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Abstract: The issue of non-fragile sampled-data control for synchronizing Markov jump Lur’e systems
(MJLSs) with time-variant delay was investigated. The time-variant delay allowed for uncertainty
that was constrained to an interval with defined upper and lower boundaries. The components of the
nonlinear function within the MJLSs were considered to satisfy either Lipschitz continuity or non-
decreasing monotonicity. Numerically tractable conditions that ensured stochastic synchronization with
a predefined £, — L, disturbance attenuation level for the drive-response MJLSs were established,
utilizing time-dependent two-sided loop Lyapunov-Krasovskii functionals, together with integral and
matrix inequalities. An exact mathematical expression of the desired controller gains can be obtained
based on these conditions. Finally, an example with numerical simulation was employed to demonstrate
the effectiveness of the proposed control strategies.
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1. Introduction

Synchronization of chaotic systems stands as a prominent research area within nonlinear system
science. Its potential utility spans diverse domains, including the transmission of digital signals,
secure communication, and information processing [1-3]. Numerous chaotic systems, such as Chua’s
circuit and Hopfield network, can be effectively represented as Lur’e systems [4]. Consequently, the
synchronization of Lur’e systems (LSs) has garnered substantial attention. Within the master-slave
framework established by Pecora and Carroll [5], a wealth of research results addressing various
synchronization issues, including quasi-synchronization [6], cluster synchronization [7], prespecified-
time synchronization [8], and bipartite synchronization [9], have been reported.
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In actual engineering systems, abrupt changes can occur in the structure or parameters due to com-
ponent failures, sudden environmental disturbances, and changes in connections between subsystems.
Markov chain often serves as a suitable candidate to model these abrupt change behaviors [10-13].
Synchronization of Markov jump Lur’e systems (MJLSs) was initially investigated by [14], where a
delay feedback control scheme was introduced. Following that, reference [15] considered singular
perturbations and developed a mode-dependent control strategy to ensure stochastic synchronization.
Reference [16] took into account both time delays and external disturbances, presenting a design for
state-feedback controllers to achieve finite-time H,, synchronization.

Recent years have witnessed the introduction of various networked control strategies, including
quantized control [17], event-triggered control [18], and sampled-data control (SDC) [19], in the study
of synchronization for MJLSs [20-22]. Under SDC strategies, the system’s state or output is sampled
at specific time instants, and the control action is updated and applied at those discrete time points,
thereby effectively decreasing the amount of transmitted information and conserving communication
bandwidth [23,24]. In the study of [21], MJLSs with a single time delay were examined. Building on
a novel Lyapunov-Krasovskii functional (LKF), two SDC control approaches, formulated in terms of
linear matrix inequalities (LMIs), were established to guarantee stochastic synchronization between the
master and slave MJLSs. This research was extended to encompass multiple time delays in [22], where
a design approach for mean-square exponential synchronization was developed.

Despite theoretical progress in the research of SDC for delayed Markov jump systems, there are
still concerns that need to be addressed further. In particular, the time delays are assumed to be
time-invariant in [21, 22], whereas, in practical application circumstances, they often display time-
variant behavior [25,26]. Incorporating time-variant delays is more challenging but may result in more
generic solutions. Furthermore, the control designs in [21,22] do not account for the influence of
gain fluctuations. In engineering implementations, controllers/filters frequently exhibit a degree of
parameter inaccuracies due to digital rounding errors, memory constraints, and analog-digital conversion
imprecision [27]. As indicated by [28], even a minor gain fluctuation can impair the effectiveness of
control/filtering.

Motivated by the preceding discussion, this paper focuses on the issue of non-fragile sampled-
data control for synchronizing delayed MJLSs. In contrast to the studies conducted in [21,22], the
present research incorporates considerations for both time-variant delay and gain fluctuations. The main
contributions of this paper can be summarized as follows: 1) The components of the nonlinear function
within the MJLSs are assumed to be either Lipschitz continuous or monotonic nondecreasing. This
enables the construction of two distinct two-sided loop LKFs; 2) Two sufficient conditions concerning
the non-fragile sampled-data controller design are derived to ensure that the drive-response MJLSs are
stochastically synchronized with a prescribed £, — L, disturbance attenuation level (DAL). An exact
mathematical expression of the desired controller gains can be obtained based on these conditions.

Notations: Throughout, the notation &{-} represents the mathematical expectation. colf---} and
diag{-- -} stand for a column vector and a block-diagonal matrix, respectively. Represent by R" the
n-dimensional Euclidean space, by R™" the set of all [ X n real matrices, by S” the n X n symmetric
matrices, and by S’} the n X n symmetric and positive-define matrices. The superscripts “—1" and “T”
stand for the inverse and transpose of a matrix, respectively. .7(P) is the sum of matrix P and its
transpose (i.e., Z(P) = P + PT). A, (P) is used to denote the largest eigenvalue of P. I, and 0y,
represent the n X n identity matrix and / X n zero matrix, respectively. The symbol “+” denotes a
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symmetric block.
2. Preliminaries

Consider the following MJLSs with time-variant delay:
X(1) = A(6(0))x(1) + W(6(0)x(r — o7(1))
+ H(6()) f(Dx(1)), (2.1)
1) =C60)x(),
Y1) = AB0))y(1) + W((0))y(t — o (1))
+ H(6(1)) f(Dy(®)) + u(7)

