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Abstract: In this paper, the impulsive synchronization of a class of nonlinear multiple neural networks
(MNNs) with multi-delays was considered under a dynamic event-based mechanism. To achieve a
more comprehensive synchronization outcome and mitigate the conservativeness of impulsive control
due to predetermined time sequences, we integrated a dynamic event-triggered strategy. This approach
formed a novel control framework for generalized MNNs, where impulsive inputs were applied only
under specific conditions governed by event-triggering rules. Towards the above objectives, the
impulsive jumping system, resulting from dynamic component, and matrix measure method were
invoked to directly increase the computational simplicity and extensibility of the study. As the outcome,
the synchronization criteria for the MNNs could be achieved, and the exponential convergence rate is
resolved by considering both the generalized comparison principle regarding impulsive systems and the
variable parameter formula. Moreover, Zeno-freeness of the achieved triggering regulation is ensured.
Finally, two numerical examples confirmed the validity of the designed approach.
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1. Introduction

The growing requirements for synchronization of MNNs has inevitably raised higher precision in
various areas of applications, such as biological systems, secure communications, chemical reaction,
information processing, etc. (e.g., see [1–4]). Along with the outcome, the performance of network
evolution and control immensely depends on the accuracy of the underlying model. However, the
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occurrence of time-varying delays is widely acknowledged as the major cause of chaos, oscillation,
inadequate functionality, and occasional instability of complex networks. Such delays are prevalent in
practical plants because of multiple factors like information transmission, controller update,
communication bandwidth, and sampling. Neural networks suffering from delays, as shown by [5–9],
could depict the practical networks more minutely and shows great superiority, leading to numerous
efforts being dedicated to solving the synchronization issue of such networks [10–12].

Despite the unprecedented opportunities presented by networked systems, the restrictions in
network facilities and communication channels give rise to emerging challenges that coexist with the
applications. The network devices in practice are constrained in processing data, particularly for
battery-powered systems. Therefore, more endeavors should be focused on the design of
energy-saving control strategies to avoid continuous communication and decrease the frequency of
controller updates, achieving a lower communication and computation load of the proposed control
strategy in actual application. Several effective strategies for conserving resources have been
introduced in the existing literature so far, such as sampled-date feedback control [7, 13], variable
structure control [14, 15] and sliding mode control [16–18], and so forth. However, the existing
control methods often lead to a periodic transmission of packets, including some data that may be
hardly necessary. Along with this consideration, alternative control strategies, such as event-triggered
schemes, have been developed and garnered a wealth of research interest [18–21]. It utilizes an
appropriate event generator to determine when signals should be delivered to neighboring nodes,
resulting in a remarkable reduction in wastage of network resources. Specifically, sampling in
event-based control only occurs as the state-dependent system error reaches a certain level. The
pioneering work of Dimarogonas was based on an event-triggered control strategy that is associated
with the error between the current and previous sampling instants [22]. The information of the
controller is updated using the sampling data when the measurable error surpasses the allowable level.
Initially, implementing the triggering conditions with static thresholds can be beneficial in minimizing
communication costs since the conditions are difficult to fulfill. Nevertheless, these conditions may
become easier to meet over time, resulting in frequent triggering and unnecessary updates. As a result,
there is an urgent need for scholars to explore more flexible event-triggered schemes that can not only
decrease communication expense and update the frequency of controller but also ensure efficient
network coordination [23, 24]. With the dynamic event-triggered scheme designed, fortunately, it
provides us a direction to devote more effort for further optimization. Notice that only a limited
number of research are available for the improved control strategy [25–27]. Li et al. [25] designed the
synchronization controllers by incorporating a dynamic event-triggering approach involving absolute
errors between system input updates, and a sufficient condition was achieved with synchronization
error being exponentially ultimately bounded. In [26], a distributed dynamic event-triggered approach
was initially presented utilizing an auxiliary parameter to dynamically regulate the threshold.
Following this, certain criteria were developed to ensure the consensus of general linear multi-agent
systems with or without a leader. The dynamic function was found to play a crucial role in regulating
the triggering threshold dynamically and avoiding the Zeno behaviors in the time sequence.

In addition, it is pertinent to note that the convergence rate of systems can be affected when their
state undergoes changes instantaneously at some impulsive moments, resulting in decelerated,
accelerated, or non-convergence scenarios. Therefore, investigating the impact of impulsive control
upon the synchronization or stability of controlled systems is of great necessity. Numerous studies
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have concentrated on impulsive control via a time-triggered mechanism for neural networks.
However, since the impulsive controller should be designed with fixed impulsive instants, its
operating time cannot be altered [28–31]. This may cause constant changes in the actuator state,
leading to performance degradation and wastage of resources. To optimize performance, the control
instants can be computed by dynamically event-triggered conditions. The combined approach, which
inherits the advantages of both single control strategies, also compensates for the drawbacks of
event-triggered control by significantly reducing control expense and the resource usage of
transmitted information. That is to say, the two approaches complement each other. Therefore, some
results about impulsive control based on event-triggered schemes have been proposed
recently [32–35]. As an example, Lu and Li [33] examined the consensus of a simple linearity system
employing a distributed event-triggered impulsive (ETI) control scheme, in which impulse is
implemented in a distributed framework according to the local information. In [34], Chen et al.
designed the event-triggering impulsive control scheme, where impulsive instants and event-triggered
sequences are separated and independent, and the synchronization of MNNs was discussed based
on this.

However, either those studies are based only on some simple systems that the delays, nonlinear
terms, and characterizing the dynamical behavior are neglected, or the proposed controlling mechanism
remains to be improved. All these matters above notwithstanding, the ETI control of complex systems
subject to multi-delays is not yet considered and remains challenging, and a more generalized and
utility-controlling theoretical method needs to be given.

Thus, the innovations and contributions of this paper can be summarized as:
1) Compared with the event-triggered control based on mathematical induction applying only to

single delay linear system [33], the novel mechanism, introducing the impulsive-jumping system to
improve the traditional comparison principle for the impulsive scheme, can solve the event-triggered
control problem of system with multi-delays and nonlinear terms for the more practical situation.

2) In comparison with the static event-triggered control in [32], the dynamic one benefiting
from the import of dynamic function η(t) takes advantage of the resource-efficiency of the networks
while guaranteeing the synchronization. Furthermore, the constraint resulting from the upper
bound T ∗ requirement for consecutive impulse intervals can be optimized by the proposed
event-triggering regulation.

