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Abstract: The correlation filter object tracking algorithm has gained extensive attention from scholars 
in the field of tracking because of its excellent tracking performance and efficiency. However, the 
mathematical modeling relationships of correlation filter tracking frameworks are unclear. Therefore, 
many forms of correlation filters are susceptible to confusion and misuse. To solve these problems, we 
attempted to review various forms of the correlation filter and discussed their intrinsic connections. 
First, we reviewed the basic definitions of the circulant matrix, convolution, and correlation operations. 
Then, the relationship among the three operations was discussed. Considering this, four mathematical 
modeling forms of correlation filter object tracking from the literature were listed, and the equivalence 
of the four modeling forms was theoretically proven. Then, the fast solution of the correlation filter 
was discussed from the perspective of the diagonalization property of the circulant matrix and the 
convolution theorem. In addition, we delved into the difference between the one-dimensional and two-
dimensional correlation filter responses as well as the reasons for their generation. Numerical 
experiments were conducted to verify the proposed perspectives. The results showed that the filters 
calculated based on the diagonalization property and the convolution property of the cyclic matrix 
were completely equivalent. The experimental code of this paper is available at 
https://github.com/110500617/Correlation-filter/tree/main. 
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1. Introduction 

Object tracking [1–3] technology has become a research hotspot in the field of computer vision [4] and 
it is widely employed in intelligent traffic management [5,6], unmanned aerial vehicle tracking [7,8], and 
human-computer interactions [9,10]. Correlation filter object tracking algorithms [11–15] have gained 
increasing attention in the field of tracking, owing to their excellent tracking performance and 
efficiency. These methods have become mainstream for visual tracking [16–20]. 

The correlation operator is a signal processing operator that is used to measure signal similarity. Thus, 
it is widely employed in the field of object tracking. For example, the correlation operator was first 
introduced into the field of object tracking by Bolme et al. [21] in 2010. In 2015, Henriques et al. [11] 
proposed a correlation filter model in the form of a circulant matrix to train a classifier through intensive 
sampling by the cyclic shift. In 2016, Bertinetto et al. [22] introduced the correlation operator in a two-
branches weight-shared deep learning network and proposed a SiamFC, a fully convolutional Siamese 
network. In 2017, Galoogahi et al. [23] proposed a background-aware correlation filter (BACF) in the 
form of vector multiplication, which cleverly avoids the boundary effect existing in the correlation 
filter tracking method. In 2020, Li et al. [24] proposed a correlation filter model in the form of 
convolution operations, which uses local and global information of response graphs to achieve 
adaptive spatio-temporal regularization. In 2022, Song et al. [25] proposed a Transformer tracker with 
cyclic shifting window attention, which is calculated by correlation operator. In 2024, Chen et al. [26] 
regarded the correlation operator as the convolution operation and proposed an asymmetrical 
background-aware correlation filter for object tracking by exploring the shape information of the object. 
In 2024, Chen et al. [27] introduced the deep-convolutional-neural-network-based features in 
correlation filter framework to further improve the tracking performance of BACF. 

The correlation filter object tracking method in the form of circulant matrix utilizes a cyclic shift 
matrix [28,29] to generate many virtual samples, thereby expanding the sample richness to improve 
algorithm performance. Specifically, the algorithm pulls the training samples into row vectors, and a 
matrix with a row circulant structure is subsequently formed via a continuous cyclic shift. The filter 
was designed using this matrix. There are two drawbacks in directly solving the correlation filter in 
the spatial domain: 1) The spatial domain operation involves the inversion of a large circulant matrix, 
resulting in high computational complexity; and 2) the matrix formed by the cyclic shift contains a 
large amount of redundant information, which will occupy a large amount of storage while calculating 
the filter. Therefore, the property that the circulant matrix can be diagonalized by the Fourier transform 
matrix is invoked [30–32] to transform the correlation operation into the entry-wise multiplication 
operation in the frequency domain to avoid the inverse operation of the large spatial matrix. Notably, 
the single sample in the frequency domain replaces the virtual sample generated by the cyclic shift, 
effectively reducing the complexity and storage requirements of the correlation operation. 

The discrete convolution operation [33] is important in signal processing. In a discrete convolution 
operation, the signal is reversed and shifted. This moving signal is multiplied entry-wise with another 
stationary signal and summed to obtain the convolution result. The difference between the correlation 
and convolution operations is that the correlation operation does not perform the reverse operation on 
the moving signal. Rather, the correlation operation directly moves the signal. Therefore, the 
correlation operation is a special type of convolution. Given the convolution operation, the translation, 
multiplication, and summation calculations of the spatial domain can be transformed into a frequency 
domain entry-wise multiplication operation based on the convolution theorem [33] and Parseval’s 
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theorem [34,35] to avoid the high storage and computation requirements involved with moving the 
signal in the spatial domain. Researchers have understood the correlation object tracking framework 
from the perspective of convolution. 

The two approaches previously described (the diagonalization of the circulant matrix [36,37] and 
the transformation of the correlation operator into a convolution) yield the same form of computation, 
namely, the calculation of the correlation operation via the frequency domain entry-wise multiplication 
operation, albeit from different perspectives. Hence, there must be a close internal relationship among 
the different mathematical modeling approaches of the CFs. With the improvement and perfection of 
correlation filter tracking theory [38–42], various forms of object tracking algorithms have been 
proposed. Based on a mathematical modeling perspective, correlation filter object tracking algorithms 
can be specifically classified into four forms: Correlation operations [21], vector multiplication 
operations [23], circulant matrix operations [29], and convolution operations [24]. These four 
modeling methods are expressed differently but are essentially equivalent.  

The motivation of this paper is to sort out four mathematical modeling methods for the correlation 
filter object tracking algorithm by exploring the properties of circulant matrix, convolution, and 
correlation operations. First, we review the definitions of these four modeling methods. Then, the 
internal relations of the four modeling methods are discussed in detail. Based on the properties and 
relationships among circulant matrix, convolution, and correlation operations, two fast correlation 
filter calculation methods are proposed. Both theoretical derivation and experimental results prove the 
equivalence of the two methods. Numerical experiments verified the proposed viewpoint. In addition, 
Most existing studies on the correlation filter [16,23] investigated filter calculation in the form of a 
one-dimensional filter. Recently, few studies have presented a solution to the correlation filter in the 
form of a two-dimensional matrix [26,37]. Thus, we further discuss the relationship and difference 
between the one-dimensional and two-dimensional filters. 

The main contributions of this study are as follows. 1) We comprehensively describe the definitions 
of the circulant matrix, convolution, and correlation operations and then theoretically prove the four 
theorems of the circulant matrix. Based on these theorems, the relationships of four modeling 
approaches for the correlation filter are further discussed. 2) The fast calculation of the correlation 
filter is discussed from two perspectives: the diagonalization property of the circulant matrix and the 
convolution theorem. The multiplication and inversion operations of the large-scale matrix are 
transformed into entry-wise multiplication and entry-wise division operations of the vector to improve the 
efficiency of the filter solution. 3) We convert a one-dimensional correlation filter into a two-dimensional 
correlation filter, present the calculation flow of the two filter methods, analyze the differences and 
connections between the two filter methods, and discuss the reasoning behind these relationships. 

The rest of this paper is organized as follows. In Section 2, we present the definitions of the three 
operations of correlation, circulant matrix, and convolution; argue the four theorems of the circulant 
matrix; and discuss the relationship among the three operations in depth. In Section 3, we enumerate 
the four forms of correlation filter tracking modeling. In Section 4, we present the solution to the filter from 
the perspectives of the diagonalization of circulant matrix and the convolution theorem. In Section 5, we 
discuss the differences and connections between one-dimensional and two-dimensional filters in detail. 
In Section 6, we present the verification of the viewpoints presented in this study through numerical 
experimentation and response plots to verify the equivalence of the two methods for solving the filter. 
Finally, in Section 7, we draw conclusions and present the outlook for future work. 
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2. Theoretical basis of the correlation filter 

2.1. Definition of the three operations 

2.1.1. Definition of the column-vector-based circulant matrix 

Suppose the first column vector of the matrix is T 1
0 1 2 1= ( , , , , ) N

Nx x x x 
  x  , where the 

superscript T   denotes the transpose operation. x   is cyclically shifted by one bit to obtain the 
second-column vector T 1

1 0 1 2= ( , , , , ) N
N Nx x x x 
   v   of the column-vector-based circulant matrix. 

