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Abstract: In this study, we explore the main supergraph S(G) of a finite group G, defined as an
undirected, simple graph with a vertex set G in which two distinct vertices, a and b, are adjacent inS(G)
if the order of one is a divisor of the order of the other. This is denoted as either o(a) | o(b) or o(b) | o(a),
where o(·) is the order of an element. We classify finite groups for which the main supergraph is either
a split graph or a threshold graph. Additionally, we characterize finite groups whose main supergraph
is a cograph. Our classification extends to finite groups G with S(G), a cograph that includes when G
is a direct product of two non-trivial groups, as well as when G is either a dihedral group, a generalized
quaternion group, a symmetric group, an alternating group, or a sporadic simple group.
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1. Introduction

In the realm of algebraic structures, which encompass entities such as groups and rings, a prevalent
avenue of investigation involves the establishment of graphs that correspond to these structures and the
subsequent analysis of their graph representations. This topic constitutes a prominent area of inquiry
within algebraic graph theory, attracting significant scholarly attention. A noteworthy example in this
domain is the widely recognized Cayley graph, which is a construct rooted in group theory with a
distinguished historical lineage. Furthermore, the examination of graphs linked to algebraic structures
has yielded practical applications of considerable importance, as evidenced in prior works such as [1].
For instance, Cayley graphs have been effectively leveraged as classifiers in the domain of data mining,
as articulated in [2].

The power graph constitutes another prominent graph representation within the domain of group
theory. Specifically, the undirected power graph of a group G, denoted as P(G), is a graph with a
vertex set G, and two distinct vertices are adjacent if one is a power of the other. Originating from the
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seminal work of Kelarev and Quinn [3], the idea of the power graph of a group has been introduced,
which is a directed graph. Subsequently, Chakrabarty et al. [4] raised the notion of the undirected
power graph of a group, as documented in [5]. Over the past two decades, research attention directed
towards power graphs of groups has witnessed a notable surge. A comprehensive exposition of
pertinent findings and unresolved inquiries regarding power graphs is available in the survey
papers [6, 7]. Furthermore, another salient graph representation associated with groups is the
(non-)commuting graph. Investigative efforts on the commuting and non-commuting graphs of finite
groups were documented in [8] and [9], respectively. The spectrum of a graph has emerged as a
pivotal avenue to discern fundamental characteristics such as diameter and connectivity. Notably,
spectral investigations into commuting and non-commuting graphs of finite groups were undertaken
in [10] and [11], respectively.

The main supergraph of a finite group G, denoted as S(G), is an undirected, simple graph with
the vertex set G in which two distinct vertices a and b are adjacent in S(G) if the order of one is a
divisor of the order of the other. The origin idea of the main supergraph can be linked to the research
conducted by Hamzeh and Ashrafi [12], who initially denoted S(G) as the supergraph of the power
graph of G. Subsequently, in 2018, Hamzeh and Ashrafi [13] coined the term “order supergraph”
for the main supergraph S(G) and conducted an in-depth exploration of its properties, along with
establishing connections between S(G) and the power graphP(G). Notably, in their seminal work [13],
the authors posed an intriguing inquiry: what structural properties characterize group G such that
the number of prime divisors of |G| equals the independence number of S(G)? This question was
subsequently addressed by Ma and Su in [14], where they examined the independence number of the
main supergraph and offered a solution to the aforementioned query. Furthermore, investigations into
the Hamiltonicity and Eulerianness of S(G) were undertaken in [15], while spectral analyses, including
spectrum and L-spectrum, were conducted by Hamzeh and Ashrafi in [16]. In a separate study, Asboei
and Salehi [17] delved into Thompson’s problem by determining the projective linear groups based
on their main supergraphs. In a recent contribution [18], Asboei and Salehi made significant strides
by identifying numerous families of finite non-solvable groups based upon their main supergraphs,
marking substantial progress in resolving Thompson’s problem.

