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Abstract: The integration of unmanned aerial vehicle (UAV) networks with intelligent reflecting
surface (IRS) technology offers a promising solution to enhance wireless communication by
dynamically altering signal propagation. This study addresses the challenge of maximizing system
energy efficiency (EE) in IRS-assisted UAV networks. The primary objective is to optimize power
allocation and IRS reflection design to achieve this goal. To tackle the optimization problem, we
employ a block coordinate descent (BCD) method, decomposing it into three subproblems: phase
shift optimization, power allocation, and trajectory planning. These subproblems are iteratively solved
using an improved particle swarm optimization (PSO) algorithm. Simulation results demonstrate that
the proposed PSO algorithm effectively plans high-quality UAV trajectories in complex environments,
significantly enhancing EE. The findings suggest that the IRS-assisted UAV model outperforms
traditional UAV models, offering substantial improvements in wireless communication quality and
EE.
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1. Introduction

1.1. Background

Unmanned aerial vehicles (UAVs), which are aircraft with autonomous flying capabilities, have
gained popularity due to their low cost, high flexibility, and ease of deployment. Compared with
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ground communication, UAVs have a higher probability of establishing line-of-sight (LoS)
communication links, resulting in superior channel quality. Efficient UAV path planning is essential to
minimize energy consumption while meeting the user’s signal rate requirements. The LoS probability
is used to determine the optimal destination location where the UAV can maintain LoS with the user
and provide the required downlink rate [1]. Meanwhile, the emerging intelligent reflecting surface
(IRS) technology has become a promising solution for future wireless channels. Unlike traditional
relay technology, IRS does not require power amplifiers and radio frequency chains, thus improving
reliability with low power consumption and hardware cost. The quasi-passive nature of IRS allows it
to be manufactured with lightweight and limited thickness, enabling easy installation on surfaces like
buildings and ceilings [2]. IRS installed on high-rise buildings are more conducive to establishing
LoS links with UAVs due to their higher altitudes and shorter distances, effectively avoiding
obstacles [3]. This can enhance signal strength and mitigate eavesdropping, thereby improving
spectrum efficiency and EE by establishing a virtual communication link. The basic principle of IRS
involves reflecting incident signals and altering their phase shift to manipulate the wireless channel
environment [4].

Despite the advantages of UAVs and IRS, the challenge of optimizing EE in UAV path planning
remains unresolved. Deploying IRS to reconfigure the UAV communication propagation environment
can significantly improve the coverage and performance of air-ground networks. However, before
fully reaping the benefits of UAV wireless communication systems, it is crucial to address the issue
of energy consumption [5]. The UAV path planning problem is a multivariate problem that considers
many aspects comprehensively and seeks the optimal solution in a complex environment [6]. A path
with strong security and good feasibility can greatly enhance the efficiency of UAV missions and
maximize EE [7]. The path planning algorithm is the core of path planning, and optimization
algorithms can accelerate convergence speed and improve search ability [8].

1.2. Related work and motivation

Existing research on IRS-assisted UAV communications can be categorized into two main
approaches: traditional optimization algorithms and reinforcement learning (RL). Traditional
algorithms include sequential convex approximation (SCA) [9–12], block coordinate descent
(BCD) [13], genetic algorithms (GA) [14], and game theory [15]. For instance, Su et al. [9] equipped
the IRS on a fixed-wing UAV and solved the problem of maximizing spectrum efficiency (SE) and EE
through joint optimization of active beamforming at the base station, passive beamforming at the IRS,
and the path of the UAV based on convex-concave algorithm. Song et al. [10] maximized the
minimum average transmission rate by jointly optimizing communication scheduling, IRS phase shift,
and UAV trajectory. Long et al. [11] proposed an iterative algorithm applying SCA and alternating
optimization to jointly optimize the IRS phase and UAV trajectory. Ji et al. [12] used SCA and
semi-definite relaxation algorithms to optimize ground node transmission power, and passive
beamforming of IRS and UAV trajectory to maximize the average communication rate. Mu et al. [13]
combined IRS with nonorthogonal multiple access (NOMA), optimizing UAV layout, transmit power,
IRS transmit matrix, and NOMA decoding order using BCD. Shakhatreh et al. [14] used GA to find
dynamic and effective UAV trajectories to maximize data rate and user power allocation. Diamanti et
al. [15] applied game theory to optimize received signal strength and energy efficiency in a multi-user
communication system, though it did not address continuous optimization problems.
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RL methods are more effective in handling real-time, variable, and complex scenarios, requiring
additional computing services. Zhang et al. [16] proposed a trajectory optimization method based
on RL, optimizing resource allocation and IRS phase shift. Lin et al. [17] combined deep RL and
linear programming for UAV-assisted mobile edge computing. Yu et al. [18] developed a deep learning
(DL)-based channel tracking algorithm for IRS-assisted UAV communication systems. Abohashish
et al. [19] proposed a load balancing scheme for UAV trajectory optimization based on RL. Ullah et
al. [20] developed an RL-based method to optimize UAV trajectory and enhance LoS connection. Ejaz
et al. [21] proposed an RL-based path planning method for UAV mobile edge computing networks.
Wang et al. [22] studied an IRS-assisted UAV communication system, proposing deep Q network
(DQN) and deep deterministic policy gradient (DDPG)-based algorithms for trajectory optimization.

