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Abstract: When recognizing targets by unmanned aerial vehicles (UAVs), problems such as small size, 
dense dispersion, and complex background are likely to occur, resulting in low recognition rates. In 
order to solve the above problems, this work proposed a lightweight small target detection algorithm 
based on the YOLOv8n: STD-YOLOv8 algorithm. First, the regression problem of small targets in 
different training periods was optimized, the penalty term in the original loss was improved, and a new 
LIoU loss function was proposed, so that the size of the penalty term could be dynamically adjusted 
before and after training, thus improving the performance of the algorithm. Second, in order to better 
adapt to the small target scale and enhance the ability of small target feature acquisition, the SPD-Conv 
module was integrated in the backbone network, replacing the original stepwise convolutional layer 
and pooling layer, so as to solve the problems of loss of fine-grained information and low efficiency 
of feature representation existing in the current convolutional neural network (CNN) structure. In the 
neck part, nearest-neighbor upsampling was replaced by the feature reassembly assembly of features 
operator CARAFE (content-aware reassembly of features), which enabled the model to aggregate 
contextual information in a larger perceptual field and enhanced the feature representation in the neck. 
Finally, validation experiments were conducted by comparing different algorithms under the same 
VisDrone-2021 dataset. The results of the ablation experiments show that the algorithms proposed in 
this thesis have improved the recall (R), mAP50, and mAP95 by 4.7, 5.8 and 5.7%, respectively, 
compared with YOLOv8n. The results of the model generalization experiments on the TinyPerson 
dataset show that the algorithm in this paper has superior small target detection performance with only 
1.2 M model parameters (1 M = 106). 
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1. Introduction 

With the increasing popularity of drones, they are widely utilized in various fields, such as 
electricity, agriculture, transportation, and rescue operations. Integrating drones with object detection 
methods plays a crucial role in automation and development across numerous fields. Indeed, in the 
power industry, reference [1] employs an improved YOLOX model for transmission line anomaly 
detection, incorporating an alpha loss function to optimize the localization of small targets. In the field 
of transportation applications, reference [2] introduces a small target detection layer in YOLOv5 and 
incorporates the normalized Wasserstein distance (NWD) to reduce the intersection over union (IOU) 
sensitivity to small target positional deviations. In the livestock industry, employing drones in 
conjunction with object detection methods allows for the monitoring [3] of livestock to achieve 
intelligent management and improve efficiency. In the pursuit of model lightweighting, reference [4] 
reduces computational complexity and compresses model size by introducing the C2F-Ghost module. 
However, images captured from the perspective of a drone often feature smaller target object pixels 
and proportions in the image due to factors such as shooting height and angle. Additionally, there may 
be extensive target overlap in these photographs, which usually feature complicated backdrops. The 
requirements of UAV target identification are no longer addressed by traditional target detection 
techniques, which have issues with computing redundancy, complex artificial feature creation, and low 
robustness. Accurately and quickly recognizing targets from the perspective of drones has become a 
current focus and challenge in research. 

