
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 32(7): 4517–4542.
DOI: 10.3934/era.2024205
Received: 29 March 2024
Revised: 17 June 2024
Accepted: 25 June 2024
Published: 23 July 2024

Research article

Single hyperspectral image super-resolution using a progressive upsampling
deep prior network

Haijun Wang1, Wenli Zheng1,*, Yaowei Wang1, Tengfei Yang2, Kaibing Zhang3 and Youlin
Shang1

1 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang
471000, China

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3 School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China

* Correspondence: Email: dip@haust.edu.cn.

Abstract: Hyperspectral image super-resolution (SR) aims to enhance the spectral and spatial
resolution of remote sensing images, enabling more accurate and detailed analysis of ground
objects. However, hyperspectral images have high dimensional characteristics and complex spectral
patterns. As a result, it is critical to effectively leverage the spatial non-local self-similarity and
spectral correlation within hyperspectral images. To address this, we have proposed a novel single
hyperspectral image SR method based on a progressive upsampling deep prior network. Specifically,
we introduced the spatial-spectral attention fusion unit (S2AF) based on residual connections, in order
to extract spatial and spectral information from hyperspectral images. Then we developed the group
convolutional upsampling (GCU) to efficiently utilize the spatial and spectral prior information inherent
in hyperspectral images. To address the challenges posed by the high dimensionality of hyperspectral
images and limited training dataset, we implemented a parameter-sharing grouped convolutional
upsampling framework within the GCU to ensure model stability and enhance performance. The
experimental results on three benchmark datasets demonstrated that the proposed single hyperspectral
image SR using a progressive upsampling deep prior network (PUDPN) method effectively improves
the reconstruction quality of hyperspectral images and achieves promising performance.
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1. Introduction

With hundreds or even thousands of distinct discrete bands, hyperspectral sensors acquire rich
spectral information, resulting in hyperspectral images that provide detailed and accurate ground
object information. This enables a deeper understanding of object and scene characteristics than ever
before, making hyperspectral imaging widely used in agriculture [1], pollution monitoring [2],
military [3], remote sensing [4], and other fields. To meet the requirements of upstream application
scenarios based on hyperspectral images, obtaining high-resolution (HR) hyperspectral images is
essential. However, due to environmental factors, the arrangement density of the sensor array, and
sensor size limitations, directly obtaining high spatial resolution and high spectral resolution images
can be challenging. Therefore, hyperspectral image super-resolution (SR) technology has emerged as
a solution to overcome these limitations [5–7].

Image SR is a technique that reconstructs an HR image from a single or multiple low-resolution
(LR) images [8]. Since panchromatic images have higher spatial resolution and contain more detailed
information, most existing hyperspectral image SR techniques utilize panchromatic, RGB, or
multispectral images to assist in the reconstruction process, enhancing the details of LR hyperspectral
images. Based on whether auxiliary images are used, hyperspectral image SR methods can be divided
into two categories: fusion-based hyperspectral image SR and single hyperspectral image SR.
Fusion-based hyperspectral image SR enhances spatial details by integrating the hyperspectral image
with other HR images captured in the same scene. Bayesian inference [9], matrix decomposition [10],
and sparse representation [11] have demonstrated good performance in recent years for these
fusion-based methods. However, these methods often assume that the input LR hyperspectral image
and the HR auxiliary image are well-aligned, which can be challenging to achieve in practice [12].
Single hyperspectral image SR methods aim to directly reconstruct HR hyperspectral images from LR
counterparts without using auxiliary information. Successfully applying these methods relies on
effectively leveraging the non-local self-similarity in space and the strong correlation between spectra.
Single hyperspectral image SR can be divided into two main categories: traditional methods and
methods based on deep learning. The former approaches often formulate SR as a constrained
optimization problem, with regularization provided by priors like low-rank tensors [13], non-local
similarity [14], or sparse representation [15]. Despite their widespread use, these methods encounter
several limitations due to the high-dimensional nature of hyperspectral data, the complexity of
spectral signatures, and the varied and uncertain degradation processes during imaging. Consequently,
they struggle to extract representative features from the images effectively, often resulting in distorted
reconstructions. Recent advancements in deep learning-based image SR have yielded impressive
results [16–19]. For example, Long et al. [20] proposed a dual self-attention swin transformer SR
network that utilizes the ability of the shifted windows (swin) transformer in the spatial representation
of both global and local features and learns spectral sequence information from adjacent bands of
hyperspectral imagery (HSI). Zhao et al. [21] proposed a novel method for HSI SR named
attention-driven dual feature guidance net, which makes full use of the spatial–spectral information.