Given the limited onboard energy of battery-powered UAVs, EE is a critical consideration. We aim
to maximize the EE of passive IRS-assisted UAV communication with trajectory planning, resource
allocation, and phase shift optimization. Based on existing algorithms and considering the limited
energy of UAVs, we propose an iterative algorithm based on particle swarm optimization (PSO), which
is more intelligent, simpler, and less computationally complex than SCA. The algorithm optimizes
UAV trajectory, reduces flight distance, and lowers system energy consumption [23]. Compared with
passive IRS, the extra power consumption of active IRS is related to direct current biasing power and
phase shift power consumption, which are constants influenced by the number of IRS [24]. Therefore,
our proposed algorithm is applicable for active IRS as well.

The key contributions of this paper are outlined as follows:
(1) A UAV information collection system based on passive IRS is proposed. Considering the

mobility of ground users and interference from eavesdroppers, a new wireless communication channel
for UAV is constructed using IRS, reducing interference and enhancing user transmission signals.

(2) A maximization EE algorithm is proposed. Based on the BCD algorithm, the EE problem is
decomposed into three subproblems: optimizing the IRS phase shift matrix, power allocation, and
UAV hovering position. Through iterative convergence improvement, the optimal EE target value
is obtained. Simulation results show that the UAV-IRS integrated model significantly outperforms a
single UAV model.

(3) An improved PSO algorithm is used to find the optimal hovering position of the UAV when
approaching ground users, aiming to optimize UAV position to maximize EE and obtain an energy-
saving UAV flight path.

The rest of this paper is organized as follows: Section 2 presents a system model for a UAV
information acquisition system with IRS deployed on a stationary building, aiming to maximize
energy efficiency. Section 3 formulates the problem of maximizing energy efficiency. In Section 4, the
non-convex problem is transformed into a convex optimization problem, and the improved PSO
algorithm and maximum energy efficiency algorithm are presented. Section 5 verifies the proposed
algorithm through simulation. Section 6 summarizes and looks forward to the work of this paper.

2. Proposed model

2.1. System model

A communication scenario IRS-aided UAV information harvesting system is taken into
consideration with uplink in Figure 1, where IRS is deployed in stationary building assisting in
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transmitting information from multiple user equipments (UEs) to the single UAV. The cluster of UEs
is denoted by K = {1, · · · , k, ...,K}. It is assumed that there exists an eavesdropper (Eve), and all K
UEs, UAV, and Eve are equipped with a single antenna. In the three-dimensional (3D) cartesian
coordinate system, the UE k is denoted by wk =

[
xk, yk, 0

]
, where k ∈ K . The coordinates of IRS and

Eve are set as wr =
[
xr, yr, zr

]
and we =

[
xe, ye, 0

]
, respectively. The flight period Γ of UAV is divided

into N equally spaced time slots with step size △t, i.e., Γ = △tN. Denote N = {1, ..., n, ...,N} as the set
of all discrete time slots. The UAV flies at a fixed altitude HUAV and q[n] =

[
xUAV[n], yUAV[n],HUAV

]
represents the coordinates of i−th stop point. The IRS is composed of a uniform planar array (UPA)
with CM×M, where M expresses as the elements along the x-axis and z-axis. The diagonal phase-shift
matrix of IRS is regarded as Φ ≜

{
Φ[n] = diag(e jθ1[n], e jθ2[n], ..., e jθm[n], ..., e jθM[n] ∈ CM×M,∀n)

}
, where

θi[n] ∈ [0, 2π), i ∈ {1, ...,m, ...,M} is the phase shift of the i−th reflecting element in time slot n.
Notations: In the work (·)H, (·)T and (·)−1 stand for the Hermitian transpose, transpose, and inverse

of matrix, respectively. Symbols |·| and ∥·∥ refer to the modulus and Euclidian norm of a complex
number, and ⊗ is the Kronecker product.

