
Research article

Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism

Zihan Zheng, Juan Wang* and **Liming Cai***

School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

* **Correspondence:** Email: dote99@126.com, limingcai@xynu.edu.cn.

Abstract: In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism

$$\begin{cases} v_{1t} = \nabla \cdot (\psi(v_1) \nabla v_1 - \chi \phi(v_1) \nabla v_2) + \lambda_1 v_1 - \lambda_2 v_1^\beta, & x \in \Omega, t > 0, \\ v_{2t} = \Delta v_2 - w^\theta v_2, & x \in \Omega, t > 0, \\ 0 = \Delta w - w + v_1^\alpha, & x \in \Omega, t > 0, \end{cases}$$

in a smooth and bounded domain $\Omega \subset \mathbb{R}^n (n \geq 1)$ with homogeneous Neumann boundary conditions, where $\chi, \lambda_1, \lambda_2, \theta > 0$, $0 < \alpha \leq \frac{1}{\theta}$, $\beta \geq 2$, ψ , and ϕ are nonlinear functions that satisfy $\psi(s) \geq a_0(s+1)^{r_1}$ and $0 \leq \phi(s) \leq b_0 s(s+1)^{r_2}$ for all $s \geq 0$ with $a_0, b_0 > 0$ and $r_1, r_2 \in \mathbb{R}$. It has been proven that if $r_1 > 2r_2 + 1$, then the problem admits a global and bounded classical solution for some appropriate nonnegative initial data.

Keywords: chemotaxis system; global boundedness; nonlinear indirect signal

1. Introduction

As we all know, Keller and Segel [1] first proposed the classical chemotaxis model (hereafter called K-S model), which has been widely applied in biology and medicine. The model can be given by the following:

$$\begin{cases} v_{1t} = \Delta v_1 - \chi \nabla \cdot (v_1 \nabla v_2) + f(v_1), & x \in \Omega, t > 0, \\ \tau v_{2t} = \Delta v_2 - v_2 + v_1, & x \in \Omega, t > 0, \end{cases} \quad (1.1)$$

where v_1 is the cell density, v_2 is the concentration of the chemical signal, and $f(v_1)$ is the logistic source function. For the case of $\tau = 1$ and $f(v_1) = 0$, it has been proven that the classical solutions

to system (1.1) always remain globally bounded when $n = 1$ [2]. A critical mass phenomenon of system (1.1) has been shown in a two-dimensional space. Namely, if the initial data v_{10} satisfies $\|v_{10}\|_{L^1(\Omega)} < \frac{4\pi}{\chi}$, then the solution (v_1, v_2) is globally bounded [3]. Alternatively, if the initial data v_{10} satisfies $\|v_{10}\|_{L^1(\Omega)} > \frac{4\pi}{\chi}$, then the solution (v_1, v_2) is unbounded in finite or infinite time, provided Ω is simply connected [4, 5]. In particular, for a framework of radially symmetric solutions in a planar disk, the solutions blow up in finite time if $\|v_{10}\|_{L^1(\Omega)} > \frac{8\pi}{\chi}$ [6]. When $f(v_1) = 0$, Liu and Tao [7] changed $\tau v_{2t} = \Delta v_2 - v_2 + v_1$ to $v_{2t} = \Delta v_2 - v_2 + g(v_1)$ with $0 \leq g(v_1) \leq Kv_1^\alpha$ for $K, \alpha > 0$, and obtained the global well-posedness of model (1.1) provided that $0 < \alpha < \frac{2}{n}$. Later on, the equation $\tau v_{2t} = \Delta v_2 - v_2 + v_1$ was changed to $0 = \Delta v_2 - \varpi(t) + g(v_1)$ with $\varpi(t) = \frac{1}{|\Omega|} \int_{\Omega} g(v_1(\cdot, t))$ for $g(v_1) = v_1^\alpha$. Winkler [8] deduced that for any v_{10} , the model (1.1) is globally and classical solvable if $\alpha < \frac{2}{n}$; conversely, if $\alpha > \frac{2}{n}$, then the solutions are unbounded in a finite-time for any $\int_{\Omega} v_{10} = m > 0$. For $\tau = 0$, when $f(v_1) \leq v_1(c - dv_1)$ with $c, d > 0$, Tello and Winkler [9] deduced the global well-posedness of model (1.1) provided that $d > \frac{n-2}{n} \chi$. Afterwards, when $f(v_1) = cv_1 - dv_1^\epsilon$ with $\epsilon > 1$, $c \geq 0$, $d > 0$, Winkler [10] defined a concept of very weak solutions and observed that these solutions are globally bounded under some conditions. For more results on (1.1), the readers can refer to [11–14].

Considering the volume filling effect [15], the self-diffusion functions and chemotactic sensitivity functions may have nonlinear forms of the cell density. The general model can be written as follows:

$$\begin{cases} v_{1t} = \nabla \cdot (\psi(v_1) \nabla v_1 - \phi(v_1) \nabla v_2) + f(v_1), & x \in \Omega, t > 0, \\ \tau v_{2t} = \Delta v_2 - v_2 + v_1, & x \in \Omega, t > 0. \end{cases} \quad (1.2)$$

Here, $\psi(v_1)$ and $\phi(v_1)$ are nonlinear functions. When $\tau = 1$ and $f(v_1) = 0$, for any $\int_{\Omega} v_{10} = M > 0$, Winkler [16] derived that the solution (v_1, v_2) is unbounded in either finite or infinite time if $\frac{\phi(v_1)}{\psi(v_1)} \geq cv_1^\alpha$ with $\alpha > \frac{2}{n}$, $n \geq 2$ and some constant $c > 0$ for all $v_1 > 1$. Later on, Tao and Winkler [17] deduced the global well-posedness of model (1.5) provided that $\frac{\phi(v_1)}{\psi(v_1)} \leq cv_1^\alpha$ with $\alpha < \frac{2}{n}$, $n \geq 1$ and some constant $c > 0$ for all $v_1 > 1$. Furthermore, in a high-dimensional space where $n \geq 5$, Lin et al. [18] changed the equation $\tau v_{2t} = \Delta v_2 - v_2 + v_1$ to $0 = \Delta v_2 - \varpi(t) + v_1$ with $\varpi(t) = \frac{1}{|\Omega|} \int_{\Omega} v_1(x, t) dx$, and showed that the solution (v_1, v_2) is unbounded in a finite time.

