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Abstract: In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consump-
tion mechanism 

v1t = ∇ ·
(
ψ(v1)∇v1 − χϕ(v1)∇v2

)
+ λ1v1 − λ2vβ1, x ∈ Ω, t > 0,

v2t = ∆v2 − wθv2, x ∈ Ω, t > 0,

0 = ∆w − w + vα1 , x ∈ Ω, t > 0,

in a smooth and bounded domain Ω ⊂ Rn(n ≥ 1) with homogeneous Neumann boundary conditions,
where χ, λ1, λ2, θ > 0, 0 < α ≤ 1

θ
, β ≥ 2, ψ, and ϕ are nonlinear functions that satisfy ψ(s) ≥ a0(s+1)r1

and 0 ≤ ϕ(s) ≤ b0s(s + 1)r2 for all s ≥ 0 with a0, b0 > 0 and r1, r2 ∈ R. It has been proven that if
r1 > 2r2 + 1, then the problem admits a global and bounded classical solution for some appropriate
nonnegative initial data.

Keywords: chemotaxis system; global boundedness; nonlinear indirect signal

1. Introduction

As we all know, Keller and Segel [1] first proposed the classical chemotaxis model (hereafter called
K-S model), which has been widely applied in biology and medicine. The model can be given by
the following:  v1t = ∆v1 − χ∇ · (v1∇v2) + f (v1), x ∈ Ω, t > 0,

τv2t = ∆v2 − v2 + v1, x ∈ Ω, t > 0,
(1.1)

where v1 is the cell density, v2 is the concentration of the chemical signal, and f (v1) is the logistic
source function. For the case of τ = 1 and f (v1) = 0, it has been proven that the classical solutions
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to system (1.1) always remain globally bounded when n = 1 [2]. A critical mass phenomenon of
system (1.1) has been shown in a two-dimensional space. Namely, if the initial data v10 satisfies
∥v10∥L1(Ω) <

4π
χ
, then the solution (v1, v2) is globally bounded [3]. Alternatively, if the initial data v10

satisfies ∥v10∥L1(Ω) >
4π
χ
, then the solution (v1, v2) is unbounded in finite or infinite time, provided Ω is

simply connected [4, 5]. In particular, for a framework of radially symmetric solutions in a planar disk,
the solutions blow up in finite time if ∥v10∥L1(Ω) >

8π
χ

[6]. When f (v1) = 0, Liu and Tao [7] changed
τv2t = ∆v2 − v2 + v1 to v2t = ∆v2 − v2 + g(v1) with 0 ≤ g(v1) ≤ Kvα1 for K, α > 0, and obtained the global
well-posedness of model (1.1) provided that 0 < α < 2

n . Later on, the equation τv2t = ∆v2 − v2 + v1 was
changed to 0 = ∆v2 −ϖ(t) + g(v1) with ϖ(t) = 1

|Ω|

∫
Ω

g(v1(·, t)) for g(v1) = vα1 . Winkler [8] deduced that
for any v10, the model (1.1) is globally and classical solvable if α < 2

n ; conversely, if α > 2
n , then the

solutions are unbounded in a finite-time for any
∫
Ω

v10 = m > 0. For τ = 0, when f (v1) ≤ v1(c − dv1)
with c, d > 0, Tello and Winkler [9] deduced the global well-posedness of model (1.1) provided that
d > n−2

n χ. Afterwards, when f (v1) = cv1 − dvϵ1 with ϵ > 1, c ≥ 0, d > 0, Winkler [10] defined a concept
of very weak solutions and observed that these solutions are globally bounded under some conditions.
For more results on (1.1), the readers can refer to [11–14].