In the context of graph theory, let Γ be a graph; a graph is Γ-free if it contains no induced subgraphs
isomorphic to Γ. A multitude of graph classes of significant importance are defined either by their
inherent structural properties or by forbidden subgraphs. Illustratively, under the structural definition,
a split graph is characterized by the partition of its vertex set into the disjoint union of an independent
set and a clique, with the possibility of either set being empty. This contains both complete graphs and
null graphs within the realm of split graphs. A split graph is a graph containing no induced subgraphs
isomorphic to any of the three following designated forbidden graphs: C4, C5, and 2K2 (cf. [19]).
A graph is called a cograph if it contains no induced subgraphs isomorphic to P4. Cographs are the
smallest class of graphs that include the 1-vertex graph, and demonstrate closure properties with respect
to the operations of disjoint union and complementation. Moreover, a threshold graph is a graph that
does not contain any induced subgraph isomorphic to any of the three following designated forbidden
graphs: P4, C4, and 2K2. It follows that every threshold graph is a cograph. Threshold graphs constitute
the smallest family of graphs that contain the 1-vertex graph and demonstrate closure properties with
respect to the operations of adding an isolated vertex and adding a vertex joined to all others. Notably,
threshold graphs find applications in the domain of computer science (cf. [20]).
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Recently, Cameron [21] undertook a comprehensive survey of various graph structures defined
upon groups, including power graphs, commuting graphs, enhanced power graphs, intersection
graphs, Gruenberg-Kegel graphs, non-generating graphs, and others. These diverse graph constructs
were systematically examined within the framework of B superA graphs in [22], which facilitated a
unified approach to their investigation. Notably, Cameron posed a pivotal inquiry in [21], and sought
to elucidate for which finite groups a certain graph is either a perfect graph, a cograph, a split graph,
or a theshold graph (see [21, Question 14]). It is obvious that the power graph P(G) forms a spanning
subgraph of the main supergraph S(G). Subsequently, in 2021, Manna et al. [23] conducted an
in-depth examination of the forbidden subgraphs of power graphs of finite groups. Motivated by the
question posed by Cameron, we are propelled to explore the subsequent inquiry:

Question 1.1. Which finite groups have a main supergraph that is either a perfect graph, a cograph, a
split graph, or a threshold graph?

Hamzeh and Ashrafi [13] proved that the main supergraph of a finite group is perfect. In this study,
we undertake the task of classifying the finite groups G for which the graph S(G) exhibits properties of
both a split graph and a threshold graph. Additionally, we obtain a characterization of groups wherein
S(G) is a cograph. Additionally, we extend our analysis to classify groups for which S(G) is a cograph
under specific conditions, such as when G is either a direct product of two non-trivial groups, a dihedral
group, a generalized quaternion group, a symmetric group, an alternating group, or a sporadic simple
group. These findings substantially contribute towards addressing Question 1.1.

2. Preliminaries

This section presents the foundational definitions concerning groups and graphs. All groups
considered in this paper are finite. For consistency, we consistently utilize G to denote a finite group,
with e designating its identity element. Meanwhile, the abbreviation “iff” is the same meaning of “if
and only if”.

Given an element g that belongs to the group G, the order of g, represented by o(g), is the cardinality
of the subgroup, ⟨g⟩, generated by g. In particular, if the order of g equals 2, then the element g is
called an involution. The center of G is denoted by Z(G), which comprises elements x that satisfy
the commutativity property xy = yx for all y in G. As usual, Zn represents the cyclic group of order
n. Additionally, given a prime p, the elementary abelian p-group of order pn is constructed as the
direct product of n cyclic groups Zp, which is denoted by Zn

p. The exponent of G is represented by
exp(G), which is the smallest positive integer t such that gt = e is true for every g in G. If every Sylow
p-subgroup of G is a normal subgroup, then G is a nilpotent group. Equivalently, a finite group is
nilpotent iff it can be expressed as the direct product of its Sylow subgroups.