Figure 1. System model.

2.2. Channel model

It is assumed that there is non-LoS link between UAV and UEs [25]. The channel between UAV
and UE k in time slot n can be modeled as

huk[n] =
√
ρ0

d2
uk[n]

e
− j 2π
λ duk [n]
, (2.1)

where duk[n] =
∥∥∥q[n] − wk

∥∥∥ is the distance between the UAV and UE k, ρ0 represents the path loss at
the reference distance d0 = 1 m, and λ is the carrier wavelength. Similarly, the channel between UAV
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and Eve is modeled as

hue[n] =
√
ρ0

d2
ue[n]

e− j 2π
λ due[n], (2.2)

where due[n] =
∥∥∥q[n] − we

∥∥∥ is the distance between the UAV and Eve.
Assume an LoS channel exists between the UAV and IRS, which can be modeled as

gur[n] =
√
ρ0

d2
ur[n]

[1, e− j 2π
λ dφur[n], ..., e− j 2π

λ d(M−1)φur[n]]T , (2.3)

where dur[n] =
∥∥∥q[n] − wr

∥∥∥ is the distance between the IRS and UAV, d is the antenna spacing between
adjacent reflection units, and φur[n] = xUAV [n]−xr

dur[n] represents the cosine of the angle of arrival (AoA) of
signal from UAV to IRS.

The channel between IRS and UE k can be modeled as

grk =

√
ρ0

d2
rk

[1, e− j 2π
λ dφrk , ..., e− j 2π

λ d(M−1)φrk]T , (2.4)

where drk = ∥wr − wk∥ is the distance between the IRS and UE k, and φrk =
xr−xk

drk
represents the cosine

of the AoA of signal from UE k to IRS.
Similarly, the channel between IRS and Eve is modeled as

gre =

√
ρ0

d2
re

[1, e− j 2π
λ dφre , ..., e− j 2π

λ d(M−1)φre]T , (2.5)

where dre = ∥wr − we∥ is the distance between the IRS and Eve, and φre =
xr−xe

dre
represents the cosine

of the AoA of signal from Eve to IRS.

2.3. Signal model

The received signal in time slot n before power splitting can be given by

yk[n] =
√

pk[n]
(
gH

rk[n]Φ[n]gur[n]
)
+

√
pe[n]

(
gH

re[n]Φ[n]gur[n]
)
+ nk, (2.6)

where nk denotes the additive white Gaussian noise (AWGN), pe denotes the transmit power of Eve,
and pk denotes the transmit power of UE k. Let pmax and p represent the maximum transmit power and
average transmit power of the UEs. The power constraints are

pk[n] ≤ pmax,∀k, n, (2.7a)

1
N

N∑
n=1

ak[n] ≤ p,∀k, n. (2.7b)

Let ak[n] denote the association of UE k in time slot n, where ak[n] = 1 expresses the UE k
associated with UAV. The constraints are as follows:

K∑
k=1

ak[n] ≤ 1,∀k, n, (2.8a)
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ak[n] ∈ {0, 1} ,∀k, n. (2.8b)

Then, the received signal-to-interference-plus-noise-ratio (SINR) at the UE k can be calculated as

γk =
pk[n]

∣∣∣gH
rk[n]Φ[n]gur[n]

∣∣∣2
pe[n]

∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 + σ2
, (2.9)

where σ2 denotes the power of AWGN. Therefore, the achievable sum-rate from UE k to UAV via IRS
in time slot n can be calculated as

Rk[n] = Blog2(1 +
pk[n]

∣∣∣gH
rk[n]Φ[n]gur[n]

∣∣∣2
pe[n]

∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 + σ2
), (2.10)

where B denotes the system bandwidth. In the whole harvesting information process with UAV, the
sum-rate of all UEs can be given by

Rtot =

K∑
k=1

N∑
n=1

Rk[n]. (2.11)

The energy consumption in process of information harvesting is taken into account, which include
data reception consumption, IRS reflecting consumption, and UAV’s flying and hovering consumption.
In this process, it is assumed that the UAV information receiving time is αΓ. First of all, the IRS
reflection loss EIRS depends on the properties and resolution of the reflective elements that provide
effective phase shift to the incident signal, and can be expressed as:

EIRS = M2PmΓ, (2.12)

where Pm represents the reflection consumption of IRS components that control the phase of the
reflected signal when activated.

