

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ + on(1), (4.19)

c + on(1) = Φ(un) −
1
2
⟨Φ′(un), un⟩ =

2 − α
2(Q − α)

∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ. (4.20)
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From (4.19) and the definition of S µ,α, we get that

S µ,α

( ∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ

) 2
2∗(α)
≤ ∥un∥

2
µ =

∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ + o(1),

that is, ( ∫
G

ψα(ξ)|un|
2∗(α)

d(ξ)α
dξ

) 2
2∗(α)

(
S µ,α −

( ∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ

) 2∗(α)−2
2∗(α)

)
≤ on(1). (4.21)

On the other hand, (4.20) and c < c∗ yield that∫
G

ψα(ξ)
|un|

2∗(α)

d(ξ)α
dξ <

2(Q − α)
2 − α

c∗ + on(1) ≤ (S µ,α)
2∗(α)

2∗(α)−2 + on(1), (4.22)

which together with (4.21) implies that
∫
G
ψα(ξ) |un |

2∗(α)

d(ξ)α dξ = on(1), a contradiction with (4.18) and c > 0.
Set ε1 = min{ ε0

2 , lim sup
n→∞

∫
G
|un|

2∗dξ}, where ε0 is given in Proposition 4.2. Let ε ∈ (0, ε1). From

Proposition 4.2 up to a subsequence still denoted by {un}, for n ∈ N, there exists rn > 0 such that∫
Bd(0,rn)

|un|
2∗dξ = ε, ∀ n ∈ N. (4.23)

Let ûn(ξ) = r
Q−2

2
n un(δrn(ξ)). Then, ûn ∈ S 1,2(G) satisfies∫

Bd(0,1)
|̂un|

2∗dξ =
∫

Bd(0,rn)
|un|

2∗dξ = ε, ∀n ∈ N. (4.24)

Moreover, it is easy to see that {̂un} is again a (PS )-sequence of the type given in Proposition 4.2. So,
we have that

c + on(1) = Φ(̂un) −
1

2∗(α)
⟨Φ′(̂un), ûn⟩ ≥

(
1
2
−

1
2∗(α)

)
∥̂un∥

2
µ,

which implies that {̂un} is bounded in S 1,2(G). Then, up to a subsequence, there exists û ∈ S 1,2(G) such
that ûk ⇀ û weakly in S 1,2(G), L2∗(α)(G, ψ

α(ξ)
d(ξ)α dξ), and L2∗(G) as n→ +∞. So, for any ϕ ∈ S 1,2(G), we have

on(1) = ⟨Φ′(̂un), ϕ⟩

=

∫
G

∇Gûn∇Gϕdξ − µ
∫
G

ψ2(ξ)
ûnϕ

d(ξ)2 dξ −
∫
G

|̂un|
2∗−2ûnϕdξ −

∫
G

ψα(ξ)
|̂un|

2∗(α)−2ûnϕ

d(ξ)α
dξ

= on(1) +
∫
G

∇Gû∇Gϕdξ − µ
∫
G

ψ2(ξ)
ûϕ

d(ξ)2 dξ −
∫
G

|̂u|2
∗−2ûϕdξ −

∫
G

ψα(ξ)|̂u|2
∗(α)−2ûϕ

d(ξ)α
dξ

= ⟨Φ′(̂u), ϕ⟩ + on(1),

which concludes that û ∈ S 1,2(G) is a solution of problem (1.5). In addition, if û ≡ 0, Proposition 4.2
implies that either

lim
n→∞

∫
Bd(0,1)

|̂un|
2∗dξ = 0, or lim

n→∞

∫
Bd(0,1)

|̂un|
2∗dξ ≥ ε0,

which contradicts (4.24) as 0 < ε < ε0
2 . Then, û , 0 and the proof of Theorem 1.2 is complete. □
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5. Proof of Theorem 1.3

In this section, we show that system (1.10) has a nontrivial weak solution. Observe that the
corresponding functional of (1.10) can be written as

I(u, v) =
1
2

∫
G

[
|∇Gu|2 + |∇Gv|2 − µ

ψ2(ξ)(|u|2 + |v|2)
d(ξ)2

]
dξ −

λ

2∗

∫
G

H(u, v)dξ −
η

2∗(α)

∫
G

ψα(ξ)Q(u, v)
d(ξ)α

dξ.

By the standard arguments, we can verify I ∈ C1(W,R). A critical point of functional I in W is a
weak solution to (1.10). We say that a pair of functions (u, v) ∈ W is a nontrivial solution of (1.10) if
(u, v) , (0, 0) and ⟨I′(u, v), (ϕ1, ϕ2)⟩ = 0 for all (ϕ1, ϕ2) ∈ W.

