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Abstract: This paper concerns the consensus problem of linear time-invariant multi-agent systems
(MASs) with multiple state delays and communicate delays. Consensus control is widely applied in
spacecraft formation, sensor networks, robotic manipulators, autonomous vehicles, and others. By
introducing a linear transformation, the consensus problem of the delayed MAS under an undirected
network was converted into a robust asymptotic stability problem associated with the eigenvalues of
the normalized Laplacian matrix of the network. By means of the argument principle and optimization
technologies, a numerical controller design method was presented for the delayed MAS to reach
consensus. The effectiveness of the proposed approach was illustrated by some numerical examples.
The proposed approach may be applied to multi-agent systems with distributed delays.
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1. Introduction

Consensus control of MASs is one of the basic problems in the control community, having attracted
considerable attention. The basic idea of the consensus control problem is to design a distributed
protocol for each agent by using the information of the agent and its neighbors such that all the agents
in the network asymptotically reach a common value [1]. In recent years, consensus control has been
widely applied in spacecraft formation, sensor networks, robotic manipulators, autonomous vehicles,
and others (see for instance, [2] and the references therein).

In practice, MASs are often accompanied with time delays that arise in sensor response or
information transmission, which might cause negative effects on the consensus performance or, even
worse, make the system fail to achieve consensus [3]. Therefore, the consensus problem of MASs
with time delays is a challenging topic that is worthy of investigating.

In recent years, many research works involving consensus problem of linear time-invariant MASs
in the presence of time delays have been developed. These works have been conducted under different
perspectives. For example, based on the frequency domain analysis for MASs with communication
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delays, a large number of works have dedicated to seeking the consensus margin for system
parameters such that the consensus can be achieved within this range [4–14]. Among these, the delay
margin problem was investigated in [4–9], while the gain margin problem was studied in [10–12].
Using Lyapunov functional and linear matrix inequality technologies, sufficient conditions for the
consensus of delayed MASs were derived in [15–19]. By means of the algebraic Riccati equation, a
delay-dependent consensus protocol was proposed by [20]. In [21], approaches including Lyapunov
theorems and the Nyquist stability criterion were used to study consensus algorithms for MASs with
both communication and input delays. Using z-transformation and Routh criterion, a necessary and
sufficient condition for the consensus of discrete-time MASs with communication delay was provided
by [22]. Based on the impulsive observer and piecewise Lyapunov functional, sufficient conditions in
terms of linear matrix inequalities for consensus of MASs with single delay were derived in [23].
Besides, leader-follower consensus problems of MASs with time delays were investigated in [24]
and [25]. In [26], the consensus problems of MASs with time-varying delays were considered.
In [27], the consensus problems of MASs with the random input delay were discussed.

Overall, the existing works have been focused on communication delays in the information
transmission or a single delay in system interior.

In practical MASs, multiple time delays might arise in system states caused by mechanical
transmission, sensor sensing, hydraulic process, and others. These state delays affect the system
performance and complicate the problem analysis. For general linear MASs with multiple state
delays, it is still challenging work to design a consensus protocol. Motivated by the above statements,
this paper investigates the consensus problem of general continuous-time linear MASs with multiple
state delays and communication delays. We consider a multi-agent networks with N agents
intercommunicated by a fixed undirected networks graph; the dynamics of agent i is given by

ẋi(t) =
m∑

d=0

Ad xi(t − τd) + Bui(t), yi(t) = Cxi(t), (1.1)

where xi ∈ R
p and ui ∈ R

q are system states and the control input of agent i, respectively, Ad ∈ R
p×p

for d = 0, 1, ...,m are system matrices, and B ∈ Rp×q is input matrix, 0 = τ0 < τ1 < ... < τm are time
delays.

Let us give the output feedback control protocol

ui(t) =
m∑

d=0

Kd

di

∑
j∈Ni

ai j

[
yi(t − τd − τc) − y j(t − τd − τc)

], (1.2)

where τc > 0 represents the communication delay, ai j is the entries of the network adjacency matrix,
Kd ∈ R

q×p for d = 0, 1, ...,m are feedback gain matrices to be determined.
Considerations on the structure of protocol (1.2) are illustrated as two aspects: On the one hand, the

agent i receives a set of available historical information with respect to its neighbors; on the other hand,
for general linear systems with multiple delays, the more information of delayed states being used, the
more possible it is to stabilize it.

