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Abstract: Let a0, a1, . . . , an−1 be real numbers and let A = Circ(a0, a1, . . . , an−1) be a circulant matrix
with f (x) = Σn−1

j=0a jx j. First, we prove that Circ(a0, a1, . . . , an−1) must be invertible if the sequence
a0, a1, . . . , an−1 is a strictly monotonic sequence and a0 + a1 + · · · + an−1 , 0. Next, we reduce the
calculation of f (ε0) f (ε) . . . f (εn−1) for a prime n by using the techniques on finite fields, where ε is
a primitive n-th root of unity. Finally, we provide two examples to explain how to use the obtained
results to calculate the determinant of a circulant matrix.
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1. Introduction

Circulant matrices are a kind of important patterned matrix which arises in many areas of physics,
molecular vibration, signal processing, image processing, digital image disposal, error correcting code
theory, and applied mathematics [1–3]. Consequently, there are many papers that investigated the prop-
erties and applications of circulant matrices. In order to better understand the essence of circulant ma-
trices, in recent years, some scholars have tried to provide an effective expression for the determinant,
the eigenvalues, and the corresponding inverses, see for instance [4–7]. On the other hand, the invert-
ibility of circulant matrices has been widely studied in the literature by using the primitive n-th root of
unity and some associated polynomial, see [7, 8]. In fact, circulant matrices Circ(a0, a1, · · · , an−1) are
invertible if and only if f (ε j) , 0 for every 0 ≤ j ≤ n− 1, where f (x) = Σn−1

j=0a jx j and ε is a primitive n-
th root of unity. However, it is not easy to count the product f (ε0) f (ε) · · · f (εn−1), see [4]. Therefore, it
is important to either reduce the calculation of f (ε0) f (ε) · · · f (εn−1) or to provide other criteria for dis-
crimination. Recently, the authors in [4] investigated circulant matrices of type Circ(a, b, c, · · · , c) and
Circ(a, b, c, · · · , c, b) and provided some necessary and sufficient conditions for its invertibility. Fur-
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thermore, they explicitly obtained a closed formula for the inverse matrices of these type of circulant
matrices.

In this paper, we first consider circulant matrices of type Circ(a0, a1, · · · , an−1) with a0, a1, · · · , an−1

a strictly monotonic sequence. This type of matrix arises in the study of sum systems and sum circulant
matrices. A sum system is a collection of finite sets of integers such that the sums formed by taking
one element from each set generates a prescribed arithmetic progression, and a sum circulant matrix
whose left and right circulant parts take their entries from the two component sets of a sum system has
consecutive integer entries, for example, see [9–11]. We prove that this kind of circulant matrix must
be invertible. Next, we hope to reduce the calculation of f (ε0) f (ε) · · · f (εn−1) for a prime n by using
the techniques on finite fields to calculate the determinant of a circulant matrix by a simple program.
Finally, we provide two examples to explain how to use the obtained results to calculate the determinant
of a circulant matrix.

2. Prelemanery

In this section, we recall some basic concepts and provide some results needed during the proof of
our main theorems.

A matrix A = (ai j) is said to be circulant (or right circulant) with parameters a0, · · · , an−1 if

A =



a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2
...

...
. . .

...
...

a2 a3 . . . a0 a1

a1 a2 . . . an−1 a0


.

It is usually abbreviated as A = Circ(a0, a1, . . . , an−1). It is clear that Circ(a0, a1, . . . , an−1) = a0P0 +

a1P1 + a2P2 + . . . + an−1Pn−1 with P = Circ(0, 1, 0, . . . , 0) and P0 = I.
Let ε be a primitive n-th root of unity. Then, 1 = ε0, ε, ..., εn−1 are different from each other, that is,

they are just all n-th roots of unity.
The following results are well-known, and can be found in [2].