Deep learning-based target detection algorithms can be categorized into two camps: one stage 
and two stage. The two-stage algorithm generates a series of target candidate regions, which are then 
subjected to feature extraction by a convolutional neural network for classification and localization. 
This category of algorithms is exemplified by the R-CNN [5–8] series, which is considered classic in 
this domain. Bai et al. [9] integrated the faster R-CNN model with generative adversarial nets (GAN) 
to address the challenge of detecting dim and small targets in automatic target recognition (ATR) 
systems. The results demonstrate the effectiveness of the proposed method in achieving stable 
performance and lower false alarm rates in various scenarios compared to traditional methods. A faster 
R-CNN model with the RegNet network as the backbone was proposed by Wang et al. [10] to reduce 
the loss of key information due to R-CNN sampling, which achieved a great boost in the detection of 
spacecraft components. For the problem of slow inference in two-stage networks, He et al. [11] reduced 
the iterative detection head and simplified the feature pyramid network to accelerate the sparse R-CNN, 
which not only reduced the amount of computation but also gained accuracy. However, there are still 
issues in implementing two-stage algorithms on small embedded devices. Conversely, the one-stage 
algorithms represented by the You Only Look Once (YOLO) [12–16] series, SSD [17], and 
RetinaNet [18] offer a notable performance gain but at the expense of reduced detection accuracy. Zhu 
et al. [16] integrated the convolutional block attention model (CBAM) and added detection heads to 
YOLOv5. However, the computational volume of the model increased dramatically to 237.7 GFLOPs, 
which is contrary to lightweighting. Yao et al. [19] evaluated several model architectures in the YOLO 
family and SSDs on a range of devices representing the capabilities of robotic and edge devices. New 
variants of the YOLO-LITE architecture were proposed, which exceled in lightweighting but was 
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overwhelmed in the face of small targets. Sun et al. [20] improved the small target detection 
performance of the SSD algorithm by enhancing the detection function with contextual information 
and introducing a segmentation mask. The added complexity in the model architecture, due to the 
integration of segmentation and detection branches, make it more challenging to implement and fine-
tune compared to simpler models. However, under the unmanned perspective, due to the fact that the 
small target itself occupies a relatively small area, carries little information, and has a complex image 
background, missed detection and misdetection occurs from time to time [21]. The accuracy of small 
target detection is still far less than that of medium and large targets. From the point of view of the 
balance between model size and detection accuracy, the YOLO series is undoubtedly one of the most 
popular detection algorithms. 

Although YOLOv8 is the most remarkable model in the series, it performs far better at detecting 
conventional targets than the tiny, much like its predecessors. Therefore, an STD-YOLOv8 model 
based on improved YOLOv8n is proposed. The model specifically improves YOLOv8’s detection 
layer structure, backbone, and loss functions. Overall, the contributions of this work are as follows: 

1) Instead of stride-wise convolution and pooling operations, the SPD-Conv module is used in 
the backbone network to downsample the feature map without losing useful information. 

2) In the neck network, the structure of three detection layers is maintained, and the difference is 
that the original P5 detection layer is replaced by a shallower P2 detection layer, forming a three-
detection-layer structure of P2, P3, and P4. Greater benefits in the new detection layer structure are 
possible when the content-aware feature reassembly upsampling operator is substituted for nearest-
neighbor upsampling simultaneously. The goal is to enable the neck to uncover and retain more small 
target features and reduce the model depth. 

3) After considering the regression problem for tiny target bounding boxes, the penalty term of 
the original loss function is optimized, and the LIoU loss function is proposed, which obtains some 
accuracy improvement in the target dataset. 

The remaining content of the article is as follows: In Section 2, we describe related work. Section 3 
provides a detailed introduction to the improved method. In Section 4, relevant experiments are 
conducted, and results are analyzed to demonstrate the superior performance of the improved model. 
Section 5 concludes the entire paper. 

2. Materials and methods 

Small targets can be defined by both relative proportions and absolute pixels. Chen et al. [22] 
defined targets with a bounding box-to-image ratio between 0.08 and 0.58% as small targets. In the 
MS COCO [23] dataset, small targets are defined as objects with a resolution smaller than 32 × 32 
pixels. Furthermore, there are other definitions based on absolute scales, e.g., in the aerial image 
dataset DOTA [24], targets with pixel values ranging between 10 and 50 are defined as small targets. 
In the pedestrian recognition dataset CityPersons [25], small targets are defined as those with a height 
of less than 75 pixels. Based on the above definition of small targets, most images captured from a 
drone's perspective would fall into the category of small targets. 