3) Different from the event-triggered control based on Lyapunov function [34, 36, 37], the designed
event-triggered control in terms of observation error and synchronization error shows superior
feasibility, which makes the algorithms easy to implement during the realization of synchronization.

4) The p-norm and matrix measure approach is employed to handle the Lyapunov function rather
than using cumbersome linear matrix inequalities, leading to the reduction of computational
complexity and less conservativeness in the results.

The remainder of this paper is structured as follows: Section 2 introduces the network model and
basic knowledge. The main outcomes are demonstrated in Section 3. Section 4 extends the
application to memristive neural networks and Section 5 presents the numerical simulations. Finally,
the conclusion is made in Section 6.

Notations: R is the set of real number and Rp×p denotes the p-dimensional Euclidean space. For a
vector or a matrix, the symbol ∥ · ∥q(q = 1, 2,∞) stands for its q- norm. Let diag{ξ1, · · · , ξp} represent
the diagonal matrix with diagonal elements ξ1 to ξp. The transpose of matrix Q is given as QT and
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the identity matrix in Rp×p is denoted as Ip. For a given function f : R → R, f (t+) = lim
h→0+

f (t + h)

(or f (t−) = lim
h→0−

f (t + h)) indicates the upper-left Dini derivative D− f (t) = lim
h→0−

sup f (t+h)− f (t)
h (or the

upper-right Dini derivative D+ f (t) = lim
h→0+

sup f (t+h)− f (t)
h ).

2. Model description and preliminaries

Consider an array of coupled neural networks with nonlinear coupling and multi-delays, of which
the i th neural network model can be represented as

ξ̇i(t) = − Dξi(t) + A f (t) + B f (ξi(t − τ1(t))) + c1

N∑
j=1

h1
i jΓ1g1(ξ j(t))

+ c2

N∑
j=1

h2
i jΓ2g2(ξ j(t − τ2(t))) + J + ui(t), i = 1, 2, · · · ,N, (2.1)

with u = 1, 2, · · · ,N. ξi(t) = (ξi1(t), ξi2(t), · · · , ξin(t))T ∈ Rn represents the state variable of the i neural
network; D = diag{d1, d2, · · · , dn} > 0 refers to the rate at which the cell returns to its resting state
potential when separated from other cells and inputs; A and B respectively stand for the connection
weighting matrix with and without delay; f : R+ × Rn × Rn → Rn denotes the activation function
referring to a continuous vector-valued function; c1 and c2 are positive constants to describe the
coupling strengths; The current-state and time-delay inner coupling matrices are denoted by positive
defined matrices Γ1 and Γ2, respectively; τs(t), s = 1, 2 represent the time-varying delays with
0 ≤ τs(t) ≤ τ̄. H1 = [h1

i j]N×N and H2 = [h2
i j]N×N are the current-state and time-delay coupling matrices,

respectively, which are defined as follows: hs
i j > 0, for s = 1, 2, if the ith node is capable of receiving

the signal from the jth node, otherwise hs
i j = 0. Moreover, the diagonal entries are redefined as

hs
ii = −

∑N
j=1 hs

i j. J = (J1, J2, · · · , Jn) is an external input constant vector. In particular, ui(t) denotes an
appropriate controller.

The desired trajectory s(t) is given as follows:

ṡ(t) = −Ds(t) + A f (s(t)) + B f (s(t − τ1(t))) + J. (2.2)

Then, the synchronization error is further represented by ϵi(t) = ξi(t) − s(t) with initial condition
ϵi(t) = ϕi(t)−φi(t) ∈ C([−τ̄, 0],Rn). Thus, we are situated to explore the stability of the ith error systems:

ϵ̇i(t) = − Dϵi(t) + A f̃ (ϵi(t)) + B f̃ (ϵi(t − τ1(t)))

+ c1

N∑
j=1

h1
i jΓ1g̃1(ϵ j(t)) + c2

N∑
j=1

h2
i jΓ2g̃2(ϵ j(t − τ2(t))) + ui(t), (2.3)

in which t ≥ 0, i = 1, 2, · · · ,N, f̃ (ϵi(t)) = f (ξi(t))− f (s(t)), f̃ (ϵi(t−τ1(t))) = f (ξi(t−τ1(t)))− f (s(t−τ1(t))),
g̃1(ϵ j(t)) = g1(ξ j(t))− g1(s(t)), and g̃2(ϵ j(t− τ2(t))) = g2(ξ j(t− τ2(t)))− g2(s(t− τ2(t))). The event-based
impulsive controller ui(t) for delayed neural networks (2.1) is designed as

ui(t) = −Kiϵi(tk−1) +
∞∑

k=1

[
µkϵi(t) − ϵi(t)

]
δ(t − tk), k ∈ N, (2.4)
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where t0 = 0 is the initial instant and {t1, t2, · · · } denotes the sequence of impulsive instants, which
will be decided by developed event generator later; Ki ∈ R

n×n is the state feedback gain matrix, and
δ(·) denotes the Dirac delta function. Note that the impulsive mechanism demands the control strength
µk ∈ (0, 1) which will be determined later.

Remark 1. Noticing that the novel controller (2.4) consists impulsive term
∑∞

k=1
[
µkϵi(t) − ϵi(t)

]
δ(t −

tk) and event-triggered state feedback term −Kiϵi(tk−1), the specific event-triggered condition will be
employed to generate the impulsive instants for avoiding the unnecessary energy cost resulting from
the preset of time series, and it determines the updating of state feedback controlling term. Previous
studies on impulsive control [10, 29, 38, 39] have shown that a sufficiently high impulse frequency
is required to achieve a desired convergence rate, in which case the unreasonable controlling time
may result in unnecessary resource waste and poor performance. Obviously, in contrast with the
traditional impulsive controllers or event-triggered controllers, in practical applications, the novel
control mechanism not only makes up the above deficiency but also gives an instantaneous impulsive
jump to further enhance the transient performance of the proposed controller.

