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Abstract: The spread of viruses can be effectively reduced by the publicity of epidemic prevention.
Additionally, the interaction between heterogeneous strains has a significant effect on virus evolution.
Thus, we first establish an evolutionary dynamics Susceptible-Infected- Recovered (SIR) model which
considers the interaction between heterogeneous strains. We utilize adaptive dynamics to investigate
the evolutionary outcomes of the trade-off between transmission and virulence. Second, we perform a
critical function analysis to generalize the results independent of specific trade-off assumptions and to
determine the conditions for evolutionary stability and convergence stability. Last, we investigate the
effects of different publicity measures on virulence evolution under two types of interactions, including
the case of excess mortality alone and the coexistence of excess mortality and superinfection. Based
on the general hypothesis of transmission virulence trade-off, we introduce the cost of host mobility
caused by the scope and intensity of publicity. Numerical simulations present a set of evolutionary re-
sults, including continuously stable strategies, evolutionary branching points, repellers, and the Garden
of Eden. Our results indicate that an excessive publicity scope and intensity can drive the epidemic
evolution towards higher virulence. Both types of interactions suggest that continuously increasing the
publicity scope under a low publicity intensity can effectively reduce virulence. Furthermore, the con-
current presence of excess mortality and superinfection induces the emergence of a higher virulence.

Keywords: SIR model; adaptive dynamics; evolutionary branching; critical function analysis; public
vigilance

1. Introduction

Epidemics have always posed a serious threat to human health, prompting extensive research into
epidemic diseases [1–5]. After conducting theoretical numerical simulations and analyses, epidemic
models have played a crucial role in elucidating the epidemiological patterns of infectious diseases,
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forecasting their changing trends, and analyzing the fundamental causes and critical factors which in-
fluence disease transmission. In studies of epidemic models, the evolutionary analysis of pathogens has
become the focus of contemporary research [6–10]. These studies not only deepen our understanding
of the dynamic processes in ecosystems, but also direct our focus towards early prediction and effective
control strategies for virus evolution.

In studies of pathogen evolution, trade-offs reflect the constraints where a variation in one trait leads
to fitness costs associated with another trait [11–13]. Many academic works have extensively studied
the evolutionary outcomes of the transmission-virulence trade-off [14–17]. The implementation of epi-
demic prevention publicity can effectively mitigate the spread of an epidemic. However, the evolution
direction of virulence can also be effected by publicity strategies. Considering the host mobility cost
caused by publicity in the trade-off can explore the influence of publicity measures on virus evolution.

Different disciplines have varying definitions of the term virulence. In the theoretical study of
epidemic evolution, virulence is defined as the cost of increasing the transmission of viruses [18, 19].
The trade-off theory assumes that an increase in transmission can inevitably lead to an increase in
the utilization of hosts by pathogens, thus shortening the duration of infection. Therefore, virulence
represents the utilization of the host. In this study, virulence represents disease-induced mortality.

Pathogens can inevitably mutate to produce variants, which are often called strains. Pathogens with
multiple strains are commonly found in nature [20–22], and their evolutionary and transmission mech-
anisms are of significant importance in epidemiological studies. Previous studies have employed vari-
ous multi-strain models to investigate this phenomenon [23–27]. This study employs an Susceptible-
Infected-Recovered (SIR) model with treatment to explore the dynamic behavior of pathogens in the
context of incomplete immunity after host treatment. This choice more accurately reflects the real-
world scenario of diseases where a treatment does not confer immunity, thereby increasing the appli-
cability of the model.

Meanwhile, the superinfection between hosts infected with heterogeneous strains can affect the evo-
lution of virulence. However, there are few evolutionary studies that consider the interaction between
heterogeneous strains. The result of competitive interaction usually depends on the traits that affect
competitiveness [28, 29]. Therefore, by introducing interaction into the study, we can understand how
competition among heterogeneous strains within the hosts influences evolution. Focusing on an SIR
epidemic model, we utilize population dynamics and adaptive dynamics to investigate how varying the
scope and intensity of publicity affects the evolutionary outcomes under different interactions. In addi-
ton, the critical function analysis framework is employed to study evolutionary outcomes independent
of specific trade-off functions.

The rest of the paper is organized as follows. Section 2 establishes an SIR epidemic model with
recovery and treatment. Then, we obtain the equilibria and discuss the conditions of global stability.
In Section 3, we use population and evolutionary dynamics to study monomorphic and dimorphic pop-
ulations and obtain the invasion fitness of mutant strains. Section 4 explores the relationship between
the shape of trade-off and the evolutionary outcomes through a critical function analysis. In Section 5,
we investigate the effect of varying the scope and intensity of publicity on virulence evolution under
different interactions through a numerical simulation and analysis. Then, we conclude our paper in
Section 6 with a discussion.
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2. Model formulation

To investigate virus transmission among hosts, we initially analyze a Susceptible-Infected-
Recovered (SIR) model in this section. We assume that all newborns are naturally susceptible, and
susceptible individuals may become infected after contact with infected individuals. Additionally, our
model incorporates treatment and recovery. Drug treatments can sometimes lead to a low immunity,
as seen with anti-HIV and anti-influenza drugs. They control infection by inhibiting viral replication,
but do not induce an immune memory against the virus. Thus, we assume that once the individuals
recover, they cannot be reinfected, though infected individuals will revert to being susceptible after
treatment. Therefore, we establish an epidemiological model follows:

S ′(t) = b − β (α) S I + δI − dS ,
I′(t) = β (α) S I − (δ + α + γ + d) I,
R′(t) = γI − dR,

(2.1)

where S (t), I(t), and R(t) denote the sizes of susceptible, infected, and recovered individuals, respec-
tively. Parameter b denotes the birth rate constant, and the per capita death rate is denoted by d. The
parameter δ represents the treatment rate. The recovery rate is given by γ, and we assume that the hosts
gain lifelong immunity once they recover. The parameter α denotes the disease-induced death rate of
the infected individuals. Then, we adopt α as the measure of strain virulence to conduct the following
research. The transmission rate of the strain is denoted by β (α), which depends on virulence according
to the trade-off of the transmission-virulence. Since the first two terms of system (2.1) are independent
of R, we only consider the following epidemic model:{

S ′ (t) = b − β (α) S I + δI − dS ,
I′ (t) = β (α) S I − (δ + α + γ + d) I.

(2.2)

Through simple calculations, we can determine two equilibria of system (2.2).
■ Disease-free equilibrium E0 (S 0, I0), where

S 0 =
b
d
, I0 = 0. (2.3)

■ Endemic equilibrium Ê
(
Ŝ , Î

)
, where

Ŝ =
α + d + γ + δ
β (α)

, Î =
bβ (α) − d (α + d + γ + δ)
β (α) (α + d + γ)

. (2.4)

Next, we focus on the stability of the equilibria and determine the basic reproduction number of
system (2.2) using the next-generation matrix [30]. The transmission scalar of system (2.2) is F =[
βS 0

]
, and the transition scalar is V =

[
δ + α + γ + d

]
. Then, we can see that the next generation

matrix is as follows:

NGM = FV−1 =

[
β (α) S 0

δ + α + γ + d

]
.

The maximum spectral radius is ρ(FV−1) = β(α)S 0
δ+α+γ+d . We can obtain the basic reproduction number as

follows:
R0 =

β (α) S 0

δ + α + γ + d
. (2.5)
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Next, we use the basic reproduction number R0 to determine the conditions for global stability at
the two equilibria in Lemmas 2.1 and 2.2.

Lemma 2.1. Define D =
{
(S , I)| S ≥ 0, I ≥ 0, S + I ≤ b

d

}
. Region D is a positively invariant set of

system (2.2) and is globally attractive.

Lemma 2.2. (i) The disease-free equilibrium point E0 (S 0, I0) is globally asymptotically stable when
R0 < 1.

(ii) The endemic equilibrium point Ê
(
Ŝ , Î

)
is globally asymptotically stable when R0 > 1.

The detailed proofs of Lemmas 2.1 and 2.2 can be found in Appendixes A and B, respectively.