Next, we introduce the chemotaxis model that involves an indirect signal mechanism. The model can be given by the following:

$$\begin{cases} v_{1t} = \nabla \cdot (\psi(v_1) \nabla v_1 - \phi(v_1) \nabla v_2) + f(v_1), & x \in \Omega, t > 0, \\ \tau v_{2t} = \Delta v_2 - v_2 + w, & x \in \Omega, t > 0, \\ \tau w_t = \Delta w - w + v_1, & x \in \Omega, t > 0. \end{cases} \quad (1.3)$$

For $\tau = 1$, when $\psi(v_1) = 1$, $\phi(v_1) = v_1$ and $f(v_1) = \lambda(v_1 - v_1^\alpha)$, the conclusion in [19] implied that the system is globally classical solvable if $\alpha > \frac{n}{4} + \frac{1}{2}$ with $n \geq 2$. Furthermore, the authors in [20–22] extended the boundedness result to a quasilinear system. Ren [23] derived the global well-posedness of system (1.3) and provided the qualitative analysis of such solutions. For $\tau = 0$, when $\psi(s) \geq c(s+1)^\theta$ and $|\phi(s)| \leq ds(s+1)^{\kappa-1}$ with $s \geq 0$, $c, d > 0$ and $\theta, \kappa \in R$, Li and Li [24] obtained that the model (1.3) is globally classical solvable. Meanwhile, they also provided the qualitative analysis of such solutions. More results of the system with an indirect signal mechanism can be found in [25–28].

Considering that the cell or bacteria populations have a tendency to move towards a degraded nutrient, the authors obtain another well-known chemotaxis-consumption system:

$$\begin{cases} v_{1t} = \Delta v_1 - \chi \nabla \cdot (v_1 \nabla v_2), & x \in \Omega, t > 0, \\ v_{2t} = \Delta v_2 - v_1 v_2, & x \in \Omega, t > 0, \end{cases} \quad (1.4)$$

where v_1 denotes the cell density, and v_2 denotes the concentration of oxygen. If $0 < \chi \leq \frac{1}{6(n+1)\|v_{20}\|_{L^\infty(\Omega)}}$ with $n \geq 2$, then the results of [29] showed that the system (1.4) is globally classical solvable. Thereafter, Zhang and Li [30] deduced the global well-posedness of model (1.4) provided that $n \leq 2$ or $0 < \chi \leq \frac{1}{6(n+1)\|v_{20}\|_{L^\infty(\Omega)}}$, $n \geq 3$. In addition, for a sufficiently large v_{10} and v_{20} , Tao and Winkler [31] showed that the defined weak solutions globally exist when $n = 3$. Meanwhile, they also analyzed the qualitative properties of these weak solutions.

Based on the model (1.4), some researchers have considered the model that involves an indirect signal consumption:

$$\begin{cases} v_{1t} = \Delta v_1 - \chi \nabla \cdot (v_1 \nabla v_2), & x \in \Omega, t > 0, \\ v_{2t} = \Delta v_2 - v_1 v_2, & x \in \Omega, t > 0, \\ w_t = -\delta w + v_1, & x \in \Omega, t > 0, \end{cases} \quad (1.5)$$

where w represents the indirect signaling substance produced by cells for degrading oxygen. Fuest [32] obtained the global well-posedness of model (1.5) provided that $n \leq 2$ or $\|v_{20}\|_{L^\infty(\Omega)} \leq \frac{1}{3n}$, and studied the convergence rate of the solution. Subsequently, the authors in [33] extended the boundedness conclusion of model (1.5) using conditions $n \geq 3$ and $0 < \|v_{20}\|_{L^\infty(\Omega)} \leq \frac{\pi}{\sqrt{n}}$. For more results on model (1.5), the readers can refer to [34–39].

Inspired by the work mentioned above, we find that there are few papers on the quasilinear chemotaxis model that involve the nonlinear indirect consumption mechanism. In view of the complexity of the biological environment, this signal mechanism may be more realistic. In this manuscript, we are interested in the following system:

$$\begin{cases} v_{1t} = \nabla \cdot (\psi(v_1) \nabla v_1 - \chi \phi(v_1) \nabla v_2) + \lambda_1 v_1 - \lambda_2 v_1^\beta, & x \in \Omega, t > 0, \\ v_{2t} = \Delta v_2 - w^\theta v_2, & x \in \Omega, t > 0, \\ 0 = \Delta w - w + v_1^\alpha, & x \in \Omega, t > 0, \\ \frac{\partial v_1}{\partial \nu} = \frac{\partial v_2}{\partial \nu} = \frac{\partial w}{\partial \nu} = 0, & x \in \partial \Omega, t > 0, \\ v_1(x, 0) = v_{10}(x), v_2(x, 0) = v_{20}(x), & x \in \Omega, \end{cases} \quad (1.6)$$