Lemma 2.1. Let A = Circ(a0, a1, . . . , an−1) be a circulant matrix, ε be a primitive n-th root of unity,
and f (x) = Σn−1

j=0a jx j. Then,
1) |A| = Πn−1

j=0 f (ε j);
2) A is invertible if and only if f (ε j) , 0 for j = 0, 1, · · · , n − 1; and
3) If A is invertible, then the inverse A−1 of A is also a circulant matrix.

Lemma 2.2. Let n be a prime and ε be a n-th root of unity with n , 1. Then,
1) ε must be a primitive n-th root of unity, and therefore 1 = ε0, ε, ..., εn−1 are all n-th roots of unity.
2) Zn = Z/⟨n⟩ is a field.

3. Circulant matrices Circ(a0, a1, . . . , an−1) with a0, a1, . . . , an−1 a strictly monotonic sequence

In this section, we prove that circulant matrices Circ(a0, . . . , an−1) must be invertible if a0, . . . , an−1

is a strictly monotonic sequence and a0 + a1 + · · · + an−1 , 0. If a0, a1, . . . , an−1 are complex, then we
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also provide a condition for Circ(a0, . . . , an−1) to be invertible.

Lemma 3.1. Let z and w be two non-zero complex numbers. Then, |z + w| = |z| + |w| if and only if
z/w>0.

Proof. In fact, since (|z|+ |w|)2 = |z|2 + 2|z||w|+ |w|2 and |z+w|2 = (z+w)(z̄+ w̄) = |z|2 + z̄w+ zw̄+ |w|2,
we see |z + w| = |z| + |w| if and only if Re(w̄z) = |z||w| = |w̄z|. Additionally, Re(w̄z) = |z||w| = |w̄z| if and
only if z/w>0. The proof is complete.

□

Lemma 3.2. Let z1 and z2 be two non-zero complex numbers. Then, |z1 + z2| = |z1| + |z2| if and only if
there is a complex number z and the real numbers t1 > 0 and t2 > 0 such that z1 = t1z, z2 = t2z.

Proof. It is an immediate consequence of Lemma 3.1. □

Lemma 3.3. Let z1, z2, . . . , zs be non-zero complex numbers. Then, |z1+z2+· · ·+zs| = |z1|+ |z2|+· · ·+ |zs|

if and only if there is a complex number z and the real numbers t j > 0 such that z j = t jz ( j = 1, 2, . . . , s).

Proof. The sufficiency clearly holds; therefore, we only need to prove the necessity. Since |z1| + · · · +

|zs| = |z1 + · · · + zs| ≤ |z1| + |z2 + · · · + zs| ≤ |z1| + · · · + |zs|, we see the following:

|z1 + · · · + zs| = |z1| + |z2 + · · · + zs|.

and
|z2 + · · · + zs| = |z2| + · · · + |zs|.

By Lemma 3.2, there are m1 > 0,m2 > 0, and a complex number u such that z1 = m1u, z2+· · ·+zs = m2u.
By induction, there is a complex number z and real numbers t j > 0 such that z j = t jz ( j = 2, . . . , s).

Obviously u , 0 , z, and

|z + u| = |1/(t2 + · · · + ts)(z2 + · · · + zs) + 1/m2(z2 + · · · + zs)|
= 1/(t2 + · · · + ts)|z2 + · · · + zs| + 1/m2|z2 + · · · + zs|

= |z| + |u|.

By Lemma 3.1, we see u/z > 0, therefore, t1 = m1(u/z) > 0 and z1 = t1z. □

Lemma 3.4. Let f (x) = z0 + z1x + · · · + zn−1xn−1 be a complex coefficient polynomial with n > 2, ε be
a root of xn = 1, and ε , 1. If there exist real numbers t j > 0 and a non-zero complex number z such
that z j − z j+1 = t jz ( j = 0, 1, . . . , n − 2), then f (ε) , 0.