The consensus problem in this paper is: for the delayed MAS (1.1) with the protocol structure (1.2),
determining the gain matrices K0, ...,Km such that lim

t→∞
xi(t) − x j(t) = 0 for i, j = 1, 2, ...,N.
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Along the line of [28], we investigate consensus problem of the delayed MAS (1.1) with the protocol
structure (1.2). By introducing a linear transformation, we will show that the consensus of N agents
is equivalent to the simultaneous asymptotic stability of N − 1 delayed subsystems associated with the
eigenvalues of normalized Laplacian matrix of the network. We prove that a sufficient condition for
the consensus of the delayed MASs is that a linear delay system with an uncertain parameter is robust
stable, where the uncertain parameter covers the interval bounded by the maximum and minimum
eigenvalues of the normalized Laplacian matrix. Then, using the argument principle and the properties
of state transition matrix, we derive a sufficient condition for the consensus of the delayed MAS. Based
on the obtained condition, we construct an optimization scheme to numerically solve the feedback gain
matrices.

The main contributions of this paper are summarized as follows:

1) Compared with the existing works, this paper considers multiple state delays in linear MASs and
designs a distributed consensus protocol with neighbor historical output information.

2) By the argument principle and optimization technologies, a sufficient condition is derived for the
consensus of the MAS with multiple state delays. Based on this, an optimization-based method for
calculating the consensus gain matrices is presented.

The rest of this paper is organized as follows. Section 2 introduces the basic material on graph
theory and the stability criteria based on the argument principle needed in this paper. The main results
are given in Section 3. In Section 4, simulation examples are presented to illustrate the accuracy of the
theoretical results. Section 5 is a brief conclusion.

Notations: Let Rp be the p-dimensional Euclidean space, Rp×q represents the p × q real matrix, ∥x∥
denotes Euclidean norm of matrix x ∈ Rp×q, Ip denotes p× p identity matrix, 1p denotes p-dimensional
column vector with entries all being 1, 0p×q denotes p × q matrix with all the elements being zero. The
notation diag{·} denotes a block-diagonal matrix. The notation ⊗ denotes the Kronecker product. The
notations ker(W) and im(W) denote the kernel and image of matrix W, respectively. The notation ⌈a⌋
denotes the smallest integer that is greater than or equal to a ∈ R.

2. Preliminaries

Let a simple graph (no self-loops or multiple edges) G = {V,E,A} denote the undirected
communication topology between MASs with the set of verticesV = {1, 2, ...,N} and the set of edges
E ⊆ V × V. The ith vertex represents agent i, and the edge (i, j) denotes the communication channel
between agent i and agent j. The set E ⊂ {(i, j) : i, j ∈ V} is the edge set. The set of neighbors of the
ith agent is denoted by Ni = { j ∈ V|(i, j) ∈ E}. A = [ai j] ∈ RN×N is called the weighted adjacency
matrix of G with nonnegative elements, where ai j = a ji > 0 if (i, j) ∈ E and i , j; ai j = 0 otherwise.
The degree of the ith vertex is denoted by

∑N
j=1 ai j and the degree matrix D = diag{d1, d2, ..., dN}. The

Laplacian matrix L of G is defined by L = D − A. Note that L1N = 0N . Let L := D−1L be the
normalized Laplacian matrix associated with G by replacing the original weight ai j with a new weight
ai j

di
. For an undirected graph, L is a symmetric, positive semi-definite matrix, and all its eigenvalues

are nonnegative. The eigenvalues of L can be arranged as 0 = λ1(L) < λ2(L) ≤ ... ≤ λN(L).
Throughout this paper, we consider connected and undirected network graph.
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For preparation, we review some results in [28] that provide stability criteria for linear time-invariant
delay systems described as

ẋ(t) =
m∑

d=0

Ad xi(t − τd). (2.1)

Lemma 2.1. Consider the linear delay system (2.1) with characteristic equation

p(s) = det
(
sIp −

∑m

d=0
Ade−τd s

)
= 0,

let s be an unstable characteristic root of p(s), then |s| ≤ r =
∑m

d=0 ∥Ad∥. Furthermore, system (2.1) is
asymptotically stable if and only if

p(s) , 0 for s ∈ l, and ∆l arg p(s) = 0,

where l = l1 ∪ l2 is a closed half-circumference with radius r, l1 = {s : s = iw,−r ≤ w ≤ r, i2 = −1}
and l2 = {s : |s| = r,−π/2 ≤ arg s ≤ π/2}, the notation arg p(s) stands for the argument of complex
function p(s), and ∆l arg p(s) stands for the change of the argument as the complex variable s traverses
the contour l once in the positive direction.