Supposing ϵi(t) is right-continuous, we have ϵi(tk) = ϵi(t+k ) at t = tk, which further means the error
system’ solutions exhibit jump discontinuities at t = tk in the presence of impulsive scheme. In
particular, the desired trajectory (2.2) is transmitted as a system input to system (2.1), causing an
instantaneous change of corresponding state variable at t = tk. As a result, we obtain the following
ETI error system with state feedback control input:

ϵ̇i(t) = −Dϵi(t) + A f̃ (ϵi(t)) + B f̃ (ϵi(t − τ1(t))) + c1
∑N

j=1 h1
i jΓ1g̃1(ϵ j(t))

+c2
∑N

j=1 h2
i jΓ2g̃2(ϵ j(t − τ2(t))) − Kiϵi(tk−1), t ∈ [tk−1, tk),

ϵi(t+k ) = µkϵi(t−k ), k ∈ N.

Letting D̃ = IN ⊗ D, Ã = IN ⊗ A, B̃ = IN ⊗ B, H̃1 = (H1 ⊗ Γ1), H̃2 = (H2 ⊗ Γ2),
K = diag{K1,K2, · · · ,KN} > 0, ϵ(t) = (ϵ1(t), ϵ2(t), · · · , ϵN(t))T , g̃1(ϵ(t)) = (g̃1(ϵ1(t)), g̃2(ϵ2(t)), · · · ,
g̃1(ϵN(t)))T , and g̃2(ϵ(t − τ2(t))) = (g̃2(ϵ1(t − τ2(t))), g̃2(ϵ2(t − τ2(t))), · · · , g2(ϵN(t − τ2(t))))T , the
compact form of error systems can be expressed as

ϵ̇(t) = −D̃ϵ(t) + Ã f̃ (ϵ(t)) + B̃ f̃ (ϵ(t − τ1(t))) + c1H̃1g̃1(ϵ(t))
+c2H̃2g̃2(ϵ(t − τ2(t))) − Kϵ(tk−1), t ∈ [tk−1, tk),

ϵ(t+k ) = µkϵ(t−k ), k ∈ N.

(2.5)

Remark 2. In this research, the goal is to devise the ETI control for solving the synchronization for
general network systems with multi-delays. Toward this objective, several problems must be taken into
account during the investigation. First, how to develop a control framework that combines the existing
achievements on event-triggered control [20, 40] and impulsive control [28, 29, 39] while retaining
the main advantages of each strategy. Second, due to the unpredictability of controlling instants, the
extraordinary assumption of the impulsive interval is no longer valid, and it becomes impossible and
unreasonable to verify the theorem conditions in terms of the generated infinite controlling time. Third,
for the distributed event-triggered strategy proposed in [41,42], every node is being updated based on
the local information. Nevertheless, the ETI, with distributed form [33], may result in unsuitable
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impulses and raise great challenges for deriving the correlation between V(t−k ) and V(t+k ). Instead, in
accordance with the impulsive scheme, the centralized event-triggered scheme [37, 43] should be a
superior alternative to the candidate for synthesizing the innovative approach. Besides, the distributed
one can be reviewed in future studies.

Definition 1. [44] The matrix measure of a real square matrix Z = (zi j)N×N is defined as

mp(Z) = lim
h→0+

∥IN + hZ∥p − 1
h

, (2.6)

where p = 1, 2,∞.

Given a constant matrix Z, recall the matrix norms by ∥Z∥1 = max j
∑N

i=1 |zi j|, ∥Z∥2 =
√
λmax(ZT Z),

∥Z∥∞ = max j
∑N

j=1. Then, the corresponding matrix measures are derived as: m1(Z) = max j{zi j +∑n
i=1,i, j |zi j|}, m2(Z) = ( 1

2λmax(ZT + Z)), m∞ = maxi{zii +
∑n

j=1,i, j |zi j|}.

Assumption 1. The function f (·), g̃1(·), and g̃2(·) are Lipschitz continuous, i.e., there exist constants
L1, L2, L3 > 0, such that

∥ f (u) − f (v)∥p ≤ L1∥u − v∥p,
∥g̃1(u) − g̃1(v)∥p ≤ L2∥u − v∥p,
∥g̃2(u) − g̃2(v)∥p ≤ L3∥u − v∥p,

for all u, v ∈ R, and p = 1, 2,∞.

Lemma 1. [28] Let 0 ≤ τi(t) ≤ τ, F(t, u, u1, · · · , um) : R+ ×
m+1︷        ︸︸        ︷

R × · · · × R → R be nondecreasing in ui

for each fixed (t, u, u1, · · · , ui−1, ui+1, · · · , um), i = 1, 2, · · · ,m, and Ik(u) : R → R be nondecreasing in
u. Suppose that u(t), v(t) ∈ PC([−τ,+∞),R) satisfyD+u(t) ≤ F(t, u(t), u(t − τ1(t)), . . . , u(t − τm(t))), t , tk, t ≥ 0,

u(t+k ) ≤ Ik(u(t−k )), k ∈ N,

and D+v(t) > F(t, v(t), v(t − τ1(t)), . . . , v(t − τm(t))), t , tk, t ≥ 0
v(t+k ) ≥ Ik(v(t−k )), k ∈ N.

Then u(t) ≤ v(t) for −τ ≤ t < 0 implies u(t) ≤ v(t) for t ≥ 0. where D+u(t) = limh→0+
u(t+h)−u(t)

h .

Recalling the theory of differential equations, W(t, s) =
∏

s<tk<t µke
∫ t

s f(u)du is denoted as the Cauchy
matrix of linear equations: v̇(t) = f(t)v(t), t ≥ t0,

v(t+k ) = µkv(tk), k ∈ Z+.
(2.7)

Then, the following useful lemma is presented.
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Remark 3. For Cauchy matrix W(t, s) =
∏

s<tk<t µke
∫ t

s f(u)du, in analyzing impulsive systems, it is often
necessary to solve differential or difference equations with impulsive effects. The Cauchy matrix is
frequently used to solve these equations, especially in pulse systems with periodic or quasi-periodic
characteristics. The Cauchy matrix provides an effective tool in the convolution operations within
pulse systems, aiding in the analysis of the response of the system to impulsive inputs.