All graphs examined in our work are undirected and do not include loops or multiple edges. For a
graph Γ, we denote its vertex set and edge set as V(Γ) and E(Γ), respectively. We use Cn to denote a
cycle with n vertices, whereas Pn is used to denote a path with n vertices. Furthermore, we use 2K2

to denote a matching that consists of four vertices, including two separate edges. If {x, y} belongs to
the set E(Γ), then we represent this by using the notation x ∼Γ y, or alternatively as x ∼ y. We use the
notation x1 ∼ x2 ∼ · · · ∼ xn to represent an induced subgraph that is isomorphic to a path Pn, where
x1, x2, . . . , xn ∈ V(Γ) are distinct. Such a subgraph contains a vertex set {x1, x2, . . . , xn} and an edge set
{{xi, xi+1} : 1 ≤ i ≤ n − 1}.
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The following observation directly follows from the notion of the main supergraph of a group.

Observation 2.1. Suppose G is a group and H is a subgroup of G. Then, S(H) is an induced subgraph
of S(G) by H.

By Observation 2.1, the second observation is established.

Observation 2.2. Suppose G is a group. S(G) is a split graph (a threshold graph and a cograph,
respectively) iff S(H) is a split graph (a threshold graph and a cograph, respectively), for every
subgroup H of G.

The two aforementioned observations are crucial and will be recurrently employed in the subsequent
sections, occasionally without an explicit reference.

3. Split and threshold graphs

This section categorizes the finite groups whose main supergraph is either a split graph or is a
theshold graph. Furthermore, we extend this classification to include finite groups that possess 2K2-
free main supergraphs.

The following theorem is the main result of this section.

Theorem 3.1. For a finite group G, the following statements are equivalent:
(a) S(G) is split;
(b) S(G) is threshold;
(c) S(G) is 2K2-free; and
(d) G is isomorphic to either a p-group or Z2 × P, where P is a p-group with exp(P) = p for some odd
prime p.

We use πe(G) to represent the set of orders of all non-trivial elements in G and π(G) to present the
set consisting of all prime divisors of |G|. First, we obtain a few lemmas before the proof of the main
result, namely Theorem 3.1.

Lemma 3.2. ( [13, Theorem 2.3]) S(G) is complete iff G is a p-group with a prime p.

Lemma 3.3. Suppose P is a p-group with an odd prime p and exp(P) = p. If G � Z2 × P, then S(G)
is 2K2-free, P4-free and C4-free. Particularly, S(G) is both split and threshold.

Proof. Obviously, πe(G) = {2, p, 2p}, and G has a unique involution, which is denoted as u.
Consequently, the induced subgraph of S(G) by the set G \ {u} is complete, meaning that S(G) is split.
Hence, S(G) is 2K2-free and C4-free according to reference [19]. Furthermore, note that S(G) is
likewise P4-free, as expected.

Lemma 3.4. S(G) is 2K2-free iff G is isomorphic to either a p-group or Z2 × P, where P is a p-group
with an odd prime p and exp(P) = p.

Proof. If G is a p-group, then S(G) is complete, and thus is 2K2-free. If G is Z2 × P, where P is a
p-group of exponent p, and p an odd prime, then G is 2K2-free by Lemma 3.3, as required. Thus, the
sufficiency follows.
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Now, we shall establish the necessity. Assume S(G) is 2K2-free. First, we assert that |π(G)| ≤ 2.
Indeed, if |π(G)| ≥ 3, then |G| has at least two different odd primes, denoted as q and r, each greater
than or equal to 3. Consequently, the set {a, a−1, b, b−1} induces a subgraph isomorphic to 2K2 in S(G),
where elements a, b ∈ G with o(a) = q and o(b) = r. Hence, our assertion holds true. Furthermore,
we can infer that π(G) does not contain two distinct odd primes. This implies either |π(G)| = 1 or
|π(G)| = 2 with 2 ∈ π(G). If |π(G)| = 1, then G is isomorphic to a p-group.