3. Adaptive dynamics

In this section, the invasive fitness of rare mutant strains is determined. Then, we explore the
conditions that lead to the generation of continuously stable strategies and evolutionary branching
points. We start with a monomorphic population of resident strains and then reach a dimorphic strain
population. According to [31] , when a mutant strain appears, the population density of the mutant
strains is assumed to be very sparse. Therefore, we ignore the effect of the mutant strain population
density on the resident strain population density. Consequently, the resident strain population density
of an equilibrium Ê

(
Ŝ , Î

)
will affect the invasion fitness of the mutant strains.

3.1. Monomorphic adaptive dynamics

In this subsection, we examine the adaptive dynamics of a monomorphic strain population. We
introduce the mutant strains Im into system (2.2) when a small number of mutant strains with virulence
αm appear. Thus, we formulate the invasion dynamics model of system (2.2) as follows:

S ′ (t) = b − β (α) S I − β (αm) S Im + δI + δIm − dS ,
I′ (t) = β (α) S I − (δ + α + γ + d) I − a (α − αm) IIm,

I′m (t) = β (αm) S Im − (δ + αm + γ + d) Im − a (αm − α) ImI.
(3.1)

Here, αm represents the virulence of the mutant strains. I denotes the resident strain population with
virulence α, and Im indicates the mutant strain population with virulence αm.

Meanwhile, we assume that there is an interaction between hosts infected with heterogeneous
strains. a reflects the interaction resulting from differences in virulence between heterogeneous strains.
This interaction aims to simulate the competition among heterogeneous strains within the host, which
can lead to either an excess mortality or superinfection of the host. Virulence reflects the ability of
the virus to exploit the host. Strains with a higher virulence are more competitive within the host.
Conversely, strains with a lower virulence will only be suppressed within the host. Based on the above
assumptions, we can conclude that the function a (x) satisfies the following:

if x > 0, a (−x) > 0, a (x) + a (−x) ≥ 0, a (0) = 0. (3.2)

After a simple mathematical analysis, we find that a′ (0) ≤ 0 and a′′ (0) ≥ 0. The other parameters are
the same as those in system (2.2).
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The population reaches an endemic equilibrium Ê
(
Ŝ , Î, 0

)
upon the appearance of rare mutant

strains. Therefore, the stability of equilibrium Ê
(
Ŝ , Î, 0

)
determines whether the mutant strains can

invade the resident strain population. If Ê
(
Ŝ , Î, 0

)
is stable, then the system will remain stable in the

endemic equilibrium, and the mutant strains cannot invade. Conversely, if the equilibrium point is un-
stable, then the mutant strains can invade. We derive the Jacobian matrix of system (3.1) at Ê

(
Ŝ , Î, 0

)
as follows:

J1 =


−β (α) Î − d −β (α) Ŝ + δ −β (αm) Ŝ + δ
βÎ βŜ − (δ + α + γ + d) −a (α − αm) Î
0 0 β (αm) S − (δ + αm + γ + d) − a (αm − α) I

 =
[

Ĵ J2

O Jm

]
,

where

Ĵ =
[
−β (α) Î − d −β (α) Ŝ + δ
βÎ βŜ − (δ + α + γ + d)

]
, J2 =

[
−β (αm) Ŝ + δ
−a (α − αm) Î

]
,

O =
[

0 0
]
, Jm = β (αm) Ŝ − (δ + αm + γ + d) − a (αm − α) Î.

It can be shown that J1 is a block upper triangular matrix. Thus, the eigenvalues of the diagonal blocks
Ĵ and Jm are identical to those of J1. Lemma 2.2 demonstrates that the equilibrium point Ê

(
Ŝ , Î

)
is globally asymptotically stable in system (2.2) when R0 > 1. We can deduce that the eigenvalues
of Ĵ have negative real parts. Thus, if Jm < 0, then all eigenvalues of J1 have negative real parts,
thus indicating that the equilibrium point Ê

(
Ŝ , Î, 0

)
is stable and the mutant strains can not invade.

Conversely, if Jm > 0, then the mutant strains can invade. Considering the properties of Jm, we define
a function as follows:

S α (αm) = β (αm) Ŝ (α) − (αm + d + γ + δ) − a (αm − α) Î (α) , (3.3)

where S α (α) = 0. S α (αm) represents the per capita growth rate of hosts infected with the mutant
strains. If S α (αm) > 0, then the initial density of the mutant strains will increase, thus indicating a
positive possibility of invasion by the mutant strains. Conversely, if S α (αm) < 0, mutant strains cannot
invade. Therefore, S α (αm) is called the invasion fitness [32,33], which determines whether the mutant
strains can invade.

Additionally, when mutant strains are present in only a few hosts at the initial invasion stage, se-
lectively preferred mutant strains may go extinct due to demographic stochasticity [34]. The authors
of [31,35] demonstrated that the fitness gradient determines the direction of evolution, which is calcu-
lated as the partial derivative of fitness with respect to the mutant virulence. Then, we can obtain the
gradient of fitness (3.3) as follows:

D (α) =
∂S α (αm)
∂αm

∣∣∣∣∣
α=αm

= β′ (α) Ŝ (α) − 1 − a′ (0) Î (α) . (3.4)

If the fitness gradient is positive, then the mutant strains with a higher virulence can invade. Con-
versely, if the fitness gradient is negative, then mutant strains with a lower virulence can invade. Mean-
while, the authors of [31] indicated that α∗ is called the evolutionarily singular strategy if

D (α∗) =
∂S α (αm)
∂αm

∣∣∣∣∣
α=αm=α∗

= β′ (α∗) Ŝ (α∗) − 1 − a′ (0) Î (α∗) = 0. (3.5)
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The resident strain population is constantly invaded and substituted, which leads to directional evo-
lution [31]. We prove that when the virulence is far from the singular strategy, if S α (αm) > 0 and
R0 (αm) > 0, then the mutant strain can invade and make a virulence substitution , as shown in Ap-
pendix C.

The authors of [36] demonstrated that strains with different virulence cannot coexist when compe-
tition within hosts between heterogeneous strains is not considered. From [37, 38], we understand that
virulence will evolve towards minimizing S (α), thus indicating that it will maximize the basic repro-
duction number R0. However, these conclusions are based on the assumption of a single-infection, and
does not consider the competition among heterogeneous strains within the host. By substituting the
basic reproduction number R0 (α) = β (α) S 0/(δ + α + r + d), we can rewrite Eq (3.5) as follows:

D (α∗) =
∂S α (αm)
∂αm

∣∣∣∣∣
α=αm=α∗

= R′0 (α∗)
(α∗ + d + γ + δ)2

β (α∗)
− a′ (0) Î (α∗) = 0. (3.6)

From assumption (3.2), we have a′ (0) ≤ 0. It is evident that the right-hand side of Eq (3.6) is non-
negative. We can conclude that virulence will evolve towards the region where R′0 (α) < 0, surpassing
the point where R0 (α) is maximized. The competition among heterogeneous strains within the host
favors strains with a higher virulence, thus providing them with greater fitness benefits. Virulence
evolution resembles an arms race, where the selective pressure of asymmetric competition within the
host drives strains to evolve towards a higher virulence.

The author of [35] suggested that the adaptive dynamics of virulence α can be approximated by the
following:

dα
dt
=

1
2
µσ2 Î (α) D (α) , (3.7)

where µ denotes the probability of a virulence mutation occurring in an infected host, and σ2 denotes
the variance of the mutation distribution within a infected host. Thus, 1

2µσ
2 represents the mutation

rate of a strain. Î is the population density of a strain at equilibrium Ê [31].
As a result of repeated invasion and a small mutation substitution, virulence evolves towards a

zero fitness gradient. However, a singular strategy does not represent the direction of evolution. We
determine the property of a singular strategy by calculating the second derivative of the intrusion fitness
function. If

E =
∂2S α (αm)
∂αm

2

∣∣∣∣∣∣
α=αm=α∗

= β′′ (α∗) Ŝ (α∗) − a′′ (0) Î (α∗) < 0 (3.8)

is satisfied, then the singular strategy α∗ is called an evolutionarily stable strategy, thus indicating that
mutant virulence near the singular strategy cannot invade α∗. Conversely, if E > 0, then the singular
strategy lacks evolutionary stability. There are pairs of strains nearby α∗ that can mutually invade each
other’s population ; hence, they co-exist if

M =
∂2S α (αm)
∂αm∂α

∣∣∣∣∣∣
α=αm=α∗

= β′ (α∗) Ŝ ′ (α∗) − a′ (0) Î′ (α∗) + a′′ (0) Î (α∗) < 0 (3.9)

is satisfied. If M is positive, then there are mutually exclusive pairs of strains, which means that neither
can spread in the other’s population. The singular strategy is called a convergence stable strategy if

Electronic Research Archive Volume 32, Issue 8, 4858–4886.
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E + M =
∂2S α (αm)
∂αm

2

∣∣∣∣∣∣
α=αm=α∗

+
∂2S α (αm)
∂αm∂α

∣∣∣∣∣∣
α=αm=α∗

=β′′ (α∗) Ŝ (α∗) + β′ (α∗) Ŝ ′ (α∗) − a′ (0) Î′ (α∗) < 0,
(3.10)

where the mutant strains will approach the singular strategy through directed evolution. It is called a
repeller if the singular strategy lacks a convergence stability, thus indicating that virulence will evolve
away from the singular strategy. Then, according to the positivity or negativity of E and E + M, we
obtain the definitions of a continuous stability strategy, an evolutionary branching point, a repeller, and
a Garden of Eden.