The explanation for Lemma 2.1 is as follows. First, we obtain that all the unstable characteristic
roots of p(s) are contained in a region Ω, which is enclosed by the half-circumference l (see Figure
1). Then, by means of the argument principle, the number of the unstable roots located in Ω is equal
to ∆l arg p(s)/2π. Hence, by calculating ∆l arg p(s), we can check the stability of system (2.1). The
following Algorithm 1 is to check the stability of a linear delay system described by (2.1).

r

-r

0

Im s 

Re s 

Figure 1. Explanation for Lemma 2.1.

3. Main results

In this section, we first prove that delayed MAS (1.1) can achieve consensus if and only if N − 1
delayed systems associated with the eigenvalues of the Laplacian matrix of the network are
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Algorithm 1 An algorithm to check the stability of linear delay system
1: Calculate the upper bound r of the unstable roots and get the half-circumference l.
2: Take a sufficiently large integer nl to discretize l as uniformly as possible in the clockwise direction,

and record these nodes as {sk}
nl
k=1.

3: For k = 1, ..., nl, calculate complex value p(sk), check whether p(sk) = 0 by evaluating its
magnitude satisfies |p(sk)| ≤ δ1 with the preassigned tolerance δ1. If it holds, i.e., p(sk) = 0,
then the system is not asymptotically stable and stop the algorithm. Otherwise, we continue.

4: Compute ∆l arg p(s) along the ordered node {sk}
nl
k=1 by checking

∣∣∣∆l arg p(s)
∣∣∣ ≤ δ2 with the

preassigned tolerance δ2. If ∆l arg p(s) = 0, the system is asymptotically stable, otherwise is
not stable.

simultaneously asymptotically stable. With the protocol (1.2), the overall closed-loop dynamics of the
delayed MAS (1.1) can be written as

ẋ(t) =
m∑

d=0

(IN ⊗ Ad) x(t − τd) +
m∑

d=0

(L ⊗ BKdC) x(t − τd − τc), (3.1)

where x(t) = [x1(t)T , x2(t)T , ..., xN(t)T ]T ∈ RN p represents the aggregate state of the delayed MAS.
The matrix L is a real symmetric matrix and there exists an orthogonal matrix U ∈ RN×N such that

UTLU = Λ := diag{0, λ2(L), λ3(L), ..., λN(L)}, where 0 < λ2(L) ≤ λ3(L) ≤ ... ≤ λN(L). By using the
linear transformation x̃(t) = (UT ⊗ Ip)x(t), the overall closed-loop dynamics (3.1) becomes

˙̃x(t) =
m∑

d=0

(IN ⊗ Ad) x̃(t − τd) +
m∑

d=0

(Λ ⊗ BKdC) x̃(t − τd − τc). (3.2)

Theorem 3.1. Under an undirected and connected network graph, the delayed MAS (1.1) with the
protocol (1.2) achieves consensus if and only if the following N − 1 delayed subsystems are
simultaneously asymptotically stable:

˙̃xi(t) =
m∑

d=0

Ad x̃i(t − τd) + λi(L)
m∑

d=0

BKdCx̃i(t − τd − τc), i = 2, 3, ...,N. (3.3)

Proof. Since ker(L) = im(1N), xi(t) − x j(t) → 0 if and only if x(t) → im(1N ⊗ Ip) = ker(L ⊗ Ip). This
holds if and only if (L⊗ Ip)x(t)→ 0, i.e., (UΛ ⊗ Ip)x̃(t)→ 0. Since U is nonsingular, this holds if and
only if (Λ ⊗ Ip)x̃(t)→ 0, which is equivalent to x̃i(t)→ 0 for i = 2, 3, ...,N. □

In order to seek the gain matrices K0, ...,Km such that each delayed subsystem of (3.3) is
asymptotically stable, we first consider the stability of the following linear delay system with
uncertain parameters:

η̇(t) =
m∑

d=0

Adη(t − τd)+(α + ∆α)
m∑

d=0

BKdCη(t − τd − τc), (3.4)

where
α := 0.5(λ2(L) + λN(L)) and |∆α| ≤ ∆α := 0.5(λN(L) − λ2(L)). (3.5)
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Remark 3.2. In system (3.4), the range of continuous parameter α + ∆α covers the closed interval
[λ2(L), λN(L)]. It is obvious that if system (3.4) is robust asymptotically stable, then delayed
subsystems (3.3) are simultaneously asymptotically stable. Therefore, if there are gain matrices
K0, ...,Km such that system (3.4) is robust asymptotically stable, then delayed MAS (1.1) can achieve
consensus by using these gain matrices.