Hyperspectral images, unlike grayscale or RGB counterparts, possess a richer spectral content with
more complex band interdependencies. Effectively leveraging the spatial non-local self-similarity and
spectral correlation within hyperspectral images is crucial for reconstructing high-quality images.
One of the primary challenges in hyperspectral image SR is the abundance of channels, which leads to
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an increase in model parameters and complexity. Moreover, the limited dataset often results in
overfitting. Group convolution has been shown to play a crucial role in reducing computational load
and decreasing the likelihood of model overfitting [22]. Inspired by the “spatial-spectral prior for
super-resolution (SSPSR)” network structure and the utilization of the spatial-spectral attention
module, we propose a new single hyperspectral image SR method based on a progressive upsampling
deep prior network. In response to these insights, the present paper delineates the development of a
group convolutional upsampling (GCU) module. At the heart of this module lies the spatial-spectral
attention fusion (S2AF) unit, which processes spatial and spectral image data in parallel. This unit is
proficient in learning patterns of non-local self-similarity within the spatial domain and harnessing the
strong correlations across spectral bands, enabling a comprehensive integration of these critical data
streams. By implementing overlapping group convolution, our model achieves a reduction in
parameter count, thereby alleviating the computational intensity of the training phase. The model
further adopts a progressive upsampling scheme, effectively doubling the resolution at each iteration,
which is particularly efficacious in the context of high upscaling factors for image reconstruction. The
overall architecture of the proposed method is illustrated in Figure 1, and the contributions are
enumerated below.

• This paper presents a novel approach for single hyperspectral image SR. Our method leverages
the non-local self-similarity in the spatial domain and the significant correlation among spectral
bands. By integrating information from different bands, we further enhance the spectral and
spatial resolution of the reconstructed image. We have validated the effectiveness of the proposed
model through comprehensive testing on multiple datasets.
• We introduce the S2AF module, a novel component that integrates spatial and spectral attention

mechanisms to significantly enhance both spatial detail and spectral accuracy. The S2AF module
effectively captures important features within the image and meticulously regulates information
for each spectral band during reconstruction. By sequentially arranging multiple S2AF modules,
we have established the GCU network architecture, which excels at learning subtle textural and
edge information, thereby greatly improving the overall quality and detail of the image. The
architecture is further optimized by incorporating skip connections, which not only boost spectral
fidelity but also simplify the learning process by reducing the complexity of feature extraction.
This enables the network to be trained more efficiently and applied effectively to real-world data.
• Given the inherent challenges associated with high magnification factors in hyperspectral image

SR, particularly in light of the limited size and high dimensionality of typical hyperspectral
image datasets, we applied a progressive upsampling strategy to our network. This strategy
incrementally increases image resolution, effectively avoiding the blurring and distortion issues
commonly associated with single-step magnification. Ablation studies confirmed the practicality
of this approach, demonstrating its ability to better preserve fine textural details compared to
traditional single-step upsampling methods at elevated magnification rates. This not only
enhances the visual quality of the images but also ensures consistency and accuracy across all
spectral bands in the reconstruction results, providing a more robust foundation for the
application of hyperspectral images.
• We have introduced a novel loss function that combines the L1 loss function with the GTV loss.

Through ablation experiments, we have validated that the loss function we employ can
significantly improve the quality of the reconstructed images by the model.
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The remainder of this article is organized as follows: In Section 2, we delve into a review of prior
works that have laid the groundwork for our study, establishing the relevance and novelty of our
approach. Section 3 is dedicated to a detailed exposition of our proposed progressive upsampling
deep prior network (PUDPN) model, highlighting its conceptual foundation and architectural
specifics. In Section 4, the research narrative advances to the empirical validation of the PUDPN
model, where its performance is rigorously evaluated against existing methods through a series of
methodically designed experiments. The concluding Section 5 encapsulates the essence of our
findings, reflecting on the contributions of our work to the field and proposing directions for future
research that could further advance the state-of-the-art methods in hyperspectral image SR.