Definition 3.1. 1) When E < 0, E + M < 0, the singular strategy α∗ is both evolutionarily stable and
convergence stable. This is called a continuously stable strategy (CSS), in which evolution pushes the
virulence towards α∗ and stops, and the singular strategy is the end point of the evolutionary process.

2) When E > 0, E + M < 0, the singular strategy α∗ is convergence stable but evolutionarily
unstable. The singular strategy α∗ is called an evolutionary branching point, which means that the
fitness reaches the minimum and any nearby mutant can invade.

3) When E > 0, E+M > 0, the singular strategy is called a repeller and lacks convergence stability,
thus indicating that virulence will evolve away from the singular strategy.

4) When E < 0, E +M > 0, the singular strategy is called a Garden of Eden and lacks convergence
stability. Virulence will evolve away from the singular strategy. Meanwhile, the singular strategy
cannot be invaded by mutant strain.

If the singular strategy α∗ is a branching point, then the monomorphic strain population will reach
the fitness minimum and break into two strain populations with different virulence.

3.2. Dimorphic adaptive dynamics

Evolutionary branching points produce two populations of strains with different virulence in the
initial monomorphic population. We assume there are two strain subpopulations with different vir-
ulence, namely, strains I1 with virulence α1 and strains I2 with virulence α2. In this subsection, we
will study the evolution of these resident strain populations with different virulence α1 and α2 and in-
vestigate whether further evolutionary branching or an evolutionarily stable coexistence occurs. The
evolutionary dynamics model following the coexistence strategy is similar to that of the monomorphic
population, which is established as follows:

S ′(t) = b − β (α1) S I1 − β (α2) S I2 − dS+δ (I1+I2) ,
I1
′(t) = β (α1) S I1 − (d+δ+γ+α1) I1 − a (α1 − α2) I1I2,

I2
′(t) = β (α2) S I2 − (d+δ+γ+α2) I2 − a (α2 − α1) I2I1.

(3.11)

Thus, there the exists equilibrium point E2
(
S ∗ (α1, α2) , I1

∗ (α1, α2) , I2
∗ (α1, α2)

)
as follows:

S ∗ (α1, α2) =
−dD + A −

√
(4 (bD −C) B + (dD − A)2)

2B
,

I1
∗ (α1, α2) =

S ∗ (α1, α2) β (α2) − (d + γ + δ + α2)
a (α2 − α1)

,

I2
∗ (α1, α2) =

S ∗ (α1, α2) β (α1) − (d + γ + δ + α1)
a (α1 − α2)

,
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where

A = ((d + γ + δ + α2) a (α1 − α2) + δa (α2 − α1)) β (α1) + ((d + γ + δ + α1) a (α2 − α1) + δa (α1 − α2)) β (α2) ,
B = (a (α1 − α2) + a (α2 − α1)) β (α1) β (α2) ,
C = δa (α2 − α1) (d + γ + δ + α1) + δa (α1 − α2) (d + γ + δ + α2) ,
D = a (α1 − α2) a (α2 − α1) .

Afterwards, it can be easily verified that when the condition
4 (bD −C) B + (dD − A)2 > 0,
−dDB + AB − B

√
(4 (bD −C) B + (dD − A)2) > 0,

a (α2 − α1) (S (α1, α2) β (α2) − (d + γ + δ + α2)) > 0,
a (α1 − α2) (S (α2, α1) β (α1) − (d + γ + δ + α1)) > 0,

(3.12)

is satisfied, the equilibrium E2
(
S ∗ (α1, α2) , I1

∗ (α1, α2) , I2
∗ (α1, α2)

)
is a strictly positive ecological

equilibrium point. When system reaches E2
(
S ∗ (α1, α2) , I1

∗ (α1, α2) , I2
∗ (α1, α2)

)
, the low-density pop-

ulation of mutant strains with virulence αm appears in the resident dimorphic strain population, and the
system (3.11) adds a mutant strain population Im, as follows:

S ′(t) = b − β (α1) S I1 − β (α2) S I2 − β (αm) S Im − dS+δ (I1+I2 + Im) ,
I1
′(t) = β (α1) S I1 − (d+δ+γ+α1) I1 − a (α1 − α2) I1I2 − a (α1 − αm) I1Im,

I2
′(t) = β (α2) S I2 − (d+δ+γ+α2) I2 − a (α2 − α1) I2I1 − a (α2 − αm) I2Im,

I′m(t) = β (αm) S Im − (d+δ+γ+αm) Im − a (αm − α1) ImI1 − a (αm − α2) ImI2.

(3.13)

Similar to Eq (3.3), we obtain the fitness of a rare mutant strain population with virulence αm in the
resident dimorphic population as follows:

S α1,α2 (αm) = β (αm) S ∗ − (αm + d + γ + δ) − a (αm − α1) I1
∗ − a (αm − α2) I2

∗. (3.14)

Equation (3.14) determines whether the new mutant strain can invade the dimorphic strain popula-
tion. Similarly, we find the fitness gradient of the mutant as follows:

 D1 (α1, α2) = ∂S α1 ,α2 (αm)
∂αm

∣∣∣∣
αm=α1

= β′ (α1) S ∗ (α1, α2) − 1 − a′ (0) I1
∗ − a′ (α1 − α2) I2

∗,

D2 (α1, α2) = ∂S α1 ,α2 (αm)
∂αm

∣∣∣∣
αm=α2

= β′ (α2) S ∗ (α1, α2) − 1 − a′ (α2 − α1) I1
∗ − a′ (0) I2

∗.
(3.15)

Equation (3.15) determines the evolutionary direction of virulence. Since the mutant strains are rare
and random, the adaptive dynamics of α1 and α2 can be indicated by the following:{ dα1

dt =
1
2µ1σ

2
1I1 (α1, α2) D1 (α1, α2) ≜ m1(α1, α2)D1(α1, α2),

dα2
dt =

1
2µ2σ

2
2I2 (α1, α2) D2 (α1, α2) ≜ m2(α1, α2)D2(α1, α2),

(3.16)

where Ii (α1, α2) represents the equilibrium density of the resident strain population Ii, µi denotes the
probability of generating an individual mutation in the strain population, σ2

i denotes the variance of
the mutation distribution of the resident strains I1, I2, and mi(α1, α2) = 1

2µiσ
2
i Ii (α1, α2) denotes the

Electronic Research Archive Volume 32, Issue 8, 4858–4886.
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evolutionary rate of the resident strain population. In the following, we will discuss the conditions for
generating CSS and evolutionary branching points in dimorphic strain populations. As seen in [39],
the conditions for convergence stability in polymorphic populations are not straightforward. In the
dimorphic strain population evolution, evolutionarily singular dimorphism is the coalition of strain
population strategies, where the fitness gradient of each strategy is zero. Thus, we can obtain that

D1 (α1
∗, α2

∗) = 0, D2 (α1
∗, α2

∗) = 0. (3.17)

The evolutionarily singular dimorphism is evolutionarily stable if

∂2sα1∗,α2∗(αm)
∂αm

2

∣∣∣∣∣∣
αm=α1∗

< 0,
∂2sα1∗,α2∗ (αm)
∂αm

2

∣∣∣∣∣∣
αm=α2∗

< 0. (3.18)

By calculating Eq (3.14), we obtain that


∂2S α1

∗ ,α2
∗ (αm)

∂αm2

∣∣∣∣∣
αm=α1∗

= β′′ (α1
∗) S ∗ (α1

∗, α2
∗) − a′′ (0) I1

∗ (α1
∗, α2

∗) − a′′
(
α1
∗ − α∗2

)
I2
∗ (α1

∗, α2
∗) ,

∂2S α1
∗ ,α2
∗ (αm)

∂αm2

∣∣∣∣∣
αm=α2∗

= β′′ (α2
∗) S ∗ (α1

∗, α2
∗) − a′′

(
α1
∗ − α∗2

)
I1
∗ (α1

∗, α2
∗) − a′′ (0) I2

∗ (α1
∗, α2

∗) .