Furthermore, the propulsion energy consumption supporting the flight and hovering of UAV is
expressed as EUAV ,

EUAV =

N∑
n=1

(
c1∥v (n)∥3 +

c2

∥v (n)∥

)
, (2.13)

where c1 and c2 are two parameters related to the weight of the UAV, wing area, air density, etc. v (n)
is the fixed flight speed of the UAV, defined as

v (n) =
∥q [n + 1] − q [n]∥

△t
. (2.14)

Therefore, based on Eqs (2.12) and (2.13), the EE of the UAV information collection system can be
modeled as:

EE =
Rtot

EIRS + EUAV
. (2.15)
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3. Problem formulation

In this section, an optimization problem that maximizes EE of the UAV is proposed via jointly
design of the transmit power of UEs, the trajectory of UAV, and the phase shift matrix of IRS in the
process of information harvesting. The problem is formulated as

P1 : max
p,q,Φ

EE,

s.t.C1 :pk[n] ≤ pmax,∀k, n,

C2 :
1
N

N∑
n=1

ak[n] ≤ p,∀k, n,

C3 :
K∑

k=1

ak[n] ≤ 1,∀k, n,

C4 :ak[n] ∈ {0, 1} ,∀k, n,

C5 :Rk[n] ≥ Rmin
k ,∀k, n,

C6 :Φ = diag(e jθ1 , e jθ2 , ..., e jθm , ..., e jθM ),0 ≤ θm ≤ 2π,

(3.1)

where p = {p1, . . . pk, . . . pK , pe} and q =
{
q[n],∀n

}
, C1 ensures the transmit power of UE k controlled

on the maximum transmit power pmax; C2 reflects the constraint on average transmit power p with UEs;
C3 denotes the UAV’s only link to a UE in time slot n; C4 represents whether the UAV is associated
with UE k; C5 guarantees the sum rate situated above the minimum limit; and C6 ensures the unit
modulus constraint for the passive beamforming with IRS.

4. Proposed algorithm

4.1. IRS phase shits optimization

To maximize the received signal energy, the phases beamforming matrix Φ is designed. The
optimization problem can be rewritten as

gH
rk[n]Φ[n]gur[n] =

ρ0

M∑
m=1

e j(θm[n]+ 2(m−1)πd
λ (φur[n]−φrk)√

d2
rkd

2
ur[n]

. (4.1)

Combine signals from different paths at the UAV, and the phase of M elements with IRS is
equivalent in time slot n. The formula result can be obtained:

ι = θ1[n]

= θ2[n] +
2πd
λ

(φur[n] − φrk) = ...

= θm[n] +
2(m − 1)πd
λ

(φur[n] − φrk) = ...

= θM[n] +
2(M − 1)πd

λ
(φur[n] − φrk).

(4.2)
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The above equation obtains the optimized IRS phase shift matrix Φopt. The phase alignment of the
received signal is realized and the received signal energy is further enhanced. Therefore, the phase
shift of the m−th element in the IRS is represented as:

θm[n] =
2(m − 1)πd
λ

(φrk − φur[n]) + ι,∀m, n, k. (4.3)

Thus, gH
rk[n]Φ[n]gur[n] can be rewritten as

gH
rk[n]Φ[n]gur[n] =

ρ0Me jι√
d2

rkd
2
ur[n]
. (4.4)

and
∣∣∣gH

re[n]Φ[n]gur[n]
∣∣∣2 can be rewritten as

∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 = |ρ0|
2C2

d2
red2

ur[n]
, (4.5)

where C =

∣∣∣∣∣∣ M∑
m=1

e j(θm[n]+ 2(m−1)πd
λ (φre[n]−φur[n]))

∣∣∣∣∣∣ .