In the subsequent discussion, suppose that the set π(G) = {2, p} contains an odd prime number p.
Let x ∈ G with o(x) = p. Now, two different involutions u1, u2 and x, x−1 would induce a subgraph

isomorphic to 2K2. Consequently, G has a unique involution, denoted as u. For any g ∈ G, we observe
that gug−1 is an involution, which implies that gug−1 = u. Thus we obtain gu = ug. Subsequently,
u ∈ Z(G), and then o(ux) = 2p. Assume that w is an element of order q2 for some prime q; then, ux,
(ux)−1, w, w−1 induces 2K2 as a subgraph. Consequently, we infer that 4 and p2 do not belong to πe(G),
which also implies the following:

πe(G) = {2, p, 2p}. (3.1)

Since G has a unique involution and does not contain any element of order 4, we infer that G has a
unique Sylow 2-subgroup, ⟨u⟩ � Z2.

Let P denote a Sylow p-subgroup of G. There exists a positive integer n such that |P| = pn. Then,
by (3.1), we have |G| = 2pn. Furthermore, (3.1) implies exp(P) = p. P is normal in G since P is a
subgroup of G with an index 2. Hence, G = ⟨u⟩ × P � Z2 × P, as intended.

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Note that, according to Lemma 3.2, Γ(G) is complete for a p-group G.
Therefore, from Lemma 3.3, it follows that part (d) implies parts (a), (b), and (c). Additionally,
considering the definitions of a split graph and a threshold graph, both types are 2K2-free.
Consequently, by Lemma 3.4, any of parts (a), (b), and (c) implies part (d), as intended.

4. Cographs

This section characterizes the finite groups G with a cographS(G) under specific conditions, such as
when G is either a direct product of two non-trivial groups, a dihedral group, a generalized quaternion
group, a symmetric group, an alternating group, or a sporadic simple group. Furthermore, we will find
all finite groups G of the order at most 30 for which S(G) is not a cograph.

We employ Φ to represent the set of finite groups G that meet the following:

(a) For each g ∈ G, o(g) equals either pm or pq, where p and q (p , q) are primes and an integer
m ≥ 0;

(b) If pq ∈ πe(G) for different primes p and q, then p2 and q2 are not elements of πe(G); and
(c) If pq, rs ∈ πe(G) where p, q, r, and s are primes with p , q, r , s and {p, q} , {r, s}, then
{p, q} ∩ {r, s} = ∅.

If G ∈ Φ, then G is called a Φ-group.
A finite group is termed a CP-group [24] if every non-trivial element inside this finite group has

a prime power order. For instance, the alternating group of degree five is a CP-group. Note that
for every prime p, a p-group is also a CP-group. Delgado and Wu provided a characterization for
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all finite CP-groups (see [24, Theorem 4]). By virtue of the definition of a Φ-group, we provide the
ensuing examples.

Example 4.1. (i) Every CP-group is a Φ-group;
(ii) For distinct primes p and q, a group G with πe(G) = {p, q, pq} is a Φ-group. In particular, Zm

p × Z
n
q

is a Φ-group for all m and n greater than or equal to 1; and
(iii) πe(L2(29)) = {2, 3, 5, 7, 14, 15, 29}. Therefore, L2(29) is a Φ-group.

The principal outcome of this section is in the subsequent theorem.

Theorem 4.2. S(G) is a cograph iff G is a Φ-group.

We derive the subsequent result as corollaries of Theorem 4.2.

Corollary 4.3. S(G) is a cograph if G is isomorphic to one of the following groups:

(a) a CP-group;
(b) πe(G) = {pq} ∪ {r : r is prime}, where p and q (p , q) are primes; and
(c) a group of order pq, where p and q (p , q) are primes.

First, we shall present several results before giving the proof of Theorem 4.2.

Lemma 4.4. S(G) is a cograph if G is a Φ-group.

Proof. To prove this, it is sufficient to demonstrate that S(G) has no induced subgraphs isomorphic to
P4. Suppose, for the sake of contradiction, that S(G) contains an induced path P4 as follows:

a ∼ b ∼ c ∼ d.