Proof. Let S 0 = 1, S k = 1 + ε + · · · + εk for k = 1, 2, . . . , n − 1. Then, the following holds:

f (ε) = z0 + z1ε + · · · + zn−1ε
n−1

= z0S 0 + z1(S 1 − S 0) + z2(S 2 − S 1) + · · · + zn−1(S n−1 − S n−2)
= (z0 − z1)S 0 + (z1 − z2)S 1 + · · · + (zn−2 − zn−1)S n−2 + zn−1S n−1.
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Noticing that (1+ ε+ · · ·+ εn−1)(1− ε) = 1− εn = 0 and ε , 1, we see S n−1 = 1+ ε+ · · ·+ εn−1 = 0.
Therefore,

f (ε) = (z0 − z1)S 0 + (z1 − z2)S 1 + · · · + (zn−2 − zn−1)S n−2

= (z0 − z1) + (z1 − z2)(1 − ε2)/(1 − ε) + · · ·+
+ (zn−2 − zn−1)(1 − εn−1)/(1 − ε)
= 1/(1 − ε)[(z0 − z1)(1 − ε) + (z1 − z2)(1 − ε2) + · · ·+
+ (zn−2 − zn−1)(1 − εn−1)]
= 1/(1 − ε)[(z0 − z1) + · · · + (zn−2 − zn−1)−
− (z0 − z1)ε − (z1 − z2)ε2 − · · · − (zn−2 − zn−1)εn−1]
= 1/(1 − ε)[z0 − zn−1 − (z0 − z1)ε − · · · − (zn−2 − zn−1)εn−1].

Since ε is a root of xn = 1 and ε , 1, ε is either −1 or a complex number; therefore, (z1 − z2)ε/(z0 −

z1) = t1ε/t0 is either negative or a complex number. By using Lemma 3.3, we have the following:

|(z0 − z1)ε + (z1 − z2)ε2 + · · · + (zn−2 − zn−1)εn−1|

< |(z0 − z1)ε| + |(z1 − z2)ε2| + · · · + |(zn−2 − zn−1)εn−1|

= |(z0 − z1)||ε| + |(z1 − z2)||ε2| + · · · + |(zn−2 − zn−1)||εn−1|

= |(z0 − z1)| + |(z1 − z2)| + · · · + |(zn−2 − zn−1)|.

Now, by the hypothesis and Lemma 3.3, we observe the following:
|(z0 − z1)| + |(z1 − z2)| + · · · + |(zn−2 − zn−1)| = |(z0 − z1) + (z1 − z2) + · · · + (zn−2 − zn−1)| = |z0 − zn−1|, so

| f (ε)| = |1/(1 − ε)||z0 − zn−1 − (z0 − z1)ε − · · · − (zn−2 − zn−1)εn−1|

≥ |1/(1 − ε)|[|z0 − zn−1| − |(z0 − z1)ε + · · · + (zn−2 − zn−1)εn−1|]
> |1/(1 − ε)|[|z0 − zn−1| − |z0 − zn−1|] = 0.

Hence, f (ε) , 0.
□

Corollary 3.1. Let f (x) = a0 + a1x + · · · + an−1xn−1 be a real coefficient polynomial with n > 2, ε
be a root of xn = 1, and ε , 1. If the sequence a0, a1, . . . , an−1 is either strictly increasing or strictly
decreasing, then f (ε) , 0.

Proof. It is immediate consequence of Lemma 3.4. □

By Lemma 3.4 and Corollary 3.1, we may state our main results in this section.

Theorem 3.1. Let A = Circ(a0, a1, . . . , an−1) be a circulant matrix with a0 + a1 + · · · + an−1 , 0.
1) If a0, a1, . . . , an−1 are real numbers and the sequence a0, a1, . . . , an−1 is either strictly increasing

or strictly decreasing, then A is invertible.
2) If a0, a1, . . . , an−1 are complex numbers and there exist real numbers t j > 0 and a non-zero

complex numbers z such that a j − a j+1 = t jz ( j = 0, 1, . . . , n − 2), then A is invertible.
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4. Circulant matrices with a prime order