2.1. Overview of the YOLOv8 

In 2015, Redmon et al. [12] introduced YOLO (You Only Look Once), transforming the object 
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detection task into a regression problem and ushering in the era of “fast” object detection. Gradually, 
the YOLO series has become widely recognized and extensively used as a single-stage object detection 
algorithm. Compared with the two-stage algorithm, YOLO has a substantial improvement in detection 
speed, but its detection accuracy and generalization ability are relatively poor. After several years of 
development, YOLO has been upgraded to version 8, which Ultralytics open-sourced on January 10, 2023. 

YOLOv8 is categorized based on network width and depth into YOLOv8n, YOLOv8s, 
YOLOv8m, YOLOv8l, and YOLOv8x. YOLOv8n is the most miniature model among them, and its 
small target recognition performance is even better than YOLOv5s. Consequently, selecting YOLOv8n 
is consistent with the paper’s study objectives. The network structure of YOLOv8, as shown in Figure 1, 
is primarily divided into the following parts: backbone, neck, and head. The backbone consists of Conv 
Module, C2f, and SPPF. The Conv Module is composed of a 2D convolutional layer, a 2D BatchNorm 
layer, and a SiLU activation function. Compared to the previous C3, C2f has a richer gradient flow 
and adapts different channel numbers for models of various scales. Because of its more streamlined 
structure, a lightweight design is ensured while richer gradient flow information may be obtained. The 
head section undergoes the most significant changes, as YOLOv8 adopts a decoupled head structure 
and replaces Anchor-Base with Anchor-Free design. It is noteworthy that the duties of classification 
and regression are kept apart by this decoupled head. The previous objectness branch is no longer there. 
Instead, it directly decouples into two separate branches. Moreover, its regression branch utilizes the 
integral representation. As a result, the model’s speed and accuracy are improved. 

 

Figure 1. The structure of YOLOv8. 

3. Methods 

The modified model structure is illustrated in Figure 2. In the backbone network, the SPD module  
is integrated to replace stride-wise convolutions and pooling layers, thereby preserving feature 
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information during the downsampling. In the head section, the P5 layer is replaced with a P2 detection 
layer and corresponding redundant modules are removed. This reduces network depth while 
simultaneously improving the detection rate for small targets. Finally, the original upsampling is 
replaced with content-aware reassembly of features (CARAFE) [26], enabling the network to obtain a 
larger receptive field on shallow feature maps to preserve features of small targets. As for the regression 
problem, LIoU is proposed to dynamically adjust the regression of the bounding box during the 
training process to improve its accuracy. 

 

Figure 2. The structure of STD-YOLOv8. 

3.1. Structural design of the detection layer 

As shown in Figure 3(a), YOLOv8 is designed with three detection layers: P3, P4, and P5, each 
corresponding to small, medium, and large targets, respectively. When the input image size is 640 × 640, 
the minimum detectable target pixel size for the P3 layer is 8 × 8, which may not meet the algorithm’s 
requirements in the domain of small targets. In such cases, a common approach is to use a multi-scale 
detection method, i.e., adding a small target detection layer [16] to enhance the model’s performance, 
as shown in Figure 3(b). The P2 layer can detect small targets with a minimum size of 4 × 4 pixels in 
a larger receptive field, bringing significant performance gains to the model. However, the quantity of 
parameters significantly increases, which is not conducive to the model being lightweight. In order to 
balance the size of the model with its small target performance, in this paper, the P5 layer for large 
targets is discarded, and the structure shown in Figure 3(c) is adopted. This detection layer structure 
enables the model to shift its focus from medium and large targets to small ones while reducing the 
network depth to drastically reduce the model parameters.  
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Figure 3. Comparison of the detection layer structures. 

