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Abstract: In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consump-
tion mechanism

vie = V- )V — xd(v)Vi) + v — Ve, xeQ, 1> 0,
Vo, = Avy — Wy, xeQ, t>0,

0=Aw—-w+{, xeQ, t>0,

in a smooth and bounded domain Q C R"(n > 1) with homogeneous Neumann boundary conditions,
where y, 41, 4, >0, 0 < a < é, B > 2, , and ¢ are nonlinear functions that satisfy ¥(s) > ao(s+1)"
and 0 < ¢(s) < bos(s + 1) for all s > 0 with ag,by > 0 and r|,r, € R. It has been proven that if
ry > 2ry + 1, then the problem admits a global and bounded classical solution for some appropriate

nonnegative initial data.

Keywords: chemotaxis system; global boundedness; nonlinear indirect signal

1. Introduction

As we all know, Keller and Segel [1] first proposed the classical chemotaxis model (hereafter called
K-S model), which has been widely applied in biology and medicine. The model can be given by
the following:

{ vir = Avy —xV - (\Vy) + f(vy), xeQ, t>0, (L1)

TVy, = Avy — vy + vy, xeQ, t>0,

where v; is the cell density, v, is the concentration of the chemical signal, and f(v;) is the logistic
source function. For the case of 7 = 1 and f(v;) = 0, it has been proven that the classical solutions
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to system (1.1) always remain globally bounded when n = 1 [2]. A critical mass phenomenon of
system (1.1) has been shown in a two-dimensional space. Namely, if the initial data v, satisfies
Vol < 4;”, then the solution (v, ;) is globally bounded [3]. Alternatively, if the initial data v
satisfies [|violl1 @) > ‘L—”, then the solution (vy, v;) is unbounded in finite or infinite time, provided Q is
simply connected [4,5]. In particular, for a framework of radially symmetric solutions in a planar disk,
the solutions blow up in finite time if [|[viol[z1q) > 8;” [6]. When f(v) = 0, Liu and Tao [7] changed
TV = Ava —va + v to vy = Avy — vy + g(vy) with 0 < g(vy) < Kv{ for K, @ > 0, and obtained the global
well-posedness of model (1.1) provided that 0 < a < % Later on, the equation 7vy, = Av, — v, + v; was
changed to 0 = Av, — @w(f) + g(v;) with @w(?) = ﬁ fg gvi(, n) for g(vy) = v{. Winkler [8] deduced that
for any vy, the model (1.1) is globally and classical solvable if a < %; conversely, if @ > %, then the
solutions are unbounded in a finite-time for any fQ vig = m > 0. For 7 = 0, when f(v) < vi(c —dvy)
with ¢, d > 0, Tello and Winkler [9] deduced the global well-posedness of model (1.1) provided that
d > ";2 x- Afterwards, when f(v{) = cv; —dv{ withe > 1, ¢ > 0, d > 0, Winkler [10] defined a concept
of very weak solutions and observed that these solutions are globally bounded under some conditions.
For more results on (1.1), the readers can refer to [11-14].

Considering the volume filling effect [15], the self-diffusion functions and chemotactic sensitivity
functions may have nonlinear forms of the cell density. The general model can be written as follows:

(1.2)

vip = V- (()Vv = o(v)Vn) + f(v1), x€Q, >0,
TVy, = Ava — vy + vy, xeQ, t>0.

Here, /(v;) and ¢(v,) are nonlinear functions. When 7 = 1 and f(v;) = 0, for any fg vip=M >0,
with a > %, n > 2 and some constant ¢ > O for all v; > 1. Later on, Tao and Winkler [17] deduced the
global well-posedness of model (1.5) provided that % < o witha < %, n > 1 and some constant
¢ > 0 for all v; > 1. Furthermore, in a high-dimensional space where n > 5, Lin et al. [18] changed the
equation vy, = Av, — vo + vy to0 0 = Av, — @ (f) + v with @ (f) = ﬁ fQ vi(x, t)dx, and showed that the
solution (v;, v,) is unbounded in a finite time.

Next, we introduce the chemotaxis model that involves an indirect signal mechanism. The model

can be given by the following:

Winkler [16] derived that the solution (v, v,) is unbounded in either finite or infinite time if > covf

vip = V@)V —d(v)Vn) + f(v1), x€Q, >0,
TVy, = Avy — vy + W, xeQ, >0, (1.3)

™, = Aw—w+ vy, xeQ, t>0.