In this section, we always assume that a0, a1, · · · , an−1 is a sequence of real numbers and that
A = Circ(a0, a1, · · · , an−1) is a circulant matrix with a prime n. We try to reduce the calculation of
f (ε0) f (ε) · · · f (εn−1), where ε is an n-th root of unity with ε , 1 and f (x) = Σn−1

j=0a jx j. It is clear that
f (ε0) f (ε) · · · f (εn−1) is easy to calculate for either n = 2 or n = 3. Now, we assume that n ≥ 5. For
clarity, we first recall

∆ = f (1) f (ε) · · · f (εn−1)

with

f (1) = a0 + a1 + a2 + · · · + an−1

f (ε) = a0 + a1ε + a2ε
2 + · · · + an−1ε

n−1

...

f (ε j) = a0 + a1ε
j + a2ε

j·2 + · · · + an−1ε
j·(n−1)

...

f (εn−1) = a0 + a1ε
n−1 + a2ε

(n−1)·2 + · · · + an−1ε
(n−1)·(n−1)

Noticing that {(ε j)k|0 ≤ k ≤ n− 1} = {1, ε, · · · , εn−1} for every 1 ≤ j ≤ n− 1, we see that every f (ε j)
can be seen as an n − 1-degree polynomial in variable ε. Then, ∆ is an algebraic sum containing nn

items, in which each term is the product of n monomials and every monomial comes from one and only
one in f (ε j) for j = 0, 1, · · · , n − 1. Thus, the coefficient of each term in ∆ can be written as follows:

ak0ak1ak2 . . . ak j . . . akn−1 ,

where ak j is the coefficient of (ε j)k j in f (ε j). We should notice that ak j can take values of a0, a1, . . . , an−1

for every 0 ≤ j ≤ n−1 and the subscript k j in ak j only indicates that ak j is taken from a certain coefficient
of f (ε j). In this case, the corresponding degree of ε for this term in ∆ is 0 × k0 + 1 × k1 + · · · + i × ki +

· · · + (n − 1) × kn−1(modn). In other words, every term and the corresponding coefficient of the term in
∆ satisfies the following:

ak0ak1ak2 . . . ak j . . . akn−1can become a coe f f icient o f εi f or i = 0, 1, · · · , n − 1
⇐⇒

0 × k0 + 1 × k1 + 2 × k2 + · · · + i × ki + · · · + (n − 1) × kn−1 ≡ i(modn)
(4.1)

For simplicity, we use [i; k0, k1, . . . , kn−1] to represent 0 × k0 + 1 × k1 + 2 × k2 + · · · + i × ki + · · · +

(n − 1) × kn−1 ≡ i(modn).
Now, we merge items in ∆ according to the degree of ε. Then, we have the following:

∆ = b0 + b1ε + · · · + biε
i + · · · + bn−1ε

n−1 (4.2)

and ∑
[i;k0,k1,...,kn−1]

ak0ak1ak2 . . . aki . . . akn−1 = bi (4.3)
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Therefore, determining the value of bi is equivalent to studying all possibility of k0, k1, . . . , kn−1

satisfying Eq (4.1). Now, we first claim the following:

Claim 1. bi = b j when i , 0 and j , 0.
In fact, if ak0ak1ak2 . . . akn−1 with 0 ≤ ks ≤ n − 1 is one term in bi, then

0 × k0 + 1 × k1 + 2 × k2 + · · · + i × ki + · · · + (n − 1) × kn−1 ≡ i(modn)

Since (i, n) = 1 and ( j, n) = 1, there exists 1 ≤ t ≤ n − 1 such that it ≡ j(modn), then, 0 × k0 × t +
1 × k1 × t + · · · + i × ki × t + · · · + (n − 1) × kn−1 × t ≡ it ≡ j(modn),
that is

k0 × (0 × t) + k1 × (1 × t) + · · · + kn−1 × ((n − 1) × t) ≡ j(modn) (4.4)

It follows from 1 ≤ t ≤ n − 1 that (t, n) = 1; therefore

{0 × t, 1 × t, 2 × t, . . . , (n − 1) × t} = {0, 1, 2, . . . , n − 1} (modn).