In the rest of this section, we will mainly discuss the robust stability problem of system (3.4); its
nominal model is

η̇(t) =
m∑

d=0

Adη(t − τd)+α
m∑

d=0

BKdCη(t − τd − τc). (3.6)

Before giving the main results results in this paper, the following lemmas and definitions are useful.

Lemma 3.3. ( [28]) The nominal system (3.6) is asymptotically stable if and only if∫ ∞

0
||F(t)||2dt ≤ β, (3.7)

where β is a finite constant, and F(t) represents the state transition matrix of system (3.6), which is the
solution of the matrix differential equation

Ḟ(t) =
m∑

d=0

AdF(t − τd) + α
m∑

d=0

BKdCF(t − τd − τc),

F(0) = Ip, F(t) = 0p×p for t < 0. (3.8)

Lemma 3.4. Denote the characteristic polynomial of system (3.4) by

P̃(s) = det

sIp −

m∑
d=0

Ade−τd s − (α + ∆α)
m∑

d=0

BKdCe−τd s−τc s

 , (3.9)

let s be an unstable characteristic root, i.e., P̃(s) = 0, then

|s| ≤ r =
m∑

d=0

(||Ad|| + λN(L)||B||||Kd||||C||). (3.10)

Proof. Since s is an unstable root, Re s ≥ 0, |e−τd s| ≤ 1, |e−τd s−τc s| ≤ 1, ∀τd, τc ≥ 0. Define

W(s) :=
m∑

d=0

Ade−τd s+(α + ∆α)
m∑

d=0

BKdCe−τd s−τc s,

then P̃(s) = det
(
sIp −W(s)

)
= 0, this implies that s is an eigenvalue of matrix W(s), and it can be

deduced that

|s| = |λk(W(s))| ≤ ||W(s)|| = ||
m∑

d=0

Ade−τd s + (α + ∆α)
m∑

d=0

BKdCe−τd s−τc s||

≤

m∑
d=0

||Ad|| |e−τd s| + (α + ∆α)
m∑

d=0

||BKdC|| |e−τd s−τc s|
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≤

m∑
d=0

(||Ad|| + λN(L)||BKdC||) ≤ r.

□

Definition 3.5. A semicircular region Ω is defined as Ω = {s : Re s ≥ 0, |s| ≤ r}, where r is given by
(3.24). The boundary of region Ω is denoted as l.

Next, we present the main results for the robust stability of system (3.4).

Lemma 3.6. System (3.4) is asymptotically stable if and only if

P̃(s) , 0, for s ∈ l (3.11)

and
△l arg P̃(s) = 0. (3.12)

where P̃(s) is defined by (3.9) and l is given by Definition (3.5).

Proof. The results can be derived by applying Lemma 2.1 to system (3.4). □

Theorem 3.7. System (3.4) is robust asymptotically stable, if

1) The nominal system (3.6) is asymptotically stable;

2) The condition

sup
s∈l
||R−1(s)||

m∑
d=0

||BKdC|| <
1

∆α
(3.13)

holds, where

R(s) := sIp −

m∑
d=0

Ade−τd s − α

m∑
d=0

BKdCe−τd s−τc s, (3.14)

and l is given by Definition 3.5.

Proof. Since the nominal system (3.6) is asymptotically stable, R(s)−1 exists for s ∈ l. Let
P(s) = det(R(s)) be the characteristic polynomial of the nominal system (3.6), let
D(s) = ∆α

∑m
d=0 BKdCe−τd s−τc s. For s ∈ l, we have

P̃(s) = det

sIp −

m∑
d=0

Ade−τd s−(α + ∆α)
m∑

d=0

BKdCe−τd s−τc s


= det (R(s) − D(s))

= det (R(s)) det
(
Ip − R−1(s)D(s)

)
= P(s) det

(
Ip − R−1(s)D(s)

)
.