(3.19)
The locally convergence stability of the singular dimorphism (α1

∗, α2
∗) can be obtained from the

eigenvalues, which can be gotten from the eigenvalues of the Jacobi matrix of system (3.16), which is
as follows:

J∗ =
 m1(α1, α2)∂D(α1,α2)

∂α1
m1(α1, α2)∂D(α1,α2)

∂α2

m2(α1, α2)∂D(α1,α2)
∂α1

m2(α1, α2)∂D(α1,α2)
∂α2

∣∣∣∣∣∣α1=α1
∗

α2=α2
∗

. (3.20)

The strong convergence stability of the dimorphic evolutionary dynamics is determined when the
conditions det(J∗) > 0, tr(J∗) are satisfied, which implies, in our case, that

∂Di(α1, α2)
∂αi

∣∣∣∣∣α1=α1
∗

α2=α2
∗

< 0, (3.21)

for i = 1, 2, and [
∂D1(α1, α2)
∂α1

∂D2(α1, α2)
∂α2

]∣∣∣∣∣∣α1=α1
∗

α2=α2
∗

>

[
∂D1(α1, α2)
∂α2

∂D2(α1, α2)
∂α1

]∣∣∣∣∣∣α1=α1
∗

α2=α2
∗

. (3.22)

After that, similar to the monomorphic population, we can obtain the conditions of the evolution-
ary results. We assume that condition (3.12) is satisfied. For the evolutionarily singular dimorphism
(α1
∗, α2

∗) of system (3.15), we can obtain the following:
■ If conditions (3.18), (3.21), and (3.22) are satisfied, then the singular dimorphism (α1

∗, α2
∗) is a

continuously stable strategy.
■ If conditions (3.21) and (3.22) are satisfied and condition (3.18) is not satisfied, then the singular

dimorphism (α1
∗, α2

∗) is an evolutionary branching point.
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4. Critical function analysis

In this section, we employ a critical function analysis [36,40] to study the properties of evolutionary
singular strategies when the transmission trade-off lacks a specific form. Equation (3.5) is satisfied once
virulence reaches the singular strategy α∗. Then, we can obtain the following:

β′ (α∗) =
1 + a′ (0) Î (α∗)

Ŝ (α∗)
, (4.1)

where Ŝ and Î depend on the endemic equilibrium Ê
(
Ŝ , Î

)
. We obtain an ordinary differential equation

as follows:

β′crit (α) =
1 + a′ (0) Î (α)

Ŝ (α)
. (4.2)

Critical functions refer to the solutions of Eq (4.2) with varying initial values. In the α, β plane,
each point will have a slope which corresponds to the critical function. If the trade-off is tangent to the
critical function at a point, then from Eqs (3.5) and (4.1), it follows that the corresponding virulence at
this tangent point is a singular strategy. We utilize the shape of a trade-off function at the tangent point
to ascertain the properties of singular strategies.

Theorem 4.1. We superimpose the image of the trade-off function on the critical function. If the
condition a′′ (0) ≥ 0 is satisfied and the trade-off function is concave at the tangent point, then the
singular strategy is an evolutionarily stable strategy.

Proof. By calculation, we obtain the second-order partial derivative of S α (αm) with respect to αm as
follows:

E =
∂2S α (αm)
∂αm

2

∣∣∣∣∣∣
α=αm=α∗

= β′′ (α∗) Ŝ (α∗) − a′′ (0) Î (α∗) < 0.

From Inequality (3.8), we can get that if the conditions a′′ (0) ≥ 0 and the trade-off function β (α)
is concave at the tangent point are satisfied, then the evolutionarily singular strategy is evolutionarily
stable. □

Theorem 4.2. (1) If the trade-off at the tangent is less convex than the critical function, then the
singular strategy is convergence stable.

(2) When (1) is satisfied and trade-off β (α) is sufficiently convex at the tangent point such that the
singular strategy lacks evolutionary stability, the singular strategy is an evolutionary branching point.

Proof. (i) We find the second-order derivative of the critical function at the tangent point as follows:

β′′crit (α∗) =
a′ (0) Î′ (α∗)Ŝ (α∗) + Ŝ ′ (α∗)

(
1 + a′ (0) Î (α∗)

)
(
Ŝ (α∗)

)2 .

By substituting Eq (3.5) into the above equation, we obtain the following:

β′′crit (α∗) =
a′ (0) Î′ (α∗) − β′ (α∗) Ŝ ′ (α∗)

Ŝ (α∗)
.
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From Inequality (3.10), we know that the condition of convergence stability is as follows:

E + M = β′′ (α∗) Ŝ (α∗) + β′ (α∗) Ŝ ′ (α∗) − a′ (0) Î′ (α∗) < 0.

If

β′′ (α∗) <
a′ (0) Î′ (α∗) − β′ (α∗) Ŝ ′ (α∗)

Ŝ (α∗)
= β′′crit (α∗)

is satisfied, then the singular strategy α∗ is convergence stable.
(ii) We can obtain that if the trade-off function is less convex than the critical function at the tangent

point, then the evolutionarily singular strategy is convergence stable. Then, if the image of the trade-
off function β (α) is sufficiently convex such that the singular strategy lacks evolutionary stability, the
singular strategy is an evolutionary branching point. □

Therefore, we apply Theorems 4.1 and 4.2 to analyze the evolutionary outcomes of the singular
strategy by using superimposed images of the critical and trade-off functions.

5. Evolutionary analysis

This section applies the theoretical findings to an SIR model. We utilize a critical function analysis
and numerical simulations to examine the evolutionary outcomes. The transmission-virulence trade-off
hypothesis [41] indicates that the virulence satisfies the following:
■ when the virulence is 0, the pathogen is not transmissible;
■ the increase of transmission inevitably leads to higher virulence.
To investigate the rich evolutionary potential of the model, we first follow the general trade-off

assumption as follows:
β (α) =

cβα
η + α

,

where the transmission rate increases with the virulence and approaches a certain upper limit [42].
While several studies have documented this trade-off, empirical research that assesses the trade-off
between virulence and transmission remains insufficient. Then, we incorporate the cost of host im-
mobility caused by fear of the virus following the epidemic prevention publicity. When implementing
epidemic prevention measures, the scope and intensity of publicity increases the public awareness,
leading some individuals to engage in self-isolation, thereby reducing contact between susceptible in-
dividuals and infected hosts. The contact rate of the hosts who have not been exposed to the epidemic
prevention publicity does not decrease. Hosts exposed to the epidemic prevention publicity will de-
velop the fear of the virus. This fear is not only related to the intensity and effectiveness of the publicity,
but also to the virulence of the virus. To simulate the variation of this fear, we introduce a monotoni-
cally decreasing function to model the decrease in the communication rate as a result to the increase in
scope and the intensity of publicity. Therefore, we define the transmission trade-off as follows:

β (α) =
cβα
η + α

(
1 − k + k exp (−va)

)
, (5.1)

where the parameters cβ, η, k, and v are all positive. The fraction outside parenthesis adheres to the
general hypothesis of transmission-virulence trade-off, where transmission approaches the upper limit
cβ with an increasing virulence. The parameter η determines how rapidly the function β (α) rises as
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α increases. Then, we use the parameters k and v in parenthesis to simulate how the transmission
rate changes when the scope and intensity of publicity increases. Parameters k and v describe the
effects of increasing the scope and intensity of publicity, respectively, on reducing the transmission rate
β (α). The scope and intensity of publicity will reduce contacts, thereby decreasing the transmission
rate. Considering that it is difficult to achieve a very high publicity range in practice, we only discuss
the evolutionary results for k ≤ 0.9. Meanwhile, an increase in the virulence will also heighten the
public vigilance among populations exposed to the epidemic prevention publicity, thereby reducing
the transmission rate.
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Figure 1. Parameter variation diagram of function given by (5.1). (a) Variation of β (α)
with k when v = 5. Blue, red, yellow and purple represent k = 0, k = 0.3, k = 0.5 and
k = 0.7 respectively. (b) Variation of β (α) with v when k = 0.5. Blue, red, yellow and purple
represent v = 0, v = 1, v = 2 and v = 5 respectively.