Observing that 0× t, 1× t, 2× t, . . . , (n−1)× t in the Eq (4.4) is just a reordering of 0, 1, 2, . . . , n−1,
we see that ak0ak1ak2 . . . akn−1 is also one term in b j.

Conversely, it is also easy to see that every term ak0ak1ak2 . . . akn−1 with 0 ≤ ks ≤ n − 1 in b j is a one
term in bi. Thus, claim 1 is true.

Next, we claim the following:

Claim 2. ∆ = b0 − b1.

In fact, by Claim 1, we have b1ε+ · · ·+ biε
i + · · ·+ bn−1ε

n−1 = b1(ε+ · · ·+ εi + · · ·+ εn−1). Noticing
that 1, ε, · · · , εi, · · · , εn−1 are all roots of xn = 1, we see that ε + · · · + εi + · · · + εn−1 = −1 by the
relationship between roots and coefficients, therefore, ∆ = b0 − b1.

Now, we consider the computation of b0 and b1. By Eqs (4.1) and (4.3), we need to find all possible
values k0, k1, . . . , kn−1 such that i = 0 or i = 1 in (4.1). Noticing that k j is considered in the case of
module n, we may assume k j ∈ Zn = Z/⟨n⟩ for 0 ≤ j ≤ n − 1. Based on the above discussion, if
k0, k1, . . . , kn−1 satisfy (4.1) for i = 0 or i = 1, then k0, k1, . . . , kn−1 must be a solution of the following
systems of linear equations (4.5) for i = 0 or (F) for i = 1:

0 × x0 + 1 × x1 + 2 × x2 + · · · + · · · + (n − 1) × xn−1 ≡ 0. (4.5)

or

0 × x0 + 1 × x1 + 2 × x2 + · · · + · · · + (n − 1) × xn−1 ≡ 1. (4.6)

Conversely, every solution k0, k1, . . . , kn−1 of the systems (4.5) and (4.6) must satisfy (4.1) for either
i = 0 or i = 1. Therefore, we should find all solutions of (4.5) and (4.6).

It is clear that (modulo n)
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1
0
0
0
...

0
...

0


,



0
n − 2

1
0
...

0
...

0


,



0
n − 3

0
1
...

0
...

0


, . . . ,



0
n − i

0
0
...

1
...

0


, . . . ,



0
1
0
0
...

0
...

1


is a basic solution system of the systems of linear equation (4.5). Thus, the general solution of (4.5) is
as follows: 

c0



1
0
0
0
...

0
...

0


+ c2



0
n − 2

1
0
...

0
...

0


+ c3



0
n − 3

0
1
...

0
...

0


+ · · · + cn−1



0
1
0
0
...

0
...

1





=



c0

(n − 2)c2 + (n − 3)c3 + · · · + (n − i)ci + · · · + cn−1

c2

c3
...

ci
...

cn−1


,

where c0, c2, · · · , cn−1 in Zn are arbitrary.
It is also easy to see that 

0
1
0
0
...

0
...

0


is a solution of the systems of linear equation (4.6). Thus, the general solution of the systems of linear
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equation (4.6) is as follows:

0
1
0
0
...

0
...

0


+



c0

(n − 2)c2 + (n − 3)c3 + · · · + (n − i)ci + · · · + cn−1

c2

c3
...

ci
...

cn−1



=



c0

1 + (n − 2)c2 + (n − 3)c3 + · · · + (n − i)ci + · · · + cn−1

c2

c3
...

ci
...

cn−1


,

where c0, c2, · · · , cn−1 in Zn are arbitrary.