The N  column vectors are obtained after N  cyclic shifts. These vectors form the column circulant 

matrix  
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C x . 

Similarly, the vector T 1
0 1 2 1= ( , , , , ) N

Nx x x x 
  x   is cyclically shifted N   times as the base 

vector to obtain N   row vectors. These vectors form the row-vector-based circulant matrix 

 
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x x x x



 


  

 
 
 
 
 
 
 
 





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    


C x = . 

The patches obtained by the traditional correlation filter through N  cyclic shifts form a circulant 
matrix. Among the samples generated by the cyclic shift operation, only the first row represents the 
real sample. 

2.1.2. Definition of the discrete convolution operator 

Discrete convolution is given by 

 
1

0

( )( ) ( ) ( ),
N

m

n m n m



  x h x h   (1) 

where 1( ) N x h   and ( )( )nx h   are the n   th element of the vector x h  ,    is a one-

dimensional convolution operation, and the signals T 1
0 1 1= ( , , , ) N

Nx x x 
  x   and 

T 1
0 1 1= ( , , , ) N

Nh h h 
  h  satisfy the periodic boundary conditions. Notably, in the correlation filter 

tracking framework, the h  is the correlation filter, while in the Siamese tracking framework, h  is 

the test sample, 0,1, , 1n N  . 

2.1.3. Definition of the correlation operation 

The correlation operation is defined as 
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1

T

0
( )( )= ( ) ( + ) [Δτ ],

N

n
m

n m n m



x h x h x h   (2) 

where   is a one-dimensional correlation operator and [Δτ ] = circshift( , )n nh h , circshift( , )nh  denotes 

the cyclic shift operator that shifts the signal by the ( 0,1, , 1)n n N   step. 

2.2. Diagonalization theorem of circulant matrix 

A circulant-matrix structure can effectively capture the motion characteristics of an object and 
provide accurate prediction information during tracking. However, there is redundancy in circulant 
matrix data, resulting in a large number of computations when operating in the spatial domain. To 
solve this problem, the computational complexity must be reduced using Theorem 1. 

Theorem 1: If the column-vector-based circulant matrix  

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

N N

N

N N N

x x x x
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 
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 
 
 







    


C x   is 

known, then the discrete Fourier transform matrix is 

2 ( 2) 1 2 ( 1) 12 1 1

2 1 ( 2) 2 ( 2) ( 2) 2 ( 1) ( 2)

2 1 ( 1) 2 ( 2) ( 1) 2 ( 1) ( 1)

1 1 1 1

1 e e e

1 e e e

1 e e e

N N
j j j

N N N

N
N N N N N

j j j
N N N

N N N N N
j j j

N N N

 

  

  

        

            

            

 
 
 
 
 
 
 
 
 
 
 






    





F  , the inverse Fourier transform matrix is, 
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F  ,and ˆ= Nx F x  is the one-dimensional Fourier 

transform of the vector T 1
0 1 2 1= ( , , , , ) N

Nx x x x 
  x  . Then, we obtain 

 
0

1 1
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F C x F x

x

 , where Diag   is the operator that stacks the column 

vectors onto the diagonal of the diagonal matrix. 
Proof: In   1

N
C x F , the first row of  C x  multiplied by the +1k  th ( 0,1, , 1k N  ) column 

of 1
N
F  is denoted as (0, )kf . Then, we have 

 
2π ( 1)2π 1 2π 2

0 1 2 1(0, )
1 ( e e e ).

Nkj kj kj
N N N

N Nkf x x x x
N

  

        (3) 
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Using the Euler relation 2 cos( 2 ) sin( 2 ) =1kje k j k       , we have 

 
2π( 1)2π 2π 2π 2π2πe e e e e .

Nkj kj kj kj kjkjN N N N
       (4) 

Likewise, we have 

 
2π( 1) 2π( 1) 2π( 1) 2π2π2πe e e e e .

N N Nkj kj kj kj kjkjN N N N
          (5) 

According to the period invariance of the complex signals, Eq (3) can be rewritten as 

 

2π ( 1) 2π 1
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  (6) 

where ˆkx  is the +1k  th ( 0,1, , 1k N  ) element of 
1ˆ ( ) Nfftx = x F x  ( 1fft  is a one-dimensional 

fast Fourier transform operator), that is, the +1k  th row of NF  multiplied by the vector x . 

The second row of  C x   multiplied by the +1k   th ( 0,1, , 1k N   ) column of 1
N
F   is 

denoted as (1, )kf . The second row of  C x  is the right-shifted signal of the first row of  C x , we have: 
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Thus, we have 
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Therefore, we have 

   1 1 ˆ ˆ( ) ( ).N N N N
  Diag DiagF C x F F F x x   (9) 

Hence, Theorem 1 is proven. 
According to the diagonalization theorem of the column circulant matrix, the diagonalization 

theorem of the row circulant matrix is derived as follows. 

Theorem 2: If the row-vector-based circulant matrix  
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n

N

F
F  denote the normalized discrete Fourier transformation (DFT) matrix. Then, the 

row-vector-based circulant matrix satisfies  T ˆ( ) H
n n DiagC x F x F  (where H

nF  denotes the result of 

the conjugate transpose on nF ). 

Proof: The diagonalization theorem of the row-vector-based circulant matrix can be proven using 
the diagonalization theorem of the column-vector-based circulant matrix. According to Theorem 1, 
we simultaneously transpose both sides of the equation to obtain 

  
T*

T T T 1 T T Tˆ ˆ( )( ( )) ( ) ( )( ( )) ,N
N N N N

  
  
 

 Diag Diag
F

C x F x F F x   (10) 

where 1 *1
N NN
 F F . By decomposing N  into N N , we have 

  
TT *

T Tˆ( ( )) .N N

N N

  
        

 Diag
F F
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As the normalized DFT matrix = N
n

N

F
F  satisfies T

n nF F  and -1H
n nF F , we obtain 

  T T 1ˆ ˆ( ( )) ( ( )) .H
n n n n

 Diag DiagC x F x F F x F   (12) 

Hence, Theorem 2 is proven. 

2.3. Relationship between convolution and circulant matrices 

Directly performing operations with the circulant matrix in the spatial domain leads to high 
computational complexity. However, another function of the correlation filter tracking algorithm is to 
utilize the relationship between the convolution and circulant matrices. The convolution theorem can 
transform it into an entry-wise operation in the frequency domain to circumvent large matrix 
multiplication and inverse operations, effectively reducing the number of operations and improving 
the computational efficiency. 

Theorem 3: By multiplying the column-vector-based circulant matrix  C x   by a signal 
T 1

0 1 1= ( , , , ) N
Nh h h 
  h , then we have 
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 



   

  
  
  
  
  
  
     

 





     


C x h x h   (13) 

Proof: By multiplying both sides of Eq (9) with ĥ  simultaneously, we have 

   1 ˆ ˆˆ( ) .N N
 DiagF C x F h x h   (14) 

Then 

   ˆˆ ,N  F C x h x h   (15) 

where   denotes the entry-wise multiplication operation. 

According to the convolution theorem, the entry-wise multiplication of the spectrum of the two 
signals is equal to that of the spatial convolution signal, we have 

 ˆˆ ( ).N x h F x h   (16) 

By combining Eqs (15) and (16), we obtain 

   ( ).N N F C x h F x h   (17) 

Then, it is seen that 

   . C x h x h   (18) 

Hence, Theorem 3 is proven. 
According to the convolution theorem, spatial convolution can be calculated in the frequency 

domain. The specific calculation method is 

  1
ˆˆ , 

 
 

 real ifft x h = x h   (19) 

where real  is the real part-taking operator and 1ifft  is a one-dimensional inverse-Fourier transform 

operator. 
Comment 1: The calculation of x h  can be expressed as  C x h  if directly calculated in the 

spatial domain. The memory space occupied by  C x h   is denoted by 2N N  , and its 

multiplication complexity is denoted by 2( )N . Notably, x h  can be calculated in the frequency 

domain using the convolution theorem, that is,   1
ˆˆ  real ifft x h x h . The memory space occupied 
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by   1
ˆˆreal ifft x h   is denoted by 4N  , and its multiplication complexity is denoted by 

2(8 log 4 )N N N   (It includes two fast Fourier transforms, one inverse Fourier transform and the 

multiplication of complex numbers in the frequency domain, where two fast Fourier transforms require 

22 logN N  multiplications with complex number and real number, involving 24 logN N  floating-

point number multiplications. One fast inverse Fourier transform requires 2logN N  complex number 

multiplications, involving 24 logN N   floating-point number multiplications, and the number of 

floating-point number multiplications required for the multiplication of N  complex numbers in the 
frequency domain is 4N ). 