We point out that the proof of Lemma 4.2 provides us with a tool to show that the functional I has a
mountain pass geometrical, that is,

(i) I(0, 0) = 0
(ii) There exist R, ρ > 0 such that I(u, v) ≥ ρ > 0 for (u, v) ∈ W\{(0, 0)} with ∥(u, v)∥W = R.

(iii) There exists (u0, v0) ∈ W\{(0, 0)} such that lim
t→∞

I(t(u0, v0)) < 0.

Define
c := inf

γ∈Γ
sup

t∈[0,1]
I(γ(t)) ≥ ρ > 0.

where Γ := {γ ∈ C([0, 1],W) : γ(0) = 0 and I(γ(1)) < 0}. Then, there exists a sequence {(un, vn)} ⊂ W
such that

lim
n→∞

I(un, vn) = c, lim
n→∞

I′(un, vn) = 0 strongly in W−1,

where c ∈ (0, c∗∗) and

c∗∗ := min
{ 1
Q
λ

2−Q
2 S H(µ, 0)

Q
2 ,

2 − α
2(Q − α)

η
2−Q
2−α S Q(µ, α)

Q−α
2−α

}
.

Proposition 5.1. Let {(un, vn)} ⊂ W be a (PS )c-sequence for I with c ∈ (0, c∗∗). If (un, vn) ⇀ (0, 0)
weakly in W as n→ ∞, then there exists ε̃0 > 0 such that for all r > 0, either

lim
n→∞

∫
Bd(0,r)

H(un, vn)dξ = 0, or lim
n→∞

∫
Bd(0,r)

H(un, vn)dξ ≥ ε̃0.

Proof. The argument used is similar to that of Section 4, and for completeness we give the following
argument. We first show the following results held for any compact subset Ω ⊂ G \ {0}:

lim
n→∞

∫
Ω

ψ2(ξ)|un|
2

d(ξ)2 dξ = lim
n→∞

∫
Ω

ψ2(ξ)|vn|
2

d(ξ)2 dξ = 0, (5.1)

lim
n→∞

∫
Ω

ψα(ξ)Q(un, vn)
d(ξ)α

dξ = 0, (5.2)

lim
n→∞

∫
Ω

(|∇Gun|
2 + |∇Gvn|

2)dξ = 0, (5.3)

lim
n→∞

∫
Ω

H(un, vn)dξ = 0. (5.4)
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Arguing as Lemma 4.4, for Ω ⊂⊂ G \ {0}, (5.1) and (5.2) follow from the properties of the homogeneous
function in Proposition 2.1, the compact embedding S 1,2(G) ↪→ Lp(Ω) for p ∈ [1, 2∗), and the fact that
ψ2(ξ)
d(ξ)2 , ψα(ξ)

d(ξ)α are bounded on Ω\{0}. Thus, it remains to show that (5.3) and (5.4) hold.
Let ϕ ∈ C∞0 (G \ {0}) be a cutoff function such that suppϕ ⊂⊂ G \ {0}, 0 ≤ ϕ ≤ 1, and ϕ|Ω = 1. Note

that the weak convergence of {un} and {vn} in S 1,2(G) implies the boundedness. Then,∫
G

|∇Gun||∇G(ϕ2)||un|dξ ≤ ∥∇Gun∥2∥un∥L2(supp|∇Gϕ|) = on(1),∫
G

|∇Gvn||∇G(ϕ2)||vn|dξ ≤ ∥∇Gvn∥2∥vn∥L2(supp|∇Gϕ|) = on(1),

and ∫
G

(|ϕ∇Gun|
2 + |ϕ∇Gvn|

2)dξ =
∫
G

(|∇G(ϕun)|2 + |∇G(ϕvn)|2)dξ + on(1).

From the latest inequalities and (5.1), (5.2), we get that

on(1) = ⟨I′(un, vn), (ϕ2un, ϕ
2vn)⟩

=

∫
G

(|ϕ∇Gun|
2 + |ϕ∇Gvn|

2)dξ − λ
∫
G

ϕ2H(un, vn)dξ

+

∫
G

|∇Gun||∇G(ϕ2)||un|dξ +
∫
G

|∇Gvn||∇G(ϕ2)||vn|dξ + on(1)

=

∫
G

(|ϕ∇Gun|
2 + |ϕ∇Gvn|

2)dξ − λ
∫
G

ϕ2H(un, vn)dξ + on(1)

=

∫
G

(|∇G(ϕun)|2 + |∇G(ϕvn)|2)dξ − λ
∫
G

ϕ2(H(un, vn)dξ + on(1)

≥ ∥ϕun∥
2
µ + ∥ϕvn∥

2
µ − λ

∫
G

ϕ2H(un, vn)dξ + on(1),

which implies that

∥(ϕun, ϕvn)∥2W

≤ λ

∫
G

ϕ2H(un, vn)dξ + on(1)