2. Related works

In this section, we briefly review some relevant works, including fusion-based hyperspectral image
SR and single hyperspectral image SR.

2.1. Fusion-based hyperspectral image SR

In the realm of hyperspectral imaging, fusion-based SR techniques strive to elevate the spatial
resolution of images by seamlessly blending hyperspectral data with complementary HR
images depicting the same scene. These methods have attracted considerable attention due to their
remarkable capability to reconstruct the intricate details inherent in HR hyperspectral images. The
standard fusion-based approach involves extracting high-frequency spatial information from an HR
auxiliary image and subsequently incorporating this information into the desired HR hyperspectral
image. For instance, Wei et al. [23] utilized a variational approach to merge HR multispectral images
with their corresponding LR hyperspectral counterparts. Yokoya et al. [10] introduced a method
rooted in coupled non-negative matrix factorization (CNMF) to derive HR hyperspectral images from
a combination of HR multispectral and LR hyperspectral imagery. Wan et al. [7] considered
hyperspectral images as three-dimensional tensors and proposed a fusion technique leveraging
non-local four-dimensional tensor dictionary learning. Additionally, various methods have been
explored, leveraging concepts such as sparsity [6], non-local similarity [24], superpixel-guided
self-similarity [25], clustering manifold structures [26], and tensor and low-rank constraints [27, 28],
to fully exploit the spectral domain’s redundancies and correlations. In recent years, the application of
deep learning in fusion-based methods has gained significant momentum [29]. For example, Pan and
Shen [30] fused LR multispectral images with HR RGB images, presenting a deep learning algorithm
tailored for multispectral image SR. It should be noted that fusion-based hyperspectral image SR
methods typically rely on the assumption that the HR auxiliary image aligns well with the LR
hyperspectral image. However, obtaining suitable auxiliary images for alignment can pose a challenge
in practical applications, thereby limiting the widespread adoption of these methods.

2.2. Single hyperspectral image SR

The challenge of reconstructing HR hyperspectral images from their LR versions, without any
external assistance, holds immense practical significance. This problem has traditionally been
approached as a constraint optimization task with regularization based on prior knowledge. For
example, He et al. [13] used a combination of low-rank tensor modeling and total variation
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regularization. However, these methods often involve complex optimization procedures and rely on
manually defined priors, limiting their application to specific scenarios or datasets.

In recent years, the remarkable progress of deep learning in various fields has led researchers to
explore data-driven approaches for single hyperspectral image SR. A significant milestone was
achieved by Dong et al. [31] with the introduction of the SRCNN algorithm, which marked the first
application of convolutional neural networks in image SR. Subsequently, Liebel and Korner [32]
extended this approach to enhance the resolution of individual remote sensing images. Yuan et
al. [33] and Xie et al. [5] were pioneers in applying deep convolutional neural networks (DCNNs) to
hyperspectral image SR, incorporating non-negative matrix factorization (NMF) to maintain spectral
features in intermediate stages.

Advancements in this area have continued with the development of attention mechanisms like the
convolutional block attention module (CBAM) by Woo et al. [34], which attends to both spatial and
channel dimensions for effective feature extraction. The flexibility of CBAM allows it to be easily
integrated into various CNN architectures. Alternatively, Mei et al. [18] proposed a three-dimensional
SR network to extract relevant prior information, albeit with higher computational complexity due
to three-dimensional convolution. To address this issue, Li et al. [22] introduced the grouped deep
residual recursive neural network (GDRRN), which uses grouped convolution strategies to reduce the
computational burden associated with high spectral dimensions.