In addition, the eavesdropper’s channel gain is a complex function related to the trajectory of the
UAV. For ease of calculation, its upper bound is set to:

∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 ≤ |ρ0|
2M2

d2
red2

ur[n]
. (4.6)

4.2. Power optimization

To solve optimization problem (P1), based on the calculated IRS phase shift matrix Φopt from the
previous section and with the UAV trajectory q fixed, the power optimization problem can be simplified
to:

P2 : max
p

EE,

s.t.C1 − C6.
(4.7)

The problem (P2) is solved using the Dinkelbach algorithm as follows:

µ∗ = max
p

Rtot

EUAV
, (4.8)

where µ∗ is a nonnegative parameter. Our objective is to update η at each iteration until it converges
to η∗ or reaches the maximum iteration value Jmax. Assuming the iteration index is J, the optimization
problem of given parameters in each iteration is ηJ. P2 can be expressed as:

max
p
{S (p, ηJ) = Rtot(p) − ηJEUAV(p)},

s.t.C1 − C6.
(4.9)

Formula (4.9) can be obtained through simple mathematical processing, which leads to the
following equation:
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f1(p) = B
K∑

k=1

N∑
n=1

log2(pk[n]
∣∣∣gH

rk[n]Φ[n]gur[n]
∣∣∣2 + pe[n]

∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 + σ2), (4.10)

f2(p) = B
N∑

n=1

log2(pe[n]
∣∣∣gH

re[n]Φ[n]gur[n]
∣∣∣2 + σ2) + ηJ(EIRS + EUAV), (4.11)

where both f1(p) and f2(p) are convex functions. Function f2(p) can be approximated as f2(pJ) +
∇ f2(pJ)(p − pJ) through the first-order Taylor expansion [26]. ∇ f2(pJ) represents the gradient of f2(p)
at point pJ, and its calculation formula is

∇ f2(pJ) = B
N∑

n=1

1(∣∣∣gH
re[n]Φ[n]gur[n]

∣∣∣2 + σ2
)

ln 2
. (4.12)

Therefore, the objective function can be further transformed into

max
p
{S (pJ) = f1(p) − f2(p) − ∇ f2(pJ)(p − pJ)},

s.t.C1 − C6.
(4.13)

According to the above steps, the power allocation process is transformed into Algorithm 4.1 as
follows:

Algorithm 4.1 Power Allocation Algorithm
Initialization: Set iteration index J = 0, maximum number of iterations Jmax, and tolerance value
ε ≪ 1.
repeat

For a given η0 and pJ, compute equivalent problem(4.9) to obtain the optimal solution popt .
Make pJ = popt and calculate S (p) .
J = J + 1

until the iteration index J > Jmax or |S (p)| ≤ ε.
make p0 = pJ,η0 = ηJ.

4.3. Trajectory optimization

In this section, aiming at maximizing EE, the improved PSO algorithm is used to find the optimal
hover point based on the power popt and IRS phase shift matrix Φopt obtained in the previous two
sections, so as to optimize the position of the UAV and find the shortest path in the flight process of the
UAV.

The inertia factor in PSO has an important impact on the performance and search ability of the
entire algorithm. A larger inertia factor can increase the velocity change of particles, enabling them to
jump out of local optimal solutions and obtain better global search ability. A smaller inertia factor can
reduce the velocity change of particles, making them more inclined toward local search. Therefore,
in the early stage of the algorithm search process, we first perform wide-range search, then quickly
determine the range where the global optimum is located, and finally use local search to determine a
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highly accurate solution. During the process of solving optimization problems, it should be ensured
that the inertia weight decreases continuously with the increase of iterations [27]. Therefore, in this
work, the inertia factor ω is introduced to achieve a balance between convergence speed and local
search ability, which is expressed as:

ω = ωmax − (ωmax − ωmin)
r

rmax
. (4.14)

in which ωmax and ωmin are the maximum and minimum values of the inertia weight coefficient,
typically set as ωmax = 0.9, ωmin = 0.4. The r represents the current iteration number, and rmax

represents the maximum iteration number value. The particle exhibits strong nonlinearity in the search
process. The inertia weight must be set according to the distance of the global optimal position and
the number of iterations to balance the relationship between search speed and search accuracy. As a
result, the inertia weight can fully adapt to changes in the number of search iterations, improving the
overall search capability [28]. Therefore, this section proposes an improved nonlinear inertia weight,
dynamically adjusting the inertia factor in the algorithm search process, denoted as:

ω = ωmax − (ωmax − ωmin) × [
2r

rmax
− (

r
rmax

)2]. (4.15)

In addition, the learning factor is one of the important parameters that control the adaptive search
behavior of particles. In traditional PSO algorithms, a fixed learning factor is used, which is usually a
constant set through experience. Due to the randomness of the search process, it becomes very
difficult to accurately quantify the relationship between the coefficient value and the number of
iterations. In order to ensure that the path planning search of particles obtains enough path nodes and
the population converges continuously to obtain the global optimal solution, the first half of the search
process is considered dominant in the calculation process, while the second half is dominated by
convergence [29]. Therefore, the adaptive parameters c′1 and c′2 are improved as:

c′1 = cmax −
(cmax − cmin)r

rmax
, (4.16)

c′2 = cmin +
(cmax − cmin)r

rmax
. (4.17)

It is clear that c′1 presents a linear decrease and c′2 presents a linear increase, with the sum of (c′1+c′2)
being constant, indicating that the search and convergence ability of particles is constant. cmax, cmin are
constant values and cmax > cmin > 0. In the search phase of PSO, c′1 > c′2 is satisfied, which enhances
the ability of particles to search for path nodes and avoids falling into local minima. In the convergence
phase of PSO, c′1 < c′2 is satisfied, enabling particles to quickly converge to the global optimal solution.
Therefore, the velocity update and position update formulas for particle swarm are as follows:

vk[r + 1] = ϖvk[r] + c′1s1(pbk[r] − xk[r]) + c′2s2(gb[r] − xk[r]) (4.18)

xk[r + 1] = xk[r] + vk[r + 1]. (4.19)

in which νk[r+ 1] represents the velocity of particle k at the [r+ 1]−th iteration, νk[r] represents the
velocity of particle k at the r−th iteration, xk[r] represents the position of particle k at the r−th iteration,
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and s1 and s2 represent weights between 0 and 1. pbk[r] and gb[r] are the historical extreme value of
individual k and population at the r−th iteration, respectively.

When PSO is used to solve the UAV’s track planning problem, the best location of the track space
is planned. The essence of track coding is to establish a one-to-one mapping relationship between each
particle in the population and each iteration candidate track in the search space [30].

Algorithm 4.2 Improved PSO Algorithm Based on UAV EE Maximization

Input: The coordinates of the UE in the given area are wk =
[
xk, yk, 0

]
, where k ∈ K ; the positions

of the IRS and eavesdropper are wr =
[
xr, yr, zr

]
and we =

[
xe, ye, 0

]
, respectively; the phase shift

matrix of the IRS is Φopt; the flight power of the UAV is popt. Set the iteration index to r = 0 and
the maximum number of iterations to rmax.

Output: UAV Hovering Point qopt =
[
xUAV , yUAV ,HUAV

]
1: Calculation of UAV hover coordinate q∗ =

[
x∗, y∗,H

]
under problem (4.13) based on IRS

technique.
2: Initialization: Set the number of particles in the solution space to k, inertia weight to ω, learning

factors to c′1 and c′2; set particle positions and impose spatial constraints.
3: Calculate the objective function value corresponding to the particle based on Eq (4.13), and

calculate the optimal individual extreme value of the particle based on Eq (4.19).
4: Loop repetition
5: Update the velocity information of the particles based on Eq (4.18); Update the position

information of the particles based on Eq (4.19).
6: Update the fitness function value based on Eq (4.20).
7: Compare the fitness value obtained in step (6) with the fitness value corresponding to the best

individual’s extremum, and update the particle’s best position information based on Eq (4.23).
8: Compare the fitness value of the best individual’s extremum obtained in Step (7) with the fitness

value of the global extremum, and update the global best position information based on Eq (4.24).
9: r = r + 1

10: Until iteration index r > rmax or |S (pr)− S (pr−1)
∣∣∣ ≤ ε .

11: make q∗ = qopt, EE∗ = EEopt.

In addition, in the PSO algorithm, fitness is used to evaluate the quality of each particle’s position
in the search space, measuring the particle’s ability or performance in problem-solving. Considering
the distance between UAV and users in this research problem, the fitness function expression is set as:

fv[r] =
N∑

n=1

K∑
k=1

√
(xUAV[r] − xk)2 + (yUAV[r] − yk)2 + (HUAV[r] − 0)2. (4.20)

In the process of iterative search, PSO tracks and studies two extreme values, namely, the optimal
solution obtained by the particle itself and the optimal solution obtained by the particle swarm, which
is mainly used to complete the optimization analysis of the problem [27].