Thus,
P̃(s) = P(s) det

(
Ip − R−1(s)D(s)

)
. (3.15)
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According to Lemma 3.4 and Definition 3.5, all the unstable characteristic roots of P̃(s) lie in region
Ω. It is sufficient to check whether P̃(s) has roots in Ω for the stability of system (3.4). Using (3.15),
for s ∈ l,

P̃(s) = P(s)
p∏

k=1

[
1 − λk(R−1(s)D(s))

]
. (3.16)

It can be known that the eigenvalue λk(R−1(s)D(s)) is continuous for s ∈ l. Since the nominal system
(3.6) is asymptotically stable, P(s) , 0 for s ∈ l. With the condition (3.13), for s ∈ l and k = 1, ..., p,
we have

|λk(R−1(s)D(s))| ≤ ||R−1(s)D(s)|| ≤ ||R−1(s)|| ||D(s)||

= ||R−1(s)|| ||∆α
m∑

d=0

BKdCe−τd s−τc s||

≤ ||R−1(s)|| |∆α|
m∑

d=0

||BKdC|| |e−τd s−τc s|

≤ sup
s∈l
||R−1(s)||∆α

m∑
d=0

||BKdC|| < 1,

i.e.,
|λk(R−1(s)D(s))| < 1. (3.17)

By means of (3.16) and (3.17), we can deduce that for s ∈ l,

P̃(s) , 0. (3.18)

Furthermore, using (3.16) and (3.17), we have that for s ∈ l,

∆l arg P̃(s) = ∆l arg P(s) +
p∑

k=1

∆l arg
[
1 − λk(R−1(s)D(s))

]
= 0 +

p∑
k=1

0 = 0, (3.19)

where ∆l arg P(s) = 0 since system (3.6) is asymptotically stable.
Using (3.18), (3.19), and Lemma 3.6, it can be deduced that system (3.4) is robust asymptotically

stable, and the proof is completed. □

As is illustrated in the foregoing, if system (3.4) is robust asymptotically stable, it is sufficient to
obtain that the delayed MAS (1.1) achieves consensus. Combining Lemma 3.3 and Theorem 3.7, we
have the following corollary for the consensus of the delayed MAS (1.1).

Corollary 3.8. Under an undirected and connected network graph represented by a Laplacian matrix
L, the delayed MAS (1.1) with the protocol (1.2) achieves consensus if there are gain matrices
K0,K1, ...,Km such that

1)
∫ ∞

0
||F(t)||2dt ≤ β, and

2) sup
s∈l
||R−1(s)||

m∑
d=0
||BKdC|| < 1

∆α
.
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where F(t) is subject to (3.8), R(s) is defined in (3.14), and l is given by Definition 3.5.

For the sake of convenience, we introduce a decision variable K⃗ = [K0,K1, ...,Km] to stand for all
the gain matrices to be determined. Since F(t) and R(s) are functions of K⃗, let us re-denote them as
F(K⃗, t) and R(K⃗, s), respectively. Our goal is to calculate K⃗ such that the two conditions in Corollary
3.8 are satisfied. Based on this, we construct an optimization problem that minimizes the objective
function

min
K⃗

J(K⃗) =
∫ T

0
||F(K⃗, t)||F

2
dt (3.20)

subject to equality constraints Ḟ(K⃗, t) =
m∑

d=0
AdF(K⃗, t − τd) + α

m∑
d=0

BKdF(K⃗, t − τd − τc),

F(K⃗, t) = 0p×p for t < 0 and F(K⃗, 0) = Ip,
(3.21)

and inequality constraints

sup
s∈l
||R−1(K⃗, s)||F

∑m

d=0
||BKdC||F <

1

∆α
, (3.22)

m∑
d=0

||Kd||F ≤ b, (3.23)

where R(K⃗, s) is given by (3.14), α and ∆α are given by (3.5), T is a sufficient large positive constant,
b is a positive constant, and the symbol || · ||F represents the Frobenius norm.

Remark 3.9. For solving the optimization problem, T is taken as a finite. Assume that there exists
a feasible solution K⃗ f such that the nominal system (3.6) is asymptotically stable, then we can find a
constant T0 and a sufficient small value ϵ such that∣∣∣∣∣∣

∫ T

0
||F(K⃗ f , t)||F

2
−

∫ ∞

0
||F(K⃗ f , t)||F

2
∣∣∣∣∣∣ ≤ ϵ,

for T ≥ T0. In addition, if ||F(K⃗ f , t)||F decreases faster (the transient process is very short), T0 may
not be vary large. Hence, for a sufficiently large constant T , an optimal solution K⃗∗ that minimizes the
integral

∫ T

0
||F(K⃗, t)||F

2
dt can compress the integral

∫ ∞
0
||F(K⃗, t)||F

2
dt to the finite.