Table 1 presents the occupied memory space and the complexity of the floating-point multiplication 
operation of the  C x h   and   1

ˆˆreal ifft x h   operations. For example, when N   is 4, the  C x h  

operation occupies 4
2 2=4 +4=20NN N    floating-point units, and the number of floating-point 

multiplications is 2 2
4 =4 =16NN   . The   1

ˆˆreal ifft x h   operation occupies 44 =4 4=16NN    

floating-point units, and the number of floating-point multiplications is 

2 4 28 log 4 8 4 log 4 4 4 80NN N N         . When N   is 256, the  C x h   operation occupies 

6
2 2

25 =256 +256=65792NN N    floating-point units, and the number of floating-point 

multiplications is 5
2 2

2 6 =256 =65536NN   . By contrast, the   1
ˆˆreal ifft x h   operation occupies 

2564 =4 256=1024NN     floating-point units, and the number of floating-point multiplications is 

2 256 28 log 4 8 256 log 256 4 256 17408NN N N        . The results show that when the image size 

is large, the inverse operation of the large circular matrix in the spatial domain can be transformed into 
the entry-wise multiplication operation in the frequency domain according to Theorem 3 and the 
convolution theorem to effectively reduce the number of solving operations. 

Table 1. Memory footprint and computational complexity analysis of the one-
dimensional operation. 

Operation (image size N N ) Memory space occupied/floating-point unit 
Complexity of floating-point 

multiplication operation/time 

 C x h  operation  2N N  
2( )N  

  1
ˆˆreal ifft x h  operation  4N  2(8 log 4 )N N N  

Theorem 4: The row-vector-based circulant matrix satisfies    T   C x h C x h x h . 

Proof: By observing each column of the row-vector-based circulant matrix 

 

0 1 2 1

1 0 1 2
T

2 1 0 3

1 2 3 0

N

N N

N N N

x x x x
x x x x
x x x x

x x x x



 

  

 
 
 
 
 
 
 
 







    


C x , we find that each column of  TC x  is obtained by the cyclic 

shift of the previous column. The first column T 1
0 1 1= ( , , , ) N

Nx x x 
  x  of this matrix is the reverse 
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signal of T 1
0 1 1= ( , , , ) N

Nx x x 
  x   (e.g., if T

1,2,3,4  x =  , then T
= 1,4,3,2  x  ). Then, we have: 

   T C x C x . Combining this result with Eq (13), we obtain 

    T .  C x h C x h x h   (20) 

Hence, Theorem 4 is proven. 
Comment 2: We can regard h   in x h   as a static signal and x   as a dynamic signal. 

According to the definition of the discrete convolution, the dynamic signal should be reversed as x , 
which is equal to x . Then, the reverse signal x  should be cyclically shifted as the shifted vectors. 

The vector formed by the inner product of these shifted vectors with the static signal is the result of 
discrete convolution. The shifted vectors can be stacked into the row-vector-based circulant matrix 

 TC x . Thus,  T=x h C x h . 

Comment 3: x  satisfies   *
1 ˆ=fft x x  (where *x̂  is the conjugate signal of x̂ ). 

Proof: If the spectral signal x̂   is the Fourier transform of the signal x  , then the spectral 

elements of x  are expressed as 

 
2 21 1

0 1

ˆ( ) ( ) ( ) (0).
n nN Nkj kj

N N

n n

k n e n e
   

 
   x x x x   (21) 

Similarly, the spectral elements of x  are given by 

  
2 21 1

1
0 1

( ) ( ) ( ) (0),
n nN Nkj kj

N N

n n

k n e N n e
   

 
    fft x x x x   (22) 

where  1 ( )kfft x  is the +1k  th ( 0,1, , 1k N  ) element of  1fft x . 

Based on the time-shifting properties of the discrete Fourier transform and Euler’s formula 

2 cos(2 ) sin(2 ) =1kje k j k    , Eq (22) can be rewritten as follows 

 

 
 

21
2

1
1

21

1

21

1

21

0

( ) ( ) (0)

( ) (0)

( ) (0)

( ) .

nN kj kjN

n

N nN kj
N

n

tN kj
N

t N n
t

tN kj
N

t

k N n e e

                N n e

                t e

                t e










 









 






  

  

 











fft x x x

x x

x x

x

  (23) 

Combining Eqs (21) and (23) yields 

   *
1 ˆ= .fft x x   (24) 

Hence, the proof is complete. 
According to Eq (20), the second type of proof for Theorem 3 is provided as follows. 
Proof: 



4694 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

We observe that    

0 1 2 1

1 0 1 2

2 1 0 3

1 2 3 0

=

N N

N
T

N N N

x x x x
x x x x
x x x x

x x x x

 



  

 
 
 
 
 
 
 
 







    


C x C x , thereby we obtain 

    T ,    C x h C x h x h x h   (25) 

where =x x . 

2.4. Relationship among the correlation operation, convolution, and circulant matrix 

A tracking algorithm based on a correlation filter significantly improves the tracking speed by 
transforming complex correlation operations in the spatial domain into simple entry-wise 
multiplication operations in the frequency domain. Utilizing the relationship between the correlation 
operation and the convolution, we rewrite the correlation operator as the convolution form 

 
1 1

0 0

( )( ) ( ) ( ) ( ) [ ( )] ( )( ),
N N

m m

n m n m m n m n
 

 
       x h x h x h x h   (26) 

where T 1
0 1 1= ( , , , ) N

Nh h h 
  h  is the reverse signal of T 1

0 1 1= ( , , , ) N
Nh h h 
  h , h  satisfies one 

dimensional periodic boundary conditions. 
By combining Eqs (20) and (26), the relationship between the correlation operation and the row-

vector-based circulant matrix is given by 

  T .C h xx h   (27) 

3. Four modeling forms for correlation filter 

3.1. First form of correlation filter tracking modeling: Correlation operation form 

A traditional discriminative tracking algorithm distinguishes between an object and its 
background by training its classifier. The background information and object are used as negative and 
positive samples, respectively. The candidate sample with the highest response is selected as the 
prediction result. The correlation filter uses ridge regression to design the filter h . The regularization 

term is added to prevent overfitting. The correlation operation form of the correlation filter is shown 
in Eq (28). 

 2 2

2 2
( )

1
min ,

2 2
E =

 
h

h hxy h   (28) 

where 1Nx  is the column vector form of the object sample after the weighted cosine window 

and N  is the size of the pixels occupied by the object sample. 1Ny  is the desired correlation 

response, 1Nh  is the filter, and   is the balancing parameter, which is utilized to balance the 
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fidelity term 2

2

1
2

 xy h  and ridge regression regularization term 2

22


h . 

3.2. Second form of correlation filter tracking modeling: Vector multiplication form 

The vector multiplication form of the correlation filter is given by Eq (29). 

 
 

 

1 2 2T
2

0

1 2 2T
2

0

( )
1

min ( ) [Δτ ]
2 2

1
min ( ) [Δτ ] ,

2 2

N

n
n

N

n
n

E = n

        = n
























h

h

h y x h h

y h x h

  (29) 

where if  T= Cr h x , then 1Nr  and   T [Δτ ]nn =r x h . 

3.3. Third form of correlation filter tracking modeling: The circulant matrix operation form 

A key focus area of the correlation filter tracking algorithm is improving computational efficiency 
using the characteristics of the circulant matrix. The circulant matrix operation form of the correlation 
filter is given by Eq (30): 

 
 

 

2 2T
22

2 2T
22

( )
1

min
2 2
1

min ,
2 2

E =

        =





 

 

h

h

h y C h h

y C h h

x

x
  (30) 

where  TC h  is the row-vector-based circulant matrix.  TC h  satisfies  TC  xh x = h = x h  and 

   
____________

T TC Ch x x h . 