For 7 = 1, when ¢/(v1) = 1, ¢(v1) = v; and f(v;) = A(v; — 1Y), the conclusion in [19] implied that
the system is globally classical solvable if @ > § + % with n > 2. Furthermore, the authors in [20-22]
extended the boundedness result to a quasilinear system. Ren [23] derived the global well-posedness of
system (1.3) and provided the qualitative analysis of such solutions. For 7 = 0, when y/(s) > c¢(s + 1)?
and |¢(s)| < ds(s + 1)*"! with s > 0, ¢,d > 0 and 6,k € R, Li and Li [24] obtained that the model (1.3)
is globally classical solvable. Meanwhile, they also provided the qualitative analysis of such solutions.
More results of the system with an indirect signal mechanism can be found in [25-28].
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Considering that the cell or bacteria populations have a tendency to move towards a degraded nutrient,
the authors obtain another well-known chemotaxis-consumption system:

vi; = Avi —xV - (1 Vi), xeQ, >0,
(1.4)

Vor = Avy — viva, xeQ, >0,

where v; denotes the cell density, and v, denotes the concentration of oxygen. If 0 < y < m

with n > 2, then the results of [29] showed that the system (1.4) is globally classical solvable. Thereafter,
Zhang and Li [30] deduced the global well-posedness of model (1.4) provided thatn <2 or0 < y <
m, n > 3. In addition, for a sufficiently large v, and v,j, Tao and Winkler [31] showed that
the defined weak solutions globally exist when n = 3. Meanwhile, they also analyzed the qualitative
properties of these weak solutions.

Based on the model (1.4), some researchers have considered the model that involves an indirect
signal consumption:

vi; = Avy —xV - (vVy), xeQ, >0,
Vor = Avy — viva, xeQ, >0, (1.5)

w, = —O0wW + v, xeQ, t>0,

where w represents the indirect signaling substance produced by cells for degrading oxygen. Fuest [32]
obtained the global well-posedness of model (1.5) provided that n < 2 or ||[va|z=) < #, and studied the
convergence rate of the solution. Subsequently, the authors in [33] extended the boundedness conclusion
of model (1.5) using conditions n > 3 and 0 < [|[vyll=~@) < %l For more results on model (1.5), the
readers can refer to [34—39].

Inspired by the work mentioned above, we find that there are few papers on the quasilinear chemotaxis
model that involve the nonlinear indirect consumption mechanism. In view of the complexity of the
biological environment, this signal mechanism may be more realistic. In this manuscript, we are
interested in the following system:

vie = V- (W)Y = xd()Vi) + vy — VP, xe€Q, 1> 0,

Vo, = Avy — Wy, xeQ, t>0,

0=Aw—w+)1, xeQ, t>0, (1.6)
%:%:g_vvv:o, x€eoQ, t>0,

vi(x, 0) = vip(x), v2(x, 0) = vao(x), x€Q,

where Q c R*(n > 1) is a bounded and smooth domain, v denotes the outward unit normal vector on

0Q, and y, Ay, 4, 6 >0, 0 < a < %, B > 2. Here, v, is the cell density, v, is the concentration of

oxygen, and w is the indirect chemical signal produced by v; to degrade v,. The diffusion functions
¥, ¢ € C*[0, o) are assumed to satisfy

Y(s) = ap(s+ 1) and 0 < ¢(s) < bos(s + 1), (1.7)
for all s > 0 with ag, by > 0 and ry, r, € R. In addition, the initial data v,y and v, fulfill the following:

V10, Voo € WH(Q) with vy, vao > 0, % 0 in Q. (1.8)
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Theorem 1.1. Assume that y, 4,, A, >0, 0 <a < é, and B > 2, and that Q Cc R*(n > 1) is a smooth

bounded domain. Let s, ¢ € C*[0, c0) satisfy (1.7). Suppose that the initial data vy and v fulfill (1.8).
It has been proven that if ry > 2r, + 1, then the problem (1.6) has a nonnegative classical solution

0@ 2,1(F 2 2006
(1, v2,w) € (CUQ % [0, 00)) N C*(Q % (0,00)))" x C>*(Q X (0, 00)),
which is globally bounded in the sense that

ViCs Dllz=@) + V2 Dllwre@) + IWE, Dllwre@) < C,
forallt > 0, with C > 0.

Remark 1.2. Our main ideas are as follows. First, we obtain the L™ bound for v, by the maximum
principle of the parabolic equation. Next, we establish an estimate for the functional y(t) := % fg(vl +1)7 +

ﬁ fQ [V, |?? for any p > 1 and t > 0. Finally, we can derive the global solvability of model (1.6).