Jiang et al. [19] further optimized this approach by incorporating grouped convolution with
parameter sharing to capture spectral band relationships and spatial details while significantly
reducing model parameters. In a unique approach, Lempitsky et al. [35] designed a network that
leverages the neural network structure itself as prior information, eliminating the need for large
datasets during training. Instead, it iteratively reconstructs HR images from LR inputs. Sidorov and
Hardeberg [36] combined grouped convolution with a progressive upsampling framework to create a
stable and efficient deep network for hyperspectral image SR. Dong et al. [37] utilized 2D convolution
for extracting detailed image features at a higher level. Nevertheless, 2D convolution is primarily
optimized for spatial feature extraction, making it less effective in handling the spectral dimension
of hyperspectral images. Alternatively, 3D convolution [18] is capable of learning contextual
information across adjacent bands in hyperspectral data but comes with increased computational
demands and training difficulties. Consequently, a combined 2D-3D convolutional approach was
introduced [16], demonstrating promising performance despite issues related to parameter explosion.
Liu et al. [38] have presented a CNN-based hyperspectral image SR approach, christened the spectral
grouping and attention-driven residual dense network (SGARDN), which aims to facilitate the
modeling of all spectral bands and focus on the exploration of spatial-spectral features. Wang et
al. [39] have introduced a novel group-based single hyperspectral image SR technique, referred to as a
group-based embedding learning and integration network (GELIN), which reconstructs HR images in
a group-wise manner, thus alleviating the complexity of feature extraction and reconstruction for
hyperspectral images. Hou et al. [17] have developed a method, deep posterior distribution-based
embedding for hyperspectral image SR (PDE-Net), which formalizes hyperspectral embedding as an
approximation of the posterior distribution for a set of meticulously defined hyperspectral embedding
events. Liu et al. [40] proposed a dual-domain network based on hybrid convolution (SRDNet) to
fully exploit the spatial-spectral and frequency information among the hyperspectral data. Chen et
al. [41] developed attention mechanisms that function across spatial and spectral domains to
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comprehensively model long-range spatial-spectral characteristics. Zhang et al. [42] sought to
overcome the challenge of inadequate spectral information utilization, introducing the enhanced
spectral self-attention former to mitigate the issue of artifacts post-upsampling. However, the quality
of hyperspectral image reconstruction is still not at an ideal state. Despite the promising results
achieved by deep learning-based methods, fully exploiting the spectral correlation between adjacent
bands remains a challenge due to the high dimensionality of hyperspectral images and limited training
data availability.

3. Proposed method

In this section, we will introduce the proposed PUDPN method in detail. First, we will provide
the overall architecture of PUDPN. Then, we will introduce the GCU and the S2AF. Finally, we will
provide the structures of the spatial attention block (SAB) and the spectral attention block.

3.1. PUDPN network architecture

The proposed network architecture, depicted in Figure 1, aims to learn an end-to-end mapping
from LR images to their corresponding HR counterparts. The architecture comprises two primary
components: a residual connection-based group convolutional progressive upsampling module and
a reconstruction layer. The upsampling module is further segmented into two distinct stages, with
each stage incorporating a GCU network designed to enhance the input LR image by a factor of
two in magnification. This staged approach to progressive image upsampling mitigates the learning
complexity for the model, facilitating superior restoration of intricate image details and
texture information.

GCU

C
onv2d

Bicubic_X2

GCU

Bicubic_X4

Second Stage

First Stage

1DIFF 1_stageF

2DIFF 2_stageF

Figure 1. Overall framework of the proposed PUDPN.

In the following, we will use ILR ∈ R
h×w×c to represent the input LR image, and IS R ∈ R

H×W×c to
represent the corresponding reconstructed HR image. Among them, h(H) and w(W) denote the height
and width of the LR (HR) hyperspectral image, respectively, while c represents the number of spectral
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bands and r represents the amplification factor. The ground truth of the HR image is represented by
IHR ∈ R

H×W×c. The degradation process from IHR to ILR can be expressed as

ILR = D(IHR) + n∗, (3.1)

where D(·) represents the downsampling operator, and n∗ represents noise. In this paper, we obtain the
LR image by bicubic interpolation. Our goal is to predict the corresponding HR hyperspectral image
IS R for a given LR hyperspectral image ILR through our proposed PUDPN method. This mapping
function can be expressed by Eq (3.2),