3.4. Fourth form of correlation filter tracking modeling: Convolution operation form 

According to Eq (26), the correlation forms in Eq (28) can be rewritten in the convolutional form 
of Eq (31), that is 

 
2 2

2 2
( )

1
min ,

2 2
E =

  
h

h y h x h   (31) 

where   denotes the convolution operator that satisfies = x h hx . 

According to the convolution and Parseval’s theorems, Eq (31) can be written in the frequency-
domain form as follows 

 
*

2 2
* *

ˆ 2 2
( )

1 ˆ ˆˆ ˆmin ,
2 2

E =
N N

 
h

h y h x h   (32) 

where ĥ  is the Fourier transform of h , and *ĥ  is the conjugate signal of ĥ . 
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3.5. Relationship among the four modeling forms of correlation filter object tracking 

Based on the above discussion, we determine the relationship among the four mathematical 
modeling forms of correlation filter tracking as follows 

 
 

 

2 2

2 2

1 2 2T
2

0

2 2T
22

2 2

2 2

( )
1

min
2 2
1

min ( ) [Δτ ]
2 2

1
min

2 2
1

min .
2 2

N

             n
n

E =

= n

       =  

       =














 



 

 



h

h

h

h

h y h h

y x h h

y

x

C h h

y h x h

x



  (33) 

Comment 4:  TC h x   and  TC x h   are confusing in some studies. There is a reverse 

relationship between  TC h x  and  TC x h , that is,    
____________

T Tx =C h hxC . 

Comment 5: The definition of the correlation operation x h   differs across studies in the 
literature. If the element of the correlation operator is defined as   T( ) [Δτ ]nnh x hx =  , we obtain 

   
____________

T Th C h C hx = x x . 

4. Equivalence of the two filter-solving methods 

4.1. Filter solution based on the diagonalization property of the circulant matrix 

In the spatial domain, by computing the first-order derivative of h  in Eq (30) and setting it equal 
to zero, we obtain 

     HT T( )
.

dE
d

    0
h

C x C x h y h
h

  (34) 

Then, the spatial domain optimal solution for h  is given by 

 
     

     

1HT T T

1T TT T T .

H

   









 
 
 

 
 
 

 

 

h C x C x C x y

C x C x C x y

  (35) 

Because the introduction of a circulant matrix generates numerous virtual samples, considerable 
computation is required. The sample matrix can be transformed into a diagonal matrix for processing 
based on the diagonalization property of the row-vector-based circulant matrix. This method 
significantly accelerates the matrix calculations and reduces the computational complexity of directly 
computing solutions in the spatial domain, that is 
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 T T T 1 T T

* H H 1

* H H 1

* H 1
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*
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ˆ ˆ( ( ) ( ) ) ( )

ˆ ˆ( ( ) ( ) ) ( )

ˆ ˆ( ( ( )+ ( )) ) ( )
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n n n n

n n n n

n n
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


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 
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 

 

 






Diag Diag

Diag Diag

Diag Diag

Diag Diag






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F x x F F δ F x y
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*

1 *

*
H

*

T

ˆ
ˆ ˆ

ˆ
ˆ ˆ

( ) ,
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



  
 
  




 
  
 




  
ifft

Diag





xu
x x δ

x
F F y

x x δ

C u y u y

  (36) 

where   is the column vector whose elements are all 1, that is, 1

1

1

N
 
 
 
 
 

 δ = . 

According to the convolution theorem, Eq (36) can be transformed into the frequency domain to 
calculate 

   
*

* *
1 1 *

ˆ ˆ
ˆ ˆ .

ˆ ˆ 
  
      

 


real ifft real ifft



x y

h u y
x x δ

  (37) 

For a new test sample z , we have  

  T= ,r C z h   (38) 

where r  is the reverse signal of the spatial domain response r . 

By reversing both sides of Eq (38), the spatial domain response r  is expressed as 

    T T= .r C z h C h z   (39) 

As  T C z h = z h , Eq (39) can be written in the convolutional form, as shown in Eq (40). 

  T = = .  r C z h z h z h   (40) 

According to Eqs (19) and (24), Eq. (40) can be rewritten as 

   *
1

ˆ ˆ= .real ifft r h z   (41) 

4.2. Filter solution based on the convolution theorem 

In the frequency domain, by computing the first-order derivative of *ĥ  in Eq (32) and setting it 

to zero, that is  * *
*

*

( )
ˆˆ ˆ ˆ2 ˆ2

=
ˆ

dE
=

N Nd


 0

 x h x yh h

h
, we obtain 

 
*

*
*

ˆ ˆˆ = ,
ˆ ˆ+



y x
h

x x
  (42) 

where the sign of the division in Eq (42) denotes entry-wise division. 
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For the new sample ẑ , the corresponding spatial response is 

   *
1

ˆ ˆ= .real ifft r h z   (43) 

Comment 6: Eqs (41) and (43) show that the results obtained by solving the filter using the 
diagonalization property of the row-vector-based circulant matrix and the convolution theorem are 
completely consistent. 

5. Difference and connection between the one-dimensional and two-dimensional filter methods 

For the object tracking techniques, the image being processed is a two-dimensional signal, 
whereas all the signals discussed in the previous section are one-dimensional. Hence, we generalize 
the one-dimensional signal convolution form in Eq (20) into a two-dimensional convolution form, as 
shown in Eq (44) 

        T *
2 1 2 1 2 2 1 2

ˆ ˆ, ( [Δτ ,Δτ ]) ( ) ,c r Conv mat Cat vec vec real ifft I  I I I I I   (44) 

where mat   is an operator that transforms column vectors into matrices, Cat   is an operator that 
stacks the row vectors into a matrix, vec  is an operator that transforms a matrix into a column vector, 
and 2Conv  is a two-dimensional convolution operator. The elements of the c  th row and th column 

of  2 1 2,Conv I  I   are T
1 2 1 2( [Δτ ,Δτ ]), ( ) ( [Δτ ,Δτ ]) ( )c r c rvec vec = vec vecI I I I  , and 

1
N NI  , 

2
N NI , and N  are integers. 0,1, , 1r N   represents the number of row cyclic shifts, and 

0,1, , 1c N    represents the number of column cyclic shifts. Moreover, 
1[Δτ ,Δτ ] N N

c r
I  

denotes a matrix obtained by the first cyclic shift 1I  , row-by-row, using r   units to obtain an 

intermediate matrix, and then performing a cyclic shift of the intermediate matrix, column-by-column, 
using c  units. Finally, 

1I  is the reverse matrix of 1I , and the specific calculation is as follows: 1I  

first reverses the original matrix, row-by-row, to obtain an intermediate matrix. Then, it reverses the 

intermediate matrix, column-by-column, to obtain 
1I  . For example, 1

1 2 3

4 5 6

7 8 9

 
   
  

I   is performed, 

row-by-row, on the original matrix to perform the reverse operation to obtain the intermediate matrix 
1 3 2

4 6 5

7 9 8
t

 
   
  

I . Then, it is carried out on the intermediate matrix tI , column-by-column, to perform 

the reverse operation. This is followed by 1

1 3 2

7 9 8

4 6 5

 
   
  

I  . Here, 

  T
1 2( [Δτ ,Δτ ]) ( ) N N

c r
mat Cat vec vec I I ,  2 1 2, N NConv I  I  is the two-dimensional convolution 

of images 
1I  and 2I , and 2ifft  is a two-dimensional Fourier inverse transform operator. 

Comment 7: If  2 1 2,Conv I  I   is calculated in the spatial domain, that is, 

  T
1 2( [Δτ ,Δτ ]) ( )c rmat Cat vec vecI I , the occupied memory space is 2( )N N , and the computational 

multiplicative complexity is 2( )N . If the convolution theorem is introduced, then the convolution in 

the spatial domain can be transformed into an entry-wise multiplication operation and a Fourier inverse 
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transform in the frequency domain, that is,     *
2 1 2 2 1 2

ˆ ˆ, Conv real ifft I  I I I  . The memory space 

occupied by the algorithm is 4N  , and the computational multiplication complexity is 

2(8 log 4 )N N N . A detailed calculation process of the two-dimensional filter  2 2 1 2,DR = Conv I  I  

( 1

1 4 7

2 5 8

3 6 9

 
   
  

I , 2

0.1 1 1

1 0.1 1

1 1 0.1

 
   
  

I ) is listed in Table 2. 