We initially claim that one of the elements b and c must have an order pq where p and q (p , q)
are primes. Now, for the sake of contradiction, we can assume that both b and c have prime power
orders. Since b is adjacent to c in S(G), we assume that o(b) = ps and o(c) = pt, where p is a prime
and s, t ≥ 1. Subsequently, o(a) must be a product of two different primes, as a and c are non-adjacent.
From condition (a) of the definition of aΦ-group, it follows that o(a) = pq and o(b) = p, where q (, p)
is a prime number. Moreover, since a and c are non-adjacent, we have o(c) , p. Consequently, G has
an element of order p2, which contradicts condition (b) in the definition of a Φ-group.

We conclude that our claim is valid, namely one of the elements b and c must have an order of pq,
where p and q (p , q) are primes. Without loss of generality, suppose that o(b) = pq. Then, o(c) , pq.
Consequently, o(c) = p or q. Clearly, without loss of generality, we can set o(c) = p. Therefore,
o(d) , p. This implies that o(d) = pm(m ≥ 2) or pr, where r is a prime with p , r and q , r. However,
this contradicts conditions (b) and (c) of the definition of a Φ-group.

Lemma 4.5. Suppose that S(G) is a cograph. Then, G does not contain any element of the order pqr
or p2q, where p, q, and r are distinct primes.

Proof. Suppose, for the sake of contradiction, that G has an element a with the order pqr, where p, q,
and r are distinct primes. One can see easily that

aqr ∼ ar ∼ apr ∼ ap,
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forms an induced path in S(G) with four vertices. Such a configuration contradicts the assumption
that S(G) is a cograph. Likewise, if G contains an element b of order p2q, where p and q (p , q) are
primes, then bp2

∼ bp ∼ bpq ∼ bq forms an induced subgraph of S(G) which is isomorphic to P4, which
leads to a contradiction.

The proof of Theorem 4.2 is now presented.

Proof of Theorem 4.2. The sufficiency is evident from Lemma 4.4.
We proceed to establish the necessity. Assuming that S(G) is a cograph, Lemma 4.5 confirms the

satisfaction of condition (a) of the Φ-group definition.
Next, we aim to verify condition (b). Let pq ∈ πe(G) for two primes p and q (p , q). For a

contradiction, assume that p2 ∈ πe(G). Consider the elements a, b ∈ G with o(a) = pq and o(b) = p2.
It can be readily verified that ap ∼ a ∼ aq ∼ b forms an induced path of order 4. This contradicts the
assumption that S(G) is a cograph. Similarly, q2 < πe(G). Therefore, condition (b) of the definition of
a Φ-group is satisfied.

Finally, we demonstrate condition (c) of the definition of a Φ-group. Let pq, rs ∈ πe(G), where p,
q, r, and s are primes such that p , q, r , s, and {p, q} , {r, s}. Suppose, for the sake of contradiction,
that {p, q} ∩ {r, s} , ∅. Thus, |{p, q} ∩ {r, s}| = 1. Without loss of generality, let p = r and q , s. Take
x, y ∈ G with o(x) = pq and o(y) = ps. It follows that

xp ∼ x ∼ xq ∼ y,

forms an induced path isomorphic to P4, which contradicts the fact that S(G) is P4-free. Thus,
condition (c) of the definition of a Φ-group follows, and therefore, G is a Φ-group.

4.1. Direct product

Given two non-trivial groups, H and K, we aim to determine under which conditions the direct
product H × K yields a main supergraph that is a cograph. In this subsection, we will undertake the
task of characterizing the direct product H × K such that its main supergraph is a cograph.

Theorem 4.6. Let H and K be two non-trivial groups. Then, S(H×K) is a cograph iff H and K satisfy
one of the following conditions:

(i) Both H and K are p-groups for some prime p;
(ii) exp(H) = p and exp(K) = q, where p and q (p , q) are primes; and

(iii) One of groups H and K is not a p-group, πe(H) ⊆ {p, q, pq}, and πe(K) ⊆ {p, q, pq}, where p and
q (p , q) are primes.