where $\Omega \subset \mathbb{R}^n$ ($n \geq 1$) is a bounded and smooth domain, ν denotes the outward unit normal vector on $\partial \Omega$, and $\chi, \lambda_1, \lambda_2, \theta > 0$, $0 < \alpha \leq \frac{1}{\theta}$, $\beta \geq 2$. Here, v_1 is the cell density, v_2 is the concentration of oxygen, and w is the indirect chemical signal produced by v_1 to degrade v_2 . The diffusion functions $\psi, \phi \in C^2[0, \infty)$ are assumed to satisfy

$$\psi(s) \geq a_0(s+1)^{r_1} \text{ and } 0 \leq \phi(s) \leq b_0 s(s+1)^{r_2}, \quad (1.7)$$

for all $s \geq 0$ with $a_0, b_0 > 0$ and $r_1, r_2 \in \mathbb{R}$. In addition, the initial data v_{10} and v_{20} fulfill the following:

$$v_{10}, v_{20} \in W^{1,\infty}(\Omega) \text{ with } v_{10}, v_{20} \geq 0, \not\equiv 0 \text{ in } \Omega. \quad (1.8)$$

Theorem 1.1. Assume that $\chi, \lambda_1, \lambda_2, \theta > 0$, $0 < \alpha \leq \frac{1}{\theta}$, and $\beta \geq 2$, and that $\Omega \subset \mathbb{R}^n (n \geq 1)$ is a smooth bounded domain. Let $\psi, \phi \in C^2[0, \infty)$ satisfy (1.7). Suppose that the initial data v_{10} and v_{20} fulfill (1.8). It has been proven that if $r_1 > 2r_2 + 1$, then the problem (1.6) has a nonnegative classical solution

$$(v_1, v_2, w) \in \left(C^0(\bar{\Omega} \times [0, \infty)) \cap C^{2,1}(\bar{\Omega} \times (0, \infty))\right)^2 \times C^{2,0}(\bar{\Omega} \times (0, \infty)),$$

which is globally bounded in the sense that

$$\|v_1(\cdot, t)\|_{L^\infty(\Omega)} + \|v_2(\cdot, t)\|_{W^{1,\infty}(\Omega)} + \|w(\cdot, t)\|_{W^{1,\infty}(\Omega)} \leq C,$$

for all $t > 0$, with $C > 0$.

Remark 1.2. Our main ideas are as follows. First, we obtain the L^∞ bound for v_2 by the maximum principle of the parabolic equation. Next, we establish an estimate for the functional $y(t) := \frac{1}{p} \int_{\Omega} (v_1 + 1)^p + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p}$ for any $p > 1$ and $t > 0$. Finally, we can derive the global solvability of model (1.6).

Remark 1.3. Theorem 1.1 shows that self-diffusion and logical source are advantageous for the boundedness of the solutions. In this manuscript, due to the indirect signal substance w that consumes oxygen, the aggregation of cells or bacterial is almost impossible when self-diffusion is stronger than cross-diffusion, namely $r_1 > 2r_2 + 1$. We can control the logical source to ensure the global boundedness of the solution for model (1.6). Thus, we can study the effects of the logistic source, the diffusion functions, and the nonlinear consumption mechanism on the boundedness of the solutions.

2. Preliminaries

In this section, we first state a lemma on the local existence of classical solutions. The proof can be proven by the fixed point theory. The readers can refer to [40, 41] for more details.

Lemma 2.1. Let the assumptions in Theorem 1.1 hold. Then, there exists $T_{\max} \in (0, \infty]$ such that the problem (1.6) has a nonnegative classical solution (v_1, v_2, w) that satisfies the following:

$$(v_1, v_2, w) \in \left(C^0(\bar{\Omega} \times [0, T_{\max})) \cap C^{2,1}(\bar{\Omega} \times (0, T_{\max}))\right)^2 \times C^{2,0}(\bar{\Omega} \times (0, T_{\max})).$$

Furthermore, if $T_{\max} < \infty$, then

$$\limsup_{t \nearrow T_{\max}} \left(\|v_1(\cdot, t)\|_{L^\infty(\Omega)} + \|v_2(\cdot, t)\|_{W^{1,\infty}(\Omega)} \right) = \infty.$$

Lemma 2.2. (cf. [42]) Let $\Omega \subset \mathbb{R}^n (n \geq 1)$ be a smooth bounded domain. For any $s \geq 1$ and $\epsilon > 0$, one can obtain

$$\int_{\partial\Omega} |\nabla z|^{2s-2} \frac{\partial |\nabla z|^2}{\partial \nu} \leq \epsilon \int_{\Omega} |\nabla z|^{2s-2} |D^2 z|^2 + C_\epsilon \int_{\Omega} |\nabla z|^{2s},$$

for all $z \in C^2(\bar{\Omega})$ fulfilling $\frac{\partial z}{\partial \nu} \Big|_{\partial\Omega} = 0$, with $C_\epsilon = C(\epsilon, s, \Omega) > 0$.

Lemma 2.3. (cf. [43]) Let $\Omega \subset \mathbb{R}^n (n \geq 1)$ be a bounded and smooth domain. For $s \geq 1$, we have

$$\int_{\Omega} |\nabla z|^{2s+2} \leq 2(4s^2 + n) \|z\|_{L^\infty(\Omega)}^2 \int_{\Omega} |\nabla z|^{2s-2} |D^2 z|^2,$$

for all $z \in C^2(\bar{\Omega})$ fulfilling $\frac{\partial z}{\partial \nu} \Big|_{\partial\Omega} = 0$.