2.2)
+ G(6(0)w(1),
1) =CE@))¥(),

where x(1) = col{x,(1), x,(t), ..., x,(t)} and y(r) = col{y(t), y»(?), ..., y.(t)} denote the state vec-
tors of the drive and response system, respectively; 2(f) = col{Zi(t), Z,(?), ..., Z,(t)} and Z(¢) =
col{Z| (1), Z5(1), ..., Zn(t)} are the measurement output of the drive and response system, respec-
tively; u(t) € R" is the control input; f(Dx(¢)) = [fl(lexl(t)), f,,(d,{xn(t))] and f(Dy(t)) =
[ fidIyi (D), ..., fu(d] yn(t))] are nonlinear function vectors, where d! is the ith row of matrix D;

w(t) denotes the exterior disturbance; and o (?) is the time delay, which, as in [29-31], is considered to
be continuous and satisfies the following constraints:

0o <o(t)<0y, 0p=0,—07,

where 0| and o, are the lower and upper bounds of the variable time delay, respectively. System
matrices A(6(t)), W(d(2)), H(6(t)), G(6(t)), and C(6(¢)) are known matrices with appropriate dimensions.
x(s) = p(s) and y(s) = p(s), s € [0, 0] denote the initial condition with o, being the upper bounds of
delay function o (¢). The time-homogenous Markov jump process with right continuous trajectories is

represented by {0(7)} that takes values in I" = {1, 2, ..., I'}. The transition probability matrix (TPM) is
characterized by & = m,,,, which is defined as follows:

T + 0(@), m # n,

Pr{é(t + )= nl6(t) = m}:{ 1 + Ty + 0(), m = n

where ¢ > 0, limwo(%) = 0, and &, for all m,n € T, denotes the switching rate from m to n with

T = 0, m # n, and &, = — Zgzl,nm Tn < 0[32,33]. The sampled-data controller considered in this

study differs from the state-feedback controllers discussed in [34-36]. It is based on output feedback
and takes into account gain fluctuations. The controller structure is given by:

u(®) = (K(6(1) + AK(6(0)))(&(1) — (1)), (2.3)

where K(6(¢)) denotes the controller gain matrix to be determined and #, (k = 0, 1, 2, ...) is the updated
instant time of the zero-order-hold [37]. Throughout this work, the sampling periods are considered to
be bounded and time-variant, satisfying

tesl — te = hy € [hy, by,
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where /; denotes the variable sampling interval, and scalars 4, and &, denote the lower and upper
bounds of A, respectively. AK(6(¢)) stands for the gain uncertainty with the following form:

AK(6(1)) = E(6(D))ON(5(n), 2.4)

where E(6(7)) and N(6(¢)) are certain real constant matrices, and ® stands for an uncertain matrix
meeting ®7® < I [38—40]. Thus, by (2.4), (2.3) can be restructured as

u(®) = (K(6(1)) + E(6(1)ON(6(0))(&(t) — (1)) (2.5)

For (1) = m, m € T, from (2.1), (2.2), and (2.5), we can obtain the following synchronization
error system:

77(f) :Amn(t) + Wmn(t - O-(t)) + Hmf(Dn(t)) - (Km + Em®Nm)Cmn(tk) - Gmw(t)’ te [tk’ tk+1) » (26)

where f(Dn(t)) = f(Dn(t) + Dy(t)) — f(Dy(t)). The nonlinear functions are supposed to adhere to one
of the two distinct assumptions outlined below:

Assumption 1. There exists a matrix L = diag{L;, ..., L,} > O that ensures that

|fi(m) = fim)l < Lilm =)l i € {1,...,n},

for any two different scalars ny, n, € R.

Assumption 2. There exists a matrix L = diag{L;, ..., L,} > O that ensures that
0< fim) — fi(n2) <L.ic(l.. . .n
m—1n

for any two different scalars n,, n, € R.

Remark 1. In most extant works discussing systems with nonlinear functions, Assumptions 1 or 2 are two
extensively employed hypotheses (see, e.g., [41—43]). Assumption 1 imposes a condition on the nonlinear
function vector, requiring only Lipschitz continuity of its components. Assumption 2 strengthens this
requirement by demanding not only Lipschitz continuity but also nondecreasing monotonicity. Examples
of functions that satisfy Assumption 1 but violate Assumption 2 include the cosine function cos(t) and
the exponential function exp(—t?).

Definition 1. [44] Error system (2.6) is said to be stochastically stable if, when w(t) = 0,

f E{ (P Ino, 6o} ds < o,
0

holds true.

Definition 2. Given a scalary > 0, drive-response MJLSs (2.1) and (2.2) are said to be stochastically
synchronized with a prescribed L, — L., DAL vy if error system (2.6) is stochastically stable and

sup &z (Nz(1)} < ¥ f W' (B)w(B)dB, 2.7)
0

>0

holds for all nonzero w(t) € £,[0, co] and the zero initial condition.
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The aim of this paper is to figure out a non-fragile sampled-data feedback controller in the compact
form of (2.5) to ensure that drive-response MJLSs (2.1) and (2.2) are stochastically synchronized with a
prescribed £, — L, DAL .

The £, — L. DAL, also called the energy-to-peak DAL, was proposed by Wilson in [45]. The level
is a metric that quantifies the controller’s performance to limit the impact of energy-bounded disturbance
on the peak of the system’s output.