Considering the volume filling effect [15], the self-diffusion functions and chemotactic sensitivity
functions may have nonlinear forms of the cell density. The general model can be written as follows: v1t = ∇ ·

(
ψ(v1)∇v1 − ϕ(v1)∇v2

)
+ f (v1), x ∈ Ω, t > 0,

τv2t = ∆v2 − v2 + v1, x ∈ Ω, t > 0.
(1.2)

Here, ψ(v1) and ϕ(v1) are nonlinear functions. When τ = 1 and f (v1) = 0, for any
∫
Ω

v10 = M > 0,
Winkler [16] derived that the solution (v1, v2) is unbounded in either finite or infinite time if ϕ(v1)

ψ(v1) ≥ cvα1
with α > 2

n , n ≥ 2 and some constant c > 0 for all v1 > 1. Later on, Tao and Winkler [17] deduced the
global well-posedness of model (1.5) provided that ϕ(v1)

ψ(v1) ≤ cvα1 with α < 2
n , n ≥ 1 and some constant

c > 0 for all v1 > 1. Furthermore, in a high-dimensional space where n ≥ 5, Lin et al. [18] changed the
equation τv2t = ∆v2 − v2 + v1 to 0 = ∆v2 −ϖ(t) + v1 with ϖ(t) = 1

|Ω|

∫
Ω

v1(x, t)dx, and showed that the
solution (v1, v2) is unbounded in a finite time.

Next, we introduce the chemotaxis model that involves an indirect signal mechanism. The model
can be given by the following:

v1t = ∇ ·
(
ψ(v1)∇v1 − ϕ(v1)∇v2

)
+ f (v1), x ∈ Ω, t > 0,

τv2t = ∆v2 − v2 + w, x ∈ Ω, t > 0,

τwt = ∆w − w + v1, x ∈ Ω, t > 0.

(1.3)

For τ = 1, when ψ(v1) = 1, ϕ(v1) = v1 and f (v1) = λ(v1 − vα1 ), the conclusion in [19] implied that
the system is globally classical solvable if α > n

4 +
1
2 with n ≥ 2. Furthermore, the authors in [20–22]

extended the boundedness result to a quasilinear system. Ren [23] derived the global well-posedness of
system (1.3) and provided the qualitative analysis of such solutions. For τ = 0, when ψ(s) ≥ c(s + 1)θ

and |ϕ(s)| ≤ ds(s + 1)κ−1 with s ≥ 0, c, d > 0 and θ, κ ∈ R, Li and Li [24] obtained that the model (1.3)
is globally classical solvable. Meanwhile, they also provided the qualitative analysis of such solutions.
More results of the system with an indirect signal mechanism can be found in [25–28].
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Considering that the cell or bacteria populations have a tendency to move towards a degraded nutrient,
the authors obtain another well-known chemotaxis-consumption system: v1t = ∆v1 − χ∇ · (v1∇v2), x ∈ Ω, t > 0,

v2t = ∆v2 − v1v2, x ∈ Ω, t > 0,
(1.4)

where v1 denotes the cell density, and v2 denotes the concentration of oxygen. If 0 < χ ≤ 1
6(n+1)∥v20∥L∞(Ω)

with n ≥ 2, then the results of [29] showed that the system (1.4) is globally classical solvable. Thereafter,
Zhang and Li [30] deduced the global well-posedness of model (1.4) provided that n ≤ 2 or 0 < χ ≤

1
6(n+1)∥v20∥L∞(Ω)

, n ≥ 3. In addition, for a sufficiently large v10 and v20, Tao and Winkler [31] showed that
the defined weak solutions globally exist when n = 3. Meanwhile, they also analyzed the qualitative
properties of these weak solutions.

Based on the model (1.4), some researchers have considered the model that involves an indirect
signal consumption: 

v1t = ∆v1 − χ∇ · (v1∇v2), x ∈ Ω, t > 0,

v2t = ∆v2 − v1v2, x ∈ Ω, t > 0,

wt = −δw + v1, x ∈ Ω, t > 0,

(1.5)

where w represents the indirect signaling substance produced by cells for degrading oxygen. Fuest [32]
obtained the global well-posedness of model (1.5) provided that n ≤ 2 or ∥v20∥L∞(Ω) ≤

1
3n , and studied the

convergence rate of the solution. Subsequently, the authors in [33] extended the boundedness conclusion
of model (1.5) using conditions n ≥ 3 and 0 < ∥v20∥L∞(Ω) ≤

π
√

n . For more results on model (1.5), the
readers can refer to [34–39].