3.2. CNN building block for small objects SPD-Conv 

Common CNN structures in typical neural networks often adopt stride-wise convolutions and 
pooling layers. When confronted with images of good resolution and moderately sized objects, stride-
wise convolutions and pooling can conveniently skip redundant pixel information, and the model can 
still learn features effectively. However, when faced with low-resolution images and small objects, the 
limitations of this structure begin to emerge. Fine-grained information about the target suffers from 
loss [27] during the process, making it challenging for the network to capture the features of small 
objects. Thus, the SPD-Conv module is introduced to replace stride-wise convolutions and pooling 
layers. The SPD-Conv module consists of a space-to-depth (SPD) layer and a non-stride convolutional 
layer (stride = 1). The SPD layer is the core component of SPD-Conv. It rearranges the spatial 
dimensions of the input feature map into the depth dimension without any information loss. When a 
feature map X with dimensions S × S × C1 is obtained, the SPD layer will split it into a series of sub-
feature maps according to Eq (1). Figure 4 provides an example illustration when the scale is 2. The 
four sub-feature maps obtained will be connected along the channel dimension, thus obtaining X' (the 
symbol of the plus sign in the circle in Figure 4 indicates the process). The spatial dimensions of X' 
are reduced by a factor of scale, while the channel dimensions are increased by a factor of scale2. In 
other words, the SPD part transforms the feature map X (S, S, C1) into an intermediate feature map X' 
(S/scale, S/scale, scale2C1). Subsequently, a non-stride convolutional layer with a C2 filter performs a 
convolution operation on X' with the stride of 1 (the symbols of stars enclosed in circles in Figure 4 
indicates the process), where C2 < scale2C1. Generally, using a stride greater than 1 can lead to the 
neglect of certain pixels, resulting in the indiscriminate loss of feature information. This issue is 
effectively mitigated by employing non-stride convolution. Finally, the feature map X'' (S/scale, 
S/scale, C2) is obtained. SPD-Conv addresses this issue by eliminating the strided convolution and 
pooling layers, thereby retaining all spatial information and enhancing feature learning for small 
objects and low-resolution inputs. 
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Figure 4. Illustration of SPD-Conv when scale = 2. 

 

   
 

 

0,0 1,0

1,0

0,1 1,1

0 : : ,0 : : , 1 : : ,0 : : , ,

                   1 : : ,0 : : ;

                                                  

0 : : ,1 : : , 1 : :

scale

f X S scale S scale f X S scale S scale

f X scale S scale S scale

f X S scale S scale f X S sc



 

 

 




 

 1, 1

,1 : : , ,

           1 : : , 1: :scale scale

ale S scale

f X scale S scale scale S scale    


 (1) 

3.3. The feature reassembly upsampling operator 

The nearest-neighbor method is used by YOLOv8 to determine the upsampling kernel, which is 
based only on the spatial position of pixel points. Its receptive field is typically small, resulting in 
suboptimal utilization of semantic information in the feature map. This method is prone to generating 
noise in low-resolution images, leading to feature loss. Accordingly, this paper adopts content-aware 
reassembly of features (CARAFE) with a larger receptive field. In order to achieve greater 
performance than mainstream upsampling operators, this study employs the CARAFE upsampling 
operator, which has a bigger receptive field and can use adaptive and optimized recombination kernels 
at different places. As shown in Figure 5, the CARAFE operator consists of a kernel prediction module 
and a content-aware reorganization module. The kernel prediction module is responsible for generating 
reorganization kernels in a content-aware manner. Each original position on Y corresponds to σ2 target 
positions on Y′. Assuming each target position requires a recombination kernel of size K × K when the 
input feature map is of size H × W × C, this module outputs recombination kernels of size H × W × σ2 

× K2. For each recombination kernel Mι, the content-aware module reassembles local region features 
with a simple weighted sum operation. Under the influence of the recombination kernel, each pixel in 
region Nι contributes differently to the upsampled pixel. The process is based on the content of the 
features rather than positional information. Information from relevant points in the feature region can 
receive more attention. The visualized feature maps before and after the improvement are shown in 
Figure 6 (nearest neighbors on the left side of the dashed line and CARAFE on the right side). 
Obviously, at the same depth, the feature map on the right side has a larger receptive field and more 
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pronounced features after reassembly. Additionally, the “gain” on this feature increases with the 
number of upsampling. 