Lemma 2.4. *Let $\Omega \subset \mathbb{R}^n$ ($n \geq 1$) be a bounded and smooth domain. For any $z \in C^2(\Omega)$, one has the following:*

$$(\Delta z)^2 \leq n|D^2 z|^2,$$

where $D^2 z$ represents the Hessian matrix of z and $|D^2 z|^2 = \sum_{i,j=1}^n z_{x_i x_j}^2$.

Proof. The proof can be found in [41, Lemma 3.1].

Lemma 2.5. (cf. [44, 45]) *Let $a_1, a_2 > 0$. The non-negative functions $f \in C([0, T)) \cap C^1((0, T))$ and $y \in L^1_{loc}([0, T))$ fulfill*

$$f'(t) + a_1 f(t) \leq y(t), \quad t \in (0, T),$$

and

$$\int_t^{t+\tau} y(s) ds \leq a_2, \quad t \in (0, T - \tau),$$

where $\tau = \min\{1, \frac{T}{2}\}$ and $T \in (0, \infty]$. Then, one deduces the following:

$$f(t) \leq f(0) + 2a_2 + \frac{a_2}{a_1}, \quad t \in (0, T).$$

3. Global boundedness of the solutions

In this section, we provide some useful Lemmas to prove Theorem 1.1.

Lemma 3.1. *Let $\beta > 1$, then, there exist $M, M_1, M_2 > 0$ such that*

$$\|v_2(\cdot, t)\|_{L^\infty(\Omega)} \leq M \text{ for all } t \in (0, T_{\max}), \quad (3.1)$$

and

$$\int_{\Omega} v_1 \leq M_1 \text{ for all } t \in (0, T_{\max}). \quad (3.2)$$

Proof. By the parabolic comparison principle for $v_{2t} = \Delta v_2 - w_1^\theta v_2$, we can derive (3.1). Invoking the integration for the first equation of (1.6), one has the following:

$$\frac{d}{dt} \int_{\Omega} v_1 = \lambda_1 \int_{\Omega} v_1 - \lambda_2 \int_{\Omega} v_1^\beta \text{ for all } t \in (0, T_{\max}). \quad (3.3)$$

Invoking the Hölder inequality, we obtain the following:

$$\frac{d}{dt} \int_{\Omega} v_1 \leq \lambda_1 \int_{\Omega} v_1 - \frac{\lambda_2}{|\Omega|^{\beta-1}} \left(\int_{\Omega} v_1 \right)^\beta. \quad (3.4)$$

We can apply the comparison principle to deduce the following:

$$\int_{\Omega} v_1 \leq \max \left\{ \int_{\Omega} v_{10}, \left(\frac{\lambda_1}{\lambda_2} \right)^{\frac{1}{\beta-1}} |\Omega| \right\} = M_1. \quad (3.5)$$

Thereupon, we complete the proof.

Lemma 3.2. For any $\gamma > 1$, we have the following:

$$\int_{\Omega} w^{\gamma} \leq C_0 \int_{\Omega} v_1^{\alpha\gamma} \text{ for all } t \in (0, T_{\max}), \quad (3.6)$$

where $C_0 = \frac{2^{\gamma}}{1+\gamma} > 0$.

Proof. For $\gamma > 1$, multiplying equation $0 = \Delta w - w + v_1^{\alpha}$ by $w^{\gamma-1}$, one obtain the following:

$$\begin{aligned} 0 &= -(\gamma - 1) \int_{\Omega} w^{\gamma-2} |\nabla w|^2 - \int_{\Omega} w^{\gamma} + \int_{\Omega} v_1^{\alpha} w^{\gamma-1} \\ &\leq \int_{\Omega} v_1^{\alpha} w^{\gamma-1} - \int_{\Omega} w^{\gamma} \text{ for all } t \in (0, T_{\max}). \end{aligned} \quad (3.7)$$

By Young's inequality, it is easy to deduce the following:

$$\int_{\Omega} v_1^{\alpha} w^{\gamma-1} \leq \frac{\gamma-1}{2\gamma} \int_{\Omega} w^{\gamma} + 2^{\gamma-1} \cdot \frac{1}{\gamma} \int_{\Omega} v_1^{\alpha\gamma}. \quad (3.8)$$

Thus, we arrive at (3.6) by combining (3.7) with (3.8).

Lemma 3.3. Let the assumptions in Lemma 2.1 hold. For any $p > \max\{1, \frac{1}{\theta} - 1\}$, there exists $C > 0$ such that

$$\frac{1}{2p} \frac{d}{dt} \int_{\Omega} |\nabla v_2|^{2p} + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} + \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 \leq C \int_{\Omega} v_1^{\theta\alpha(p+1)} + C, \quad (3.9)$$

for all $t \in (0, T_{\max})$.

Proof. Using the equation $v_{2t} = \Delta v_2 - w_1^{\theta} v_2$, we obtain the following:

$$\begin{aligned} \nabla v_2 \cdot \nabla v_{2t} &= \nabla v_2 \cdot \nabla \Delta v_2 - \nabla v_2 \cdot \nabla (w_1^{\theta} v_2) \\ &= \frac{1}{2} \Delta |\nabla v_2|^2 - |D^2 v_2|^2 - \nabla v_2 \cdot \nabla (w_1^{\theta} v_2), \end{aligned} \quad (3.10)$$

where we used the equality $\nabla v_2 \cdot \nabla \Delta v_2 = \frac{1}{2} \Delta |\nabla v_2|^2 - |D^2 v_2|^2$. Testing (3.10) by $|\nabla v_2|^{2p-2}$ and integrating by parts, we derive the following:

$$\begin{aligned} &\frac{1}{2p} \frac{d}{dt} \int_{\Omega} |\nabla v_2|^{2p} + \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \\ &= \frac{1}{2} \int_{\Omega} |\nabla v_2|^{2p-2} \Delta |\nabla v_2|^2 + \int_{\Omega} |\nabla v_2|^{2p} - \int_{\Omega} |\nabla v_2|^{2p-2} \nabla v_2 \cdot \nabla (w_1^{\theta} v_2) \\ &= I_1 + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} + I_2. \end{aligned} \quad (3.11)$$