Inspired by the work mentioned above, we find that there are few papers on the quasilinear chemotaxis
model that involve the nonlinear indirect consumption mechanism. In view of the complexity of the
biological environment, this signal mechanism may be more realistic. In this manuscript, we are
interested in the following system:

v1t = ∇ ·
(
ψ(v1)∇v1 − χϕ(v1)∇v2

)
+ λ1v1 − λ2vβ1, x ∈ Ω, t > 0,

v2t = ∆v2 − wθv2, x ∈ Ω, t > 0,

0 = ∆w − w + vα1 , x ∈ Ω, t > 0,
∂v1
∂ν
= ∂v2

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

v1(x, 0) = v10(x), v2(x, 0) = v20(x), x ∈ Ω,

(1.6)

where Ω ⊂ Rn(n ≥ 1) is a bounded and smooth domain, ν denotes the outward unit normal vector on
∂Ω, and χ, λ1, λ2, θ > 0, 0 < α ≤ 1

θ
, β ≥ 2. Here, v1 is the cell density, v2 is the concentration of

oxygen, and w is the indirect chemical signal produced by v1 to degrade v2. The diffusion functions
ψ, ϕ ∈ C2[0,∞) are assumed to satisfy

ψ(s) ≥ a0(s + 1)r1 and 0 ≤ ϕ(s) ≤ b0s(s + 1)r2 , (1.7)

for all s ≥ 0 with a0, b0 > 0 and r1, r2 ∈ R. In addition, the initial data v10 and v20 fulfill the following:

v10, v20 ∈ W1,∞(Ω) with v10, v20 ≥ 0,. 0 in Ω. (1.8)
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Theorem 1.1. Assume that χ, λ1, λ2, θ > 0, 0 < α ≤ 1
θ
, and β ≥ 2, and that Ω ⊂ Rn(n ≥ 1) is a smooth

bounded domain. Let ψ, ϕ ∈ C2[0,∞) satisfy (1.7). Suppose that the initial data v10 and v20 fulfill (1.8).
It has been proven that if r1 > 2r2 + 1, then the problem (1.6) has a nonnegative classical solution

(v1, v2,w) ∈
(
C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞))

)2
×C2,0(Ω̄ × (0,∞)),

which is globally bounded in the sense that

∥v1(·, t)∥L∞(Ω) + ∥v2(·, t)∥W1,∞(Ω) + ∥w(·, t)∥W1,∞(Ω) ≤ C,

for all t > 0, with C > 0.

Remark 1.2. Our main ideas are as follows. First, we obtain the L∞ bound for v2 by the maximum
principle of the parabolic equation. Next, we establish an estimate for the functional y(t) := 1

p

∫
Ω

(v1 + 1)p +
1

2p

∫
Ω
|∇v2|

2p for any p > 1 and t > 0. Finally, we can derive the global solvability of model (1.6).

Remark 1.3. Theorem 1.1 shows that self-diffusion and logical source are advantageous for the
boundedness of the solutions. In this manuscript, due to the indirect signal substance w that consumes
oxygen, the aggregation of cells or bacterial is almost impossible when self-diffusion is stronger than
cross-diffusion, namely r1 > 2r2 + 1. We can control the logical source to ensure the global boundedness
of the solution for model (1.6). Thus, we can study the effects of the logistic source, the diffusion
functions, and the nonlinear consumption mechanism on the boundedness of the solutions.

2. Preliminaries

In this section, we first state a lemma on the local existence of classical solutions. The proof can be
proven by the fixed point theory. The readers can refer to [40, 41] for more details.

Lemma 2.1. Let the assumptions in Theorem 1.1 hold. Then, there exists Tmax ∈ (0,∞] such that the
problem (1.6) has a nonnegative classical solution (v1, v2,w) that satisfies the following:

(v1, v2,w) ∈
(
C0(Ω̄ × [0,Tmax)) ∩C2,1(Ω̄ × (0,Tmax))

)2
×C2,0(Ω̄ × (0,Tmax)).

Furthermore, if Tmax < ∞, then

lim sup
t↗Tmax

(
∥v1(·, t)∥L∞(Ω) + ∥v2(·, t)∥W1,∞(Ω)

)
= ∞.