Remark 1.3. Theorem 1.1 shows that self-diffusion and logical source are advantageous for the
boundedness of the solutions. In this manuscript, due to the indirect signal substance w that consumes
oxygen, the aggregation of cells or bacterial is almost impossible when self-diffusion is stronger than
cross-diffusion, namely ry > 2r, + 1. We can control the logical source to ensure the global boundedness
of the solution for model (1.6). Thus, we can study the effects of the logistic source, the diffusion
functions, and the nonlinear consumption mechanism on the boundedness of the solutions.

2. Preliminaries

In this section, we first state a lemma on the local existence of classical solutions. The proof can be
proven by the fixed point theory. The readers can refer to [40,41] for more details.

Lemma 2.1. Let the assumptions in Theorem 1.1 hold. Then, there exists Ty.x € (0, 0] such that the
problem (1.6) has a nonnegative classical solution (vi,v,, w) that satisfies the following:

0/ 2.1,A 2 2,0/
(1, v2,w) € (CUQ X [0, Trnar)) N C*HQ X (0, Tinan)))” X C2(Q X (0, Tra)).
Furthermore, if Tyax < 00, then

lim sup (||V1(', Dllz=@) + llv2(, t)”W""“(Q)) =%
t/TmaX

Lemma 2.2. (cf. [42]) Let Q C R"*(n > 1) be a smooth bounded domain. For any s > 1 and € > 0, one

can obtain i
f |VZ|2s—2ﬂ < €f|VZ|2s—2|D2Z|2_l_CeflVZlZS’
0 dv Q Q

for all z € CX(Q) fulfilling &|,, = 0, with C. = C(e, 5,Q) > 0.
Lemma 2.3. (cf. [43]) Let Q C R"(n > 1) be a bounded and smooth domain. For s > 1, we have

flvzl2s+2 < 2(452 + I’l)”Z”I%oQ(Q) f |VZ|2‘V*2|D2Z|2’
Q Q

for all z € CX(Q) fulfilling 5

a0 =0
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Lemma 2.4. Let Q c R"(n > 1) be a bounded and smooth domain. For any 7z € C*(Q), one has
the following:
(Az)* < D3,

where Dz represents the Hessian matrix of z and |D*z]* = Y} =1 Z)zc,-x,--
Proof. The proof can be found in [41, Lemma 3.1].

Lemma 2.5. (cf. [44,45]) Let ay,a, > 0. The non-negative functions f € C([0,T)) N C'((0,T)) and
y € L}OC([O, T)) fulfill
F'®+aif(0) <y, 1€0,7),

and I+T
f y($)ds <ap, t€(0,T —71),
t

where T = min{1, %} and T € (0, 00]. Then, one deduces the following:

£ < £(0) +2ay + % te(0,7).
1

3. Global boundedness of the solutions

In this section, we provide some useful Lemmas to prove Theorem 1.1.

Lemma 3.1. Let 8 > 1, then, there exist M, My, M, > 0 such that
[Va(, Dllz=y £ M for all t € (0, Tiyax), 3.1

and
fvl <M, forallt e (0, Tna). 3.2)
Q

Proof. By the parabolic comparison principle for v, = Av, — wv,, we can derive (3.1). Invoking the
integration for the first equation of (1.6), one has the following:

d
— | w :/llfvl —Azfvf for all £ € (0, Tay)- (3.3)
dt Jgo Q Q

Invoking the Holder inequality, we obtain the following:

d A A
d_tfgvl sﬂlfgvl——lgvﬁ_l (fgvl) . (3.4)

We can apply the comparison principle to deduce the following:

1

A \FT
Lvlémax{jg;vlo,(/l—;) |Q|}:M1. (3.5)

Thereupon, we complete the proof.
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Lemma 3.2. For anyy > 1, we have the following:
fw" <Cy f vi" forallt € (0, Tyax), (3.6)
Q Q

where Cy = m > 0.

Proof. Fory > 1, multiplying equation 0 = Aw — w + v¢ by w?~!, one obtain the following:

0=-(y- l)j‘w“y_lewl2 - f w’ + f v‘fwy_1
Q Q Q
< f Viw? ! — f w? for all £ € (0, Trax)- (3.7
Q Q
By Young’s inequality, it is easy to deduce the following:

fvlwy 1 Y f Lol _fv?x (3.8)
Q

Thus, we arrive at (3.6) by combining (3.7) with (3.8).

Lemma 3.3. Let the assumptions in Lemma 2.1 hold. For any p > max{l, % — 1}, there exists C > 0

such that
T f Vv |2P+— f IV, [P + — f Vv, 222D, < C f vaprD) 4 (3.9)
P

fJorallt € (0, Tiax).