Using Lemma 2.4 and (3.1), one has the following:

$$\int_{\Omega} |\nabla v_2|^{2p+2} \leq C_1 \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 \text{ for all } t \in (0, T_{\max}), \quad (3.12)$$

where $C_1 = 2(4p^2 + n)M^2$. In virtue of Lemma 2.2, Young's inequality, and (3.12), an integration by parts produces the following:

$$\begin{aligned}
I_1 + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} &= \frac{1}{2} \int_{\Omega} |\nabla v_2|^{2p-2} \Delta |\nabla v_2|^2 + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \\
&= \frac{1}{2} \int_{\partial\Omega} |\nabla v_2|^{2p-2} \frac{\partial |\nabla v_2|^2}{\partial \nu} - \frac{1}{2} \int_{\Omega} \nabla |\nabla v_2|^{2p-2} \cdot \nabla |\nabla v_2|^2 + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \\
&\leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_2 \int_{\Omega} |\nabla v_2|^{2p} - \frac{p-1}{2} \int_{\Omega} |\nabla v_2|^{2p-4} \left| \nabla |\nabla v_2|^2 \right|^2 \\
&\leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + \frac{1}{4C_1} \int_{\Omega} |\nabla v_2|^{2p+2} + C_3 \\
&\leq \frac{1}{2} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_3 \quad \text{for all } t \in (0, T_{\max}),
\end{aligned} \tag{3.13}$$

with $C_2, C_3 > 0$. Due to $|\Delta v_2| \leq \sqrt{n} |D^2 v_2|$, we can conclude from (3.1) and the integration by parts that

$$\begin{aligned}
I_2 &= - \int_{\Omega} |\nabla v_2|^{2p-2} \nabla v_2 \cdot \nabla (w^\theta v_2) = \int_{\Omega} w^\theta v_2 \nabla \cdot (\nabla v_2 |\nabla v_2|^{2p-2}) \\
&\leq \int_{\Omega} w^\theta v_2 (\Delta v_2 |\nabla v_2|^{2p-2} + (2p-2) |\nabla v_2|^{2p-2} |D^2 v_2|) \\
&\leq \int_{\Omega} (\sqrt{n} + 2(p-2)) M w^\theta |\nabla v_2|^{2p-2} |D^2 v_2| \\
&= C_4 \int_{\Omega} w^\theta |\nabla v_2|^{2p-2} |D^2 v_2| \quad \text{for all } t \in (0, T_{\max}),
\end{aligned} \tag{3.14}$$

with $C_4 = (\sqrt{n} + 2(p-2))M > 0$. Due to $p > \max\{1, \frac{1}{\theta} - 1\}$, we have $\theta(p+1) > 1$. With applications of Young's inequality, (3.12), and Lemma 3.2, we obtain the following from (3.14):

$$\begin{aligned}
C_4 \int_{\Omega} w^\theta |\nabla v_2|^{2p-2} |D^2 v_2| &\leq \frac{1}{8} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_5 \int_{\Omega} w^{2\theta} |\nabla v_2|^{2p-2} \\
&\leq \frac{1}{8} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + \frac{1}{8C_1} \int_{\Omega} |\nabla v_2|^{2p+2} + C_6 \int_{\Omega} w^{\theta(p+1)} \\
&\leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_7 \int_{\Omega} w^{\theta(p+1)} \\
&\leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_8 \int_{\Omega} v_1^{\theta\alpha(p+1)},
\end{aligned} \tag{3.15}$$

with $C_5, C_6, C_7, C_8 > 0$. Substituting (3.13) and (3.15) into (3.11), we derive the following:

$$\frac{1}{2p} \frac{d}{dt} \int_{\Omega} |\nabla v_2|^{2p} + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} + \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 \leq C_8 \int_{\Omega} v_1^{\theta\alpha(p+1)} + C_3, \tag{3.16}$$

for all $t \in (0, T_{\max})$. Thereupon, we complete the proof.

Lemma 3.4. *Let the assumptions in Lemma 2.1 hold. If $r_1 > 2r_2 + 1$, then for any $p > 1$, we obtain the following:*

$$\begin{aligned} & \frac{1}{p} \frac{d}{dt} \int_{\Omega} (v_1 + 1)^p + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p \\ & \leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + (C + \lambda_1 + \frac{1}{p}) \int_{\Omega} (v_1 + 1)^p - \lambda_2 \int_{\Omega} v_1^{p+\beta-1} + C, \end{aligned} \quad (3.17)$$

for all $t \in (0, T_{\max})$, with $C > 0$.