Lemma 2. Let {tk} be a sequence satisfying 0 ≤ t0 < t1 < t2 < · · · and limt→∞ tk = ∞. The function
v(·) ∈ PC1(R+,R) is right continuous in each tk. Suppose that the following inequalities holdv̇(t) ≤ f(t)v(t) + g(t), t ≥ t0,

v(t+k ) ≤ µkv(t−k ) + ck, k ∈ Z+,
(2.8)

where f(·), g(·) ∈ C(R+,R), µk ≥ 0 and ck are constants. Then, we have

v(t) ≤ v(t0)W(t, t0) +
∫ t

t0
W(t, s)g(s)ds +

∑
t0≤tk<t

W(t, tk)µk, t ≥ t0. (2.9)

Proof. Letting t ∈ [t0, t1), according to (2.8), one gets(
v(t)e−

∫ t
t0
f(u)du)′

≤ g(t)e−
∫ t

t0
f (u)du
.

Taking integral from t0 to t, it has

v(t) ≤ v(t0)e
∫ t

t0
f(u)du
+

∫ t

t0
g(s)e

∫ t
s f (u)duds, t0 ≤ t < t1,

therefore, (2.9) holds over the time interval t ∈ [t0, t1]. Assume that there exists a n > 1, when t ∈ [t0, tn],
the Eq (2.9) is satisfied. Then, it can be verified for t ∈ [tn, tn+1) that

v(t) ≤ v(t+n )e
∫ t

tn
f(u)du
+

∫ t

tn
g(s)e

∫ t
s f(u)duds,

recalling the inequalities (2.8), it gets

v(t+n ) ≤ µnv(t−n ) + cn,

then

v(t) ≤ (µnv(tn) + cn)e
∫ t

tn
f(u)du
+

∫ t

tn
g(s)e

∫ t
s f(u)duds.

By applying mathematical induction, we have

v(t) ≤µne
∫ t

tn
f(u)du
[
v(t0)

∏
t0<tk<tn

µke
∫ tn

t0
f(v)dv

+
∑

t0<tk<tn

( ∏
tk<t j<tn

µ je
∫ tn

tk
f(u)du)ck +

∫ tn

t0

( ∏
s<tk<tn

µke
∫ tn

s f(u)du
g(s)
)
ds
]

+ cne
∫ t

tn
f(u)du
+

∫ t

tn
g(s)e

∫ t
s f(u)duds. (2.10)

By means of certain algebraic manipulations, it can be verified that (2.10) is the (2.9) for t ∈ [t0, tn+1].
Hence, the proof is complete.
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Remark 4. Lemma 2 proposes the form of a generalized impulsive system with ck , 0. Obviously, it
is able to characterize more complicated impulsive mechanisms than classical homogeneous impulses
with ck = 0 [28, 39, 43], which is much less conservative than many other reported impulsive strategy
results involved. In this paper, the generalization impulsive system is first introduced to address the
synchronization problem of complex networks, which may greatly expand the application of the
impulsive control method such that more intricate impulsive mechanisms can be employed in
future works.

3. Main results

In this section, the ETI control schemes will be constructed to study the synchronization of general
delayed MNNs with time-varying delays for the first time.

Define the measurement error of the error system as

ϵ̂i(t) = ϵi(tk−1) − ϵi(t), t ∈ [tk−1, tk),

and ϵ̂(t) = (ϵ̂1(t), ϵ̂2(t), · · · , ϵ̂N(t))T .
Based on Assumption 2, the following dynamic variable η(t) is proposed to satisfy the differential

equation as follows:

η̇(t) = −βη(t) − ε(∥K∥p∥ϵ̂(t)∥p − σ∥ϵ(t)∥p), (3.1)

with η(0) > 0, β > 0, and appropriate parameters ε ∈ [0, 1], σ ∈ [0, 1] guaranteeing η̇(t) < 0. These
dynamic variables are associated with the triggering laws, which will be developed in Theorem 1.

Given θ and T ∗ are positive constants, the triggering time sequence is determined by

tk = inf
{
t > tk−1 : t − tk−1 > T ∗ or ∥ϵ̂(t)∥p ≥

1
θ(∥K∥p + σ)

η(t) +
σ

∥K∥p + σ
∥ϵ(tk−1)∥p

}
. (3.2)

Remark 5. The internal dynamic variable η(t) in (3.2) is involved, of which the updating law involves
the measurement error, negative self-feedback, and state error. Different from the static event-triggered
scheme, the adoption of η(t) in (3.2) is a vital element to adjust the triggering level adaptively. If η(t)
is devised to be zero, the event-triggered condition degenerates into the static one, which is a special
case for (3.2). Moreover, it is not hard to prove that the triggering interval of two consecutive instants
is lengthened due to the injection of η(t). Moreover, it results in the lessening of triggering frequency.

Remark 6. In almost all impulsive schemes, the average impulsive interval T is introduced as a
definition or assumption for the preset impulsive instants such that the synchronization of the complex
system can be ensured. However, for event-triggered control, the triggering times are generated by the
designed condition, it is unreasonable to propose the criteria involves the controlling instant tk owing
to the uncertainty, infinity, and unpredictability of event-triggering instants. The incorporation of
impulsive control and event-triggering schemes inevitably possesses additional limitations.
Fortunately, benefiting from the event-triggered machine, it can provide great flexibility during the
construction of an appropriate triggering strategy such that some specific objectives can be achieved.
For example, in [37], the triggering condition provided the upper bound of the involved time-vary
delay during the controlling. Consequently, as for the unpredictable impulsive instants, the former
average impulsive interval may be weakened into the triggering condition characterized as the
constant T ∗ here.
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In what follows, the criteria of the delayed MNNs under the dynamic ETI strategy are formulated
and the elimination of the Zeno phenomenon is discussed as well.

Theorem 1. Suppose that Assumption 1 holds. Then, the delayed neural networks are synchronized via
the controller (2.4) with dynamic event-triggered conditions (3.2) if there exist constants γ1, γ2, ω > 0
such that

(Λ +
lnµ̃
T ∗

) + γ1 + γ2 < 0, (3.3)

where the control gains satisfy

(1 − e−ωT ∗) + e−ωT ∗µk < µk+1, (3.4)

where Λ = max{(mp(−K) + Lp∥Ã∥p + ∥cH − D̃∥p), 1−ε
θ
− β}, µ̃ = maxk{µk}, γ1 = L1∥B∥p, γ2 =

L3c2∥H̃2∥p, ω ≥ −(Λ+ lnµ̃
T ∗ ), and λ > 0 is a unique positive solution for λ+ (Λ+ lnµ̃

T ∗ )+ (γ1 + γ2)eλτ̄ = 0.