In order to address such an issue, the following four lemmas should be employed:

Lemma 1. [46,47] For a given matrix R € S’} and any differentiable function y in [4;, ;] — R”,
we have

1 - }
7 O’ diag{R, 3R, 5R}0,

2— 14

A2
f L (Ru(s)ds >
f 2
where

u(Az) = p(Ay)

- A
O=| ) +p) - [ ueds |,
A
() = () = 25 [17 v (Du(s)ds
_ S—/h
Una(9) = A=) - 1

Lemma 2. [48] For a scalar B € (0, 1), matrices 6, and 0, € S';, and 65 and 04 € R™", the following
inequality holds true:
a0
Ak

-8

6+ (1-B)6 (1-pB)6s + b,
% 6, +,8§2 ’

where 0; = (6; — 046,61 and 6, = (6, — 616, 65).

Lemma 3. [49] For real matrices R and S of suitable dimensions and a scalar a > 0, one has
RS" +SR" <a”'RR" +aSS”.

Lemma 4. [50] The inequality

is equivalent to
S>0andR-US™'U" > 0.

3. Main results

This section focuses on the non-fragile sampled-data synchronization problem for MJLSs with
time-variant delay. Sufficient conditions are provided to ensure stochastic synchronization with a
predefined £, — L., DAL for the drive-response MJLSs and the corresponding desired controller gains

will be given.
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To go further, we need to introduce some notations as follows:

p= [ Onx=tyn In Onx(19-on ], t=1,---,19,

Qo = colipi7, p1 — p2> p1 + P2 —2ps, P2 — pa» Qo)

Qo = o12(p2 + pa) = 2(p11 + P13,

Qi(x) = col{p1, a1ps, T1ps, Pi1 + Pi3s Qi)

Qi (x) = (02 = (P11 + pia) + (x — o) (P12 — P13,
Q, = col{p1 — p2, p1 + P2 —2ps, p1 — p2 — 6ps},
Q3 = colip, — p3, p> + p3 —2p7, p> — p3 — 6ps},
Q4 = colips = pa, p3 + ps — 2po, p3 — P4 — 6pio},

Q34 = col{Qs, 4}, Qs = col{p) — p1s, p1o — p1},
Q¢ = col{pis, pro}s
vo(t) = col{n(®), n(t — o), n(t — o (1)), n(t — 02)},

1
v = —[ [ alds [, e T()ds |

1
vat) = s | Lo (s [ exonm; T(s)ds |

o(t)
1

vs() = 02—[ [0 @ds [ extomt)ds |

—o(1)
vy(1) = (o (1) — ova(1), vs(t) = (02 — a(D))vs(0),
&(1) = colié& (1), &1(1), &(D)},
§o(1) = collvo(), ..., vs(D)},
&1(t) = col{ f(Dn(1)), w(1), 7D},
&(t) = colin(ty), n(tes1)}s

where n’ (s) = n’ (t + s) and ei(s)(j=1, , 4) are given by

+ +o(t
es) = 2250 (s =22 FTD
(On] O'(l)—0'1
+ +
ex(s) = 2—2 T2 eyus)=22122 .
oy —o(1) o112

For the nonlinear function of error system (2.6), we consider the following two different assumptions.

Under Assumption 1, the following inequality holds true
2d ) < Ld (), i=1,2, ...n.

In this case, we can propose the following condition:

(3.1

Theorem 1. Under Assumption 1, for given scalars y > 0, h, > hy > 0, u > 0, suppose that there exist
scalars €, > 0, matrices P in Si", Py, S1, 82 R, Ry, S5, S in S, S3in S, S 4 in S", diagonal matrix
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Ts in S7, arbitrary matrices M,, M, in R¥™31 Ma My, Ty, S7, Ss, X in R, and Ts, Ty in R,

such that

[ [1"%(0) + €N, N7,
k

k
[ [1"%(02) + €,N,, N7,
*

k
[ [12(0)) + €,N,, N7,
*

%
[ ﬁgk (0-2) + Em]VmN;Z;

%

*

hold for m € T, hy € {hy, hy}, and y € {01, 0,}, where

n’ £,

2 0

*  —6ul |

ne g,

2 0

*  —6ul |

ne g,

H%Q 0

0 —e,l |

ne g,

ne o

* _EmI i
P, CI ]
* ,}/21 ]

M) = To() + T + Ty + kA — QLALQs,

[ (x) = Mo(y) + T + T + Az — QL A2Qs,
= [ (pro—p)'™M; QIM, ],
;7 = [ (pro—p)"™M; QImT ],
I, = [ (P = p18) My QI M, ],
I, = [ (p1—p1s)" My QIMT ],
I1{* = diag{=S's, —Ra),
I3 = diag{-S, —Ra},