Proof. Testing the first equation of problem (1.6) by $(v_1 + 1)^{p-1}$, one can obtain the following:

$$\begin{aligned} \frac{1}{p} \frac{d}{dt} \int_{\Omega} (v_1 + 1)^p + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p &= -(p-1) \int_{\Omega} (v_1 + 1)^{p-2} \psi(v_1) |\nabla v_1|^2 + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p \\ &+ \chi(p-1) \int_{\Omega} (v_1 + 1)^{p-2} \phi(v_1) \nabla v_1 \cdot \nabla v_2 \\ &+ \lambda_1 \int_{\Omega} v_1 (v_1 + 1)^{p-1} - \lambda_2 \int_{\Omega} v_1^{\beta} (v_1 + 1)^{p-1}, \end{aligned} \quad (3.18)$$

for all $t \in (0, T_{\max})$. In view of (1.7), the first term on the right-hand side of (3.18) can be estimated as follows:

$$-(p-1) \int_{\Omega} (v_1 + 1)^{p-2} \psi(v_1) |\nabla v_1|^2 \leq -(p-1)a_0 \int_{\Omega} (v_1 + 1)^{p+r_1-2} |\nabla v_1|^2. \quad (3.19)$$

For the second term on the right-hand side of (3.18), we can see that

$$\chi(p-1) \int_{\Omega} (v_1 + 1)^{p-2} \phi(v_1) \nabla v_1 \cdot \nabla v_2 \leq \chi(p-1)b_0 \int_{\Omega} v_1 (v_1 + 1)^{p+r_2-2} \nabla v_1 \cdot \nabla v_2. \quad (3.20)$$

We can obtain the following from Young's inequality:

$$\begin{aligned} & \chi(p-1)b_0 \int_{\Omega} v_1 (v_1 + 1)^{p+r_2-2} \nabla v_1 \cdot \nabla v_2 \\ & \leq \chi(p-1)b_0 \int_{\Omega} (v_1 + 1)^{p+r_2-1} \nabla v_1 \cdot \nabla v_2 \\ & \leq (p-1)a_0 \int_{\Omega} (v_1 + 1)^{p+r_1-2} |\nabla v_1|^2 + C_1 \int_{\Omega} (v_1 + 1)^{p+2r_2-r_1} |\nabla v_2|^2, \end{aligned} \quad (3.21)$$

with $C_1 > 0$. Utilizing Young's inequality and (3.12), one has the following:

$$\begin{aligned} C_1 \int_{\Omega} (v_1 + 1)^{p+2r_2-r_1} |\nabla v_2|^2 & \leq \frac{1}{8(4p^2+n)M^2} \int_{\Omega} |\nabla v_2|^{2(p+1)} + C_2 \int_{\Omega} (v_1 + 1)^{\frac{(p+1)(p+2r_2-r_1)}{p}} \\ & \leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + C_2 \int_{\Omega} (v_1 + 1)^{\frac{(p+1)(p+2r_2-r_1)}{p}}, \end{aligned} \quad (3.22)$$

where $C_2 > 0$. Due to $r_1 > 2r_2 + 1$, for any $p > 1 > \frac{r_1-2r_2}{2r_2-r_1+1}$, we can obtain $\frac{(p+1)(p+2r_2-r_1)}{p} < p$. Applying Young's inequality, we obtain the following:

$$C_2 \int_{\Omega} (v_1 + 1)^{\frac{(p+1)(p+2r_2-r_1)}{p}} \leq C_3 \int_{\Omega} (v_1 + 1)^p + C_3, \quad (3.23)$$

where $C_3 > 0$. Hence, substituting (3.19)–(3.23) into (3.18), one obtains the following:

$$\begin{aligned} & \frac{1}{p} \frac{d}{dt} \int_{\Omega} (v_1 + 1)^p + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p \\ & \leq \frac{1}{4} \int_{\Omega} |\nabla v_2|^{2p-2} |D^2 v_2|^2 + (C_3 + \lambda_1 + \frac{1}{p}) \int_{\Omega} (v_1 + 1)^p - \lambda_2 \int_{\Omega} v_1^{p+\beta-1} + C_4, \end{aligned} \quad (3.24)$$

for all $t \in (0, T_{\max})$, where $C_4 > 0$.

Lemma 3.5. *Let the assumptions in Lemma 2.1 hold. If $r_1 > 2r_2 + 1$, then for any $p > \max\{1, \frac{1}{\theta} - 1\}$, we obtain the following:*

$$\int_{\Omega} (v_1 + 1)^p + \int_{\Omega} |\nabla v_2|^{2p} \leq C, \quad (3.25)$$

where $C > 0$.

Proof. We can combine Lemma 3.3 with Lemma 3.4 to infer the following:

$$\begin{aligned} & \frac{d}{dt} \left(\frac{1}{p} \int_{\Omega} (v_1 + 1)^p + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \right) + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \\ & \leq C_1 \int_{\Omega} v_1^{\theta\alpha(p+1)} + (C_1 + \lambda_1 + \frac{1}{p}) \int_{\Omega} (v_1 + 1)^p - \lambda_2 \int_{\Omega} v_1^{p+\beta-1} + C_1, \end{aligned} \quad (3.26)$$

where $C_1 > 0$. Due to $0 < \alpha \leq \frac{1}{\theta}$ and $\beta \geq 2$, we can obtain $\theta\alpha(p+1) \leq p+1 \leq p+\beta-1$. Using Young's inequality, we can obtain the following:

$$C_1 \int_{\Omega} v_1^{\theta\alpha(p+1)} \leq \frac{\lambda_2}{2} \int_{\Omega} v_1^{p+\beta-1} + C_2, \quad (3.27)$$

where $C_2 > 0$. By the inequality $(w+s)^\kappa \leq 2^\kappa (w^\kappa + s^\kappa)$ with $w, s > 0$ and $\kappa > 1$, we deduce the following:

$$(C_1 + \lambda_1 + \frac{1}{p}) \int_{\Omega} (v_1 + 1)^p \leq \frac{\lambda_2}{2} \int_{\Omega} v_1^{p+\beta-1} + C_3, \quad (3.28)$$

where $C_3 > 0$, where we have applied Young's inequality. Thus, we obtain the following:

$$\frac{d}{dt} \left(\frac{1}{p} \int_{\Omega} (v_1 + 1)^p + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \right) + \frac{1}{p} \int_{\Omega} (v_1 + 1)^p + \frac{1}{2p} \int_{\Omega} |\nabla v_2|^{2p} \leq C_4, \quad (3.29)$$

where $C_4 > 0$. Therefore, we can obtain (3.25) by Lemma 2.5. Thereupon, we complete the proof.