Proof. In accordance with the triggering condition, one has

∥ϵ̂(t)∥p ≤
1

θ(∥K∥p + σ)
η(t) +

σ

∥K∥p + σ
∥ϵ(tk−1)∥p, t ∈ [tk−1, tk). (3.5)

Moreover, recalling the Eq (3.1), we have η̇(t) ≥ −βη(t) − ε
θ
η(t). Thus

η(t) ≥ η(0)e−(β+ εθ )t > 0. (3.6)

Design the Lyapunov functional as follows:

Ṽ(t) = V(t) + η(t), (3.7)

where V(t) = ∥ϵ(t)∥p, p = 1, 2,∞. Computing the upper Dini derivative of (3.7) for [tk−1, tk) along the
trajectory of error system (2.5) and control input (2.4), there exists

D+Ṽ(t) = lim
h→0+

∥ϵ(t + h)∥p − ∥ϵ(t)∥p
h

+ η̇(t)

= lim
h→0+

∥ϵ(t) + hϵ̇(t) + o(h)∥p − ∥ϵ(t)∥p
h

+ η̇(t)

= lim
h→0+

1
h

{
∥ϵ(t) + h(−D̃ϵ(t) + Ã f̃ (ϵ(t)) + B̃ f̃ (ϵ(t − τ1(t))) + c1H̃1g̃1(ϵ(t))

+ c2H̃2g̃2(ϵ(t − τ2(t))) − Kϵ(tk−1)) + o(h)∥p − ∥ϵ(t)∥p
}
+ η̇(t)

≤ lim
h→0+

∥In − hK∥p − 1
h

∥ϵ(t)∥p + ∥Ã∥p∥ f (ϵ(t))∥p + ∥B̃∥p∥ f (ϵ(t − τ1(t)))∥p

+ ∥D̃∥p∥ϵ(t)∥p + c1∥H̃1∥p∥g̃1(ϵ(t))∥p + c2∥H̃2∥p∥g̃2(ϵ(t − τ2(t)))∥p + ∥K∥p∥ϵ̂(t)∥p + η̇(t)
≤(mp(−K) + L1∥Ã∥P + ∥D̃∥p + c1L2∥H̃1∥p)∥ϵ(t)∥p + L1∥B∥p∥ϵ(t − τ1(t))∥p
+ L3c2∥H̃2∥p∥ϵ(t − τ2(t))∥p + ∥K∥p∥ϵ̂(t)∥p − βη(t) + ε(σ∥ϵ(t)∥p − ∥K∥p∥ϵ̂(t)∥p)

≤(mp(−K) + L1∥Ã∥P + ∥D̃∥p + c1L2∥H̃1∥p)∥ϵ(t)∥p + (
1 − ε
θ
− β)η(t)
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+ L1∥B∥p∥ϵ(t − τ1(t))∥p + L3c2∥H̃2∥p∥ϵ(t − τ2(t))∥p
≤ΛṼ(t) + γ1Ṽ(t − τ1(t)) + γ2Ṽ(t − τ2(t)), (3.8)

where Λ = max{(mp(−K) + L1∥Ã∥P + ∥D̃∥p + c1L2∥H̃1∥p), 1−ε
θ
− β}, and γ1 = L1∥B∥p, γ2 = L3c2∥H̃2∥p.

Hereafter, we are devoted to developing the correlation between V(t+k ) and V(t−k ) which allows the
outcomes to match the framework in Lemma 2. If t = tk, there exists

Ṽ(t+k ) = V(t+k ) + η(t+k ) = µkV(t−k ) + η(t−k ) = µkṼ(t−k ) + (1 − µk)η(t−k ). (3.9)

Denoting ck = (1 − µk)η(t−k ), ∀κ > 0, v(t) is a unique solution of the novel impulsive system
v̇(t) = Λv(t) + γ1v(t − τ1(t)) + γ2v(t − τ2(t)) + κ, t , tk,

v(tk) = µkv(t−k ) + ck, t = tk,

v(s) = ∥ϵ(s)∥p, −τ ≤ s ≤ 0.

From Lemma 1, one gets v(t) ≥ Ṽ(t) ≥ 0, ∀t ≥ 0. Applying the result of Lemma 2, it can be
obtained that

v(t) = W(t, 0)v(0) +
∫ t

0
W(t, s)

[
γ1v(s − τ1(s)) + γ2v(s − τ2(s)) + κ

]
ds +

∑
t0≤tk<t

W(t, tk)ck, (3.10)

in which W(t, s) (t, s ≥ 0) refer to the Cauchy matrix of the corresponding linear impulsive system.
In light of the formulation of the Cauchy matrix, we have the below inequality:

W(t, s) =
∏

s<tk<t

µ̄e
∫ t

s Λdv ≤ eΛ(t−s) · µ̄
t−s
T∗ = e(Λ+ lnµ̄

T∗ )(t−s).

Let q = sup
−τ̄≤s≤0

{∥ϵ(s)∥p}. From (3.10), it gets

v(t) ≤qe(Λ+ lnµ̄
T∗ )t +

∫ t

0
e(Λ+ lnµ̄

T∗ )(t−s)
[
γ1v(s − τ1(s)) + γ2v(s − τ2(t)) + κ

]
ds +

∑
t0≤tk<t

e(Λ+ lnµ̄
T∗ )(t−tk)ck. (3.11)

Let h(λ) = λ + (Λ + lnµ̃
T ∗ ) + (γ1 + γ2)eλτ̄. Utilizing the condition in Theorem 1, we have

h(0+) = (Λ +
lnµ̃
T ∗

) + γ1 + γ2 < 0. (3.12)

Obviously, we have h(+∞) > 0 and h′(λ) = 1+ τ̄(γ1 +γ2)eλτ̄ > 0. Therefore, there is a only positive
solution λ > 0 of the equation h(λ) = 0.