Remark 3.10. The constraint (3.23) is necessary, since in engineering practice the cost of the control
law should be constrained. On the other hand, this constraint is also used to determine the radius of
the semicircle l. According to Lemma 3.4, we have

r =
m∑

d=0

||Ad||F + bλN(L)||B||F ||C||F . (3.24)

In order to obtain a numerical solution on K⃗, it is necessary to discrete the above optimization
problem. Assume that the numerical solution gives a sequence of approximated values {F1(K⃗), F2(K⃗),
..., FM(K⃗)} of {F(K⃗, t1), F(K⃗, t2), ..., F(K⃗, tM)} of Eq (3.8) on certain equidistant step-values {tn = nh}
with the step-size h = T/M, where M is a positive integer. Let vd = ⌈τdh−1⌋, δd = vd − τdh−1,
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0 ≤ δd < 1, nd = ⌈(τd + τc)h−1⌋, εd = nd − (τd + τc)h−1, 0 ≤ εd < 1, for d = 0, ...,m. Besides, take a
sufficiently small step-size hl to discretize l as uniformly as possible in the clockwise direction, record
these nodes as {sk}

nl
k=1, and denote Nl = {1, 2, ..., nl}. In this paper, these discrete points on l are taken as{

sk = iw : w = −r + khl, k = 0, 1, ..., 2r
hl

}
∪
{
sk = re jθ : θ = −π2 + khl, k = 0, 1, ..., πhl

}
,

Thus, combining the Euler scheme with the linear interpolation, a numerical solvable version for
the optimization problem with the objective function (3.20) subject to the constraints (3.21) and (3.22)
is obtained as follows.

min
K⃗

Jn(K⃗) =
M∑

n=0

||Fn(K⃗)||F
2
h (3.25)

subject to

Fn+1(K⃗) = Fn(K⃗) + h

 m∑
d=0

AdFn−vd+δd (K⃗) + α
m∑

d=0

BKdFn−nd+εd (K⃗)

 ,
Fn−vd+δd (K⃗) = (1 − δd)Fn−vd (K⃗) + δdFn−vd+1(K⃗) for n − vd + δd > 0,

Fn−nd+εd (K⃗) = (1 − εd)Fn−nd (K⃗) + εdFn−nd+1(K⃗) for n − nd + εd > 0,

Fn−vd+δd (K⃗) = 0p×p for n − vd + δd < 0, Fn−vd+δd (K⃗) = Ip for n − vd + δd = 0,

Fn−nd+εd (K⃗) = 0p×p for n − nd + εd < 0, Fn−nd+εd (K⃗) = Ip for n − nd + εd = 0. (3.26)

sup
k∈Nl

||R−1(K⃗, sk)||F
m∑

d=0

||BKdC||F <
1

∆α
, (3.27)

and
m∑

d=0

||Kd||F ≤ b. (3.28)

Thus, the optimization problem with the objective function (3.20) subject to the constraints (3.21)
and (3.22) is reduced to one with the objective function (3.25) subject to the constraints (3.26) and
(3.27). This is a nonlinear minimization problem with the quadratic equality constraints and a non-
convex inequality constraint.

Remark 3.11. The numerical method that is used for the discretization of the optimization problem is
not limited to the Euler method; other numerical methods such as Runge-Kutta or Multi-step methods
can also be applied.

Remark 3.12. For the inequality constraint (3.27), it should be noticed that R−1(K⃗, s) is well defined
only when the nominal system (3.6) is asymptotically stable. Hence, an initial value of K⃗ that stabilizes
system (3.6) is needed for the iteration of the optimization algorithm. Such an initial value can be
obtained by minimizing the objective function (3.25) subject to the constraints (3.26).

Remark 3.13. We note that the constraints may describe a non-convex feasibility region, and thus
multiple local solutions can arise [29]. Conventional numerical techniques are efficient at locating
an optimum but they do not necessarily locate the global optimum unless some a priori knowledge is
available. It is necessary for checking whether the optimal solution K⃗∗ stabilizes the nominal system
(3.6).
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Algorithm 2 Computing consensus gain matrices for delayed MAS

1: Given a starting point K⃗0, a sufficient large constant T , a weight constant ρ.
2: Solve the optimization problem with objective function (3.25) subject to constraints (3.26) and

obtain K⃗I = {K I
0,K

I
1, ...,K

I
m}.