<0,

<0,

<0,

<0,

> 0,

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

r
Ho(y) = S (p1 Pupi7 + QF () PQo) + Zﬂmnl?]TPnPl +S§ + pl(cIR, + o 1,R) 17

n=1

— QgRIQZ — Q§4RTMQ34 + /_\1 + T(X) - p?6p169

|

S =diag{S1, =S 1 + 82, Opscns =S 2, O15uxi5n}s
R = diag(R;, 3R, SR}, i = (1, 2,
y Ry + ZXR, X + L0y,
Ry = o2 o2, X_U‘ITIZ,
* Rz + o1 R2
— SS M, <2 255 M;
Al = A=
$ [ * 2S6 ] y * Sﬁ

|

A= —(P1T - P1T8)54(P1 - pig) + y[(Png - plT)S7P19 + (P1T9 - P{)Sspls],
T, = S[(p|Ti + piuT)(Anpi + Wyups + Hupis — Gupis — P17)]
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— Z[(p] + up{)XuCupis),
T(x) = L (Tza:1(x) + Tsaa(x)),
P17 P11
ay) =y — o - ,
1) = 1)[178] [pu]
P9 P13
@ (y) = (05 — - ,
2(x) = (02 )()[plo ] [p14]
T = (p{ D' LTsLDp; — pisTspis),
Ay = =QLS3Q6 + lipl;Sepir — L (p13S1p10 + PloSsp1s),
As = S((p] — pig)Sap17) + P12 spi7 + Q¢S 30,
E, =—(p|T) + p;uT))E,,
Nm = NmCmPIS-

Then, drive-response MJLSs (2.1) and (2.2) are stochastically synchronized with a predefined £, — L.,
DAL if the SDC gains in (2.3) are given by

K, =T;'X,, meT. (3.7)

Proof. For 6(t) = m € T, choose the following LKF:

P, 60, 1 =130, 50, 1)+ Va(0) + I5(0) + a(t) + F5(0), [t 1), (3.8)
with
i1(e), 800, 1) = 1T OPG@I),
Y1) = & (OPG (),
YA(t) = f tm 7 (5)S 1n(s)ds + f : 7 (5)S am(s)ds,
s =o [ 0 [ ; R o [ ; i ()Ru(s)dsdb,
V5(1) = (tes N lt)(tH— 1€ S 36 + (e — 1) X (nZ;) - ;r(tk))TS4(77(t) — n(t))
bt — Oy f S s — (1~ )y f S is)ds
+2(t - rk>(n<tk+k1> = n(®)" X (Stirr) + Ssn(t0)),
where

0 0 —0] —0]
£1(t) =col{n(t), f n:(s)ds, f e ()m(s)ds, f n(s)ds, oz f es(s)n(s)ds}.

(o] -0 ()

In consideration of

T12e4(8) = () = o)ea(s) + (o2 — 07 (1))
= (02 —a(®)es(s) = (o(1) — o),
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one has
o [ edomions
—0| —o (1)
=(o(t) - o) f ()ez(S)Th(S)dS)—(O'(I)—O'l)( f ni(5)ds)
—01 —o (1)

+ (02 = () f ()nt<s>ds)+<az—a(z>>( f ex(s)m(s))

=Q (o ()EQ).
In light of

n) = p:1&Q@),
0
f n(s)ds = o1 ps&(1),

0
f e () (s)ds = o pe(1),

f n:(s)ds = (p11 + p13)é(0),

and (3.9), we can write

(0 = ' Q] (o ().

Define £ as the infinitesimal generator of random process {7n(t), 6(¢)}. For each 6(¢) = m,

LY (), 6(1), 1)

1
= lim —[&(7 (1t + ), 8t + @), 1+ @In(0), 51), O} =V (1), 51), 1)]-

=0 @

Subsequently, we can deduce that

LA @@, 6(), 1)

1 r
=1lim —[ D (T + 0(@)) X0 (¢ + QP + @) + (1 + Tnip + 0(4)

n=1,n#m

X0 (t + @Pu(t + ) =1 (O)P(1)]

1 r
= lim —[ 3" (e + ol@)n” (t + Pt + 9) + 0" (1 + QP + ) = 0" (OPu(0)|
n=1

e—0* ()

T
_ T : 1 T T
=1 O T P10 + lim Z[" @+ @)Pointe + ¢) =1 OPir0)

n=1

T
= 0" (O T P)0(O) + 20 (P, 1).
n=1

(3.9)

(3.10)
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It follows that

LI5(t) =£" (1)L (Qf () PQo)E®),
LY5(1) =T (DS ),
LYL(t) =i ()(TIR) + T, R)N(1) — 0y f " ()R 7(s)ds

-0

[—0|
— o f 7" ($)Rai(5)ds,
I3

-0

LY5(1) =€ (OAED) + ET (1 ~ 1A + (i1 = DA)E®D) — I f 7' ()8 s(s)ds

Tk

Tkt 1
— Iy f 1" (s)S n(s)ds.
t

For the integral in (3.13), by Lemma 1, one has

—0 f 7' (ORi(s)ds < = E(NQ R &),

t—0| T gk, 0
~o12 f ﬁT<s>Rm<s>dss—fT<z>[gj] [“’:‘” ciks ng ]ff(f)-

—02 o—0 (1)

Employing Jensen’s inequality, for the integral items in (3.14), we have

—hkfﬁT(S)Ssﬁ(S)dS

Tk

h
<- i(n(t) — ()" S s(n(®) = (1),

T+l
- Iy f 0" (5)S 6n(s)ds
t

h
<- - lk_ t(n(tku) - ﬂ(t))TS 6(N(tes1) — (D).