Lemma 2.2. (cf. [42]) Let Ω ⊂ Rn(n ≥ 1) be a smooth bounded domain. For any s ≥ 1 and ϵ > 0, one
can obtain ∫

∂Ω

|∇z|2s−2∂|∇z|2

∂ν
≤ ϵ

∫
Ω

|∇z|2s−2|D2z|2 +Cϵ

∫
Ω

|∇z|2s,

for all z ∈ C2(Ω̄) fulfilling ∂z
∂ν

∣∣∣
∂Ω
= 0, with Cϵ = C(ϵ, s,Ω) > 0.

Lemma 2.3. (cf. [43]) Let Ω ⊂ Rn(n ≥ 1) be a bounded and smooth domain. For s ≥ 1, we have∫
Ω

|∇z|2s+2 ≤ 2(4s2 + n)∥z∥2L∞(Ω)

∫
Ω

|∇z|2s−2|D2z|2,

for all z ∈ C2(Ω̄) fulfilling ∂z
∂ν

∣∣∣
∂Ω
= 0.
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Lemma 2.4. Let Ω ⊂ Rn(n ≥ 1) be a bounded and smooth domain. For any z ∈ C2(Ω), one has
the following:

(∆z)2 ≤ n|D2z|2,

where D2z represents the Hessian matrix of z and |D2z|2 =
∑n

i, j=1 z2
xi x j
.

Proof. The proof can be found in [41, Lemma 3.1].

Lemma 2.5. (cf. [44, 45]) Let a1, a2 > 0. The non-negative functions f ∈ C([0,T )) ∩ C1((0,T )) and
y ∈ L1

loc([0,T )) fulfill
f ′(t) + a1 f (t) ≤ y(t), t ∈ (0,T ),

and ∫ t+τ

t
y(s)ds ≤ a2, t ∈ (0,T − τ),

where τ = min{1, T
2 } and T ∈ (0,∞]. Then, one deduces the following:

f (t) ≤ f (0) + 2a2 +
a2

a1
, t ∈ (0,T ).

3. Global boundedness of the solutions

In this section, we provide some useful Lemmas to prove Theorem 1.1.

Lemma 3.1. Let β > 1, then, there exist M, M1, M2 > 0 such that

∥v2(·, t)∥L∞(Ω) ≤ M for all t ∈ (0,Tmax), (3.1)

and ∫
Ω

v1 ≤ M1 for all t ∈ (0,Tmax). (3.2)

Proof. By the parabolic comparison principle for v2t = ∆v2 − wθ
1v2, we can derive (3.1). Invoking the

integration for the first equation of (1.6), one has the following:

d
dt

∫
Ω

v1 = λ1

∫
Ω

v1 − λ2

∫
Ω

vβ1 for all t ∈ (0,Tmax). (3.3)

Invoking the Hölder inequality, we obtain the following:

d
dt

∫
Ω

v1 ≤ λ1

∫
Ω

v1 −
λ2

|Ω|β−1

(∫
Ω

v1

)β
. (3.4)

We can apply the comparison principle to deduce the following:∫
Ω

v1 ≤ max
{ ∫
Ω

v10,

(
λ1

λ2

) 1
β−1

|Ω|

}
= M1. (3.5)

Thereupon, we complete the proof.
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Lemma 3.2. For any γ > 1, we have the following:∫
Ω

wγ ≤ C0

∫
Ω

vαγ1 for all t ∈ (0,Tmax), (3.6)

where C0 =
2γ

1+γ > 0.

Proof. For γ > 1, multiplying equation 0 = ∆w − w + vα1 by wγ−1, one obtain the following:

0 = − (γ − 1)
∫
Ω

wγ−2|∇w|2 −
∫
Ω

wγ +

∫
Ω

vα1wγ−1

≤

∫
Ω

vα1wγ−1 −

∫
Ω

wγ for all t ∈ (0,Tmax). (3.7)

By Young’s inequality, it is easy to deduce the following:∫
Ω

vα1wγ−1 ≤
γ − 1

2γ

∫
Ω

wγ + 2γ−1 ·
1
γ

∫
Ω

vαγ1 . (3.8)

Thus, we arrive at (3.6) by combining (3.7) with (3.8).