Proof. Using the equation vy, = Av, — w? v,, we obtain the following:
Vv, - Vvy, = Vi, - VA, = Vi, - V (wevz)

1
= EA|Vv2|2 — |D*v, = Vv, -V (w"vz), (3.10)

where we used the equality Vv, - VAv, = 1A[Vv,? — [D?v,[*. Testing (3.10) by |Vv,|*’~2 and integrating
by parts, we derive the following:

1
Vol + | V0?2 D%y + — f Vv, |*
2pdtf| 12 f| %] |D V2| 2 A%
f V0o PP2 AV, + f [V, — f Vo272V, - V (W)
:11+—f|vv2|217+12. (3.11)
2p Ja
Using Lemma 2.4 and (3.1), one has the following:
f [V, |7+2 < ¢ f IVva |72 | D, * for all £ € (0, Trnay), (3.12)
Q Q

where C, = 2(4p* + n)M?. In virtue of Lemma 2.2, Young’s inequality, and (3.12), an integration by
parts produces the following:
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1 1 1
11+—f|VV2|2p: —fIVv2|2p_2A|Vv2|2+—fle2|2”
2p Ja 2 Ja 2p Jo

1 AVw? 1 1
|V |2P 2% 2fV|VV |217 2 V|VV2| +2_f|VV2|2P

fle 772Dy, +sz|VVz|2”——f|Vv P4

< 2 | (w22 p2 2 fv w2 o
_4fg|w| D+ o [ 1w \

1
< 3 f Vol 72| D, > + C5 for all £ € (0, Tonay),
Q

V|V,

(3.13)

with C,, C3 > 0. Due to |Av,| < v/n|D?v|, we can conclude from (3.1) and the integration by parts that

- fg |Vv2|2f’-2w2-v(w9v2): fg wgsz-(szleIzP_z)

< [ W (AP 4 2 = 21T D)
Q

< f (Vi +2(p = 2)) MW’ |Vv, 2 Dy
Q

=Cy f WOV 2P72|D?v,| for all 7 € (0, Tonay),
Q

(3.14)

with C; = (\/n+2(p —2))M > 0. Due to p > max{l, % — 1}, we have 6(p + 1) > 1. With applications of

Young’s inequality, (3.12), and Lemma 3.2, we obtain the following from (3.14):

Cy fg WQIVVzIZ”‘ZID%zIS% fQ [Vvo 72| D?v,* + Cs fg WV, [P
< % L Vv, P21 D?v, [* +8%1 f Vv, |72 + Cy fg wie+h
< % f Vv, 7721 D%, |* + C4 fQ w?PrD

411fQ|VV |2p 2|D2vzlz+C L 911(p+1),

with Cs, Cg, C7, Cg > 0. Substituting (3.13) and (3.15) into (3.11), we derive the following:

= f P+ o f Vo7 + f VPP 2D, < C f RASITeN
P

for all ¢ € (0, Thhax). Thereupon, we complete the proof.

(3.15)

(3.16)

Lemma 3.4. Let the assumptions in Lemma 2.1 hold. If ry > 2r, + 1, then for any p > 1, we obtain

the following:
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1d 1

——f(v1+1)1’+—f(v1+1)”

pdt Jg P Ja
1 1 _

< —fIVV2|2p_2|D2v2|2+(C+/11 +—)f(v1 +1)P—/12fv§’+ﬁ el (3.17)
4 Jo P Jo Q

forallt € (0, Tyay), with C > 0.

Proof. Testing the first equation of problem (1.6) by (v; + 1)?~!, one can obtain the following:

e o oy === [eer2eemek s [y
pdt Jg P Ja Q P Ja
+x(p - 1)f(V1 + 1P p(v)Vyy - Yy
Q
+alfv1(v]+1)P—1—Azfvf(v1+1)f’—‘, (3.18)
Q Q

for all # € (0, Tyax)- In view of (1.7), the first term on the right-hand side of (3.18) can be estimated
as follows:

—(p - 1)f(vl + DP2g(w)IVniP < —(p = Dag f(vl + P2V P (3.19)
Q Q

For the second term on the right-hand side of (3.18), we can see that

x(p - l)f(vl + 1" 2p(v1)Vv; - Vv < x(p - 1)bofV1(V1 + 177272V, - Vs, (3.20)
o o

We can obtain the following from Young’s inequality:
X(p = Dby f vi(vy + DPTV - Vg
Q
S)((p - 1)b0 f(vl + 1)p+r2_1VV1 -V,
Q

<(p—-Day f(vl + 1PV P+ Gy f(V1 + 1)V, (3.21)
o o

with C; > 0. Utilizing Young’s inequality and (3.12), one has the following:

(p+1)(p+2rp—ry)

1
C + )Py zs—fV 2(”+”+Cf +1
1‘fQ(V1 ) Vvl S+ I Q| 5] 2 Q(Vl )
1 p+D(p+2ry—rq
<> f Vi 2 D202 + C, f v + )T (3.22)
4 Q Q

ri=2r

3, -r+7> We can obtain

where C, > 0. Duetor; >2r, + 1, forany p > 1 >
Young’s inequality, we obtain the following:

(p+1)(p+2r2—r1)
p

< p. Applying

C, f v+ D < g f vy + 1) + C;. (3.23)
Q Q
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where C; > 0. Hence, substituting (3.19)—(3.23) into (3.18), one obtains the following:

f(Vl + 1P + f(Vl +1)F

1
fle 2D, + (C3 + A1 + )f(v1+1)”—/12f el e, (3.24)
4 P Jo Q

for all € (0, Tpnax), Where Cy4 > 0.

Lemma 3.5. Let the assumptions in Lemma 2.1 hold. If ry > 2r, + 1, then for any p > max{]1, é -1},
we obtain the following:

f (v + 1)’ + f Vv, P < C, (3.25)
Q Q

Proof. We can combine Lemma 3.3 with Lemma 3.4 to infer the following:

d 1 1 1 1
—(= + 17+ — | V) + — D+ — | [V
dt(p L(Vl ) 2pfgl V| )+pL(V1+ ) +2 f| vl

1
sClfvf“(p+1)+(C1+/11+—)f(v1+1)”—/12f Py ey, (3.26)
Q P Jo Q

where C > 0.

where C; > 0. Dueto 0 < a < é and 8 > 2, we can obtain fa(p+1) < p+1 < p+B—1. Using Young’s
inequality, we can obtain the following:

Ay
a [ <2 [uree, (327)
Q 2 Q

where C, > 0. By the inequality (w + 5)* < 2(W* + s*) with w, s > 0 and « > 1, we deduce the following:

1 p)
(Cy + A, + [—))f(v1 + 1) < ?zfvfw 'y G, (3.28)
Q Q

where C; > 0, where we have applied Young’s inequality. Thus, we obtain the following:

d 1 1 1 1
—(= f(vl + 1) + — f |Vv2|2”) + — f(vl + 1)+ — f Vv, < Cy, (3.29)
dt p Jg 2p Ja P Jo 2p Jo

where C, > 0. Therefore, we can obtain (3.25) by Lemma 2.5. Thereupon, we complete the proof.

The proof of Theorem 1.1. Recalling Lemma 3.5, for any p > max{l,% — 1}, and applying the
LP—estimates of elliptic equation, there exists C; > 0 such that

sup W, Dll 2 Ly S C, forall t € (0, Tmax)- (3.30)
te(o TlﬂdX)

The Sobolev imbedding theorem enables us to obtain the following:

sup [[w(, Dllwrey < Cy forall 1 € (0, Tinax), (3.31)
te(()’Tmi\X)
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with C, > 0. Besides, using the well-known heat semigroup theory to the second equation in system (1.6),
we can find C3 > 0 such that

V2 (-, Dllwre) < Cs forall £ € (0, Tax)- (3.32)
Therefore, using the Moser-iteration [17], we can find C4 > 0 such that
IVi(, D)llo) < C4 forall t € (0, Thax). (3.33)
Based on (3.31)—(3.33), we can find Cs > 0 that fulfills the following:
Vi, Dlle@) + o, Dllwie@y + IIWE, Dllwre@) < Cs, (3.34)

for all t € (0, Thhax). According to Lemma 2.1, we obtain 7y,,x = co. Thereupon, we complete the proof
of Theorem 1.1.

4. Conclusions and outlook

In this manuscript, based on the model established in [35], we further considered that self-diffusion
and cross-diffusion are nonlinear functions, as well as the mechanism of nonlinear generation and
consumption of the indirect signal substance w. We mainly studied the effects of diffusion functions,
the logical source, and the nonlinear consumption mechanism on the boundedness of solutions, which
enriches the existing results of chemotaxis consumption systems. Compared with previous results [29,32],
the novelty of this manuscript is that our boundedness conditions are more generalized and do not
depend on spatial dimension or the sizes of [[vy||.~q) established in [29,32], which may be more in line
with the real biological environment. In addition, we will further explore interesting problems related
to system (1.6) in our future work, such as the qualitative analysis of system (1.6), the global classical
solvability for full parabolic of system (1.6), and so on.
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