Figure 1(a),(b) demonstrate that increasing the scope and intensity of publicity leads to a decrease
in the transmission rate. In Figure 1(a), the scope of publicity reduces the overall transmission. The
impact of the epidemic prevention publicity on individuals is influenced by both the intensity of the
publicity and the severity of the outbreak. Increasing the publicity intensity and virulence amplifies
public fear of the virus. Figure 1(b) shows that increasing the publicity intensity effectively reduces the
transmission rate when virulence is low. However, when virulence is high, the impact of the publicity
intensity on the transmission rate is not significant.

Next, we explore the impact of varying publicity measures on the evolution of virulence in diverse
interactions between heterogeneous strains.

5.1. Excess mortality

In this subsection, we assume that contact with infected hosts only results in excess mortality, thus
indicating that the interaction function a (x) satisfies the following:
■ For any x, we have a (x) ≥ 0;
■ a (x) = 0, if and only if x = 0.
By a simple mathematical analysis, we can obtain a′ (0) = 0, a′′ (0) ≥ 0. Then,we predict the
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evolutionary outcomes under this interaction. The following theorem demonstrates that this interaction
will not result in an evolutionary branching point.

Theorem 5.1. System (2.2) does not generate evolutionary branching points when excess mortality
solely occurs in the interaction.

Proof. According to conditions (3.8) and (3.10), evolutionary branching points will occur if conditions
E > 0 and E + M < 0 are satisfied. It is obvious that the emergence of evolutionary bifurcation points
must satisfy the following:

M = β′ (α∗) Ŝ ′ (α∗) − a′ (0) Î′ (α∗) + a′′ (0) Î (α∗) < 0.

When the virulence evolves to an evolutionarily singular strategy, α∗ satisfies condition (3.6). We can
obtain that

β′ (α∗) =
1 + a′ (0) Î (α∗)

Ŝ (α∗)
=

(
1 + a′ (0) Î (α∗)

)
β (α∗)

d + α∗ + γ + δ
.

From Eq (2.4), we can obtain the following:

Ŝ ′ (α∗) =
β (α∗) − β′ (α∗) (d + α∗ + δ + γ)

(β (α∗))2 = −
a′ (0)
β (α∗)

.

When there is only extra death in the interaction between heterogeneous strains, we obtain a′ (0) = 0
and a′′ (0) > 0 from the above. Rewriting M, we can obtain the following:

M = β′ (α∗) Ŝ ′ (α∗) − a′ (0) Î′ (α∗) + a′′ (0) Î (α∗)

= a′′ (0) Î (α∗) − a′ (0)
β′ (α∗)
β (α∗)

− a′ (0) Î′ (α∗)

= a′′ (0) Î (α∗) > 0.

Therefore, we can obtain that there will be no evolutionary branching points under a mutual inhibition
competition. Obviously, M is positive, which means that there will be no evolutionary branching points
when the interaction will only induce an excess mortality. □

According to Theorem 5.1, there is no evolutionary branching point under the hypothesis of excess
mortality. However, evolutionary outcomes such as CSS and repeller may still occur. To describe the
excess mortality caused by contact between infected hosts, we select the interaction function to be the
following:

a (x) = ca

(
1 + p

1 + p exp(σx)
− 1

)2

, (5.2)

where the parameters ca, σ, and p are all positive. It is evident that the function a(x) satisfies condition
(3.2) of the interaction function and the above conditions for an excess mortality. The parameter ch

governs the upper limit of the interaction function. σ represents the extent of the interaction between
heterogeneous strains.

Figure 2(a) illustrates that the interaction increases more rapidly as σ becomes larger. Parameter
p describes the disparity in the excess mortality caused by the interaction between the high and low
virulence strains. In Figure 2(b), the excess mortality of the high virulence strains is lower than that of

Electronic Research Archive Volume 32, Issue 8, 4858–4886.



4871

the low virulence strains when p > 1. Conversely, when 0 < p < 1, the excess mortality caused by
the highly virulent strains is higher than that caused by the less virulent strains. We assume that hosts
infected by the low virulence strain will experience a higher mortality rate when reinfected by the high
virulence strain.
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Figure 2. Parameter variation diagram of function given by (5.2). (a) Variation of a (x) with
σ when p = 0.8. Blue, red, yellow and purple represent σ = 1, σ = 2, σ = 3, and σ = 4
respectively. (b) Variation of a (x)with p when σ = 4. Blue, red, yellow and purple represent
p = 0.5, p = 1, p = 1.5, and p = 2 respectively.

Then, we examine the effects of various publicity measures on evolutionary outcomes when hetero-
geneous strains result solely in an excess mortality. Rewriting conditions (3.8) and (3.10) shows that
the singular strategy is an evolutionarily stable strategy if the inequality

E = β′′ (α∗) Ŝ (α∗) − a′′ (0) Î (α∗) < 0 (5.3)

is satisfied. If the inequality
E + M = β′′ (α∗) Ŝ (α∗) < 0 (5.4)

is satisfied, then the singular strategy is convergence stable. Evidently, the evolutionary outcomes of
CSS, repeller, and the Garden of Eden may still occur.

Figure 3 illustrates the evolutionary outcomes of virulence in relation to the publicity intensity
across different publicity scopes. In Figure 3(a), CSS only occurs when the publicity scope is limited,
thus indicating that the virulence will stably evolve to a singular strategy. In addition, blindly increas-
ing the publicity intensity under a limited publicity scope may not reduce the evolution direction of
virulence. To mitigate virulence, we should opt for a moderate publicity intensity. Figure 3(b) depicts
how the singular strategy changes with the publicity intensity as the publicity scope increases. When
the publicity scope is high, increasing the publicity intensity effectively reduces the singular strategy.
Continued increases in the publicity intensity can result in evolutionary bi-stability. Then, strains with
an initial virulence higher than the repeller will evolve towards a high CSS. Conversely, strains with
an initial virulence lower than the repeller will evolve towards a low CSS. Moreover, if the publicity
intensity is further increased, then only one high CSS will exist.
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Figure 3. Bifurcation diagram. The red solid line indicates the evolutionary branching point,
the grey solid line represents the CSS, the red dashed line denotes the repeller, and Garden
of Eden is the grey dashed line. (a) Bifurcation diagram of publicity intensity with k = 0.4.
(b) Bifurcation diagram of publicity intensity with k = 0.75. Nonvarying parameter values
are: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3, σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15.
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Figure 4. Bifurcation diagram. The line colors and styles (solid and dashed) retain the same
significance as previously defined. (a) Bifurcation diagram of publicity scope with v = 5.
(b) Bifurcation diagram of publicity scope with v = 15. Nonvarying parameter values are:
cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3, σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15.