IS R = HNet(ILR), (3.2)

where HNet(·) represents our proposed PUDPN method. Our model does not require any auxiliary
images, and takes ILR ∈ R

h×w×c as the input to the network. We employ bicubic interpolation to upscale
ILR ∈ R

h×w×c by a factor of 2, and together they are fed into the first stage of the GCU modules input.
This operation can be represented as

FDIF1 = HDIF1(ILR, bicubic×2(ILR)), (3.3)

where bicubic×2(·) represents the bicubic interpolation with a factor of 2, HDIF1(·) represents the
mapping function of the first stage GCU network, and FDIF1 denotes the prior information of the first
stage GCU network output. To preserve more details and semantic information from the original
image, a residual connection is applied after the GCU network to obtain the output of the first stage,
which can be represented as

Fstage1 = FDIF1 ⊕ bicubic×2(ILR), (3.4)

where ⊕ represents the pointwise addition operation, and Fstage1 is the output of the first stage.
Subsequently, the output of the first stage and the result of upsampling ILR with a fourfold
magnification factor are fed into the second-stage GCU network, and the operation can be
expressed as

FDIF2 = HDIF2(Fstage1 , bicubic×4(ILR)), (3.5)

where bicubic×4(·) represents the upsampling operation using bicubic interpolation with a factor of 4,
HDIF2(·) represents the mapping function of the second-stage GCU network, and FDIF2 represents the
prior information of the second-stage GCU network output. Similarly to the first stage structure, a
residual connection is applied after the GCU network in the second stage to obtain the output of the
second stage, which can be represented as

Fstage2 = FDIF2 ⊕ bicubic×4(ILR), (3.6)

where Fstage2 is the output of the second stage, which is the output of the group convolutional
progressive upsampling module based on residual connections.

The reconstruction layer of the overall structure of the PUDPN method consists of a 3 × 3
convolution. After the image undergoes the operation of the grouped convolution upsampling module,
it passes through the reconstruction layer to ensure that the number of channels of the model’s output
IS R is equal to that of the input ILR. This operation can be represented as

IS R = Conv3×3(Fstage2), (3.7)
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where Conv3×3(·) represents the convolution operation with a kernel size of 3 × 3.
We perform image feature extraction in two stages, where each stage involves upsampling

operations with a magnification factor of 2. By incorporating residual connections that facilitate the
integration of both deep and shallow features, we mitigate the challenges associated with feature
learning for the model. This approach enables effective extraction of image features, enhances the
model’s expressive capabilities, and ultimately leads to the reconstruction of higher-quality images.

3.2. Grouped convolutional upsampling network (GCU)

In Figure 2, we outline the architecture of the proposed grouped convolutional upsampling
network (GCU) for hyperspectral images. Addressing the computational challenges posed by
their high dimensionality, we organize the spectral bands into groups, facilitating more efficient
feature extraction.
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Figure 2. The group convolutional upsampling network (GCU). C represents the
concatenation operation along the channel dimension, and ⊕ represents the pixel-wise
addition operation.

Grouped convolution can reduce model parameters, as illustrated in Figure 3. Suppose we have m
feature maps that need to be expanded to n feature maps through convolution operations. As shown
on the left side of the dashed line in Figure 3, without using grouped convolution, the number of
convolution kernels required is m × n. As shown on the right side of the dashed line in Figure 3,
when using grouped convolution, if k adjacent feature maps are grouped together, resulting in m/k
groups (assuming non-overlapping groups for simplicity), the number of convolution kernels required
is (m/k) × (m/k) × k. Since (m/k) × (m/k) × k = mn/k is less than m × n, grouped convolution can
effectively reduce the number of convolution kernels and thereby decrease the number of parameters
and computational cost.
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Figure 3. A visual representation of parameter reduction via grouped convolution.