Thereafter, we will prove that the following inequality is satisfied for ∀t ≥ 0

v(t) < qe−λt +
∑

t0≤tk<t

e−λt+ωtkck +
κ

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

, (3.13)

where (Λ + lnµ̃
T ∗ ) ≥ −ω.
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If it does not hold, a positive constant t∗ can be found with

v(t∗) ≥ qe−λt
∗

+
∑

t0≤tk<t∗
e−λt+ωtkck +

κ

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

. (3.14)

v(t) < qe−λt +
∑

t0≤tk<t

e−λt+ωtkck +
κ

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

, t < t∗. (3.15)

From (3.11) and (3.15), it holds that

v(t∗) ≤qe(Λ+ lnµ̃
T∗ )t∗ +

∫ t∗

0
e(Λ+ lnµ̃

T∗ )(t∗−s)
[
γ1v(s − τ1(s)) + γ2v(s − τ2(s)) + κ

]
ds

+
∑

t0≤tk<t∗
e(Λ+ lnµ̃

T∗ )(t∗−tk)ck

<qe(Λ+ lnµ̃
T∗ )t∗ + e(Λ+ lnµ̃

T∗ )t∗
∫ t∗

0
e−(λ+(Λ+ lnµ̃

T∗ ))s(γ1 + γ2)[qeλτ̄ +
∑

t0≤tk<t∗
e−λ(s−τ̄)+ωtkck]ds

+
κ

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

∫ t∗

0
e(Λ+ lnµ̃

T∗ )(t∗−s)(γ1 + γ2)ds + κ
∫ t∗

0
e(Λ+ lnµ̃

T∗ )(t∗−s)ds

+
∑

t0≤tk<t∗
e(Λ+ lnµ̃

T∗ )(t∗−tk)ck

≤qe(Λ+ lnµ̃
T∗ )t∗ + qe(Λ+ lnµ̃

T∗ )t∗
∫ t∗

0
e−(λ+(Λ+ lnµ̃

T∗ ))s[−(λ + (Λ +
lnµ̃
T ∗

))]ds +
∑

t0≤tk<t∗
e−λt

∗+ωtkck

−
∑

t0≤tk<t∗
e(Λ+ lnµ̃

T∗ )t∗+ωtkck +
∑

t0≤tk<t∗
e(Λ+ lnµ̃

T∗ )(t∗−tk)ck

+
−κ(Λ + lnµ̃

T ∗ )

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

∫ t∗

0
e(Λ+ lnµ̃

T∗ )(t∗−s)ds

<qe−λt
∗

+
∑

t0≤tk<t∗
e−λt

∗+ωtkck +
κ

−(Λ + lnµ̃
T ∗ ) − γ1 − γ2

,

which results in a contradiction with (3.14). Thus, the inequality (3.13) is satisfied. Letting κ → 0, it
holds for t ≥ 0 that

∥e(t)∥p ≤ Ṽ(t) ≤ v(t) ≤ qe−λt +
∑

t0≤tk<t

e−λt+ωtkck, t ≥ 0,

which indicates

∥e(t)∥p ≤ sup
−τ̄≤s≤0

∥ϵ(s)∥pe−λt +
∑

t0≤tk<t

e−λt+ωtkck.

Recalling the differential Eq (3.1), it has

η(t) = e−βt
(
η(0) +

∫ t

0
eβs
(
ε(∥K∥p∥ϵ̂(s)∥p − σ∥ϵ(s)∥p)

)
ds
)
.
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Noticing the noincreasing of dynamic function η(·), the impulsive gain µk+1 for the event-triggered
instant t = tk+1 can be designed such that

(1 − µk+1)η(tk+1)
(1 − µk)η(tk)

< e−ωT ∗ < 1,

then, we can have

(1 − e−ωT ∗) + e−ωT ∗µk < µk+1. (3.16)

Finally, for the constant M > 0, one has

∥e(t)∥p ≤ ( sup
−τ̄≤s≤0

∥ϵ(s)∥p + M)e−λt. (3.17)

The theorem is proved.

Remark 7. Note from the condition (3.4) that the sequential impulsive gain µk+1 is closely related
to the system parameter term Λ, former impulsive strength µk and the length of T ∗. Obviously, each
impulsive instant gives us a guideline for balancing the selection of impulsive gain µk to obtain a
suitable hybrid impulsive controller. Just event-triggering rules may not guarantee the realization of
synchronization for underlying networks, some restricted conditions should be additionally put forward
for certain objectives. For example, as a compromise, there exists a constant ρ2 which satisfies ρ2 ≥

supk∈N{tk− tk−1} for triggering instants in [32], and the authors choose a suitable parameter β such that
max
∀k
{eln(βγ)+λ(tk+1−tk)} < α < 1 in [36].

Remark 8. Different from previous works, the existence of dynamic function η(t) greatly improves the
challenges of the considered problem, which not only induces the constants ck, in each impulsive
instants, turning the traditional impulsive system into impulsive jumping systems but also should
promise the monotone decreasing of dynamic triggering function that η̇ < 0 at the same time.

The following theorem will demonstrate that the proposed control scheme gets rid of the Zeno-
phenomenon, which means tk+1 − tk > 0 can be guaranteed with a lower bound of interval times.

Theorem 2. Supposed that criteria (3.3) and (3.4) hold, then the time interval Tk exists and satisfies
the following

tk = tk+1 − tk ≥ σ > 0. (3.18)

That is to say, the Zeno phenomenon of the proposed control scheme is excluded.

Proof. According to (3.17), we have for t ∈ [tk−1, tk) that

∥ϵ(tk−1)∥p ≤ ( sup
−τ̄≤s≤0

∥ϵ(s)∥p + M)e−λtk−1 ,

∥ϵ(t − τ1(t))∥p = ∥ϵ(t)∥p + ξ1(t) ≤ ( sup
−τ̄≤s≤0

∥ϵ(s)∥p + M)e−λtk−1 ,

where ξ(t) ≥ 0 is associated with τ(t).
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Taking derivation of ϵ̂(t) for [tk−1, tk), k ∈ N, yields

D+∥ϵ(t)∥ ≤ ∥ϵ̇(t)∥
= ∥ − D̃ϵ(t) + Ã f̃ (ϵ(t)) + B̃ f̃ (ϵ(t − τ1(t))) + c1H̃1g̃1(ϵ(t)) + c2H̃2g̃2(ϵ(t − τ2(t))) − Kϵ(tk−1)∥
≤ (∥D̃∥ + c1L2H̃1)∥ϵ(t)∥ + L1∥Ã∥∥ϵ(t)∥ + L1∥B̃∥∥ϵ(t − τ1(t))∥ + c2L3H̃2∥ϵ(t − τ2(t))∥ + ∥K∥∥ϵ(tk−1)∥