Figure 4 illustrates the effects of increasing the scope of publicity on the evolutionary direction
under both a low and a high publicity intensity. In Figure 4(a), it is evident that increasing the publicity
intensity only results in CSS when the publicity intensity is low. Keeping the publicity intensity low and
the publicity scope high can effectively reduce the singular strategy. However, Figure 4(b) demonstrates
that when the publicity intensity is high, increasing the publicity scope does not significantly reduce
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the evolutionary trend of virulence. The high publicity scope will lead to an evolutionary bi-stability.
Continuing to expand the publicity scope can effectively make the singular strategy only have a low
CSS.
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Figure 5. (a)–(c) Diagram for critical function analysis. The thin blue line is the critical
function and the thick black line is the trade-off function. The trade-off functions of black
and red represent evolutionary stability and instability, respectively. (a) The tangent point
of trade-off and critical function when v = 5. (b) The tangent point of trade-off and critical
function when v = 10. (c) The tangent point of trade-off and critical function when v = 20.
(d)–(f) Pairwise invasibility plots. The mutant strains with positive fitness is indicated by
the shaded area marked with ‘+’, otherwise it is the opposite. The direction of disruptive
selection which ceases at the stable strategy is indicated by ‘→’. (d) When v = 5, A is a CSS.
(e) When v = 10, B is a CSS. (f) When v = 20, C is a CSS. (g)–(i) Simulated evolutionary
tree. The initial virulence values are 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. (g) CSS when
v = 5. (h) CSS when v = 10. (i) CSS when v = 20. Other parameter values: cβ = 0.1,
η = 0.8, ca = 0.4, p = 1.3, σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15, k = 0.75.
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In Table 1, we list the evolutionary outcomes induced by varying the publicity measures with the
interaction of excess mortality. It is evident that both an excessively strict and lax publicity measures
may produce a high CSS.

Table 1. Evolutionary outcomes induced by varying publicity measures with the interaction
of excess mortality.

Low scope High scope
Low intensity Low CSS appears in a certain proportion Low CSS
High intensity Low CSS Both low CSS, evolutionary bi-stability1 and high CSS may appear.

1 Evolutionary bi-stability will result in the strains with low virulence and high virulence evolve toward low CSS and high CSS, respec-
tively.

We use a critical function analysis and the adaptive dynamics framework to investigate the effects
of different publicity measures on the evolutionary outcomes. According to Theorem 4.1 and Inequal-
ity (5.4), we can deduce that the singular strategy is CSS when the transmission rate function β(α)
is concave at the singular strategy. Figure 5 illustrates the evolutionary outcomes which result from
different publicity intensities when a large publicity scope is chosen. From the critical function anal-
ysis, we can deduce that the singular strategies appear at the tangent points in Figure 5(a)–(c). We
can clearly see that initially increasing the publicity intensity can shift the tangent point forward, thus
indicating that the evolutionary direction of virulence will be reduced. However, when the publicity
intensity is too high, the critical function and the trade-off function will be tangent at a high virulence.
Since the trade-off function is concave at the tangent point, CSS will be generated.
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Figure 6. (a) Pairwise invasibility plot (PIP) when v = 13.8. ‘+’has the same meaning
as above. D1 and D3 are CSS, and D2 is a repeller. (b) Simulated evolutionary tree when
v = 13.8. The initial virulence values are 0.1, 0.2, 0.25, 0.28, 0.29302231842516, 0.3, 0.4,
and 0.5, respectively. The initial virulence of 0.29302231842516 will lead to an Garden of
Eden. Other parameter values: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3, σ = 0.5, b = 10,
d = 0.01, γ = 0.1, δ = 0.15, k = 0.75.

Figure 5(d)–(f) shows the corresponding PIP diagrams. Before reaching CSS, the virulence will
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gradually evolve towards CSS. We observe that once the virulence reaches CSS, no other mutant strains
can invade. Figure 5(g)–(i) is the simulated evolutionary trees. It is evident that whether the initial
virulence is higher or lower than the singular strategy, it will evolve to CSS.

Meanwhile, Figure 3(c) indicates that complex evolutionary outcomes arise with a high publicity
scope and intensity. Figure 6(a),(b) is pairwise invasibility plot and simulated evolutionary tree when
v = 13.8, respectively. When evolutionary bi-stability occurs, the initial virulence smaller than the
repeller D2 will evolve to a low CSS D1, and the initial virulence larger than the repeller D2 will reach
high CSS D3. When the initial virulence is low, employing a high publicity scope and intensity is
advisable to mitigate the strain spread. However, when faced with highly virulent strains, alterna-
tive publicity measures should be considered. Meanwhile, we observed an interesting phenomenon in
Figure 6(b). Although the initial virulence near the repeller evolves towards CSS, if initial virulence
happens to match the value of the repeller, then it remains unchanged. The repeller exhibits evolution-
ary stability, thus indicating that no mutant strain can invade. However, this scenario only exists in
ideal conditions, hence it is also referred to as the Garden of Eden.
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Figure 7. (a)–(c) Diagram for critical function analysis. The line colors and thicknesses
retain the same significance as previously defined. (a) The first tangent point when v = 13.8.
(b) The second point when v = 13.8. (c) The third point when v = 13.8. (d)–(f) Pairwise
invasibility plots. ‘+’ and ‘→ have the same meaning as above. (d) D1 is a CSS. (e) D2 is
a repeller. (f) D3 is a CSS. Other parameter values: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3,
σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15, k = 0.75.

Figure 7(a),(c) shows that CSS will occur if β (α) is concave at the tangent point. In Figure 7(d),(f),
the virulence will evolve to D1 and D3. When the virulence reaches D1 and D3, no mutant strain can
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invade. According to Inequality (5.4), if the trade-off function is convex at the tangent point, then
it will be convergence unstable and produce a repeller. Figure 7(b) illustrates that β′′ (α) > 0 at the
tangent point, which indicates that it is a repeller. Meanwhile, the tangent point is black, which means
that the singular strategy is evolutionarily stable. Figure 7(e) shows that the virulence will leave D2.
No mutant strain can invade at D2, which is the Garden of Eden.

5.2. Superinfection and excess mortality

In this section, we assume that the interaction between heterogeneous strains not only leads to ex-
cess mortality among infected individuals, but also results in superinfection. Models of super infection
usually assume that the strains with a higher virulence can infect and dominate hosts that were pre-
viously infected by strains with a lower virulence [8]. Some infected hosts are taken over by strains
with a higher virulence. Based on the above assumptions, we can obtain that the interaction function
satisfies the following:
■ If x > 0, a (x) < 0;
■ a (x) + a (−x) ≥ 0.
From Inequalities (3.8) and (3.10) and the above conditions, we observe that complex evolutionary

outcomes arise under the assumptions of superinfection and an excess mortality. Meanwhile, unlike
with only an excess mortality, the addition of superinfection will result in evolutionary branching.
To explore the rich evolutionary outcomes under this hypothesis, we select the interaction among
heterogeneous strains as follows:

a (x) = ca

(
1 + p

1 + p exp(σx)
− 1

)
, (5.5)

where the parameters ca, p, and σ are all positive. The above conditions and hypothesis (3.2) regarding
the interaction function are satisfied when p ≥ 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Virulence difference x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

In
te

ra
ct

io
n 

fu
nc

tio
n 

a(
x)

< = 1
< = 2
< = 3
< = 4

(a) p = 1.3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Virulence difference x

-0.1

-0.05

0

0.05

0.1

0.15

0.2

In
te

ra
ct

io
n 

fu
nc

tio
n 

a(
x)

 

p = 0.5
p = 1
p = 1.5
p = 2

(b) σ = 4

Figure 8. Parameter variation diagram of function given by Eq (5.2). (a) Variation of a (x)
with σ when p = 1.3. Blue, red, yellow and purple represent σ = 1, σ = 2, σ = 3, and
σ = 4 respectively. (b) Variation of a (x) with p when σ = 4. Blue, red, yellow and purple
represent p = 0.5, p = 1, p = 1.5 and p = 2 respectively.
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Parameter ca controls the upper limit of the interaction. Parameter σ describes the intensity of
interaction. In Figure 8(a), as the parameter σ increases, the intensity of interaction becomes higher. p
represents the proportion of superinfection and the excess mortality in the interaction. In Figure 8(b),
we notice that a (x) + a (−x) increases with the higher p, thus indicating a greater proportion of excess
mortality. Meanwhile, when p < 1, a (x) + a (−x) < 0, which contradicts Hypothesis 3.2.

Next, we investigate the effects of various publicity measures on the evolution of virulence in the
context of interactions that involve superinfection and an excess mortality.