Table 2. Two-dimensional filter calculation process. 

Element of 2DR  Stage 1: Reverse Stage 2: Cyclic shift Stage 3: Multiplication Stage 4: Summation 

 2 1,1DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 0 0

1 7 4

[Δτ ,Δτ ] 3 9 6

2 8 5

 
   
  

I  

1 0 0 2[Δτ ,Δτ ]

1 7 4 0.1 1 1

3 9 6 1 0.1 1

2 8 5 1 1 0.1

0.1 7 4

3 0.9 6

2 8 0.5

   
       
      
 
   
  





  I I 

 
31.5  

 2 1,2DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 0 1

4 1 7

[Δτ ,Δτ ] 6 3 9

5 2 8

 
   
  

I  

1 0 1 2[Δτ ,Δτ ]

4 1 7 0.1 1 1

6 3 9 1 0.1 1

5 2 8 1 1 0.1

0.4 1 7

6 0.3 9

5 2 0.8

   
       
      
 
   
  





   I I

 

31.5  

 2 1,3DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 0 2

7 4 1

[Δτ ,Δτ ] 9 6 3

8 5 2

 
   
  

I  

1 0 2 2[Δτ ,Δτ ]

7 4 1 0.1 1 1

9 6 3 1 0.1 1

8 5 2 1 1 0.1

0.7 4 1

9 0.6 3

8 5 0.2

   
       
      
 
   
  





   I I

 

31.5  

 2 2,1DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 1 0

2 8 5

[Δτ ,Δτ ] 1 7 4

3 9 6

 
   
  

I  

1 1 0 2[Δτ ,Δτ ]

2 8 5 0.1 1 1

1 7 4 1 0.1 1

3 9 6 1 1 0.1

0.2 8 5

1 0.7 4

3 9 0.6

   
       
      
 
   
  





   I I

 

31.5  

   Continued on next page 
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Element of 2DR  Stage 1: Reverse Stage 2: Cyclic shift Stage 3: Multiplication Stage 4: Summation 

 2 2, 2DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 1 1

5 2 8

[Δτ ,Δτ ] 4 1 7

6 3 9

 
   
  

I  

1 1 1 2[Δτ ,Δτ ]

5 2 8 0.1 1 1

4 1 7 1 0.1 1

6 3 9 1 1 0.1

0.5 2 8

4 0.1 7

6 3 0.9

   
       
      
 
   
  





   I I

 

31.5  

 2 2,3DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 1 2

8 5 2

[Δτ ,Δτ ] 7 4 1

9 6 3

 
   
  

I  

1 1 2 2[Δτ ,Δτ ]

8 5 2 0.1 1 1

7 4 1 1 0.1 1

9 6 3 1 1 0.1

0.8 5 2

7 0.4 1

9 6 0.3

   
       
      
 
   
  





   I I

 

31.5  

 2 3,1DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 2 0

3 9 6

[Δτ ,Δτ ] 2 8 5

1 7 4

 
   
  

I  

1 2 0 2[Δτ ,Δτ ]

3 9 6 0.1 1 1

2 8 5 1 0.1 1

1 7 4 1 1 0.1

0.3 9 6

2 0.8 5

1 7 0.4

   
       
      
 
   
  





   I I

 

31.5  

 2 3, 2DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 2 1

6 3 9

[Δτ ,Δτ ] 5 2 8

4 1 7

 
   
  

I  

1 2 1 2[Δτ ,Δτ ]

6 3 9 0.1 1 1

5 2 8 1 0.1 1

4 1 7 1 1 0.1

0.6 3 9

5 0.2 8

4 1 0.7

   
       
      
 
   
  





   I I

 

31.5  

 2 3,3DR  1

1 7 4

3 9 6

2 8 5

 
   
  

I  1 2 2

9 6 3

[Δτ ,Δτ ] 8 5 2

7 4 1

 
   
  

I  

1 2 2 2[Δτ ,Δτ ]

9 6 3 0.1 1 1

8 5 2 1 0.1 1

7 4 1 1 1 0.1

0.9 6 3

8 0.5 2

7 4 0.1

   
       
      
 
   
  





   I I

 

31.5  

  



4701 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

Table 3. One-dimensional filter calculation process. 

Element of 1Dr  Stage 1: Reverse Stage 2: Cyclic shift Stage 3: Multiplication Stage 4: Summation 

 1 1Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 0

1

9

8

7

[Δτ ] 6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 0 2

1 0.1 0.1

9 1 9

8 1 8

7 1 7

[Δτ ] 6 0.1 0.6

5 1 5

4 1 4

3 1 3

2 0.1 0.2

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  36.9  

 1 2Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 1

2

1

9

8

[Δτ ] 7

6

5

4

3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 1 2

2 0.1 0.2

1 1 1

9 1 9

8 1 8

[Δτ ] 7 0.1 0.7

6 1 6

5 1 5

4 1 4

3 0.1 0.3

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  34.2  

 1 3Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 2

3

2

1

9

[Δτ ] 8

7

6

5

4

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 2 2

3 0.1 0.3

2 1 2

1 1 1

9 1 9

[Δτ ] 8 0.1 0.8

7 1 7

6 1 6

5 1 5

4 0.1 0.4

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  31.5  

 1 4Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 3

4

3

2

1

[Δτ ] 9

8

7

6

5

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 3 2

4 0.1 0.4

3 1 3

2 1 2

1 1 1

[Δτ ] 9 0.1 0.9

8 1 8

7 1 7

6 1 6

5 0.1 0.5

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  28.8  

   Continued on next page 
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Element of 1Dr  Stage 1: Reverse Stage 2: Cyclic shift Stage 3: Multiplication Stage 4: Summation 

 1 5Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 4

5

4

3

2

[Δτ ] 1

9

8

7

6

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 4 2

5 0.1 0.5

4 1 4

3 1 3

2 1 2

[Δτ ] 1 0.1 0.1

9 1 9

8 1 8

7 1 7

6 0.1 0.6

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  34.2  

 1 6Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 5

6

5

4

3

[Δτ ] 2

1

9

8

7

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 5 2

6 0.1 0.6

5 1 5

4 1 4

3 1 3

[Δτ ] 2 0.1 0.2

1 1 1

9 1 9

8 1 8

7 0.1 0.7

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  31.5  

 1 7Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 6

7

6

5

4

[Δτ ] 3

2

1

9

8

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 6 2

7 0.1 0.7

6 1 6

5 1 5

4 1 4

[Δτ ] 3 0.1 0.3

2 1 2

1 1 1

9 1 9

8 0.1 0.8

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  28.8  

 1 8Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 7

8

7

6

5

[Δτ ] 4

3

2

1

9

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 7 2

8 0.1 0.8

7 1 7

6 1 6

5 1 5

[Δτ ] 4 0.1 0.4

3 1 3

2 1 2

1 1 1

9 0.1 0.9

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  26.1  

   Continued on next page 
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Element of 1Dr  Stage 1: Reverse Stage 2: Cyclic shift Stage 3: Multiplication Stage 4: Summation 

 1 9Dr  1

1

9

8

7

6

5

4

3

2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 8

9

8

7

6

[Δτ ] 5

4

3

2

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i  1 8 2

9 0.1 0.9

8 1 8

7 1 7

6 1 6

[Δτ ] 5 0.1 0.5

4 1 4

3 1 3

2 1 2

1 0.1 0.1

     
     
     
     
     
     
      
     
     
     
     
     
     
     

 i i  31.5  

A detailed calculation process of the one-dimensional filter    1 1 2 1 2D   = vec vecr I I i i  , where 

1

1

2

3

4

5

6

7

8

9

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i , 2

0.1

1

1

1

0.1

1

1

1

0.1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i , and 
1[Δτ ]ni  is the 

1i  cyclic shift n  times, which is listed in Table 3. 