Borrowing from the principles of grouped convolution and the GDRRN [22] model, we adopt a
strategy of overlapping groups. When the final group exhibits fewer bands than its predecessors, we
supplement it with the initial bands from the hyperspectral image. Each group is then processed using
a unified set of operations, leveraging parameter sharing for efficiency. Within each group, a
convolutional layer is tasked with extracting shallow features F i

S F . These groups contain both
effective N and overlapping u bands, enabling the capture of long-term spectral dependencies, the
extraction of correlated band information, and a reduction in convolutional kernels via parameter
sharing. The convolutional layer receives input channels commensurate with the group’s band count
and consistently outputs 256 channels.

F i
S F = Conv(Ii

LR), (3.8)

where Conv(·) represents the convolution operation, and Ii
LR is the feature of the i-th group after

grouping. Afterward, a spatial-spectral prior network, which is comprised of M consecutive S2AF
modules, is employed to comprehensively extract spatial non-local similarities and the relationship
between distinct bands, thereby acquiring the deep feature F i

DF of the hyperspectral image.

F i
DF = HS2AF(HS2AF(· · ·HS2AF(F i

S F) · · · )), (3.9)

where HS2AF(·) is the S2AF operation that we propose. In the subsequent sections, we will delve into
the intricacies of the S2AF and provide more detailed information. Once the features have been fully
extracted, we employ the upsampling module to enhance the resolution of the image.

To optimize network performance and refine texture details, we adopt a staged upsampling
technique that progressively doubles the image resolution at each step. The resulting upsampled
feature of the i-th group, referred to as F i

UP, is formally expressed as

F i
UP = HUP(F i

DF), (3.10)

where HUP(·) represents the upsampling part feature mapping function. The architecture of the
upsampling module employed in this study is illustrated in Figure 4. It comprises two convolutional
layers, a PixelShuffle operation for upscaling, and a subsequent LeakyReLU activation function to
boost the model’s nonlinear representational capacity. Additionally, dropout is incorporated to
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mitigate the risk of overfitting. Prior to amalgamating the features from each group into FC, a
convolutional operation is executed to decrease the number of feature maps to the predefined effective
spectral band count N, as determined by the grouping configuration.

FC = Concate(Conv(F i
UP)), (3.11)

where Concate(·) represents the concatenation along the channel dimension. Following the
concatenation of distinct feature map groups, they are subjected to a convolutional layer for further
computation, thereby augmenting the feature map count to 256. Subsequently, a residual connection
is introduced to tackle the problem of channel mismatch. Within this residual connection framework,
a convolutional layer is employed to expand the channel dimension to 256.

Fres = Conv(FC) + Conv(lms), (3.12)

where Fres represents the feature after the residual connection, lms is the result of the LR image
upsampled by bicubic interpolation, and + denotes the pixel-wise addition. Finally, a convolutional
layer is utilized to revert the number of feature maps to that of the initial input, yielding the output of
the GCU network.

FGCU = Conv(Fres), (3.13)

where FGCU represents the output result of the GCU network.

Upsampling

C
o

n
v
2

d

C
o

n
v
2

d

L
e
a
k

y
R

e
LU

D
ro

p
o

u
t

P
ix

e
lS

h
u

ffle

Figure 4. Upsampling module.

3.3. Spatial-spectral attention fusion module (S2AF)

A crucial challenge in hyperspectral image reconstruction lies in the efficient extraction of
correlation information across diverse bands. Motivated by the performance improvements observed
in residual networks, channel attention, and spatial attention within the domain of image SR, we
designed the S2AF module based on the spatial-spectral block (SSB) in the SSPSR model, as depicted
in Figure 5. The S2AF module is primarily composed of a spatial attention block and a channel
attention block (CAB). Notably, as the attention between distinct channels in hyperspectral imagery
pertains to spectral attention, we interchangeably refer to the CAB as the spectral attention block. the
SAB first guides the model to focus on the important feature regions in the data, ignoring redundant
information. This allows the model to concentrate more on the most critical areas. The spectral
attention block then guides the model to focus on the essential features in specific spectral bands of
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the input data. Hyperspectral images contain multiple consecutive bands of data, each corresponding
to different spectral information. Spectral attention helps the model better select and utilize the
spectral information most useful for the task. To synergistically leverage both spectral and spatial
information, we concatenate the results of spatial attention and spectral attention, enabling better
handling of hyperspectral image data that contains complex multidimensional features. To allow the
spatial and spectral attention modules to fully realize their respective functions, we separately
concatenate spatial attention and spectral attention modules afterwards. The design of the S2AF
module captures rich feature information while maintaining the modularity of the model.
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Figure 5. Spatial-spectral attention fusion unit.