Assume the individual extreme value searched by the k−th particle is

pbest = (pb1, pb2, ..., pbK). (4.21)
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The global extreme value found by the entire particle swarm is

gbest = (pg1, pg2, ..., pgK). (4.22)

After r−th iterations, following Eqs (4.19) and (4.20),

pbest(r + 1) =

pbest(r + 1), f [pbest(r + 1)] ≥ f [pbest(r)]
pbest(r), f [pbest(r + 1)] < f [pbest(r)]

(4.23)

gbest(r + 1) =

gbest(r + 1), f [gbest(r + 1)] ≥ f [gbest(r)]
gbest(r), f [gbest(r + 1)] < f [gbest(r)]

(4.24)

In the above equation, the particle continuously updates individual best and global best values
during the iteration process. If f [pbest(r + 1)] ≥ f [pbest(r)], it means that it has found a position with
better fitness than before; if f [pbest(r + 1)] < f [pbest(r)], it means that the current individual’s best
position is not as good as the previous one.

According to the above formula, based on the maximization EE problem described in Eq (4.13),
the improved PSO algorithm is used to solve for the coordinates of the optimal hovering point for the
UAV, and the process of obtaining the UAV’s flight trajectory is shown in Algorithm 4.2.

According to Algorithm 4.2, the coordinates of the best hover point for the UAV in the flight area
and the corresponding optimal EE are calculated. These coordinate points serve as the access points
for the UAV, connecting with each other based on maximizing EE, forming the order of the UAV’s
access communication devices and thus shaping the UAV’s flight trajectory.

Algorithm 4.3 Maximize EE Algorithm

1: Initialization: Set the EE optimization value η0, the iteration index a = 0, the maximum number
of iterations amax, and the tolerance value ε ≪ 1.

2: Loop repetition
3: Obtain the IRS phase shift matrix Φopt through phase shift optimization based on the given power

p and UAV trajectory q.
4: Obtain the power popt through Algorithm 4.1 based on the IRS phase shift matrix Φopt obtained by

the given UAV trajectory q and Step (3).
5: Obtain the UAV trajectory qopt through Algorithm 4.2 based on the IRS phase shift matrix Φopt

obtained in Step (3) and the power popt obtained in Step (4).
6: update ηopt = ηa.
7: a = a + 1
8: Until the iterative index a > amax or

∣∣∣S (pJ)− S (pJ−1)
∣∣∣ ≤ ε.

9: output η∗ = ηopt

4.4. Transformation of the problem

Based on the BCD algorithm, this research decomposes the problem of maximizing EE into three
subproblems: IRS phase shift optimization, power optimization, and UAV trajectory optimization. By
dividing the subproblems step by step using the basic algorithm principles and setting iterative
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indicators and upper bounds, the convergence of the overall algorithm is ensured. Based on the three
subproblems in the above chapters, this section designs the overall problem as a maximization
algorithm for EE. The specific implementation process is shown in Algorithm 4.3, where the
algorithm complexity of Step (4) is denoted as O(NJ), and the algorithm complexity of Step (5) is
denoted as O(NJ + Kr). The algorithm flow of overall is shown in Figure 2 below.

Figure 2. Algorithm flow of overall.

5. Simulation results and analysis

In this section, the effectiveness of the proposed algorithm is evaluated through simulation
experiment results. It is assumed that all UEs are randomly distributed in suburban environments,
with actual noise variance as σ2 = −110 dBm, fault tolerance value as δ = 1 × 10−4, channel gain at
interference distance d0 = 1m as β0 = −50 dB, maximum value of inertia weight coefficient as
ωmax = 0.9, and minimum value of inertia weight coefficient as ωmin = 0.4. This study considers the
scenario where a single UAV collaborates with IRS to establish the channel and collect information
from ground users. To begin, by changing the numerical values of the UAV’s flight altitude and Pmax,
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the changes in UAV efficiency under four different scenarios of UAV only, UAV-IRS integration, GA
improved based on UAV-IRS integration, and PSO algorithm improved based on UAV-IRS integration
are studied through multiple alternating iterations, validating the superior performance of the
UAV-IRS integrated improved PSO algorithm over the other scenarios. Additionally, the changes in
UAV efficiency with a fixed altitude and Pmax and varying the number of IRS reflecting units are
studied. Then, based on the improved PSO algorithm, the optimal hovering position for UAV is
calculated, and an efficient and energy-saving flight trajectory for the UAV is designed. Finally,
changes in fitness during the process of solving the optimal hovering position using the improved
PSO algorithm are explored by varying the number of alternating iterations.