Table 4 presents the occupied memory space and the complexity of the floating-point 
multiplication operation by the  T

1 2( [Δτ ,Δτ ]) ( )c rCat vec vecI I   and   *
2 1 2

ˆ ˆreal ifft I I   operations. 

Table 4 shows that the memory footprint and computational complexity of the one-dimensional and 
two-dimensional operations are completely consistent. The computational complexity of the 

  *
2 1 2

ˆ ˆreal ifft I I  operation is much smaller than that of the  T
1 2( [Δτ ,Δτ ]) ( )c rCat vec vecI I  operation 

when the image size is large. 

Table 4. Memory footprint and computational complexity analysis of the two-dimensional 
operation. 

Operation (image size N N ) Memory space occupied/floating-point unit 
Complexity of floating-point 

multiplication operation 

 T
1 2( [Δτ ,Δτ ]) ( )c rCat vec vecI I   2N N  

2( )N  

  *
2 1 2

ˆ ˆreal ifft I I   4N  2(8 log 4 )N N N  

The one-dimensional and two-dimensional filters are equivalent in estimating the object’s 
position. However, subtle differences exist between the one-dimensional and two-dimensional filter 
responses owing to the inconsistency in the receptive fields and periodic boundary conditions between 
the one-dimensional and two-dimensional convolutions. The receptive field of the one-dimensional 
convolution operation has only one dimension, whereas that of the two-dimensional convolution 
operation has two dimensions. By contrast, the periodic boundary-filling signal of a two-dimensional 
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signal is a two-dimensional signal. However, the periodic boundary-filling signal from a two-
dimensional image columnized into a one-dimensional signal is a one-dimensional signal. Thus, a 
difference exists in the data involved in the operation at the same spatial location between the one-
dimensional and two-dimensional convolutions. Consequently, subtle differences occur in the results 
between the two filters. 

When we model the correlation filter tracking problem in matrix form, the mathematical formula 
is modeled as follows 

 
2

2

2

2 2
( )

1
min ,

2 2
E =


 

H
XH Y H H   (45) 

where 2   represents a two-dimensional correlation operator, 

    
1 1

2
0 0

2 , ( ) ( )
N N

m l

n k m,l n m,k +l
 

 

    ConvX H X H XH,   , H   is the reversed two-dimensional signal of 

H , H  satisfies two dimensional periodic boundary conditions, X , Y  and H   are the matrix form of 
x , y  and h . 

Rewrite the above formula into convolution form and we have 

   2 2

2 22
( )

1
min ,

2 2
E =


 Conv

H
H Y H, HX   (46) 

where H   satisfies   *ˆ2fft H H  , where Ĥ   denotes the spectrum of H  , 2fft   represents a two-

dimensional fast Fourier transform operator, and *Ĥ  is the conjugate matrix of Ĥ . 

According to the convolution theorem, the above expression can be further arranged into the 
frequency domain form, namely 

 
*

2 2
* * *

.
ˆ 2 2

( )
1ˆ ˆ ˆ ˆ ˆmin

2 2
E =

N N


 

H
H Y H X H   (47) 

Set 
*

*

( )ˆ

ˆ
dE

=
d

0
H

H
, we have 

 
 * * *ˆ ˆ ˆ ˆ ˆ

.
N

 
 0

 X H X Y H
  (48) 

Then, the filter in the matrix form is calculated by 

 
*

*

*

ˆ ˆ
ˆ = .

ˆ ˆ +



Y X
H

X X
  (49) 

Figure 1(a) shows the training sample, and Figure 1(b) illustrates the desired response. Figure 1(c) 
shows the test sample obtained by the cyclic shift of the training sample. Figure 1(d) presents the plot 

of the two-dimensional filter’s (the two-dimensional filter is calculated by 
*

*

*

ˆ ˆ
ˆ =

ˆ ˆ +



Y X
H

X X
) response. 

Figure 1(e) shows the plot of the one-dimensional filter’s (the one-dimensional filter is calculated by 
*

*
*

ˆ ˆˆ =
ˆ ˆ+



y x
h

x x
 ) response. Figure 1(f) shows the difference between the one-dimensional and two-

dimensional filter responses. The results show that the one-dimensional and two-dimensional filters 
are equivalent in positioning but are not completely consistent. When the image is cyclically shifted 
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to the edge, a significant difference is observed between the one-dimensional and two-dimensional 
filter responses. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 1. Connections and differences between the one-dimensional and two-dimensional 
filter responses. (a) Training sample (the size of the sample is 100 100  ). (b) Desired 
response. (c) Test sample obtained via the cyclic shift of the training sample. (d) Two-
dimensional filter response. (e) One-dimensional filter response. (f) Difference between 
the two-dimensional and one-dimensional filter responses. 

6. Experiments 

Experiments were conducted on a computer equipped with an i5-8265 (1.80 GHz) CPU. The 
proposed viewpoints and the equivalence of the two filter-solving methods were verified through 
numerical experimentation and by designing response maps, respectively, to ensure the mathematical 
rigor and scientific validity of the correlation filter object tracking algorithm. 

6.1. Numerical experimental verification of Theorem 1 

To verify Theorem 1, let  =sin 50x t . The sampling rate was taken as 100 Hz, and the sampling 

time is 0–0.99 s, that is, T
0,0.01,0.02, ,0.99=   t . The sinusoidal signal was Fourier transformed, and its 

real and imaginary parts were taken, respectively. Figure 2(a),(c) show the amplitude of the real part of the 
x̂  and the amplitude of the imaginary part of the x̂ , respectively. The real and imaginary parts were taken 
for the diagonal elements of   1

N N
F C x F . Figure 2(b) shows the amplitude of the real part of the diagonal 

elements of   1
N N

F C x F , and Figure 2(d) presents the amplitude of the imaginary part of the diagonal 
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elements of   1
N N

F C x F . The    1

2
ˆ

N N
 DiagF C x F x  in this experiment was 142.83 10 , where 

2
x  

represents the 2l  norm of x . These results show that the real part map and imaginary part map of both 

are completely consistent, which proves Theorem 1. 

  

(a) (b) 

  

(c) (d) 

Figure 2. Numerical experimental results for Theorem 1. (a) Amplitude of the real part 
of x̂  . (b) Amplitude of the real part of the   1

N N
F C x F   diagonal element. (c) 

Amplitude of the imaginary part of x̂  . (d) Amplitude of the imaginary part of the 

  1
N N

F C x F  diagonal element. 

6.2. Numerical experimental verification of Theorem 2 

To verify Theorem 2, let  =sin 50x t  . The sampling rate was taken as 100 Hz, and the 

sampling time is 0–0.99s, that is, T
0,0.01,0.02, ,0.99=   t . Figure 3(a) shows the pseudo-color map 

of the row-vector-based circulant matrix  TC x , and Figure 3(b) presents the pseudo-color map of 

the real part of ˆ( ) H
n nDiagF x F . The two maps are completely similar. The  T

2
ˆ( ) H

n n DiagF x F C x  in 

this experiment was 122.86 10 , thereby proving Theorem 2. 



4707 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

  

(a) (b) 

Figure 3. Numerical experimental results for Theorem 2. (a) Pseudo-color map of 

 TC x . (b) Pseudo-color map of ˆ( ) H
n nDiagF x F . 

6.3. Numerical experimental verification of Theorem 3 

To verify Theorem 3, let  =sin 50x t  and  =sin 20h t . The sampling rate was taken as 100 

Hz, and the sampling time is 0–0.99 s, that is, T
0,0.01,0.02, ,0.99=   t . Figures 4(a),(b) present the 

amplitudes of  C x h  over 1 s and   1
ˆˆreal ifft x h  over 1 s, respectively. The results show that 

the two amplitude maps are completely consistent. The     1
2

ˆˆ real ifft C x h x h   in this 

experiment was 122.44 10 . Since   1
ˆˆ= real ifft x h x h , Theorem 3 is verified. 