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

For any matrices M,, M, in R*>" and M3, M, in R™", from Lemma 2 we can obtain the follow-

ing inequalities:

T o12R
Q 12182 O Q .
—fT(O[ a ] [ Tk “ a ]f(t) < —&N (D RuQE(),
=0 (1)
Iy,
t—1
Iy

() — n(1))" S s(n(®) — ()

; ((tes1) = 1O)'S 6(1trs1) — 1(2))
k1 — 1

g 0
s—f@%WHkSJLS]%an

0 Tkr1—1 6

(3.19)
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< — E1 Q58 4 Qsé(r)

t—1 t
< —fT(t)QST[ k k+1 —

e AZ] Qsé (1), (3.20)

with
S5+ (580, (SM; + HEM,
* S6 + = tkSM3 ’

m, = (Ss— MyS5'M),
S, = (S6— MiS'M3).

e
X

Furthermore, along (2.6), using the free-weighting-matrix approach [51], for any matrices T, T, in
R™", the following is satisfied:

0 =2[n" (DT + 1" )T 1[Aun(t) + Wt — o(1))
+ H,f(Dn(t)) — (K, + E,ON,)Co(ti) — G(t) — 77 (£)]. (3.21)

On the other hand, by the definitions of a;(o(¢)) and a,(o(¢)), for any matrices T3, T4 in R!7™>?",
one has

267 (0)(T31(07(1)) + Taaa(0°(1)))E) = 0. (3.22)
For any diagonal matrix 7’5 in S}, from (3.1), the following holds:
FT(Dn)Ts f(Dn(D) < 0" ())D” LTsLDx(1). (3.23)

For t € [, t;+1), combining the above inequalities, one obtains

ELLY (@), 5(0), D) < EIE (r)[ H’“( (1) + ! hk I )]0 + o D),
where
(o) = To(o () + T + T + Ay — QTALQs,
H’;k(cr(z)) =Tlo(o(t)) + T + T + leAs — QL A’Qs,

[(P1 Tl + p17T2)(Amp1 + me3 + Hmp15 (Km + Em®Nm)Cmp18 - Gmplé - P17)]~

By setting T, = uT; and using (3.7), IT}*(0°(£)) can be rearranged as I1}*(o(1)) + -7 (E,,®ON",). Using
Lemma 3, one has

S(EON) < e'ELE! +€,N,N.,
and, thus, it can be concluded that IT*(o°(¢)) + .%(E,,®NT) can be guaranteed by

f[}l”‘(oq) + 6,,‘115,,,[7?;1 + emNmN,,f Hiz

<0
* H%z ’
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which is equivalent to (3.2) by Lemma 4. Since Hﬁ’k () and Hg"(-) are convex functions, it is easy to get
LD (o (1)) < 0 from (3.2) and (3.3). Similarly, we can show that &7 ()12 (o(1))é(7) < O can be
assured by (3.4) and (3.5). Thus, for ¢ € [#, tx+1), one has
E(LY (), 5), D} < Efw w(n)}. (3.24)
When w(t) = 0, from (3.24), there exists a scalar @ > 0 such that
ELY (n(1), 6(1), 1)} < —a NI, t < 1 < fr41. (3.25)

Using Dynkin’s formula, one has

E{V (n(t,)), 6t ), )} = EV (1), 6(t), 1)}

<—a& { f k” ||n(s)||2ds}. (3.26)

Since #5(t) = 0 and lim,,,, ¥ (n(2), 6(2), t) = V' (n(te), 6(tr), 1), ¥ (n(t), 8(¢), t) is continuous. Thus,
from (3.26), one obtains

ZS{IM ||n(S)||2dS} <o 'E{Y ((0), 50), 0)} < 0.
k=0 f

Therefore, from Definition 1, error system (2.6) is stochastically stable.

Next, we consider the case that w(t) # 0 and introduce a £, — L, performance index function of
error system (2.6) as follows:

10 = &1 0. 50, 0) - [ o Ghokods.
Then, under the zero initial condition, using Dynkin’s formula for (3.24) gives
1(t) = E{7 (n(0), 6(0), 0)} + 8{f0t LY ((n(s), 6(s), S)ds} - fot o' (s)w(s)ds
= 8{ft97/(,](8)’ o(s), s)ds — wT(S)w(S)dS}-

0

From (3.24), one gets I(¢) < 0. Thus,

t
E{V(n@), 6@t), 1)} < f W’ (5)w(s)ds. (3.27)
0

Applying Lemma 4, (3.6) is equivalent to

1
P, - ?C;Cm > 0. (3.28)
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In virtue of (3.8), (3.27), and (3.28), one has

&{" (a0} =& {n" OCHCan()
<&y OP.m0)]
<&V (), 5@, 1)

<y2fwT(s)w(s)ds

0

<y2f w! (s)w(s)ds.
0

Hence, system (2.6) has a £, — L, performance. In this way, the proof is completed.

On the basis of Assumption 2, the following inequalities

FAd () < dImiLifi(d] mi(), (3.29)
FAA i) < (Lid! m())°1, (3.30)
hold true fori =1, ..., n.
Based on LKF:
_ n L ni(t)
¥ (n(0), 5(2), 1) = ¥ (1), 5(2), 1) + 2 Z fod rif(s)ds, (3.31)
i=1

and we can easily derive the following theorem:

Theorem 2. Under Assumption 2, for given scalars y > 0, hy > hy > 0, u > 0, suppose that there are
scalar €, > 0, matrices P in S P, S1, 82 Ry, Ry, S5, S inS", S in S, S 4 in S", diagonal matrices
Ts, T, A = diag{ry,...,r,} in S", arbitrary matrices My, My in R>", M3, My, T, S7, S, X, in R™",
and Ts, Ty in R such that the LMIs in (3.6) and