Hence

b0 =
∑

c0,c2,...,ci,...,cn−1

ac0a[(n−2)c2+(n−3)c3+···+cn−1](modn)ac2ac3 . . . aci . . . acn−1 ,

and
b1 =

∑
c0,c2,...,ci,...,cn−1

ac0a[1+(n−2)c2+(n−3)c3+···+cn−1](modn)ac2ac3 . . . aci . . . acn−1 ,

where c0, c2, . . . , ci, . . . , cn−1 satisfies 0 ≤ cr ≤ n − 1 for r ∈ {0, 2, . . . , n − 1}.

For convenience, let Φ = [(n − 2)c2 + (n − 3)c3 + · · · + cn−1](modn). Then,

∆ = b0 − b1

=
∑
Φ=0

ac0(a0 − a1)ac2ac3 . . . acn−1

+
∑
Φ=1

ac0(a1 − a2)ac2ac3 . . . acn−1

+ · · ·

+
∑
Φ=n−2

ac0(an−2 − an−1)ac2ac3 . . . acn−1
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+
∑
Φ=n−1

ac0(an−1 − a0)ac2ac3 . . . acn−1

=

n−2∑
k=0

∑
Φ=k

ac0(ak − ak+1)ac2ac3 . . . acn−1

+
∑
Φ=n−1

ac0(an−1 − a0)ac2ac3 . . . acn−1 .

Now, we can state the following results.

Theorem 4.1. Let a0, a1, · · · , an−1 be real nubers and let A = Circ(a0, a1, · · · , an−1) be the correspond-
ing circulant matrix with a prime n. If ∆ is the determinant of A, then

∆ =

n−2∑
k=0

∑
Φ=k

ac0(ak − ak+1)ac2ac3 . . . acn−1

+
∑
Φ=n−1

ac0(an−1 − a0)ac2ac3 . . . acn−1 .

where c0, c2, . . . , cn−1 satisfy 0 ≤ cr ≤ n − 1 for r ∈ {0, 2, . . . , n − 1} and Φ = [(n − 2)c2 + (n − 3)c3 +

· · · + cn−1](modn).

Since a matrix A is invertible if and only if its determinant |A| , 0, Theorem 4.1 can provide a
necessary and sufficient condition for the invertibility of circulant matrices with a prime order.

5. Examples

In this section, we provide two examples to explain how to use the obtained results to calculate the
determinant of a circulant matrix.

Example 5.1. Let A1 = Circ(0, 1, 2, 3, 4, 5, 6). Then, by Theorem 3.1, A1 is invertible. Since the
arrangement of A1 is simple, it is easy to calculate the determinant of A1 by using the properties of the
determinant. On the other hand, we can use Theorem 4.1 to calculate the determinant of A1 by Matlab,
where |A1| = 352947. The actual implementation (code) can be found in Figure 1.

Example 5.2. Let A2 = Circ(0, 1, 3, 4, 6, 8, 9). Then, by Theorem 3.1, A2 is invertible. By Theorem 4.1,
we can calculate the determinant of A2 by Matlab, where |A2| = 5843624. The actual implementation
(code) can be found in Figure 1.
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Figure 1. Our algorithm.

Remark 5.3. Theorem 4.1 greatly simplifies the calculation of the determinant of a circulant matrix
with a prime order. For example, let f1(x) = x + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 and f2(x) = x + 3x2 +

4x3 + 6x4 + 8x5 + 9x6. By Lemma 2.1, |A1| = Π
6
j=0 f1(ε j) and |A2| = Π

6
j=0 f2(ε j), where ε is a primitive

7-th root of unity, and A1 and A2 are exactly A1 in Example 5.1 and A2 in Example 5.2. If we calculate
Π6

j=0 f1(ε j) and Π6
j=0 f2(ε j) by Matlab, the required calculation times are 0.3688 seconds and 0.2488

seconds, respectively (see Figure 2), and the required number of calculations is 78 + 7 × 28 times.
However, if we calculate |A1| and |A2| by Matlab (using Theorem 4.1), then the required calculation
times are 0.0858 seconds and 0.0325 seconds, respectively (see Figure 1), and the required number of
calculations is 76 × 18 times.
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Figure 2. Original algorithm.
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