(a) EE versus altitude relationship chart (b) EE versus Pmax relationship chart

(c) EE versus number of IRS reflective units relationship chart

Figure 3. EE change chart.

This section simulates the communication service scenario where UAVs fly in the user-demand
area to collect ground UE information, and the comparison of the proposed algorithm under different
parameters is shown in Figure 3. Figure 3(a) illustrates the superiority of the collaborative scheme
combining IRS phase optimization, power optimization, and UAV trajectory optimization as in
Algorithm 4.3. To start, the maximum power of the UAV is fixed at Pmax = 25 dBm. On the one hand,
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under the same UAV-IRS integrated improved PSO algorithm, the system efficiency increases with the
increase of UAV flight altitude and reaches the EE maximization of uav at altitude H = 1150m.
Subsequently, as the distance between the UAV and ground users becomes too high, leading to a
weakening of the communication channel performance, the efficiency value decreases and gradually
converges. On the other hand, the EE performance of the UAV-IRS integrated improved PSO
algorithm is better than the other three cases in the figure, demonstrating the superiority of the
algorithm proposed in this chapter: UAV-IRS integrated improved PSO algorithm > UAV-IRS
integrated improved GA algorithm > UAV-IRS integrated > UAV only. Additionally, the EE
performance of the PSO algorithm based on IRS improvement is more than 22% higher than that of
the GA algorithm based on IRS improvement. Figure 3(b) shows the variation of UAV EE with
parameter Pmax as the UAV flight altitude is H = 100m. Figure 3(c) illustrates the variation of UAV
system EE with changes in the number of IRS reflecting units. According to the simulation
experiment results, the EE continuously increases with the increase of the number of IRS reflecting
units M gradually after M = 86, and eventually reaches equilibrium.

(a) The horizontal flight trajectory map of the UAV

(b) The fitness vs. iteration number

Figure 4. UAV flight trajectory and its fitness variation graph.

According to Algorithm 4.2, the improved PSO algorithm for UAV-IRS integration was studied
based on fixed UAV flight altitude and transmission power. As shown in Figure 4(a), the randomly
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scattered colored dots represent the distribution of UEs in area 200 m × 200 m. The UAV flies from
the initial point (0 m, 0 m) at the initial velocity 30 m/s, while UEs move at speed 10 m/s. According
to the goal of maximizing the EE of the UAV, the UAV sequentially hovers at the calculated optimal
hover point positions to collect the transmission information required by UEs in this area, forming
a high-efficiency flight trajectory in a simulated scenario. The number of UEs is set as K = 24. In
addition, during the UAV flight process, Figure 4(b) studies the fitness changes of Algorithm 4.2. With
the increase of the number of alternating iterations, the fitness value of the UAV communication task
increases rapidly and converges quickly around 11 times, reaching the threshold value of the cluster
fitness value, which shows that the global convergence of the algorithm proposed in this section is
better, it can effectively avoid the PSO algorithm searching to fall into the local stagnation dilemma,
and it can improve the quality of the UAV flight trajectory effectively, with shorter time-consumption
and better stability.

6. Conclusions

In this paper, we studied a UAV information collection system based on IRS. Considering the
mobility of ground users and the interference signals from eavesdroppers, we incorporated the
technical advantages of IRS to construct a new UAV wireless communication channel and established
a UAV channel model based on IRS to mitigate interference and enhance the transmission signal of
users themselves. Then, according to the BCD algorithm, the EE problem was decomposed into three
subproblems, optimizing the IRS phase shift matrix, power allocation, and UAV hovering position.
Through PSO improved algorithms, the optimal EE objective value was obtained. Simulation results
show that the UAV-IRS integrated model in this study outperforms the UAV model alone significantly,
which helps improve issues such as wireless channel fading in UAV-assisted wireless communication
and enhances the transmission quality of communication tasks.
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