From Eq (3.6), we can find that when a′ (0) < 0, the interaction among heterogeneous strains will
drive virulence towards a higher evolutionary direction compared to a′ (0) = 0. Figure 9 indicates the
variation of the evolutionary singular strategy with a publicity intensity in the low and high publicity
scopes, respectively. Meanwhile, Figure 10 illustrates the effects of the varying publicity scopes on
the direction of evolution with low and high publicity intensities. Clearly, the interaction with super-
infection and an excess mortality increases the singularity strategy compared to interaction involving
only the excess mortality. The rationale is that superinfection enhances the fitness benefits of strains
with a higher virulence. From Figure 9(a), it is evident that at low publicity intensities, expanding the
scope of publicity can effectively decrease the virulence, while also leading to evolutionary branching
outcomes.

According to Figure 9(b), increasing the publicity scope at high intensity levels does not lead to a
decrease in the evolutionary singularity strategies. The reduction in virulence only occurs when the
publicity scope is extremely broad.
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Figure 9. Bifurcation diagram. The line colors and styles (solid and dashed) retain the same
significance as previously defined. (a) Bifurcation diagram of publicity scope with v = 3.
(b) Bifurcation diagram of publicity scope with v = 10. Nonvarying parameter values are:
cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3, σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15.

Figure 10(a),(b) shows similar results to the interaction with only an excess mortality. Both a low
and a high publicity intensity will make the singular strategy first decrease and then increase with the
expansion of the scope. Meanwhile, when the publicity intensity is high, the increase of the publicity
scope will produce the result of evolutionary branching.
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Figure 10. Bifurcation diagram. The line colors and styles (solid and dashed) retain the
same significance as previously defined. (a) Bifurcation diagram of publicity scope under
interaction 5.2 with k = 0.4. (b) Bifurcation diagram of publicity scope under interaction
5.2 with k = 0.75. Nonvarying parameter values are: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3,
σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15.

Table 2 list the evolutionary outcomes induced by varying the publicity measures with the interac-
tion of an excess mortality. Different from the interaction with only excessive death, the addition of
superinfection will make the evolution outcome with a high publicity intensity only a high CSS. In ad-
dition, the high range and low intensity publicity measures can produce the low CSS and evolutionary
branching.

Table 2. Evolutionary outcomes induced by varying publicity measures with the interaction
of Superinfection and excess mortality.

Low scope High scope
Low intensity Both low CSS, evolutionary branching1 Both low CSS, evolutionary branching1

and high CSS may appear and high CSS may appear
High intensity High CSS High CSS

1 Evolutionary branching indicates that virulence first evolves to singular strategy, and then two strains coexist.

Next, we investigate the evolutionary outcomes that result from varying levels of publicity intensity
in high publicity scopes. Figure 11 depicts critical function analyses and PIP diagrams of various
publicity intensities under conditions of a high intervention scope.

Figure 11(a),(c) describe the tangents of the critical function and the trade-off function when v = 1
and v = 5. Obviously, the trade-off function at the tangent point is concave, and it is more concave than
the critical function. According to Theorems 4.1 and 4.2, the tangent point is a CSS, which indicates
that the singular strategy is the endpoint of evolution. Figure 11(d),(f) illustrate the corresponding PIP
diagrams. We observe that virulence steadily evolves to the A and C, and no mutant strain can invade
once CSS is reached. In Figure 11(d), the trade-off function is convex enough to be evolutionarily un-
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stable, but not as convex as the critical function. By Theorem 4.2, evolutionary branching will appear.
Figure 11(e) shows that virulence will first evolve to the evolutionary bifurcation point. After reaching
the evolutionary bifurcation point B, all mutant strains with virulence near the singular strategy can
invade. Then, they enter a dimorphic population where the two strains coexist.
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Figure 11. (a)–(c) Diagram for critical function analysis. The line colors and thicknesses
retain the same significance as previously defined. (a) The tangent point when v = 1. (b) The
tangent point when v = 3. (c) The tangent point when v = 5. (d)–(f) Pairwise invasibility
plots. ‘+’ and ‘→ have the same meaning as above. (d) A is a CSS. (e) B is an evolutionary
branching point. (f) C is a CSS. Other parameter values: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3,
σ = 0.5, b = 10, d = 0.01, γ = 0.1, δ = 0.15, k = 0.75.

Figure 12(a) indicates the virulence dynamics after entering the dimorphic population. After the
virulence reaches the evolutionary branching point B, it will enter the dimorphic coexistence region.
After that, the virulence dimorphism evolves into evolutionary singular dimorphisms B1 and B2. We
can see that B1 and B2 meet the conditions of evolutionary stability, which indicates that they will not
be invaded by other mutant strains. Figure 12(b) shows the simulated evolutionary tree with an initial
virulence of 0.5. Virulence first evolves to a singular strategy, then enteres the dimorphic population
and evolves to a singular dimorphism.
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Figure 12. (a) Mutual invasibility plot. Shaded areas indicating protected dimorphism are
separated by stable (black) and unstable (red) isoclines at which selection gradient vanishes
in either α1-direction (thick line) or α2-direction (thin line). The evolutionary directions
in a monomorphic environment is indicated by ‘→’ on the main diagonal. (b) Simulated
evolutionary tree. Other parameter values: cβ = 0.1, η = 0.8, ca = 0.4, p = 1.3,σ = 0.5,
b = 10, d = 0.01, γ = 0.1, δ = 0.15, k = 0.75.

6. Discussion

Publicity measures for epidemic prevention have always been a common approach for humanity in
combating infectious diseases. In this study, we established a fitness function to investigate the evolu-
tion of pathogens based on an SIR model. We incorporated interactions among heterogeneous strains
to explore how competition within hosts effected the evolutionary outcomes. Then, we investigated
the evolutionary conditions under which virulence generated CSS, evolutionary branching, repellers,
and the Garden of Eden. Evolutionary outcomes independent of specific trade-offs were obtained by
a critical function analysis. We followed the general hypothesis of trade-offs between transmission
and virulence and incorproated the costs of host mobility induced by the scope and intensity of pub-
licity. First, our results indicated that the introduction of interaction led a singular strategy to exceed
the virulence value that maximized R0. The interactions among heterogeneous strains induced strains
with higher virulence and gained greater fitness benefits. Second, it is evident that if the interaction
only involved an excess mortality, then evolutionary branching would not occur. Changing the scope
and intensity of publicity led to either CSS or evolutionary bi-stability. Meanwhile, when the pub-
licity intensity was low, a lower CSS was achieved by continuously increasing the publicity scope.
However, a high publicity intensity limited the effect of the publicity scope. A high publicity scope
and intensity induced the emergence of evolutionary bistability and the Garden of Eden. Third, the
interaction that involved an excess mortality and superinfection drove the evolution of an increased
virulence. Similar to an excess mortality, the scope of publicity reduced virulence more effectively at
a low publicity intensity. Meanwhile, a high publicity scope and a low publicity intensity induced the
emergence of evolutionary branching. Then, strains with different virulence will coexist. The virulence
of a dimorphic population will be pushed to an evolutionarily stable singular dimorphism.
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Most of the previous studies followed the trade-off that transmission increases with an increase in
virulence and tends to approach an upper limit. Based on this trade-off hypothesis, we introduced the
mobility cost caused by the host’s fear of the virus after the epidemic prevention publicity. Therefore,
we more specifically observed the effects of the epidemic prevention publicity on the virus evolution.
In addition, we included the interaction between hosts infected with different strains in the model. In
epidemiological research, reducing the transmission rate can effectively reduce the spread of infectious
diseases. However, our results indicated that different publicity strategies induced varying evolutionary
outcomes in virulence. Excessive epidemic prevention measures may result in harmful consequences.
To effectively curb the spread of infectious diseases, it is imperative to thoroughly contemplate and
enhance our strategies for pandemic response.

Considering the diversity of individual behaviors and the complexity of real-world epidemics, the
SIR evolutionary dynamics model with treatment may not fully capture these factors. Furthermore,
we investigated the evolutionary dynamics of monomorphic and polymorphic populations, since this is
possible only by numerical analysis, so we provided the hypothesis of trade-off function based on bio-
logical significance and the previous research. Our conclusions are inherently tied to our hypotheses,
and we aim for our assumptions to be as consistent with the empirical facts as possible. We need to take
specific function forms and parameter values to simulate and verify the theoretical results of the model.
Therefore, for different functions and parameters, there are certain limitations. However, the different
functional assumptions may lead to similar conclusions. In the next phase of our research, we will
utilize empirical data to model trade-off functions that more accurately reflect real-world dynamics.
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Appendix

A. Proof of Lemma 2.1

When S = 0, we can obtain dS
dt = b+ δI > 0. Thus, the trajectory from the positive half of the I-axis

is inward to the first quadrant. When S + I ≥ b
d , d(S+I)

dt = b− d (S + I)− (α + γ) I ≤ − (α + γ) I ≤ 0. We
can get that lim

t→+∞
(S + I) ≤ b

d . Therefore, the trajectories from the region S + I ≥ b
d , S > 0, I > 0 always

end up in the region D. Again, since I = 0 is a trajectory of the system (2.2). It follows that region D
is a positive invariant set of system (2.2) and globally attractive.