The spatial attention module plays a vital role in SR tasks, as it allows for the adaptive processing
of different image regions based on their significance. This selective approach enables a more
accurate representation of image details, leading to improved precision and accuracy in the final
super-resolved image. In our spatial attention block design, we first extract spatial features using
a 3 × 3 convolution kernel. These features are then passed through a LeakyReLU activation function,
enhancing the nonlinearity of the network’s mapping. Additionally, we employ cross channel mean
pooling and cross channel max pooling operations to obtain average and maximum feature maps,
respectively. These maps are concatenated along the channel dimension to effectively capture the
spatial characteristics of the image. Finally, a convolutional layer with a single output channel is
utilized to compute the spatial attention score, which is represented as

F j
S pa = HSpa(F0), (3.14)

where F j
S pa represents the output of the first SAB in the j-th S2AF block, HSpa(·) represents

the mapping function of the SAB, and F0 is the input feature of the j-th S2AF block. In order to
effectively harness the inter-band correlations in hyperspectral images and embed this valuable
information into the newly formed spectral bands, the endeavor is akin to learning a set of weight
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parameters that accurately represent the hyperspectral data. These parameters can be determined by
performing a 1 × 1 convolutional operation along the channel dimension, as described in
reference [19]. Additionally, we propose the integration of a channel attention mechanism, visually
represented in Figure 5. This mechanism commences with adaptive average pooling to condense the
input feature maps and extract global channel-wise information. Subsequently, a 1 × 1 convolution
layer is employed to reduce dimensionality while simultaneously capturing the correlational patterns
between adjacent spectral bands. The introduction of the ReLU activation function serves to introduce
nonlinearity, followed by a second 1 × 1 convolution layer aimed at restoring the original input
dimension. Conclusively, a sigmoid activation function layer computes a weighted vector for each
channel, facilitating channel-wise attention. The CAB is diagrammatically presented in Figure 5 and
mathematically formalized as follows,

F j
S pe = HSpe(F0), (3.15)

where F j
S pe represents the output of the first CAB module in the j-th S2AF block, and HSpe(·) represents

the mapping function of the CAB module. Following the channel attention module’s processing, the
resultant features acquire channel attention scores. These are fused with spatial attention scores, and
the amalgamated data is processed through convolutional layers to derive spatial-spectral attention
fusion scores. By leveraging residual connections, these fusion scores are added back to the S2AF
block’s input data, enabling the execution of spatial-spectral attention operations on the feature map.
To preclude the attenuation of either spatial or spectral attention, we sequentially introduce SAB and
CAB via residual connections. Finally, we use dropout to prevent overfitting. The overall operation of
the S2AF module can be represented as

F j
S 2AF
= HS2AF(F0), (3.16)

where F j
S 2AF

represents the output feature of the j-th S2AF block, and HS2AF(·) is the mapping function
of the S2AF block.

Through the implementation of the S2AF block, our methodology achieves a harmonious fusion of
spatial and channel attentions, effectively preserving feature robustness. The block is specifically
engineered to extract non-local self-similarities across spatial dimensions and to harness the
inherent correlations among spectral channels in hyperspectral images. This dual extraction capability
ensures an enriched feature representation, pivotal for the advanced processing and analysis of
hyperspectral imagery.

3.4. Loss function

The efficacy of an SR model is significantly influenced by the choice of loss function, which not only
evaluates model quality but also dictates the optimization trajectory. Various loss functions can lead the
model to prioritize different aspects of the data. The L1 loss is particularly effective in penalizing slight
inaccuracies, a feature crucial for the precision required in SR tasks. It also excels in preserving image
edges, a key factor for maintaining visual quality. Its lower computational complexity and memory
footprint, coupled with notable training stability, make it an optimal choice for SR. Consequently, this
paper adopts the L1 loss for the proposed SR method, highlighting its contributions to improving model
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efficiency and training stability. The definition of L1 loss is below:

L1(θ) =
1
N

N∑
n=1

∥IHR − IS R∥1, (3.17)

where θ is the parameter of the network, N is the batch size, and n is the index of the
reconstructed image.