The proof of Theorem 1.1. Recalling Lemma 3.5, for any $p > \max\{1, \frac{1}{\theta} - 1\}$, and applying the L^p -estimates of elliptic equation, there exists $C_1 > 0$ such that

$$\sup_{t \in (0, T_{\max})} \|w(\cdot, t)\|_{W^{2, \frac{p}{\theta}}(\Omega)} \leq C_1 \quad \text{for all } t \in (0, T_{\max}). \quad (3.30)$$

The Sobolev imbedding theorem enables us to obtain the following:

$$\sup_{t \in (0, T_{\max})} \|w(\cdot, t)\|_{W^{1, \infty}(\Omega)} \leq C_2 \quad \text{for all } t \in (0, T_{\max}), \quad (3.31)$$

with $C_2 > 0$. Besides, using the well-known heat semigroup theory to the second equation in system (1.6), we can find $C_3 > 0$ such that

$$\|v_2(\cdot, t)\|_{W^{1,\infty}(\Omega)} \leq C_3 \text{ for all } t \in (0, T_{\max}). \quad (3.32)$$

Therefore, using the Moser-iteration [17], we can find $C_4 > 0$ such that

$$\|v_1(\cdot, t)\|_{L^\infty(\Omega)} \leq C_4 \text{ for all } t \in (0, T_{\max}). \quad (3.33)$$

Based on (3.31)–(3.33), we can find $C_5 > 0$ that fulfills the following:

$$\|v_1(\cdot, t)\|_{L^\infty(\Omega)} + \|v_2(\cdot, t)\|_{W^{1,\infty}(\Omega)} + \|w(\cdot, t)\|_{W^{1,\infty}(\Omega)} \leq C_5, \quad (3.34)$$

for all $t \in (0, T_{\max})$. According to Lemma 2.1, we obtain $T_{\max} = \infty$. Thereupon, we complete the proof of Theorem 1.1.

4. Conclusions and outlook

In this manuscript, based on the model established in [35], we further considered that self-diffusion and cross-diffusion are nonlinear functions, as well as the mechanism of nonlinear generation and consumption of the indirect signal substance w . We mainly studied the effects of diffusion functions, the logical source, and the nonlinear consumption mechanism on the boundedness of solutions, which enriches the existing results of chemotaxis consumption systems. Compared with previous results [29, 32], the novelty of this manuscript is that our boundedness conditions are more generalized and do not depend on spatial dimension or the sizes of $\|v_{20}\|_{L^\infty(\Omega)}$ established in [29, 32], which may be more in line with the real biological environment. In addition, we will further explore interesting problems related to system (1.6) in our future work, such as the qualitative analysis of system (1.6), the global classical solvability for full parabolic of system (1.6), and so on.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (No. 12271466, 11871415).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, *J. Theor. Biol.*, **26** (1970), 399–415. [https://doi.org/10.1016/0022-5193\(70\)90092-5](https://doi.org/10.1016/0022-5193(70)90092-5)

2. K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, *Funkc. Ekvacioj*, **44** (2001), 441–470.
3. T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, *Funkc. Ekvacioj*, **40** (1997), 411–433.
4. D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, *Eur. J. Appl. Math.*, **12** (2001), 159–177. <https://doi.org/10.1017/s0956792501004363>
5. T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, *Methods Appl. Anal.*, **8** (2001), 349–367. <https://doi.org/10.4310/MAA.2001.v8.n2.a9>
6. M. Herrero, J. Velázquez, A blow-up mechanism for a chemotaxis model, *Ann. Sc. Norm. Super. Pisa Cl. Sci.*, **24** (1997), 633–683.
7. D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, *Appl. Math. J. Chin. Univ.*, **31** (2016), 379–388. <https://doi.org/10.1007/s11766-016-3386-z>
8. M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, *Nonlinearity*, **31** (2018), 2031–2056. <https://doi.org/10.1088/1361-6544/aaaa0e>
9. J. I. Tello, M. Winkler, A chemotaxis system with logistic source, *Commun. Partial Differ. Equations*, **32** (2007), 849–877. <https://doi.org/10.1080/03605300701319003>
10. M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties, *J. Math. Anal. Appl.*, **348** (2008), 708–729. <https://doi.org/10.1016/j.jmaa.2008.07.071>
11. M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, *J. Commun. Partial Differ. Equations*, **35** (2010), 1516–1537. <https://doi.org/10.1080/03605300903473426>
12. T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, *Commun. Pure Appl. Anal.*, **18** (2019), 255–284. <https://doi.org/10.3934/cpaa.2019014>
13. D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, *Jahresber. Dtsch. Math.-Ver.*, **105** (2003), 103–165.
14. M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, *J. Math. Anal. Appl.*, **384** (2011), 261–272. <https://doi.org/10.1016/j.jmaa.2011.05.057>
15. K. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, *Can. Appl. Math. Q.*, **10** (2002), 501–543.
16. M. Winkler, Does a ‘volume-filling effect’ always prevent chemotactic collapse, *Math. Methods Appl. Sci.*, **33** (2010), 12–24. <https://doi.org/10.1002/mma.1146>
17. Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, *J. Differ. Equations*, **252** (2012), 692–715. <https://doi.org/10.1016/j.jde.2011.08.019>
18. K. Lin, C. Mu, H. Zhong, A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, *J. Math. Anal. Appl.*, **464** (2018), 435–455. <https://doi.org/10.1016/j.jmaa.2018.04.015>
19. W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, *Nonlinear Anal. Real World Appl.*, **50** (2019), 484–497. <https://doi.org/10.1016/j.nonrwa.2019.05.002>