3: For the K⃗I obtained in Step 2, use Algorithm 1 to check whether system (3.6) is asymptotically
stable. If K⃗I stabilizes the system, then go to Step 4. Otherwise, increase T or choose another K⃗0

and go to Step 2.
4: Let K⃗I be the starting point, solve the optimization problem with objective function (3.25) subject

to constraints (3.26) and (3.27) and obtain K⃗∗ = {K∗0 ,K
∗
1 , ...,K

∗
m}.

5: For the K⃗∗ obtained in step 4, use Algorithm 1 to check whether system (3.6) is asymptotically
stable. If K⃗∗ stabilizes the system, then stop the algorithm. Otherwise, increase T or choose
another K⃗0 and go to Step 2.

In view of the above statements, we propose an algorithm to numerically compute the consensus
gain matrices K⃗ as follows.

Remark 3.14. Our results have a close relationship with the second smallest eigenvalue λ2(L) and the
largest eigenvalue λN(L) of the normalized Laplacian matrix L. Denote the lower bound of λ2(L) by
bl and the upper bound of λN(L) by bu. From Remark 3.2, we know that as long as Theorem 3.7 holds
for

α = 0.5(bl + bu) and ∆α = 0.5(bu − bl),

then delayed MAS (1.1) is consensusable. It is easy to obtain the upper bound of λN(L) that

λN(L) ≤ ||L||∞ = 2.

For the lower bound of λ2(L), we have the estimation as follows.

Lemma 3.15. ( [30]) Let G′ be an undirected and connected simple graph with N vertices, let e(G′)
denote the edge connectivity of G′, i.e., the minimal number of edges whose removal would result in
losing connectivity of the graph G′, and let λ2(L) denote the second smallest eigenvalue associated
with the Laplacian matrix of G′. Then

λ2(L) ≥ 2e(G′)(1 − cos
π

N
) ≥ 2(1 − cos

π

N
).

Remark 3.16. The proposed algorithm based on Theorem 3.1 is less conservative than the existing
methods based on LMI. Theorem 3.1 is a sufficient and necessary condition for asymptotic stability of
system (3.3). However, the results based on LMI are only sufficient conditions for asymptotic stability
of system (3.3).
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4. Numerical examples

In this section, we provide two examples to illustrate the main results. For both examples, we
consider a network graph with the Laplacian matrix and the normalized Laplacian matrix as follows.

L =


5 −1 −2 −2
−1 1 0 0
−2 0 2 0
−2 0 0 2

 , L =


1 −0.2 −0.4 −0.4
−1 1 0 0
−1 0 1 0
−1 0 0 1

 ,
where the eigenvalues of L are λ1(L) = 0, λ2(L) = λ3(L) = 1, λ4(L) = 2.

For solving the optimization problems in Algorithm 2, we use the interior point method, which is
included by the OPTI Toolbox of the MATLAB.

Example 4.1. Consider the dynamics of agent i given by

ẋi(t) = A0xi(t) + A1xi(t − τ1) + A2xi(t − τ2) + Bui(t), yi(t) = Cxi(t),

where

A0 =

[
0 1
0 0

]
, A1 =

[
0 0.1
0 0

]
, A2 =

[
0 0

0.1 0

]
, B =

[
2
1

]
,C =

[
0.2 0.1

]
,

τ1 = 1, τ2 = 2, τc = 0.5.

Let the controller structure be

ui(t) =
2∑

d=0

Kd

di

∑
j∈Ni

ai j

[
yi(t − τd − τc) − y j(t − τd − τc)

]
with the constraint

||K0||F + ||K1||F + ||K2||F ≤ 10.

By calculating, we obtain the radius r = 11.20. Let the step-size be h = hl = 0.01 and the initial
value be K⃗0 = 01×3.

For T = 10, using Algorithm 2 we obtain the gains

K0 = −1.1654, K1 = −0.0321, K2 = −0.0192.

For T = 20, we obtain the gains

K0 = −1.2054, K1 = −0.0024, K2 = −0.0089.

Using Lemma 2.1, we check that the subsystems (3.3) with the above two groups of gains are both
asymptotically stable, i.e., the delayed MAS (1.1) achieves consensus. By taking the initial values
as x1(t) = [50, 20]T ,x2(t) = [−50,−20]T ,x3(t) = [100 cos(t), 60et]T ,x4(t) = [−100 + sin(t),−60et]T

for t ∈ [−2.5, 0], we draw the trajectories of the delayed MAS (1.1) with the gain matrices K0 =

−1.2054, K1 = −0.0024, K2 = −0.0089 in Figures 2 and 3. From the figures, we can see that the
consensus is achieved within 10 seconds.
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Figure 2. Example 1: trajectories of xi1(t), i = 1, 2, 3, 4.
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Figure 3. Example 1: trajectories of xi2(t), i = 1, 2, 3, 4.