Proof. If conditions (i) hold for H and K, then H×K is a p-group, consequently ensuring thatS(H × K)
is a cograph. On the other hand, if either condition (ii) or (iii) applies to H and K, then it is evident that
πe(H ×K) = {p, q, pq}. Hence, S(H ×K) is a cograph by Example 4.1(ii) and Theorem 4.2. Therefore,
the sufficiency holds.

We proceed to establish the necessity. By Theorem 4.2, S(H × K) is a cograph implies that H × K
is a Φ-groups. Given that both H and K are non-trivial, condition (c) of the Φ-group definition implies
that π(H) has at most two elements.

Let π(H) ⊆ {p, q}, where p and q (p , q) are primes.
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Case 1. |π(H)| = 1.

Let us assume, without loss of generality, that π(H) = p. If p2 ∈ πe(H), then condition (a) of the
Φ-group definition implies that K is a p-group, which indicates that part (i) holds. Alternatively, if
p2 < πe(H), which exp(H) = p and K is a p-group, then part (i) holds.

However, if K is a q-group, then condition (a) of the Φ-group definition implies exp(K) = q, which
satisfies part (ii).

Therefore, assuming |π(K)| ≥ 2, it follows from condition (c) of the Φ-group definition that π(K) =
{p, q}. Consequently, H × K contains elements of order pq. This leads to the fulfillment of condition
(b) of the Φ-group definition, which implies πe(K) ⊆ {p, q, pq}; thus, part (iii) is satisfied.

Case 2. π(H) = {p, q}.

In this case, it is evident that π(K) ⊆ {p, q}. If |π(H)| = 1, then pq ∈ πe(H × K). Analogously to
Case 1, we observe πe(H) ⊆ {p, q, pq} and πe(K) ⊆ {p, q, pq}, which implies the fulfillment of part (iii).
Finally, assuming π(K) = {p, q}, a similar deduction reveals πe(H) ⊆ {p, q, pq} and πe(K) ⊆ {p, q, pq},
thus ensuring the satisfaction of part (iii).

It is a recognized fact in group theory that a finite group is a nilpotent group iff it can be expressed
as the direct product of its Sylow subgroups. In such groups, elements of distinct prime orders are
commutative. As a consequence derived from Theorem 4.6, we characterize all finite nilpotent groups
for which the main supergraph is a cograph.

Corollary 4.7. For a finite, nilpotent group G, the main supergraph S(G) is a cograph iff G is either
a p-group or a direct product P × Q, where exp(P) = p and exp(Q) = q with two distinct primes p
and q.

By the fundamental theorem of finite abelian groups and Corollary 4.7, we can classify all abelian
groups for which the main supergraph is a cograph.

Corollary 4.8. An abelian group G satisfies the condition that S(G) is a cograph iffG is isomorphic to
the following:

Zpα1 × Zpα2 × · · · × Zpαt , Zm
p × Z

n
q,

where p and q (p , q) are primes, and m, n, and αi (for all 1 ≤ i ≤ t) are positive integers.

4.2. Dihedral groups and generalized quaternion groups

For any positive integer n, the dihedral group of order 2n, which is denoted by D2n, represents
the symmetries of a regular polygon with n vertices, including both rotations and reflections. When
n ≥ 3, D2n is non-abelian and is significant in group theory, geometry, and chemistry. Moreover, the
occurrence of D2n is prevalent in art and nature. The presentation of D2n is as follows:

D2n = ⟨a, b : b2 = an = e, ab = ba−1⟩. (4.1)

It is straightforward to confirm that we have o(aib) = 2 for all 1 ≤ i ≤ n. Additionally,

{⟨a⟩, {b, ab, a2b, . . . , an−1b}}, (4.2)

forms a partition of D2n.
By Corollary 4.8, we have the following lemma, which classifies all cyclic groups whose main

supergraph is a cograph.
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Lemma 4.9. S(Zn) is a cograph iff n = pm or pq, where p and q (p , q) are primes, and an integer
m ≥ 1.