 

Figure 5. Structure of the CARAFE. 

 

Figure 6. Feature maps before and after improvement. 

3.4. The optimized loss function 

The sea of deep learning detection algorithms have differences in their frameworks. However, the 
regression of the bounding box is crucial for all of them, which involves prediction as well as 
localization of the target box. In regression problems, intersection over union (IoU) is a widely used 
metric which is defined as: 

 1 1
gt

IoU
gt

B B
L IoU

B B
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


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where B is the predicted box, and Bgt is the ground truth box. Unfortunately, when there is no overlap 
between the predicted box and the ground truth box, the IoU loss loses its gradient. The generalized 
intersection over union [28] (GIoU) loss was introduced to address this issue, incorporating a penalty 
term based on the minimum enclosing rectangle. The GIoU loss is defined as follows: 

 1
gt

GIoU

C B B
L IoU

C


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
 (3) 

where C is the minimum enclosing rectangle of the two boxes, which ensures gradient updates even in 
cases of no overlap. Nevertheless, when there is a containment relationship between the two boxes, 
GIoU degenerates into IoU. In this case, DIoU and CIoU are proposed simultaneously in [29]. DIoU 
defines the penalty term as the normalized length of the line joining the centroids of the two bounding 
boxes, which is given by: 
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where R is the penalty term, and b and bgt are the centers of the predicted and ground truth boxes, 
respectively. ρ2(b, bgt) is the Euclidean distance between the two, and c is the length of the diagonal of 
the minimum outer rectangle, as shown in Figure 7. 

 

Figure 7. Principle of DIoU regression. 

CIoU further takes into account the aspect ratio of the bounding boxes based on the former. The 
specific formula is as follows: 
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2
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where 𝛼 is the trade-off parameter and v describes the aspect ratio consistency. Considering that w2 

+ h2 is relatively small within the range (0,1), which may lead to gradient explosion, by simply 
replacing (1 / w2 + h2) with 1, the gradient direction will remain the same as in Eq (6). When the 
detected objects are small targets, the smaller size of the bounding boxes makes them more sensitive 
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to changes in distance. To address this, a dynamic adjustment factor, denoted as “l”, is designed to 
optimize the penalty term. The new penalty term, RLIoU, is defined as in Eq (7). 
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The graph of y = ex – 1 is illustrated in Figure 8, with the range of x being (0,1). During the initial 
stages of training, when the predicted bounding boxes are relatively distant from the ground truth boxes 
corresponding to region A in the diagram, the penalty intensity is increased. As training progresses and 
the overlap between the predicted and ground truth bounding boxes increases, entering region B in the 
function, this reduces the penalty intensity. The model’s overall performance is improved by making 
such dynamic adjustments in both the pre-training and post-training stages to enhance regression 
accuracy. The LIoU loss function is defined by Eq (8). 

 

Figure 8. The function y = ex – 1 (when x ϵ(0, 1)). 

4. Experiments and analysis 

4.1. Dataset 

The dataset utilized in the experiments of this study is the VisDrone-2021 [30] dataset, publicly 
released by the AISKYEYE team from Tianjin University. The dataset is captured by various cameras 
mounted on drones, totaling 8629 images, which include 6471 for training, 548 for validation, and 3190 
for testing. The image annotations include ten categories: awning-tricycle, bicycle, bus, car, people, 
pedestrian, motor, truck, tricycle, and van. Figure 9 illustrates the distribution of label sizes in the 
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training set. It is evident from the figure that labels are predominantly concentrated in the bottom-left 
corner, indicating a significant proportion of small targets in the VisDrone-2021 dataset. This poses a 
considerable challenge for detection. 

 

Figure 9. Label size distribution of the training dataset. 