  
(a) (b) 

Figure 4. Numerical experimental results of Theorem 3. (a) Amplitude of  C x h  and 

(b) amplitude of  1
ˆˆreal ifft ( )x h . 
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6.4. Numerical experimental verification of Theorem 4 

To verify Theorem 4, let  =sin 50x t  and  =sin 20h t . The sampling rate was taken as 100 Hz, 

and the sampling time is 0–0.99 s, that is, T
0,0.01,0.02, ,0.99=   t . Figure 5(a) shows the amplitude 

of  TC x h   over 1 s, and Figure 5(b) presents the amplitude of   *
1

ˆˆreal ifft x h   over 1 s. The 

results show that the two amplitude maps are completely consistent. The 

    T *
1

2

ˆˆ real ifft C x h x h   in this experiment was 122.44 10  . As   *
1

ˆˆ= real ifft x h x h  , 

Theorem 4 is verified. 

  
(a) (b) 

Figure 5 Numerical experimental results for Theorem 4. (a) Amplitude of  TC x h  and 

(b) amplitude of   *
1

ˆˆreal ifft x h . 

6.5. Numerical experimental verification of Eq (44) 

To verify Eq (44), let 1I  be the two-dimensional image signal, as shown in Figure 6(a), and let 2I  

be the two-dimensional image signal, as shown in Figure 6(b). Figures 6(c),(d) illustrate the 

  *
2 1 2

ˆ ˆreal ifft I I   and   T
1 2( [Δτ ,Δτ ]) ( )c rmat Cat vec vecI I   responses. The results show that the 

responses were completely consistent as shown in Figures 6(c),(d). The 

     * T
2 1 2 1 2

2

ˆ ˆ ( [Δτ ,Δτ ]) ( )c rreal ifft mat Cat vec vecI I I I  in this experiment was 151.55 10 , proving 

that Eq (44) holds. 

6.6. Equivalence verification of the two filter-solving methods 

Figure 7(a) shows the base sample, and Figure 7(b) shows the predicted sample obtained via the cyclic 
shift of the base sample. In addition, Figures 7(c),(d) present the desired correlation response y  and the 
spatial domain response obtained according to Eq (43), respectively. Figures 7(e),(f) show the spatial 
domain response obtained using Eqs (38) and (39), respectively. The results show that the spatial responses 
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in Figures 7(d),(f) are completely consistent (i.e., the two filter-solving methods are equivalent). 

  
(a) (b) 

  
(c) (d) 

Figure 6. Numerical experimental results to validate Eq (44). (a) 1I  image, (b) 2I  image, 

(c)   *
2 1 2

ˆ ˆreal ifft I I  response, and (d)   T
1 2( [Δτ ,Δτ ]) ( )c rmat Cat vec vecI I  response. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Equivalence experiment of the two filter-solving methods. (a) Base sample. (b) 
Predicted sample obtained via the cyclic shift of the base sample. (c) Desired correlation 
response. (d) Spatial domain response based on Eq (43). (e) Spatial domain response based 
on Eq (38). (f) Spatial domain response based on Eq (39). 
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Through the diagonalization property of the row-vector-based circulant matrix and the 
convolution theorem, the two filter-solving methods transform the spatial domain operation into an 
entry-wise multiplication operation in the frequency domain to circumvent the inverse operations of 
large matrices. Table 5 lists the running times required to calculate Eqs (35) and (37) for different 
image sizes, where   was 0.1. The results indicate that solving the filter in the frequency domain can 
effectively reduce the operation time and improve the computational efficiency of the filter. The larger 
the signal size, the more apparent the advantage of solving the filter in the frequency domain. 

Table 5. Time consumed to solve in the spatial and frequency domains. 

Average time consumed (the number of the experiments is 10, and the image 

size is N N ) 
6=25N  4=102N  6=409N  

Time consumed in the spatial domain/s (according to Eq. (35)) 0.002429  0.088521  3.248634  

Time consumed in the frequency domain/s (according to Eq (37)) 0.000965  0.001281  0.001537  

7. Conclusions 

In this study, we systematically elucidated the theoretical modeling system of the correlation filter. 
Based on existing literature on correlation filters, four types of mathematical modeling and two types 
of filter-fast calculation methods were summarized and experimentally proven. The relationship 
among the four modeling types for correlation filter were discussed in detail. Our conclusions are as 
follows: 

1) We elaborated on the definitions of the circulant matrix, convolution, and correlation 
operations in the correlation filter and their relationships. The viewpoints and mathematical findings 
provided in this study can provide useful theoretical support for research in the field of correlated filter 
object tracking. 

2) The diagonalization property of the circulant matrix and the convolution theorem were 
employed to solve the filter by transforming the spatial-domain operation into an entry-wise 
multiplication operation in the frequency domain. This approach avoids the inverse operation of large 
spatial-domain matrices and reduces the computational complexity compared with directly solving in 
the spatial domain. The experiments showed that the results obtained using the two filter-solving 
methods were consistent. The proposed fast filter calculation method is critical the efficient 
implementation of the correlation filter tracking algorithm. 

3) We experimentally proved the existence of slight differences between the one-dimensional and 
two-dimensional filter methods. The main reasons for these differences were discussed in detail. 
Subsequently, the equivalence of the two filter methods in object positioning was reflected via 
experimentation to provide a reliable foundation for the engineering realization of the two theoretical 
methods. 

Traditional correlation filter tracking frameworks utilize handcrafted features to distinguish the 
object and background. The discrimination ability of these features is limited; thus, the application of 
the correlation filter tracking method in complex scenes has some limitations. As deep learning 
technology gradually matures, it will provide a correlation filter theoretical framework with more 
discriminative visual features. Subsequent work should attempt to improve the correlation and deep-
learning-based tracking algorithm to improve the overall performance of the tracker. For example, the 
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computational theory proposed in this paper can be introduced into cyclic shifting attention 
computation [25] to obtain more efficient computation. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

This work is supported by the Natural Science Foundation Project of Zhangzhou City 
(ZZ2023J37), the Principal Foundation of Minnan Normal University (KJ19019), the High-level 
Science Research Project of Minnan Normal University (GJ19019), Research Project on Education 
and Teaching of Undergraduate Colleges and Universities in Fujian Province (FBJY20230083), and 
the Education Research Program of Minnan Normal University (202211). 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. S. Javed, M. Danelljan, F. S. Khan, M. H. Khan, M. Felsberg, J. Matas, Visual object tracking 
with discriminative filters and siamese networks: A survey and outlook, IEEE Trans. Pattern Anal. 
Mach. Intell., 45 (2023), 6552–6574. https://doi.org/10.1109/TPAMI.2022.3212594 

2. F. Chen, X. Wang, Y. Zhao, S. Lv, X. Niu, Visual object tracking: A survey, Comput. Vision Image 
Understanding, 222 (2022), 103508. https://doi.org/10.1016/j.cviu.2022.103508 

3. D. Zhang, Z. Zheng, M. Li, R. Liu, CSART: Channel and spatial attention-guided residual learning 
for real-time object tracking, Neurocomputing, 436 (2021), 260–272. 
https://doi.org/10.1016/j.neucom.2020.11.046 

4. F. Gu, J. Lu, C. Cai, Q. Zhu, Z. Ju, RTSformer: A robust toroidal transformer with spatiotemporal 
features for visual tracking, IEEE Trans. Hum.-Mach. Syst., 54 (2024), 214–225. 
https://doi.org/10.1109/THMS.2024.3370582 

5. Y. Qian, L. Yu, W. Liu, A. G. Hauptmann, Electricity: An efficient multi-camera vehicle tracking 
system for intelligent city, in 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW), (2020), 2511–2519. 
https://doi.org/10.1109/CVPRW50498.2020.00302 

6. X. Chen, X. Xu, Y. Yang, Y. Huang, J. Chen, Y. Yan, Visual ship tracking via a hybrid kernelized 
correlation filter and anomaly cleansing framework, Appl. Ocean Res., 106 (2021), 102455. 
https://doi.org/10.1016/j.apor.2020.102455 

7. H. Zhang, Y. Li, H. Liu, D. Yuan, Y. Yang, Feature block-aware correlation filters for real-time 
UAV tracking, IEEE Signal Process. Lett., 31 (2024), 840–844. 
https://doi.org/10.1109/LSP.2024.3373528 

  



4712 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

8. X. Wang, D. Zeng, Y. Li, M. Zou, Q. Zhao, S. Li, Enhancing UAV tracking: a focus on 
discriminative representations using contrastive instances, J. R.-Time Image Process., 21 (2024), 
78. https://doi.org/10.1007/s11554-024-01456-2 