20. M. Ding, W. Wang, Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, *Discrete Contin. Dyn. Syst. - Ser. B*, **24** (2019), 4665–4684. <https://doi.org/10.3934/dcdsb.2018328>

21. Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, *J. Math. Anal. Appl.*, **441** (2016), 259–292. <https://doi.org/10.1016/j.jmaa.2016.03.061>

22. S. Wu, Boundedness in a quasilinear chemotaxis model with logistic growth and indirect signal production, *Acta Appl. Math.*, **176** (2021), 1–14. <https://doi.org/10.1007/s10440-021-00454-x>

23. G. Ren, Global solvability in a Keller-Segel-growth system with indirect signal production, *Calc. Var. Partial Differ. Equations*, **61** (2022), 207. <https://doi.org/10.1007/s00526-022-02313-5>

24. D. Li, Z. Li, Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, *Z. Angew. Math. Phys.*, **73** (2022), 1–17. <https://doi.org/10.1007/s00033-021-01655-y>

25. X. Cao, Y. Tao, Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model, *Nonlinear Anal. Real World Appl.*, **57** (2021), 103189. <https://doi.org/10.1016/j.nonrwa.2020.103189>

26. C. Wang, Z. Zheng, The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model, *Electron. Res. Arch.*, **31** (2023), 3362–3380. <https://doi.org/10.3934/era.2023170>

27. Y. Tao, M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, *J. Eur. Math. Soc.*, **19** (2017), 3641–3678. <https://doi.org/10.4171/JEMS/749>

28. X. Li, Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function, *Z. Angew. Math. Phys.*, **71** (2020), 1–22. <https://doi.org/10.1007/s00033-020-01339-z>

29. Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, *J. Math. Anal. Appl.*, **381** (2011), 521–529. <https://doi.org/10.1016/j.jmaa.2011.02.041>

30. Q. Zhang, Y. Li, Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, *J. Math. Phys.*, **56** (2015), 081506. <https://doi.org/10.1063/1.4929658>

31. Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, *J. Differ. Equations*, **252** (2012), 2520–2543. <https://doi.org/10.1016/j.jde.2011.07.010>

32. M. Fuest, Analysis of a chemotaxis model with indirect signal absorption, *J. Differ. Equations*, **267** (2019), 4778–4806. <https://doi.org/10.1016/j.jde.2019.05.015>

33. Y. Liu, Z. Li, J. Huang, Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption, *J. Differ. Equations*, **269** (2020), 6365–6399. <https://doi.org/10.1016/j.jde.2020.05.008>

34. Y. Xiang, P. Zheng, On a two-species chemotaxis-competition system with indirect signal consumption, *Z. Angew. Math. Phys.*, **73** (2022), 50. <https://doi.org/10.1007/s00033-022-01680-5>

35. C. Wang, Z. Zheng, Global boundedness for a chemotaxis system involving nonlinear indirect consumption mechanism, *Discrete Contin. Dyn. Syst. - Ser. B*, **29** (2024), 2141–2157. <https://doi.org/10.3934/dcdsb.2023171>

36. C. Wang, Z. Zheng, X. Zhu, Dynamic behavior analysis to a generalized chemotaxis-consumption system, *J. Math. Phys.*, **65** (2024), 011503. <https://doi.org/10.1063/5.0176530>

37. J. Xing, P. Zheng, Boundedness and long-time behavior for a two-dimensional quasilinear chemotaxis system with indirect signal consumption, *Results Math.*, **77** (2022), 1–19. <https://doi.org/10.1007/s00025-021-01569-1>

38. W. Zhang, S. Liu, Large time behavior in a quasilinear chemotaxis model with indirect signal absorption, *Nonlinear Anal.*, **222** (2022), 112963. <https://doi.org/10.1016/j.na.2022.112963>

39. Y. Chiyo, S. Frassu, G. Viglialoro, A nonlinear attraction-repulsion Keller-Segel model with double sublinear absorptions: Criteria toward boundedness, preprint, arXiv:2208.05678.

40. D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, *J. Differ. Equations*, **215** (2005), 52–107. <https://doi.org/10.1016/J.JDE.2004.10.022>

41. M. Marras, G. Viglialoro, Boundedness in a fully parabolic chemotaxis-consumption system with nonlinear diffusion and sensitivity, and logistic source, *Math. Nachr.*, **291** (2018), 2318–2333. <https://doi.org/10.1002/mana.201700172>

42. J. Wang, Global existence and boundedness of a forager-exploiter system with nonlinear diffusions, *J. Differ. Equations*, **276** (2021), 460–492. <https://doi.org/10.1016/j.jde.2020.12.028>

43. J. Lankeit, Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, preprint, arXiv:1608.07991.

44. J. Wang, M. Wang, Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources, *Math. Models Methods Appl. Sci.*, **30** (2020), 1297–1323. <https://doi.org/10.1142/S0218202520500232>

45. C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, *SIAM J. Math. Anal.*, **46** (2014), 1969–2007. <https://doi.org/10.1137/13094058X>

AIMS Press

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)