≤ (∥cH − D̃∥ + L f ∥Ã∥ + L f ∥B̃∥)∥ ˆϵ(t)∥ + (∥cH − D̃∥ + L f ∥Ã∥ + L f ∥B̃∥ + ∥K∥)∥ϵ(tk−1)∥ + L f ∥B̃∥ξ(t)

= Υ∥ ˆϵ(t)∥ + C̃(t),

where Υ = ∥cH − D̃∥+ L f ∥Ã∥+ L f ∥B̃∥, C̃(t) = (∥cH − D̃∥+ L f ∥Ã∥+ L f ∥B̃∥+ ∥K∥)∥ϵ(tk−1)∥+ L f ∥B̃∥ξ(t).
Therefore, we can solve the equality with the initial condition ϵ̂(tk) = 0 for t ∈ [tk−1, tk) as follows:

∥ϵ̂(t)∥ ≤
C̃(t)
Υ

[eΥ(t−tk−1) − 1].

By virtue of the dynamic triggering condition, when t = tk we have

1
θ(∥K∥p + σ)

η(t) +
σ

∥K∥p + σ
∥ϵ(tk−1)∥ ≤

C̃(t)
Υ

[eΥ(tk−tk−1) − 1],

which means that

tk = tk − tk−1 ≥
1
Υ

ln[1 +
Υ(η(t) + θσ∥ϵ(tk−1)∥)
θ(∥K∥ + σ)C̃(t)

].

Thus C̃(t) ≤ (sup
−τ̄≤s≤0 ∥ϵ(s)∥p +M)(∥cH − D̃∥+ L f ∥Ã∥+ L f ∥B̃∥+ ∥K∥+ L f ∥B̃∥) = C̃. It follows that

tk ≥
1
Υ

ln[1 +
Υ(η(t) + θσ∥ϵ(tk−1)∥)
θ(∥K∥ + σ)C̃

].

Hence, for t ∈ [tk−1, tk), k ∈ N,

tk ≥
1
Υ

ln[1 +
Υ(η(tk) + θσ∥ϵ(tk−1)∥)
θ(∥K∥ + σ)C̃

] > 0.

Thus, the lower bound of inter-execution time exists and satisfies Tk = tk − tk−1 ≥ σ > 0. The
completes the proof.

Remark 9. It can be found that according to property of dynamic function η(t), only when the
synchronization comes true with error state ϵ(t) = 0, ϵ(tk−1) = 0 and the dynamic function decreasing
to η(t) = 0, the Zeno phenomenon can emerge. That is to say, the Zeno-behavior is ruled out for error
system (2.5).

The proposed control scheme is capable of improving the traditional impulsive. When the interval
T ∗ refers to the average impulsive interval T , with event-triggered strategy removing, it is easy to
obtain the following result.

Electronic Research Archive Volume 32, Issue 7, 4581–4603.



4594

Corollary 1. Suppose that the Assumption 1 holds. Then, the delayed MNNs are synchronized via the
controller (2.4) with the dynamic event-triggering rule (3.2), if

(Λ +
lnµ̃
T ∗

) + γ1 + γ2 < 0, (3.19)

and selecting

−(Λ +
lnµ̃
T ∗

) < ω < λ,

where Λ = mp(−K) + Lp∥Ã∥p + ∥cH − D̃∥p, µ̃ = maxk{µk}, γ1 = L1∥B∥p, γ2 = L3c2∥H̃2∥p and λ > 0 is a
unique positive solution of λ + (Λ + lnµ̃

T ∗ ) + (γ1 + γ2)eλτ̄ = 0.

Remark 10. If the dynamic event-triggered mechanism is separated, the investigation becomes the
traditional impulsive synchronization problem. The corollary not only contains some correlational
previous problems as a special case but also, with the introduction of p-norm, the simpler and easier
verifiable criterion is achieved compared with some former achievement [28, 39].

4. Numerical simulation

In this section, we present two numerical simulations to illustrate the efficiency of the theoretical
results obtained in this paper.

Example 1. The effectiveness of Theorem 1 is verified in this section. To illustrate the efficiency of
the proposed theoretical results, the following cellular neural network is considered the leader

[
ṡ1(t)
ṡ2(t)

]
= −

[
1 0
0 1

] [
s1(t)
s2(t)

]
+

[
1 + π/4 20

0.1 1 + π/4

] [
f1(s1(t))
f2(s2(t))

]
+

[
−
√

2π13
40 0.1

0.1 −
√

2π13
40

] [
f1(s1(t − τ1(t)))
f2(s2(t − τ1(t)))

]
where fi(si) = (|si + 1| − |si − 1|)/2, i = 1, 2. It is clearly that Π = diag{1, 1} [39]. Then, to validate the
feasibility of Theorem 1, we consider a networked multi-agent system of six agents, and the coupled
cellular neural network satisfies (2) with

D =
[
1 0
0 1

]
, A =

[
1 + π/4 20

0.1 1 + π/4

]
, B =

[
−
√

2π13
40 0.1

0.1 −
√

2π13
40

]
.

It is obviously the Lipschitz condition in Assumption 1 is computed as L = 0.6I3. Assume that
Γ1 = Γ2 = Γ3 = diag{1, 1} and τ1(t) = τ2(t) = 0.1 et

et+1 . The current-state coupling and time-delay can
be respectively chosen as

H1 =



−2 1 0 1 0 0
0 −1 1 0 0 0
1 0 −3 1 0 1
0 0 0 −2 1 0
0 0 0 0 −1 1
1 0 0 0 0 −3


, H2 =



−1 0 0 0 10 0
0 −2 1 1 0 0
0 0 −2 0 0 1
1 0 1 −2 0 0
0 0 0 0 −1 1
0 0 1 0 0 −1


.
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Without the lost of general, the nonlinear coupling function g1(x) = g2(x) = 0.32x − 0.295(|x + 1| −
|x− 1|), coupling strength c1 = c2 = 0.5, and the state feedback control gain matrix K = 10 ∗ diag{1, 1}.
Considering the 2-norm of the vector or matrix in the simulations, therefore, we have mp(−K) = −10.
Noticing that the upper impulsive bound T ∗, γ1 = 1.539L1 and γ2 = 1.5432L3 can be calculated to
satisfy the condition (13) in Theorem 1. By solving the inequality, we can set the controlling interval
T ∗ = 20 and maximum impulsive gain µ̃ = 0.943. Therefore, conditions (13) and (14) can be satisfied.
To clearly demonstrate the complexity of our algorithm, the method of choosing the parameters in the
controller can refer to Algorithm 1.