Lemma 3.3. Let the assumptions in Lemma 2.1 hold. For any p > max{1, 1
θ
− 1}, there exists C > 0

such that

1
2p

d
dt

∫
Ω

|∇v2|
2p +

1
2p

∫
Ω

|∇v2|
2p +

1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 ≤ C
∫
Ω

vθα(p+1)
1 +C, (3.9)

for all t ∈ (0,Tmax).

Proof. Using the equation v2t = ∆v2 − wθ
1v2, we obtain the following:

∇v2 · ∇v2t = ∇v2 · ∇∆v2 − ∇v2 · ∇
(
wθv2

)
=

1
2
∆|∇v2|

2 − |D2v2|
2 − ∇v2 · ∇

(
wθv2

)
, (3.10)

where we used the equality ∇v2 · ∇∆v2 =
1
2∆|∇v2|

2 − |D2v2|
2. Testing (3.10) by |∇v2|

2p−2 and integrating
by parts, we derive the following:

1
2p

d
dt

∫
Ω

|∇v2|
2p +

∫
Ω

|∇v2|
2p−2|D2v2|

2 +
1

2p

∫
Ω

|∇v2|
2p

=
1
2

∫
Ω

|∇v2|
2p−2∆|∇v2|

2 +

∫
Ω

|∇v2|
2p −

∫
Ω

|∇v2|
2p−2∇v2 · ∇

(
wθv2

)
= I1 +

1
2p

∫
Ω

|∇v2|
2p + I2. (3.11)

Using Lemma 2.4 and (3.1), one has the following:∫
Ω

|∇v2|
2p+2 ≤ C1

∫
Ω

|∇v2|
2p−2|D2v2|

2 for all t ∈ (0,Tmax), (3.12)

where C1 = 2(4p2 + n)M2. In virtue of Lemma 2.2, Young’s inequality, and (3.12), an integration by
parts produces the following:
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I1 +
1

2p

∫
Ω

|∇v2|
2p =

1
2

∫
Ω

|∇v2|
2p−2∆|∇v2|

2 +
1

2p

∫
Ω

|∇v2|
2p

=
1
2

∫
∂Ω

|∇v2|
2p−2∂|∇v2|

2

∂ν
−

1
2

∫
Ω

∇|∇v2|
2p−2 · ∇|∇v2|

2 +
1

2p

∫
Ω

|∇v2|
2p

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C2

∫
Ω

|∇v2|
2p −

p − 1
2

∫
Ω

|∇v2|
2p−4

∣∣∣∣∣∇|∇v2|
2
∣∣∣∣∣2

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 +
1

4C1

∫
Ω

|∇v2|
2p+2 +C3

≤
1
2

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C3 for all t ∈ (0,Tmax), (3.13)

with C2,C3 > 0. Due to |∆v2| ≤
√

n|D2v2|, we can conclude from (3.1) and the integration by parts that

I2 = −

∫
Ω

|∇v2|
2p−2∇v2 · ∇

(
wθv2

)
=

∫
Ω

wθv2∇ ·
(
∇v2|∇v2|

2p−2
)

≤

∫
Ω

wθv2

(
∆v2|∇v2|

2p−2 + (2p − 2)|∇v2|
2p−2|D2v2|

)
≤

∫
Ω

(√
n + 2(p − 2)

)
Mwθ|∇v2|

2p−2|D2v2|

= C4

∫
Ω

wθ|∇v2|
2p−2|D2v2| for all t ∈ (0,Tmax), (3.14)

with C4 = (
√

n + 2(p− 2))M > 0. Due to p > max{1, 1
θ
− 1}, we have θ(p + 1) > 1. With applications of

Young’s inequality, (3.12), and Lemma 3.2, we obtain the following from (3.14):

C4

∫
Ω

wθ|∇v2|
2p−2|D2v2| ≤

1
8

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C5

∫
Ω

w2θ|∇v2|
2p−2

≤
1
8

∫
Ω

|∇v2|
2p−2|D2v2|

2 +
1

8C1

∫
Ω

|∇v2|
2p+2 +C6

∫
Ω

wθ(p+1)

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C7

∫
Ω

wθ(p+1)

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C8

∫
Ω

vθα(p+1)
1 , (3.15)

with C5,C6,C7,C8 > 0. Substituting (3.13) and (3.15) into (3.11), we derive the following:

1
2p

d
dt

∫
Ω

|∇v2|
2p +

1
2p

∫
Ω

|∇v2|
2p +

1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 ≤ C8

∫
Ω

vθα(p+1)
1 +C3, (3.16)

for all t ∈ (0,Tmax). Thereupon, we complete the proof.