9. C. Zhu, J. Yang, Z. Shao, C. Liu, Vision based hand gesture recognition using 3D shape context, 
IEEE/CAA J. Autom. Sin., 8 (2021), 1600–1613. https://doi.org/10.1109/JAS.2019.1911534 

10. M. N. H. Mohd, M. S. M. Asaari, O. L. Ping, B. A. Rosdi, Vision-based hand detection and 
tracking using fusion of kernelized correlation filter and single-shot detection, Appl. Sci., 13 
(2023), 7433. https://doi.org/10.3390/app13137433 

11. J. F. Henriques, R. Caseiro, P. Martins, J. Batista, High-speed tracking with kernelized correlation 
filters, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015), 583–596. 
https://doi.org/10.1109/TPAMI.2014.2345390 

12. Y. Li, J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in Computer 
Vision-ECCV 2014 Workshops, 8926 (2014), 254–265. https://doi.org/10.1007/978-3-319-16181-
5_18 

13. M. Danelljan, G. Hager, F. S. Khan, M. Felsberg, Learning spatially regularized correlation filters 
for visual tracking, in 2015 IEEE International Conference on Computer Vision (ICCV), (2015), 
4310–4318. https://doi.org/10.1109/ICCV.2015.490 

14. C. Ma, X. Yang, C. Zhang, M. Yang, Long-term correlation tracking, in 2015 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), (2015), 5388–5396. 
https://doi.org/10.1109/CVPR.2015.7299177 

15. M. Danelljan, G. Häger, F. S. Khan, M. Felsberg, Discriminative scale space tracking, IEEE Trans. 
Pattern Anal. Mach. Intell., 39 (2017), 1561–1575. https://doi.org/10.1109/TPAMI.2016.2609928 

16. M. Danelljan, G. Bhat, F. Shahbaz Khan, M. Felsberg, ECO: Efficient convolution operators for 
tracking, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 
6931–6939. https://doi.org/10.1109/CVPR.2017.733 

17. A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, M. Kristan, Discriminative correlation filter with 
channel and spatial reliability, in 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), (2017), 4847–4856. https://doi.org/10.1109/CVPR.2017.515 

18. Z. Huang, C. Fu, Y. Li, F. Lin, P. Lu, Learning aberrance repressed correlation filters for real-time 
UAV tracking, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 
2891–2900. https://doi.org/10.1109/ICCV.2019.00298 

19. B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, J. Yan, SiamRPN++: Evolution of siamese visual 
tracking with very deep networks, in 2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), (2019), 4277–4286. https://doi.org/10.1109/CVPR.2019.00441 

20. T. Xu, Z. Feng, X. Wu, J. Kittler, Joint group feature selection and discriminative filter learning 
for robust visual object tracking, in 2019 IEEE/CVF International Conference on Computer Vision 
(ICCV), (2019), 7949–7959. https://doi.org/10.1109/ICCV.2019.00804 

21. D. S. Bolme, J. R. Beveridge, B. A. Draper, Y. M. Lui, Visual object tracking using adaptive 
correlation filters, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, (2010), 2544–2550. https://doi.org/10.1109/CVPR.2010.5539960 

22. L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, P. H. Torr, Fully-convolutional siamese 
networks for object tracking, in Computer Vision-ECCV 2016 Workshops, 9914 (2016), 850–865. 
https://doi.org/10.1007/978-3-319-48881-3_56 

  



4713 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

23. H. K. Galoogahi, A. Fagg, S. Lucey, Learning background-aware correlation filters for visual 
tracking, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 1144–1152. 
https://doi.org/10.1109/ICCV.2017.129 

24. Y. Li, C. Fu, F. Ding, Z. Huang, G. Lu, Autotrack: Towards high-performance visual tracking for 
UAV with automatic spatio-temporal regularization, in 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), (2020), 11920–11929. 
https://doi.org/10.1109/CVPR42600.2020.01194 

25. Z. Song, J. Yu, Y. P. Chen, W. Yang, Transformer tracking with cyclic shifting window attention, 
in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 
8781–8790. https://doi.org/10.1109/CVPR52688.2022.00859 

26. Y. Chen, H. Wu, Z. Deng, J. Zhang, H. Wang, L. Wang, et al., Deep-feature-based asymmetrical 
background-aware correlation filter for object tracking, Digital Signal Process., 148 (2024), 
104446. https://doi.org/10.1016/j.dsp.2024.104446 

27. K. Chen, L. Wang, H. Wu, C. Wu, Y. Liao, Y. Chen, et al., Background-aware correlation filter for 
object tracking with deep CNN features, Eng. Lett., 32 (2024), 1353–1363. 

28. R. M. Gray, Toeplitz and circulant matrices: A review, Found. Trends Commun. Inf. Theory, 2 
(2006), 155–239. http://doi.org/10.1561/0100000006 

29. J. F. Henriques, R. Caseiro, P. Martins, J. Batista, Exploiting the circulant structure of tracking-
by-detection with kernels, in Computer Vision-ECCV 2012, (2012), 702–715. 
https://doi.org/10.1007/978-3-642-33765-9_50 

30. M. E. Kilmer, C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra Appl., 
435 (2011), 641–658. https://doi.org/10.1016/j.laa.2010.09.020 

31. N. Hao, M. E. Kilmer, K. Braman, R. C. Hoover, Facial recognition using tensor-tensor 
decompositions, SIAM J. Imaging Sci., 6 (2013), 437–463. https://doi.org/10.1137/110842570 

32. M. E. Kilmer, K. Braman, N. Hao, R. C. Hoover, Third-order tensors as operators on matrices: A 
theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. 
Appl., 34 (2013), 148–172. https://doi.org/10.1137/110837711 

33. B. Hunt, A matrix theory proof of the discrete convolution theorem, IEEE Trans. Audio 
Electroacoust., 19 (1971), 285–288. https://doi.org/10.1109/TAU.1971.1162202 

34. J. Martinez, R. Heusdens, R. C. Hendriks, A generalized Fourier domain: Signal processing 
framework and applications, Signal Process., 93 (2013), 1259–1267. 
https://doi.org/10.1016/j.sigpro.2012.10.015 

35. A. Iwasaki, Deriving the variance of the discrete Fourier transform test using Parseval’s theorem, 
IEEE Trans. Inf. Theory, 66 (2020), 1164–1170. https://doi.org/10.1109/TIT.2019.2947045 

36. Q. Hu, H. Wu, J. Wu, J. Shen, H. Hu, Y. Chen, et al., Spatio-temporal self-learning object tracking 
model based on anti-occlusion mechanism, Eng. Lett., 31 (2023), 1–10. 

37. Y. Huang, Y. Chen, C. Lin, Q. Hu, J. Song, Visual attention learning and antiocclusion-based 
correlation filter for visual object tracking, J. Electron. Imaging, 32 (2023), 13023. 
https://doi.org/10.1117/1.JEI.32.1.013023 

38. J. Cui, J. Wu, L. Zhao, Learning channel-selective and aberrance repressed correlation filter with 
memory model for unmanned aerial vehicle object tracking, Front. Neurosci., 16 (2023). 
https://doi.org/10.3389/fnins.2022.1080521 

  



4714 

Electronic Research Archive  Volume 32, Issue 7, 4684–4714. 

39. C. Fan, H. Yu, Y. Huang, C. Shan, L. Wang, C. Li, SiamON: Siamese occlusion-aware network 
for visual tracking, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 186–199. 
https://doi.org/10.1109/TCSVT.2021.3102886 

40. W. Hu, Q. Wang, L. Zhang, L. Bertinetto, P. H. S. Torr, SiamMask: A framework for fast online 
object tracking and segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 3072–3089. 

41. D. Sharma, Z. A. Jaffery, Multiple object tracking through background learning, Comput. Syst. 
Sci. Eng., 44 (2023), 191–204. https://doi.org/10.32604/csse.2023.023728 

42. J. Zhang, Y. He, S. Wang, Learning adaptive sparse spatially-regularized correlation filters for 
visual tracking, IEEE Signal Process. Lett., 30 (2023), 11–15. 
https://doi.org/10.1109/LSP.2023.3238277 

©2024 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 

 