[ ﬁ}l”;(crl) +€e,N,N!, T} E,
. n2 o |[<o, (3.32)
| * ¥ —€pl |
[ 1:[,1”; (0-2) + EmNmNZr; HP Em
. n2 o |[<o, (3.33)
L * * _Eml |
[ 1% (o)) + €,N,NT )2 E,
* H§2 0 <0, (3.34)
| * O _Eml |
[ 1:[/;’; (02) + €,N,,NT H? E,
) e 0 |<o, (3.35)
* £ el |

hold for m € T', h; € {hy, hy}, and y € {01, 0}, where
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1% (v) = o) + Ty + Ty + A, — QFRLQ,
0 () = To() + Ty + T + Az — QEALQs,
P = (pio— p)"MI QIM, |,

P =| (po-p)'M; QM |,

I} = [ (p1—p1)) My QIM, ],

I = [ (p1—p1)) My QIM] ],

i = diag(=S's, —Ra),

H? = diag{-—Ss, —Rz},

r
oY) = (] Pupry + QT 0OPQ0) + ) M Pap1 + 5 = QGRIQ,

n=1

+ pl(0iR, + LR P17 + T(x) — Q4R Qss + Ay — plepis,
S = diag{S1, =S1+S2, Ouxns =S 2, O15nx15n}s
R; = diag{R;, 3R;, SR}, i = {1, 2},

R +O'2—XR DXL+ TN
RM:[ 2 o 2 o2, 1)(—0'7]% 2],
* R2+0_—|2R2
- SS M4 2 2SS M3
Alz A =
‘V[*sz’S £ Se |’

—(PlT - P1T8)54(P1 - pig) + 5/[(}7?9 - P1T)S7P19 + (P1T9 - PlT)Sspls],
1 = Z[PIT) + pluT ) Aupr + Waps + Hyupis — Gupis — p17)]
- y[(p{ + ”P1T7)chmp18],
T(x) = L (Tza:1(x) + Taaa(x)),
P P11
a =(yv—-0o - ,
1) = 1)[178] [plz]
Po P13
a = (0, — - ,
2(x) = (02 )()[p10 [pm ]
T = Z[p{sADp\7 + (p| D'L - pi)Tsps]
+ p{ D" LTsLDp; — pisTeps,

~c 2
Il

Ay = —QLS3Q6 + lipl:Sepir — L (pl7S1p10 + Pl7SsP1s),
As = L ((p] — pig)Sap17) + QL S3Q6 + up(;S spi7,

E, = —(plTTl + p1T7uT1)Em,

N,y = N,yCpupis.

Then, drive-response MJLSs (2.1) and (2.2) are stochastically synchronized with a predefined £, — L.,
DAL if the SDC gains in (2.3) are given by (3.7).
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Proof. For any t € [t;, t,1), calculate that
L (1), 6(0), 1) = L (1), 6(1), 1) + 2f T (Dn(t)) ADi ().
Further, by (3.29) and (3.30), for any diagonal matrices T’s, T in S}, the following hold true:

2[n" D" L — f1(Dn)]Tsf" (Dn(t)) = 0,
n" ()D" LTsLDn(t) — fT(Dn(t))Tef(Dn(t)) = 0.

The remainder of the proof is consistent with Theorem 1, which is omitted here.

Input the MILS
parameters

Is Assumption 1 met? Is Assumption 2 met?

Do the LMIs in
heorem 2 hold true?

Do the LMIs in
heorem 1 hold true?

Determine control
gains using (3.7)

Figure 1. Flow chart of the proposed controller design.

Remark 2. On the basis of the LMI feasible solutions, Theorems 1 and 2 establish two different
conditions for the desired SDC gains, which are capable of being easily verified by publicly accessible
MATLAB toolboxes. For a clearer understanding of the proposed controller design, a flowchart is
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Ty,
presented in Figure 1. The LKF term2 Y, Od’ o rif:(s)ds is introduced based on Assumption 2, which

has the potential to effectively mitigate conservatism. This will be confirmed by comparing the maximum
allowable upper bound (MAUB) h; in the following section.

When there is no gain perturbation (i.e., AK(6(¢)) = 0) and no mode switching (i.e., m = 1), (2.3)
can be rewritten as u(t) = KCn(t;). Correspondingly, error system (2.6) is simplified to

() =An(t) + Wn(t — o(1) + Hf(Dn(0) = KCn(t) — Gw(1), t € [ti, tis1) - (3.36)

The following criterion can be obtained.

Corollary 1. Under Assumption 1, for given scalars y > 0, h, > h; > 0, u > 0, suppose that there
are matrices P in Si”, P, Sy, S2 R, Ry, Ss, Sein S, S3in S, S, in S", diagonal matrix Ts in ST,
arbitrary matrices My, M, in R¥", M5, My, Ty, S+, Sg, X in R™", and Ts, Ty in R such that

By 12 ]
i i"l) E%Z <0, (3.37)

[ 1T} (o) TIP |
<0, (3.38)

* H%Z

| [T (o) TI? |
<0, (3.39)

|+ 57

[ (o) 1) ]
com |t 0, (3.40)