Theorem 4.10. Let D2n be the dihedral group as defined in (4.1). Then, S(D2n) is a cograph iff n = pm

or pq, where p and q (p , q) are primes and m is a positive integer.

Proof. If S(D2n) is a cograph, then the main supergraph of any subgroup of the dihedral group D2n

is also a cograph. As a result, S(⟨a⟩) is necessarily a cograph. According to Lemma 4.9, we may
conclude that n is either pm or pq, where p and q (p , q) are primes and m is a positive integer.

Now, if n = pm with a prime p and an integer m ≥ 1, then D2n is a CP-group based on (4.2). Thus
S(D2n) is a cograph based on Corollary 4.3(a). If n is the product of two different primes p and q,
then (4.2) indicates that πe(D2n) is the union of {pq} and a set consisting of some primes. Therefore,
according to Corollary 4.3(b), we conclude that S(D2n) is a cograph, as intended.

Let n ≥ 2. Johnson [25, pages 44 and 45] presented the definition of a generalized quaternion group
Q4n of order 4n using the following:

Q4n = ⟨x, y : y2 = xn, y4 = x2n = e, xy = yx−1⟩. (4.3)

Note this is sometimes called a dicyclic group. In addition, it is evident that Q4n has a unique
involution in which xn = y2. Moreover, for any 1 ≤ i ≤ 2m, we have that o(xiy) = 4, and

{⟨x⟩, {xiy : 1 ≤ i ≤ 2n}}, (4.4)

is a partition of Q4n.

Theorem 4.11. Let Q4n be the generalized quaternion group as defined in (4.3). Then, S(Q4n) is a
cograph iff n = 2m with an integer m ≥ 1.

Proof. Suppose that S(Q4n) is a cograph. It follows that S(⟨x⟩), where x has an order 2n, is also a
cograph. By applying Lemma 4.9, we deduce that n is either 2m or p with an odd prime p and an
integer m ≥ 1.

To complete the proof, we aim to show that n , p. Assume, for the sake of contradiction, that n = p
with an odd prime p. This implies that 2p ∈ πe(G). However, according to Theorem 4.2, we know
that 4 cannot be an element of πe(G). Nonetheless, the element y ∈ Q4n has the order 4, which leads to
a contradiction.

Conversely, let n be a power of 2. Then, as per (4.4), Q4n is a 2-group. Consequently, S(Q4n) is a
cograph, thereby completing the proof.

4.3. Symmetric groups and alternating groups

The symmetric group of order n!, denoted by Sn, is comprised of all permutations of a set with
size n. This group is important in various mathematical domains, including combinatorics and group
theory, as every finite group is a subgroup of some symmetric group. It’s worth noting that Sn is abelian
iff n ≤ 2.

Theorem 4.12. S(Sn) is a cograph iff n ≤ 4.
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Proof. Note that πe(S4) = {2, 3, 4}. Therefore, S4 is a CP-group, and consequently, Sn is a CP-group
for all n ≤ 4. This implies that S(Sn) is a cograph by Corollary 4.3(a) for all n ≤ 4. It’s worth noting
that S(S5) is an induced subgraph of S(Sn) for any n ≥ 6. To complete the proof, it suffices to show that
S(S5) is not a cograph. Indeed, {(12)(345), (1234)} ⊆ S5, where o((12)(345)) = 6 and o((1234)) = 4,
indicating that S5 is not a Φ-group. This implies that S(S5) is not a cograph by Theorem 4.2, as
required.

In the symmetric group Sn, the set of all even permutations forms a subgroup known as the
alternating group on n letters, denoted by An. It is worth noting that An is a simple group for any
n ≥ 5.

Theorem 4.13. S(An) is a cograph iff n ≤ 6.

Proof. Note that A6 is a CP-group. Hence, for any n ≤ 6, we have that An is a CP-group.
Consequently, S(Sn) is a cograph according to Corollary 4.3(a) for each n ≤ 4. Now, it suffices to
prove that S(A7) is not a cograph. Since A7 contains two elements (123)(45)(67) and (1234)(56) with
o((123)(45)(67)) = 6 and o((1234)(56)) = 4, it follows that A7 is not a Φ-group. As a consequence,
according to Theorem 4.2, we conclude that S(S5) is not a cograph, as required.