B. Proof of Lemma 2.2

(1) The Jacobi matrix for the disease-free equilibrium point E0 (S 0, I0) is

J0 =

[
−d −βS 0 + δ

0 (δ + α + γ + d) (R0 − 1)

]
.

We can see that when R0 < 1, the real parts of the eigenvalues of J0 are all negative. Then we can
obtain that the disease-free equilibrium point E0 (S 0, I0) is locally asymptotically stable when R0 < 1.
Conversely, it is unstable when R0 > 1.

To study the global stability of disease-free equilibrium point E0 (S 0, I0), we construct the Liapunov
function as

V0 = S − S 0 − S 0 ln
S
S 0
+ I.

It is clear that the function V is positive definite, and the total derivative of V with respect to t along
the system (2.2) is

dV0

dt
= b − dS − (α + γ + d) I −

S 0

S
(b − βS I + δI − dS )

= b − dS − (α + γ + d) I −
S 0

S
b + βS 0I −

S 0

S
δI + b

=

(
2 −

S 0

S
−

S
S 0

)
b +

(
(R0 − 1) (α + γ + d + δ) +

(
S −

b
d

)
δ

S

)
I.
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In region D, we have S ≤ b
d . Then we can obtain that all parts of the above equation are non-positive

when R0 < 1. So dV
dt ≤ 0, where dV

dt = 0 holds if and only if S = b
d , I = 0. Therefore, the disease-free

equilibrium point E0 (S 0, I0) is globally asymptotically stable in the invariant set D. Then, we get that
the disease-free equilibrium point E0 (S 0, I0) is globally asymptotically stable.

(2) The Jacobi matrix for the endemic equilibrium point Ê
(
Ŝ , Î

)
is

Ĵ =
[
−βÎ − d −βŜ + δ
βÎ βŜ − (δ + α + γ + d)

]
.

Then, the characteristic determinant of Jacobi matrix Ĵ is

det
(
λE − Ĵ

)
=

∣∣∣∣∣∣ λ + βÎ + d d + α + γ
−βÎ λ

∣∣∣∣∣∣ = λ2+
(
βÎ + d

)
λ+βÎ (d + α + γ) ,

where both βÎ + d and βÎ (d + α + δ) are positive when Î = d(d+α+γ+δ)(R0−1)
β(d+α+γ) > 0, it implies the real parts

of the eigenvalues of Ĵ are negative when R0 > 1. Then, we get Ê
(
Ŝ , Î

)
is locally asymptotically stable

when R0 > 1. On the contrary, it is unstable when R0 < 1. To study the global stability of endemic
equilibrium point Ê

(
Ŝ , Î

)
, we construct the Liapunov function as

V̂ =
1
2

(
S − Ŝ + I − Î

)2
+ I − Î − Î ln

I
Î
.

Meanwhile, we can get that b = dŜ + (γ + σ + d) Î and γ + σ + d + δ = β (α) Ŝ . It is evident that the
function V is positive definite, and the total derivative of V with respect to t along the system (2.2) is

dV̂
dt
=

(
S − Ŝ + I − Î

) (dS
dt
+

dI
dt

)
+
γ + α

β (α)

(
1 −

Î
I

)
dI
dt

=
(
S − Ŝ + I − Î

)
(b − dS − (γ + α + d) I) +

γ + α

β (α)

(
1 −

Î
I

)
(β (α) S I − (δ + α + γ + d) I)

= d
(
S − Ŝ + I − Î

) (
Ŝ − S + Î − I

)
+ (γ + α)

(
I − Î

) (
Î − I

)
+ (γ + α)

(
S − Ŝ

) (
Î − I

)
+
γ + α

β (α)

(
I − Î

) (
β (α) S − β (α) Ŝ

)
= −d

(
S − Ŝ + I − Î

)2
− (γ + α)

(
I − Î

)2
≤ 0.

Thus, if R0 > 1, we have dV̂
dt ≤ 0 in R3

+ and dV̂
dt = 0 if and only if (S , I) =

(
Ŝ , Î

)
. Following the

Lyapunov-LaSalle’s invariance principle, the global asymptotic stability of Ê
(
Ŝ , Î

)
is proved.

C. Invasion will result in virulence substitution

In the main article, we derive the invasion fitness (3.3) of monomorphic population. S α (αm) > 0
will cause the equilibrium point

(
Ŝ (α) , Î (α) , 0

)
to become unstable. Substitution will occur, if the

equilibrium point
(
Ŝ (αm) , 0, Î (αm)

)
is stable. When the diversity of virulence |αm − α| is small and αm
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is far from the singular strategy, we can rewrite the invasion fitness by using a Taylor expansion around
αm = α. We can get

S α (αm) = S α (α) +
∂S α (αm)
∂αm

∣∣∣∣∣
αm=α

(αm − α) + O
(
(αm − α)2

)
. (C.1)

By exchanging the virulence of the mutant strain and the resident strain, we can get

S αm (α) = S αm (αm) +
∂S αm (α)
∂α

∣∣∣∣∣
α=αm

(α − αm) + O
(
(α − αm)2

)
. (C.2)

The virulence is far the from singular strategy, which indicates that ∂S αm (α)
∂α

∣∣∣∣
α=αm

, 0. Since S α (α) =
S αm (αm) = 0, signs of S α (αm) and S αm (α) are opposite when |αm − α| is small and αm is far from the
singular strategy. Then, we rewrite the Jacobian matrix of system (3.1) at the

(
Ŝ (αm) , 0, Î (αm)

)
as

J3 =


−β (αm) Î (αm) − d −β (α) Ŝ (αm) + δ −β (αm) Ŝ (αm) + δ

0 β (α) Ŝ (αm) − (δ + α + γ + d) − a (α − αm) Î (αm) 0
β (αm) Î (αm) −a (αm − α) Î (αm) 0

 .
The characteristic determinant of J2 is

det (λE − J3)

=

∣∣∣∣∣∣∣∣∣
λ + β (αm) Î (αm) + d β (α) Ŝ (αm) − δ β (αm) Ŝ (αm) − δ

0 λ −
(
β (α) Ŝ (αm) − (δ + α + γ + d) − a (α − αm) Î (αm)

)
0

−β (αm) Î (αm) a (αm − α) Î (αm) λ

∣∣∣∣∣∣∣∣∣
=

(
λ − S αm (α)

) ∣∣∣∣∣∣ λ + β (αm) Î (αm) + d β (αm) Ŝ (αm) − δ
−β (αm) Î (αm) λ

∣∣∣∣∣∣
=

(
λ − S αm (α)

) (
λ2 +

(
β (αm) Î (αm) + d

)
λ +

(
β (αm) Ŝ (αm) − δ

)
β (αm) Î (αm)

)
.

From Appendix B, we know that the solution of det (λE − J3) = 0 has negative real part if S αm (α) <
0 and R0 (αm) > 1. Meanwhile, from Eqs (C.1) and (C.2), we find that if S α (αm) > 0, S αm (α) < 0.
Then, we get that

(
Ŝ (αm) , 0, Î (αm)

)
is locally asymptotically stable when S α (αm) > 0 and R0 (αm) > 1.

Therefore, if the R0 (αm) > 1, the diversity of virulence |αm − α| is small, and αm is far from the singular
strategy, successful invasion will result in virulence substitution.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 8, 4858–4886.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Adaptive dynamics
	Monomorphic adaptive dynamics
	Dimorphic adaptive dynamics 

	Critical function analysis
	Evolutionary analysis
	Excess mortality
	Superinfection and excess mortality

	Discussion
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Appendix C