P CT ]
. yCzI > 0, (3.41)

hold for hy € {hy, hy} and x € {0y, 0>}, where
() = o) + T + T + Ay — QTALQs,
() = () + T + Tr + lkAs — QLAQs,
o) = y(P{PPW + Q{(X)PQO) +8 + P1T7(0'%R1 + O'%QRz)Pn
— QIR Q) — QL Ry Qs + Ay + T(x) — plepis,
T, = Z[(pi T1 + pisuT1)(Ap) + Wps + Hpis = Gpis — pi7)]
- Z[(p] +upiXCpis),
I;* = [ (p1o—p)'M; QIM, ],
I;° = [ (pro— p)"M; QIMT ],
2 = (p1 - pi)"Ms QIM, |,
3 = (p1 - pi)"Ms QLM |,
N7 = diag{—Ss, —Ry),
11y* = diag{~S e, —Ra),
S = diag{S1, =S 1+ S2, Opnr =S2, Otsuxisn}s
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Ri = diag{Ri, 3Ri’ SRZ'}’ l: {1’ 2}’

Ryt TR, mg gy
RM — 2T e 2 T ) 2
* Rz + X_(rllez ’
_ Ss M. - 28s M
1 _ 5 4 2 5 3
As‘[* 256]’As‘[ . 56]’

Ay = =(p] = ple)Sa(p1 — p1s) + ZL[(ple — P1)S7P19
+(plo — P1)Sspis — (P + upi)XwCnpisls
T(x) = S(Tza1(x) + Tsaa(x)),

(e p1 | | Pu
ai(y) = (x m)[pg] [pu],

_ _ Do | _| P13
ax(x) = (02 X)[Pw] [p14],

T = (p{ D"LTsLDp, — p{sTsp:s),

Ay = —QLS3Q6 + lipl;Sepir — L (p13S 110 + Pl7Ssp1s),

Ay = Z((p] = Pig)Sapi7) + Qs S3Qs + lupi;Sspia,
Em = —(p{Tl + p1T7MT1 VEn,
Nm = chmp18-

Then, error system (3.36) is stochastically stable and has a predefined L, — L., DAL if the SDC gain

is determined by K = T;'X.

Corollary 2. Under Assumption 2, for given scalars y > 0, h, > h; > 0, u > 0, suppose that there
are matrices P in S P, Sy, Sy Ry, Ry, Ss, SeinS", S3in S, S, in S", diagonal matrix Ts in ST,
arbitrary matrices My, M, in R¥", M3, My, Ty, S+, Sg, X, in R™", and Ts, T, in R'"?", such that the

LMIs in (3.41) and
[ (o) TP |
» § H%z _ <0,
[ ﬁhk(O'z) I3 |
11 1

_ . H%Z _ <0,
[ i) | _
R 1l B

* H%Z | ’

hold for h; € {hy, hy} and x € {01, 0>}, where

% (o) = Mo() + T1 + T2 + Ay — QTALQs,
() = ToGo) + Ty + T + Iy As - QLA2Qs,

Ho(y) = L (p| Ppi7 + O (0PQy) + § + pl,(cR: + 01,R)p17 — QR

— QL Ry Qi + Ay + T(x) — plpies

Electronic Research Archive

(3.42)

(3.43)

(3.44)

(3.45)
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T, = y[(p{T] + p1T7uT1)(Ap1 +Wps + Hpis — Gpis — p17)]
- Z[(p] +upi)XCpis,
I = [ (pro— p)'M; QIM, ]’
7 = [ (pro— p)' M QIMT ]’
Héz = [ (P = p18) My QIM, ],
Hf = [ (pr = p18)' My QMY ]’

7 = diag{-S's, —Ra},

H%Z = diag{-S, —Iéz},
S =diag{S1, =S1+S2, Ouxns =S2, O15ux150}s
R; = diag{R;, 3R;, 5R;}, i = {1, 2},

Ryt DR, oM, 4y
RM: 2T e 2 T o 2
* Rz + X—O_IO;Rz ’
_ Ss M - 285s M
1 _ 5 4 2 _ 5 3
As‘[* 256]’As‘[ ) SG]’

Ay = =(p] = pig)Sa(p1 — p1s) + ZL[(Ple — P1)S7P19 + (Ply — P1)SsP1s
— (p] + up{)XuCupis].
T(x) = & (Tza:1(x) + Tsaz(x)),

(v P71 | | Pu
a1(y) = (x 01)[p8] [pu]’

P9 D13
@ (x) = (02 —)()[ Pio ]_[ P ]’
Ty = [psADpi7 + (p{ D'L = p{)Tspis]
+ pl D" LTsLDp, — pisTsp:s,
Ay = —QS3Q6 + lipl,Sspir — L (p17S7p19 + P1,SsP1s)s
As = Z((pl = pl)Sapi7) + QLS 3Q6 + hipl,S sp17,
E, = ~(piTi + plyuT)En, Ny = NuCoupis.

Then, error system (3.36) is stochastically stable and has a predefined L, — L., DAL if the SDC gain
is determined by K = T;'X.

4. Numerical example

Consider two-mode (m = 1, 2) drive-response MJLSs modeled in (2.1) and (2.2) with parameters
(refer to [20]):

2 9 0 -8 9
Y I RS L N T R L T
0 -1452 0 0 -1428 0
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-0.1 0 0 -0.09 0 0
Wy=|-010 0 |,Wo=|-009 0 0 I,

| 02 0 -0.1 0.18 0 -0.09

(200 200
H]: 0 OO ,HQZ O OO s

[ 0 00 0 00

(1 0 0 (1.0 0
D=[{000|,Ci=C={01 0],

|0 00 001

(02 0 0 0.1 0 0
Gi=[ 0 02 0 |[,Go=| 0 01 0

| 0 0 02 | 0 0 01

Consider the controller gain fluctuation (2.4) with the following parameters:

E, = diag{0.5, 0.5, 0.5},

E, = diag{0.7, 0.7, 0.7},

® = colf{sin(t), cos(t), sin(?)},
N =N, =0.1.