4.2. Experimental details and evaluation criteria 

Experimental Details: The experiments in this study were conducted using hardware primarily 
equipped with an NVIDIA RTX 3080 GPU and an i5-12600KF CPU. The software configuration 
involved the PyTorch 2.0.1 deep learning framework on a Windows 10 operating system. The input 
image size was 640 × 640, with a total of 300 iterations. The batch size was 16, the initial learning rate 
was 0.01, the learning rate momentum was 0.937, and the weight decay coefficient was 0.0005. All 
experiments were trained from scratch and no pre-trained models were utilized. 

Evaluation Metrics: To assess the effectiveness of the proposed model in this study, model 
complexity was evaluated based on the number of parameters and the memory footprint. In terms of 
performance, precision, recall, mAP50, and mAP were employed as evaluation metrics. The mAP refers 
to the mean average precision, calculated by taking the mean of all average precisions (AP) computed 
at IoU thresholds ranging from 0.5 to 0.95 with a step size of 0.05, which is the same as mAP95. 

4.3. Comparison of detection layer structures 

In order to verify the validity of the detection layer structure in this paper, we used Scheme 1 and 
this paper’s scheme for comparison experiments. The two experimental models differ only in the 
detection layer structure. The experimental results are shown in Table 1. It can be observed that both 
schemes yield the same mAP50. The proposed scheme in this study outperformed Scheme 1 in precision 
by 0.9% while lagging by 0.3% in recall. However, our scheme significantly led in terms of model 
parameters, achieving a reduction of 57.1%. To put it simply, the components of the original model 
designed for medium and large targets became redundant when dealing with small targets. 
Consequently, our scheme achieved comparable performance with less than half the number of 
parameters. The experimental results provide the best evidence. 
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Table 1. Performance comparison of the two schemes. 

Methods P (%) R (%) mAP50 (%) Params (M) GFLOP Size (mb) 
Scheme 1 50.0 39.6 40.7 3.0 16.4 6.70 
Our Scheme 50.9 39.3 40.7 1.2 14.1 2.70 

4.4. Ablation experiment 

To assess the effectiveness of the SPD_Conv module, CARAFE upsampling operator, and LIoU 
loss function, this study designed six ablation experiments on the VisDrone-2021 dataset. The results 
of the ablation experiments are shown in Table 2. Considering the focus on model lightweight design, 
except for the baseline, the rest of the models in the table adopt the new detection layer structure (P2 
+ P3 + P4). Experiments A, B, and C show that the three improvement methods have each contributed 
to a certain extent in enhancing the model’s performance. Among them, the improvement brought by 
the SPD-Conv module is the most significant, with a mAP50 of 39.9%. It is evident that the 
performance of the model gradually improves with the increase of improvement modules. Ultimately, 
compared to the baseline, the proposed model demonstrated improvements in precision, recall, and 
mAP50 by 5.1, 5.1 and 6.2%, respectively, with a 58.3% reduction of parameters. Experimental results 
show that the improved methods in this paper are feasible in terms of reducing model complexity and 
improving the performance of small targets. 

Table 2. Results of the ablation experiments. 

Models LIoU SPD CARAFE P (%) R (%) mAP50 (%) mAP95 (%) Params (M) Size (mb) 