Lemma 3.4. Let the assumptions in Lemma 2.1 hold. If r1 > 2r2 + 1, then for any p > 1, we obtain
the following:
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1
p

d
dt

∫
Ω

(v1 + 1)p +
1
p

∫
Ω

(v1 + 1)p

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 + (C + λ1 +
1
p

)
∫
Ω

(v1 + 1)p − λ2

∫
Ω

vp+β−1
1 +C, (3.17)

for all t ∈ (0,Tmax), with C > 0.

Proof. Testing the first equation of problem (1.6) by (v1 + 1)p−1, one can obtain the following:

1
p

d
dt

∫
Ω

(v1 + 1)p +
1
p

∫
Ω

(v1 + 1)p = − (p − 1)
∫
Ω

(v1 + 1)p−2ψ(v1)|∇v1|
2 +

1
p

∫
Ω

(v1 + 1)p

+ χ(p − 1)
∫
Ω

(v1 + 1)p−2ϕ(v1)∇v1 · ∇v2

+ λ1

∫
Ω

v1(v1 + 1)p−1 − λ2

∫
Ω

vβ1(v1 + 1)p−1, (3.18)

for all t ∈ (0,Tmax). In view of (1.7), the first term on the right-hand side of (3.18) can be estimated
as follows:

−(p − 1)
∫
Ω

(v1 + 1)p−2ψ(v1)|∇v1|
2 ≤ −(p − 1)a0

∫
Ω

(v1 + 1)p+r1−2|∇v1|
2. (3.19)

For the second term on the right-hand side of (3.18), we can see that

χ(p − 1)
∫
Ω

(v1 + 1)p−2ϕ(v1)∇v1 · ∇v2 ≤ χ(p − 1)b0

∫
Ω

v1(v1 + 1)p+r2−2∇v1 · ∇v2. (3.20)

We can obtain the following from Young’s inequality:

χ(p − 1)b0

∫
Ω

v1(v1 + 1)p+r2−2∇v1 · ∇v2

≤ χ(p − 1)b0

∫
Ω

(v1 + 1)p+r2−1∇v1 · ∇v2

≤ (p − 1)a0

∫
Ω

(v1 + 1)p+r1−2|∇v1|
2 +C1

∫
Ω

(v1 + 1)p+2r2−r1 |∇v2|
2, (3.21)

with C1 > 0. Utilizing Young’s inequality and (3.12), one has the following:

C1

∫
Ω

(v1 + 1)p+2r2−r1 |∇v2|
2 ≤

1
8(4p2 + n)M2

∫
Ω

|∇v2|
2(p+1) +C2

∫
Ω

(v1 + 1)
(p+1)(p+2r2−r1)

p

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 +C2

∫
Ω

(v1 + 1)
(p+1)(p+2r2−r1)

p , (3.22)

where C2 > 0. Due to r1 > 2r2 + 1, for any p > 1 > r1−2r2
2r2−r1+1 , we can obtain (p+1)(p+2r2−r1)

p < p. Applying
Young’s inequality, we obtain the following:

C2

∫
Ω

(v1 + 1)
(p+1)(p+2r2−r1)

p ≤ C3

∫
Ω

(v1 + 1)p +C3, (3.23)
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where C3 > 0. Hence, substituting (3.19)–(3.23) into (3.18), one obtains the following:

1
p

d
dt

∫
Ω

(v1 + 1)p +
1
p

∫
Ω

(v1 + 1)p

≤
1
4

∫
Ω

|∇v2|
2p−2|D2v2|

2 + (C3 + λ1 +
1
p

)
∫
Ω

(v1 + 1)p − λ2

∫
Ω

vp+β−1
1 +C4, (3.24)

for all t ∈ (0,Tmax), where C4 > 0.