The time delay is chosen as o(¢) = 0.4 + §|sin ¢|, which implies that o; and o, are 0.4 and 0.4 + 3,
respectively. In addition, the TPM here is assumed to be

_ [-05 05
=1 08 -08 |

In the following, we set u = 0.5, h; = 0.001, and consider two cases of nonlinear functions:

Case 1: f(Dx(1)) = col{%(lxl(t) + 1] = |x1(r) = 1)), 0, O}.

In this case, it’s easy to see that f(-) satisfies both Assumptions 1 and 2 with L = diag{1, 0, 0}. The
prescribed £, — L, performance vy is chosen as 0.25. In view of Theorems 1 and 2, Table 1 details
MAUB h, when o is fixed and 8 increases from 0.2 to 1.8. As can be seen from Table 1, the MAUB h,
depends on the value of 5, and &, in Theorem 1 is always less than 4, in Theorem 2. Thus, in comparison
to Theorem 1, Theorem 2 yields less conservative results. Furthermore, it demonstrates the effectiveness

T,
of the intentionally introduced LKF 2 37, Odi ", fi(s)ds.

Table 1. The MAUB of A, for various S.

B 0.2 0.6 1.0 1.4 1.8
Theorem 1 0.145 0.140 0.136 0.131 0.127
Theorem 2 0.305 0.292 0.280 0.270 0.261

Case 2: f(Dx(1)) = col{sin(x;), 0, 0}.
Obviously, the nonlinear function f(-) satisfies Assumption 1 but does not satisfy Assumption 2 with
L = diag{1, 0, 0}. Therefore, the proposed condition in Theorem 2 is no longer valid, while the one in

Electronic Research Archive Volume 32, Issue 7, 4632—-4658.



Theorem 1 remains applicable. We set 7, = 0.121 and y = 0.25. By solving the LMIs in Theorem 1,

One has
[ 11.0140 1.8636 4.3164
T,=| 5.2193 37.2755 -1.3122 |,
| 3.9106 3.1960  8.9907
[ 64.3188 42.9094 22.4470 |
X; =1 267319 112.4413 33.1270
| 16.9245 -74.6275 63.2178 |
[ 45.3174 35.6183 19.1237 |
X, =] 227783 118.3422 31.5949 |.
| 7.5621 -74.0286 60.5995 |
Then, the control gain matrices can be obtained as
[ 6.1565  8.5683 —0.9106 |
K, =| -0.1708 1.3762 1.2619
| —-0.7347 -12.5167 6.9790 |
[ 4.5651 7.7285 —1.1361 |
K, =] -0.0676  1.6637 1.2458 |.
| —-1.1205 -12.1870 6.7916 |

For the simulation, we set the initial conditions of the drive-response MJLSs to be x(s)
col{0.2, 0.3, 0.2}, y(s) = col{-0.3, -0.1, 0.4}, s € [-1.8, 0], the external disturbance w(r)
col{exp(—0.51), exp(—0.5¢), exp(—=0.5¢)}, and the above parameters. The chaotic behavior of drive
system (2.1) with u(t) = O is shown in Figure 2. Figures 3 and 4 depict the Markov-jump signal
and sampling intervals, respectively. Under the designed SDC method, the synchronization between
drive-response MJLSs (2.1) and (2.2) is achieved in Figure 5. Figure 6 depicts the trajectories of the
error system (2.6). Define a new function

£ = \/ BT W)
o @ Bw(B)dp

0.6
04r

02

02F M \\

04 N

-0.6

Figure 2. Phase portrait of drive system (2.1) with initial condition col{0.2, 0.3, 0.2}.
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25
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Figure 3. Markov jump signal (7).
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Figure 5. State trajectories of x(¢) and y(¢) with control.
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0.5

0.4

0.3

0.2

I I
0 5 10 15
t

Figure 6. State trajectories of n(¢) with control.

Its evolution versus time is shown in Figure 7. From the figure, one can observe that

sup, £(#) = 0.0192 <y = 0.21, which implies that the prescribed £, — L., performance y is va-
lidity guaranteed.

0.02

0.018 [

0.016

0.014 [

0.012

=

I 0.01
0.008
0.006
0.004

0.002

0 5 10 15
t

Figure 7. Evolution of £(7).

5. Conclusions

The non-fragile sampled-data synchronization control issue has been studied for MJLSs with time-
variant delay. On the foundation of two different assumptions of the nonlinear function vector, two
time-dependent two-sided loop LKFs (see (3.8) and (3.31)) have been constructed. By employing these
two LKFs and several inequalities, numerically tractable conditions for the design of a non-fragile
sampled-data controller (2.5) have been provided in Theorems 1 and 2 to guarantee the drive and
response MJLSs realize stochastic synchronization with a prescribed £, — L., DAL. Finally, an example
has been given to verify the validity of the non-fragile sampled-data controller approaches. In this
paper, the transition probabilities of the Markov jump process are assumed to be completely known. In
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practical applications, however, it is often costly or difficult to obtain all the elements in the TPM. As an
extension of the present work, we will further investigate the non-fragile sampled-data synchronization
control for Markov jump systems with partially unknown transition probabilities.
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