Baseline    45.8 34.2 34.5 19.7 3.0 5.96 

A √   47.8 37.8 38.3 22.6 1.1 2.40 

B  √  49.6 38.8 39.9 23.5 1.2 2.61 

C   √ 48.2 38.0 38.3 22.5 1.1 2.48 

D √  √ 48.4 38.0 38.6 22.8 1.1 2.48 

E  √ √ 49.8 39.2 40.1 23.4 1.2 2.70 

F √ √  48.8 40.0 40.2 23.7 1.2 2.61 

Ours √ √ √ 50.9 39.3 40.7 24.0 1.2 2.70 

4.5. Contrast experiment 

Existing classical algorithms are compared on the VisDrone dataset to validate the performance 
of STD-YOLOv8 for small target detection. Table 3 displays the performance metrics of classical 
algorithms. Compared to other algorithms in the table, STD-YOLOv8 gets the lead in both complexity 
and mAP metrics. While the FPS may not be optimal, it still reaches 96, which fully satisfies the real-
time requirements. In comparison, specifically with YOLO-UAVlite [31] and [32], which also focus 
on lightweight design, STD-YOLOv8 achieves superior performance with even fewer parameters. 
Similarly, compared to the lightweight version of TPH-YOLOv5 [16], which performs well in the 
VisDrone dataset challenges, STD-YOLOv8 maintains an advantageous position. The boost obtained 
by our method is even more significant (green part of the table) when reducing the resolution of the 
input image to 480 × 480. This implies that the model has better adaptability, performing well even 
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when the camera imaging quality is low. In summary, STD-YOLOv8 performs excellently in small-
target and low-resolution image detection. Figure 10 shows the relationship between the model’s 
parameter size and its mAP95. STD-YOLOv8 achieved 24.0% mAP95 with a parameter of 1.2M, 
compared to YOLOv8-n. The parameters of STD were reduced by 58.3%, while mAP95 improved 
by 4.3%. Compared to the recent study [32], the parameters decreased by 37.5% and map95 increased 
by 1.4%. This demonstrates that the improvement strategy proposed in this paper is effective. 

Table 3. Results of the contrast experiments. 

Models ImgSize mAP50 (%) mAP95 (%)
Params 

(M) 

Size 

(mb) 
GFLOPs 

Speed 

(ms) 
FPS

anchors-base         

YOLOv5s 640 × 640 32.1 17.3 7.0 14.40 15.8 15.6 64 

YOLOv5m 640 × 640 36.9 20.7 20.9 42.20 48.3 12.8 78 

YOLO-

UAVlite [31] 
640 × 640 36.6 20.6 1.4 - - 15.9 63 

TPH-YOLOv5 

[16] 
640 × 640 36.5 19.7 6.5 - 28.0 23.3 43 

anchors-free         

YOLOv6 640 × 640 38.1 22.7 16.3 32.80 44.2 8.0 125 

YOLOv7-tiny 640 × 640 34.8 18.1 6.0 11.70 13.1 20.0 50 

Reference [32] 640 × 640 38.3 22.6 2.0 4.1 13.6 8.0 125 

YOLOv8n 
640 × 640 34.5 19.7 3.0 5.96 

8.1 
8.4 119 

480 × 480 27.9 15.5 3.0 5.96 7.8 129 

STD-

YOLOv8n 

640 × 640 40.7 (+6.2) 24.0 (+4.3) 1.2 2.70 
13.9 

10.4 96 

480 × 480 35.1 (+7.2) 20.3 (+4.8) 1.2 2.70 9.4 106 

*Note: The “-” indicates that the cited study did not provide this metric. 

 

Figure 10. Comparison of parameters and mAP95 for different models. 

4.6. Comparison of loss functions 

This paper additionally designs experiments to compare common loss functions on the VisDrone 
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dataset. The results are presented in Table 4. Compared to the baseline, LIoU outperforms in terms of 
recall (R), mAP50, and mAP95 by 0.8, 0.9, and 0.7%, respectively. Further, compared to GIoU, EIoU, 
and WIoU, while not every metric is the highest, LioU’s overall performance is the best of the group. 
Experimental results demonstrate that the proposed improvement to the loss function in this paper is 
feasible on the small target dataset. 

Table 4. Comparison of loss functions. 