Algorithm 1 Dynamic event-triggered impulsive control implementation
Require: Give the initial values ξi(t), s(t), η(t) for all i = 1, 2, · · · ,N, t0 = 0, k = 0. Set t, sampling

time h, and simulation time T ;
1: Chose the parameters β, ε, σ, θ, T ∗, control feedback parameters K, µk;

Ensure:
2: if Assumption 1 holds simultaneously, then
3: go to Line 7
4: else
5: go to Line 1
6: end if
7: for 0 < t < T do
8: if t = 0; then
9: Compute the value of Λ = max{(mp(−K) + Lp∥Ã∥p + ∥cH − D̃∥p), 1−ε

θ
− β}, µ̃ = maxk{µk},

γ1 = L1∥B∥p, γ2 = L3c2∥H̃2∥p, ω ≥ −(Λ + ln µ̃
T ∗ ), and λ > 0 is a unique positive solution for

λ + (Λ + lnµ̃
T ∗ ) + (γ1 + γ2)eλτ̄ = 0, and control input ui(t) in (2.4) using the initial value ϵi(t);

10: else
11: if event-triggered condition (3.2) holds; then
12: k = k + 1;
13: tk = t;
14: else
15: tk keeps its value of k-triggering;
16: end if
17: Compute the impulsive gain µk in (2.4);
18: Compute the control input in (2.4);
19: end if
20: t = t + h;
21: end for

Next, we will show the dynamic state-triggering rule (3.2) revolution with θ = 10, σ = 1
and dynamic function ηi(0) = 10. The dynamic ETI instants are given in Figure 1(a) and static ETI
one [33, 37, 43] in Figure 1(b), in which the value equal to 1.5 refers to the triggering generated from
the upper triggering bound T ∗ in blue and 1 resulting from the error triggering condition in pale green.
Obviously, compared with the static triggering condition with the same parameters as the dynamic
one, it is shown that the dynamic one can significantly decrease the triggering number, especially
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behind t = 2. Figure 2(a) shows the state trajectories of the leader and the following coupled neural
networks. With the event-based impulsive controller is replaced by

ui(t) = −Kϵi(tk−1) +
∞∑

k=1

[
µϵi(t) − ϵi(t)

]
δ(t − tk), k ∈ N, (4.1)

the error system of (2.5) under the designed control is shown in Figure 2(b). Obviously, the exponential
synchronization of the coupled neural networks and the state leader is achieved with multi-delays and
nonlinear terms.

(a) Triggering time sequences of dynamic event-triggered strategy.

(b) Triggering time sequences of static event-triggered strategy.

Figure 1. Triggering time sequences of Example 1 with 6 coupled neural networks.
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(a) State trajectories of six coupled neural networks in Example 1.

(b) State Trajectories of the error system of the neural networks with the leader.

Figure 2. State Trajectories of Example 1 with 6 coupled neural networks.
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(a) Impulsive instants for event-triggered impulsive control and single impulsive control.

(b) Each node’s and the leader’s evolution of Chua’s circuits model.

Figure 3. The simulations of Example 2 with Chua’s circuits model.

Example 2. To demonstrate the effectiveness of the dynamic EIC method in practical applications.
Consider the Chua’s circuits model, of which the dynamic is described by


ṡ1(t) = a(s2(t) −G(s1(t))),
ṡ2(t) = s1(t) − s2(t) + s3(t),
ṡ3(t) = −bs2(t),

(4.2)

where G(s1(t)) = 0.32x−0.295(|s1(t)+1|−|s1(t)−1|), a = 10, b = 14.87. Without loss of generality, we
consider the system (4.2) as the leader of the networked system. Therefore, we can obtain the system
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parameters in the following

A =


−0.32a −a 0

1 −1 1
0 −b 0

 , B =

−a 0 0
0 0 0
0 0 0

 .

The nonlinear function f (s1(t)) = −0.295(|s1(t) + 1| − |s1(t) − 1|). Thus the Lipschitz condition in
Assumption 1 can be calculated as L = 0.6I3. To verify the feasibility of Theorem 1, we consider a
networked system of six agents, where the dynamic of each agent is depicted by the Chua’s
circuits (4.2), the coupling delay τ0 = 0.2, coupling strength d = 0.5, and the coupling matrix can be
chosen as

H =



−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
−1 0 0 0 0 −1


.

Basing simulation of example 1 and taking the same parameters of controller and event-triggered
method, some similar results can be obtained. Obviously, the exponential synchronization of Chua’s
circuits model is achieved under the event-triggered impulsive control, and the state trajectories of
the leader and following agents are shown in Figure 3(a). In addition, the event-triggered impulsive
instants and traditional impulsive instants are given in Figure 3(b). It should be noted that if impulsive
instants are set before, some impulsive instants are unnecessary, and the instants sequence has to be
unrelenting owing to the unknown terminal time.

5. Conclusions

Basing the traditional impulsive control theory, this paper combines the dynamic event-triggered
rule to further improve control performance and reduce impulse consumption, of which the impulsive
instants are generated according to the predesigned event-triggering condition. Moreover, the
synchronization problem of coupled neural networks with nonlinear and multi-delays is investigated
to enhance the applicability and universality of the outcome. By achieving the solution and impulsive
jumping system and introducing measure measure method, the dynamic event-based impulsive
mechanism is successfully constructed and applied to receive some sufficient conditions of the
considered synchronization problem, and the Zeno behavior has been excluded in the proposed
strategy. Finally, two numerical simulations are conducted to verify the correctness of the proposed
algorithm. Although our network model can describe certain real-world phenomena, it still has some
limitations. It should be noted that state-dependent networks, of which the communication structure
varies related to the state of nodes, can better characterize the practice network. We will extend the
proposed dynamic ETI scheme to the synchronization problem of state-dependent networks in our
future work.
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