Let the controller structure be

ui(t) =
K0

di

∑
j∈Ni

ai j

[
yi(t − τc) − y j(t − τc)

]
,

where ||K0||F ≤ 10.
For T = 20, we obtain the gain K0 = −1.2166. Using Lemma 2.1, we check that the delayed MAS

(1.1) can also achieve consensus with this gain.
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Example 4.2. Consider the dynamics of agent i given by

ẋi(t) = A0xi(t) + A1xi(t − τ1) + A2xi(t − τ2) + Bui(t), yi(t) = Cxi(t),

where

A0 =


0.2 0 0 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0

 , A1 =


−0.8 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0.1 −0.1 0 0.2
0 −0.2 0.1 0
0 0.1 0 0.3
0 −0.3 0.1 0

 , B =


0.1
−0.1
−0.1
0.1

 ,

C =
[

0.2 0.1 0 0
0.2 0 0.1 0.1

]
, τ1 = 0.2, τ2 = 0.3, τc = 0.1.

Let the controller structure be

ui(t) =
2∑

d=0

Kd

di

∑
j∈Ni

ai j

[
yi(t − τd − τc) − y j(t − τd − τc)

]
with the constraint

||K0||F + ||K1||F + ||K2||F ≤ 10.

By calculating, we obtain the radius r = 5.62. Let the step-size h = kl = 0.01 and the initial value
be K⃗0 = 01×6.

For T = 10, using Algorithm 2, we obtain the gain matrices

K0 =
[

0.2246 −1.8883
]
,K1 =

[
−0.0851 −1.3535

]
,K2 =

[
−0.1969 −1.3399

]
.

For T = 20, we obtain the gain matrices

K0 =
[

0.2228 −1.8868
]
,K1 =

[
−0.0870 −1.3536

]
,K2 =

[
−0.1992 −1.3411

]
.

Using Lemma 2.1 we check that the delayed MAS (1.1) achieves consensus. By taking the initial
values as x1(t) = [5, 5 cos(t), 12et, 13(t + 1)]T , x2(t) = [−5,−5 + sin(t),−12et,−15(t + 1)]T , x3(t) =
[10, 10(t + 1), 20 cos(t), 20et]T , x4(t) = [−10,−10(t + 1)2,−20,−20 + t]T for t ∈ [−2.5, 0], we draw
the differences of corresponding components between xi(t) and x1(t) with the second group of gain
matrices above in Figure 4. From the figure, we can see that the consensus is achieved within 15
seconds.

Let the controller structure be

ui(t) =
K0

di

∑
j∈Ni

ai j

[
yi(t − τc) − y j(t − τc)

]
,

where ||K0||F ≤ 10.
For T = 20, we obtain the gain matrix K0 =

[
−0.5255 −3.1183

]
. Using Lemma 2.1, we check

that the delayed MAS (1.1) achieve consensus.
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Figure 4. Example 2: differences of corresponding components between xi(t) and x1(t),
i = 2, 3, 4.

Remark 4.3. In principle, the greater T is, the better effect of K⃗ is for the consensus problem. However,
a great value of T needs more computational effort. In the implementation of solving the optimization
problem with objective function (3.25) subject to constraints (3.26) and (3.27), when T is large enough,
the gain matrices change a little. The examples show the argument.

Remark 4.4. The examples show that, under the controller structure with less feedback term (e.g.,
K⃗ = K0), the delayed MAS can also achieve consensus as long as there exists a feasible solution for K⃗
such that the Corollary 3.8 holds. Hence, we can flexibly try different controller structures and solve
the gain matrices by Algorithm 2.

5. Conclusions

This paper investigated the consensus problem of linear MASs with multiple state delays and
communication delay under an undirected network graph. The consensus problem of N agents was
converted into the simultaneously asymptotically stable problem of N − 1 delayed subsystems
associated with the eigenvalues of normalized Laplacian matrix by employing a linear transformation.
We presented a sufficient condition for the consensus of delayed MASs in the form of the integral
performance and inequalities, which were derived by integral stability criteria for linear delay systems
and argument principle. Based on the obtained condition, we formulated an optimization-based
framework to numerically solve the consensus gain matrices. The numerical examples demonstrated
that the proposed Algorithm is efficient for the consensus of the delayed MASs.
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