≤ λ
( ∫
G

H(un, vn)dξ
) 2∗−2

2∗
( ∫
G

H(ϕun, ϕvn)dξ
) 2

2∗
+ on(1)

≤ λ
( ∫
G

H(un, vn)dξ
) 2∗−2

2∗ S H(µ, 0)−1∥(ϕun, ϕvn)∥2W + on(1),

and, therefore, (
1 − λ

( ∫
G

H(un, vn)dξ
) 2∗−2

2∗ S H(µ, 0)−1
)
∥(ϕun, ϕvn)∥2W ≤ on(1). (5.5)

In addition, since c + on(1) = I(un, vn) − 1
2⟨I
′(un, vn), (un, vn)⟩ ≥ λ

Q

∫
G

H(un, vn)dξ and the upper bounded
on c yields

lim
n→∞
∥(ϕun, ϕvn)∥2W = 0, (5.6)
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Consequently, (5.6) and (2.4) imply that∫
G

H(ϕun, ϕvn)dξ ≤
cQ
λ
+ on(1),

which together with (5.5) implies that

lim
n→∞

∫
G

H(ϕun, ϕvn) = 0.

Then, the definition of ϕ implies that (5.3) and (5.4) hold.
Now, let us define

κ = lim sup
n→∞

∫
Bd(0,r)

(|∇Gun|
2 + |∇Gvn|

2 − µ
ψ2(ξ)(|un|

2 + |vn|
2)

d(ξ)2 )dξ. (5.7)

τ = lim sup
n→∞

∫
Bd(0,r)

H(un, vn)dξ, (5.8)

ω = lim sup
n→∞

∫
Bd(0,r)

ψα(ξ)Q(un, vn)
d(ξ)α

dξ, (5.9)

where r > 0 is fixed. From Lemma 4.5, we can deduce that the above quantities are well-defined and
independent of r. If (un, vn) ⇀ (0, 0) weakly inH as n→ ∞, we have the following results:

S H(µ, 0) · τ
2

2∗ ≤ κ, S Q(µ, t) · ω
2

2∗(t) ≤ κ, and κ ≤ λτ + ηω. (5.10)

From (5.10), it follows that
S H(µ, 0)τ

2
2∗ ≤ κ ≤ λτ + ηω,

which implies that

τ
2

2∗

(
S H(µ, 0) − λτ

2∗−2
2∗

)
≤ ηω. (5.11)

On the other hand, since λ
Q

∫
G

H(un, vn)dξ ≤ c+on(1), we get that λτ ≤ cQ < c∗∗Q < λ
2−Q

2 S H(µ, 0)
2∗

2∗−2 ,
and (5.11) yields that there exists a constant C1 = C1(µ, c, λ, η) > 0 such that

τ
2

2∗ ≤ C1ω. (5.12)

Similarly, there exists C2 = C2(µ, c, α, λ, η) > 0 such that

ω
2

2∗(α) ≤ C2τ. (5.13)

Based on inequalities (5.12) and (5.13), we can find a constant ε̃0 = ε0(Q, µ, c, α) > 0 such that either
τ = ω = 0 or min{τ, ω} ≥ ε̃0. This proves Proposition 5.1. □

Proof of Theorem 1.3. Choosing the sequence {(un, vn)} ⊂ W defined as in Proposition 5.1, proceeding
as in proof of Theorem 1.2, we have lim sup

n→∞

∫
G

H(un, vn)dξ > 0. Then, there exists ε̃1 = min{Λ, ε̃0
2 },

such that for ε ∈ (0, ε̃1), there exists a positive real sequence {rn} such that

ũn = r
Q−2

2
n un(δrn(ξ)), ṽn = r

Q−2
2

n vn(δrn(ξ)) ∈ S 1,2(G)
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is again a (PS )c-sequence of the type given in Proposition 5.1 and satisfies∫
Bd(0,1)

H(̃un, ṽn)dξ = ε, ∀n ∈ N.

Moreover, for the (PS )c sequence {(̃un, ṽn)}, we get

c + on(1) = I (̃un, ṽn) −
1

2∗(α)
⟨I′(̃un, ṽn), (̃un, ṽn)⟩ ≥

(
1
2
−

1
2∗(α)

)
∥(̃un, ṽn)∥2W ,

which implies that {(ũn, ṽn)} is bounded in W. Up to a subsequence, there exist ũ, ṽ ∈ S 1,2(G) such that
ũn ⇀ ũ, ṽn ⇀ ṽ weakly in S 1,2(G) as n → ∞. Similar to the proof of Theorem 1.2, we can show that
(ũ, ṽ) . (0, 0). Thus, there exists a nontrivial weak solution to system (1.10).

□
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