Datasets Loss function P (%) R (%) mAP50 (%) mAP95 (%) Speed (ms) FPS 

VisDrone 

Baseline 
(CIoU) 

47.2 37.0 37.4 21.9 11.4 88 

GIoU 47.5 36.9 37.6 21.5 11.6 86 
WIoU 48.0 37.6 38.1 21.5 10.6 94 
EIoU 47.6 37.2 37.9 21.6 11.1 90 
LIoU 47.8 37.8 38.3 22.6 11.1 90 

4.7. Generalization experiments 

By conducting experiments on the TinyPerson and AI-TOD datasets, this study validates the 
generalization capability of our model. Similar to the VisDrone dataset, the TinyPerson dataset is also 
based on the perspective of uncrewed aerial vehicles. The dataset has a total of 1610 images and 72,651 
manually labeled instances. However, the average size of the targets is only 18 pixels. The AI-TOD 
dataset, on the other hand, is composed of remote sensing images, with the average size of the targets 
being only 12.8 pixels. Detection algorithms face greater challenges in the above datasets. The 
performance of this paper’s model on the above datasets is given in Table 5. It is evident that the raises 
brought by the proposed algorithm are substantial. In the TinyPerson dataset, recall significantly 
increased by 10.2%, precision by 5.7%, mAP50 by 9.8%, and mAP95 by 3.4%. The corresponding data 
in the AI-TOD dataset are 16.7, 0.3, 2.8, and 1.3%, respectively. This indicates that the model proposed 
in this paper achieves significant improvements on datasets that are much more challenging to detect, 
demonstrating its excellent robustness. 

Table 5. Generalization experiment results of STD-YOLOv8. 

Datasets model P (%) R (%) mAP50 (%) mAP95 (%) Speed (ms) FPS 

TinyPerson 
YOLOv8 40.6 21.9 19.8 7.3 9.7 103 

STD-YOLOv8 46.3 32.1 29.7 10.7 10.8 92 

AI-TOD 
YOLOv8 47.2 38.3 37.2 15.6 11.1 90 

STD-YOLOv8 63.9 38.6 40.0 16.9 10.4 96 

4.8. Actual detection results and analysis 

In order to verify the model of this paper in real scenarios, some images with high detection 
challenges in VisDrone-2021 and TinyPerson datasets are selected for testing. The results are presented  
in Figures 11 and 12, respectively. By comparing the highlighted regions in Figure 11(a),(c) and 11(b),(d), 
it can be observed that STD-YOLOv8 exhibits a higher detection rate for small objects near the image 
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edges, demonstrating excellent detection performance. The advantage is equally evident in the 
TinyPerson dataset. Figure 12(c),(d) demonstrate the model’s performance under extremely 
challenging conditions. STD-YOLOv8 detected 342 targets in this image (219 for earth_person and 123 
for sea_person), while the baseline model detected only 197 (115 for earth_person and 82 for 
sea_person). In a nutshell, benefiting from the targeted improvements, STD-YOLOv8 exhibits better 
detection capabilities for drone images with complex backgrounds and dense distribution, which can 
effectively suppress the interference of image background noise information and retain small target 
feature information from it. 

 

Figure 11. Detection results on the VisDrone-2021 dataset. 

 

Figure 12. Detection results on the Tiny-Person dataset. 
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5. Conclusions 

To address challenges arising from the complexity of backgrounds and small target scales in UAV 
aerial images, a lightweight small object detection algorithm, named STD-YOLOv8, is proposed. This 
algorithm builds upon improvements based on YOLOv8n. First, a new detection layer combination 
(P2 + P3 + P4) is employed to explore small object features in the shallow network layers. In the 
backbone, the SPD-Conv module is incorporated to reduce the feature loss caused by strided 
convolution in the downsampling process, which improves the feature extraction capability of the 
backbone network in low-resolution and small-target images. For the neck network, the CARAFE 
operator is utilized instead of nearest-neighbor upsampling, resulting in more salient feature 
information over a larger receptive field. The LIoU loss function, on the other hand, adopts a bolder 
regression strategy, which is designed according to the actual situation of the small target and boosts 
the model performance to some extent. The results on small target datasets like VisDrone and 
TinyPerson suggest that STD-YOLOv8 balances accuracy and complexity and has excellent small 
target detection properties. In our future research, we will aim to further eliminate redundant components 
of the model and employ techniques such as knowledge distillation to achieve higher detection 
accuracy from the larger model. This will help in making our model both lighter and more accurate. 
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