Lemma 3.5. Let the assumptions in Lemma 2.1 hold. If r1 > 2r2 + 1, then for any p > max{1, 1
θ
− 1},

we obtain the following: ∫
Ω

(v1 + 1)p +

∫
Ω

|∇v2|
2p ≤ C, (3.25)

where C > 0.

Proof. We can combine Lemma 3.3 with Lemma 3.4 to infer the following:

d
dt

(1
p

∫
Ω

(v1 + 1)p +
1

2p

∫
Ω

|∇v2|
2p) + 1

p

∫
Ω

(v1 + 1)p +
1

2p

∫
Ω

|∇v2|
2p

≤ C1

∫
Ω

vθα(p+1)
1 + (C1 + λ1 +

1
p

)
∫
Ω

(v1 + 1)p − λ2

∫
Ω

vp+β−1
1 +C1, (3.26)

where C1 > 0. Due to 0 < α ≤ 1
θ

and β ≥ 2, we can obtain θα(p+ 1) ≤ p+ 1 ≤ p+ β− 1. Using Young’s
inequality, we can obtain the following:

C1

∫
Ω

vθα(p+1)
1 ≤

λ2

2

∫
Ω

vp+β−1
1 +C2, (3.27)

where C2 > 0. By the inequality (w+ s)κ ≤ 2κ(wκ + sκ) with w, s > 0 and κ > 1, we deduce the following:

(C1 + λ1 +
1
p

)
∫
Ω

(v1 + 1)p ≤
λ2

2

∫
Ω

vp+β−1
1 +C3, (3.28)

where C3 > 0, where we have applied Young’s inequality. Thus, we obtain the following:

d
dt

(1
p

∫
Ω

(v1 + 1)p +
1

2p

∫
Ω

|∇v2|
2p) + 1

p

∫
Ω

(v1 + 1)p +
1

2p

∫
Ω

|∇v2|
2p ≤ C4, (3.29)

where C4 > 0. Therefore, we can obtain (3.25) by Lemma 2.5. Thereupon, we complete the proof.

The proof of Theorem 1.1. Recalling Lemma 3.5, for any p > max{1, 1
θ
− 1}, and applying the

Lp−estimates of elliptic equation, there exists C1 > 0 such that

sup
t∈(0,Tmax)

∥w(·, t)∥W2, p
α (Ω) ≤ C1 for all t ∈ (0,Tmax). (3.30)

The Sobolev imbedding theorem enables us to obtain the following:

sup
t∈(0,Tmax)

∥w(·, t)∥W1,∞(Ω) ≤ C2 for all t ∈ (0,Tmax), (3.31)
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with C2 > 0. Besides, using the well-known heat semigroup theory to the second equation in system (1.6),
we can find C3 > 0 such that

∥v2(·, t)∥W1,∞(Ω) ≤ C3 for all t ∈ (0,Tmax). (3.32)

Therefore, using the Moser-iteration [17], we can find C4 > 0 such that

∥v1(·, t)∥L∞(Ω) ≤ C4 for all t ∈ (0,Tmax). (3.33)

Based on (3.31)–(3.33), we can find C5 > 0 that fulfills the following:

∥v1(·, t)∥L∞(Ω) + ∥v2(·, t)∥W1,∞(Ω) + ∥w(·, t)∥W1,∞(Ω) ≤ C5, (3.34)

for all t ∈ (0,Tmax). According to Lemma 2.1, we obtain Tmax = ∞. Thereupon, we complete the proof
of Theorem 1.1.

4. Conclusions and outlook

In this manuscript, based on the model established in [35], we further considered that self-diffusion
and cross-diffusion are nonlinear functions, as well as the mechanism of nonlinear generation and
consumption of the indirect signal substance w. We mainly studied the effects of diffusion functions,
the logical source, and the nonlinear consumption mechanism on the boundedness of solutions, which
enriches the existing results of chemotaxis consumption systems. Compared with previous results [29,32],
the novelty of this manuscript is that our boundedness conditions are more generalized and do not
depend on spatial dimension or the sizes of ∥v20∥L∞(Ω) established in [29, 32], which may be more in line
with the real biological environment. In addition, we will further explore interesting problems related
to system (1.6) in our future work, such as the qualitative analysis of system (1.6), the global classical
solvability for full parabolic of system (1.6), and so on.
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