4.4. Sporadic simple groups

Theorem 4.14. For a sporadic simple group G, the main supergraph S(G) is not a cograph.

Proof. It is widely known that there are precisely 26 sporadic simple groups. Among these, the
Mathieu group M11 is a subgroup of all but seven sporadic simple groups: the Mathieu group M22, the
Janko groups Ji (i = 1, 2, 3), the Held group He, the Rudvalis group Ru, and the Thompson group
Th (cf. [26]). Using the ATLAS of finite groups [27], we can see that M11 contains a maximal
subgroup isomorphic to S5. By Theorem 4.12, S(S5) is not a cograph. Consequently, the main
supergraphs of these sporadic simple groups are not cographs, with the exception of M22, Ji

(i = 1, 2, 3), He, Ru, and Th.
In the context of the seven exceptional sporadic simple groups, we examine their properties.

According to [27], both Ru and M22 contain A7 as a subgroup, while both He and Th contain S5.
Thus, by Theorems 4.12 and 4.13, the main supergraphs of M22, He, Ru, and Th are not cographs.
Additionally, [27] implies that J1, J2, and J3 contain D6 × D10, A5 × D10, and Z3 × A6 as subgroups,
respectively. From Theorem 4.6, we conclude that S(D6 × D10), S(A5 × D10), and S(Z3 × A6) are not
cographs, leading to the same conclusion for S(J1), S(J2), and S(J3).

4.5. Small groups

Theorem 4.15. If G is the group with minimal order such that S(G) is not a cograph, then G must be
isomorphic to either Q12 or Z12.

Proof. According to Corollary 4.3, the main supergraphs of a p-group and a group of order pq are
cographs, where p and q (p , q) are primes. Therefore, S(G) is a cograph if |G| < 12. Now, let us
consider groups of an order 12. It is well-known that there are exactly five groups of order 12, up to an
isomorphism. These are as follows:

Q12, Z12, A4, D12, Z2 × Z6.
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By Theorem 4.11, S(Q12) is not a cograph. From Lemma 4.9, we deduce that S(Z12) is not a
cograph. Furthermore, Theorem 4.10 implies that S(D12) is a cograph, while Theorem 4.13 establishes
that S(A4) is a cograph. Finally, it follows from Theorem 4.6 that S(Z2 × Z6) is a cograph.

In the following, we distinguish a group by using its unique reference number in the SmallGroups
Library [28]. Specifically, the mth group of the order n is denoted as SmallGroup (n,m). In fact, in
GAP [29], [n,m] is used to refer to the GAP ID of the mth group of order n.

The main supergraphs of a CP-group and a group of order pq are cographs, where p and q are
distinct primes. According to Theorem 4.15, most of the small order groups have main supergraphs
that are cographs. However, S(Z30) is not a cograph because Z30 has an element of order 2 × 3 × 5. In
the following, we use GAP [29] to classify the finite groups G of order at most 30 such that S(G) is
not a cograph. These groups are presented in Table 1.

Table 1. All groups G for which S(G) is not a cograph and |G| ≤ 30.

GAP ID Structure
[12, 1] Q12

[12, 2] Z12

[18, 2] Z18

[20, 1] Q20

[20, 2] Z20

[24, 1] Q24

[24, 2] Z24

[24, 3] S L(2, 3)
[24, 4] Z3 ⋊ Z8

[24, 5] Z4 × S3

[24, 6] D24

[24, 7] Z2 × (Z3 ⋊ Z4)
[24, 8] (Z6 × Z2) ⋊ Z2

[24, 9] Z12 × Z2

[24, 10] Z3 × D8

[24, 11] Z3 × Q8

[28, 1] Q28

[28, 2] Z28

[30, 1] Z5 × S3

[30, 2] Z3 × D10

[30, 4] Z30
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