Drawing inspiration from TVLoss, we introduce GTVLoss, a metric that assesses the gradient
differences between the predicted SR image and the ground truth in both height and width directions.
By computing the mean of the squared sum of these differences, GTVLoss excels in conserving fine
image details and texture information. Moreover, its computational efficiency is notable, requiring
only one squaring and one division operation, thus offering an advantage over MSE loss. The specific
formula for calculating GTVLoss is detailed as follows:

GTV =
1
N

(
∑H

h=1 (∇IS RH − ∇IHRH )2

H
+

∑W
w=1 (∇IS RW − ∇IHRW )2

W
), (3.18)

where ∇IS RH represents the gradient of each pixel in the height direction predicted by the model, ∇IHRH

represents the gradient of each pixel in the height direction in the ground truth, ∇IS RW represents the
gradient of each pixel in the width direction predicted by the model, and ∇IHRW represents the gradient
of each pixel in the width direction in the ground truth. H , W and N represent the height, width, and
batch size of the HR image, respectively.

In summary, the total loss function in this paper is defined as

L = L1 + αLGTV , (3.19)

where α represents the parameter used to balance the contributions of different losses, and we set the
value of α to 1e-3.

4. Experimental results and analysis

In this section, we commence by presenting an overview of the three benchmark datasets employed
in our study. Subsequently, we delve into the specifics of the experimental configurations. Ultimately,
we offer a comprehensive assessment of our model’s efficacy through both quantitative and qualitative
comparisons with five other competing methodologies. For the quantitative analysis, we have adopted
the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as evaluation metrics. The
PSNR values mentioned later are all measured in dB. Notably, for PSNR and SSIM, we have computed
their respective average values across all spectral bands.

4.1. Dataset

In this article, we employ three publicly available datasets: Pavia Center [43], CAVE [44], and
Chikusei [45]. Specifically, both the Chikusei and Pavia Center datasets pertain to remote
sensing hyperspectral imagery, whereas the CAVE dataset falls under the category of natural
hyperspectral images.
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• Pavia Center: The Pavia Center dataset is a hyperspectral image dataset obtained by the ROSIS
sensor. It is often used for hyperspectral image SR, remote sensing image classification, and
target detection tasks. The dataset contains one image with a raw size of 1096 × 1096 pixels.
After removing the noise bands, the number of spectral bands is 102. After discarding the central
part of the image that does not contain information, the image size becomes 1096 × 715 pixels.
Therefore, after processing, the image size is 1096 × 1096 × 102.
• CAVE: The CAVE dataset was captured using a cooled CCD camera in the 400–700 nm

wavelength range with a 10nm interval, and consists of 32 images. One of the images is an RGB
image with a spatial size of 512 × 512 pixels, and the remaining 31 images are hyperspectral
images. The dataset mainly contains images of toys, clothes, paints, food, and faces. Since the
CAVE dataset is a publicly available dataset, ethical approval and informed consent were
obtained by the original creators of the dataset, ensuring compliance with relevant ethical
guidelines and standards.
• Chikusei: The Chikusei dataset was acquired using the Hyperspec-VNIR-CIRIS spectrometer,

and is a hyperspectral image of the Chikusei area in Ibaraki Prefecture, Japan. The ground
sampling distance is 2.5 meters, and the spectral range is from 363 nm to 1018 nm. A total
of 128 bands were collected, and the image size is 2517 × 2335.

4.2. Experimental details

For the Pavia Center dataset, we cropped the left portion (384 × 715 × 102) to serve as the test
and validation sets. Specifically, the leftmost section (256 × 715 × 102) was used to extract test
image patches of the size 256 × 256, while the remaining area was divided into 64 × 64 validation
image patches. It is important to note that the validation and test sets were non-overlapping during this
partitioning. The remaining data constituted the training set, with all training samples being further
divided into overlapping blocks of size 64 × 64. In cases where the upsampling factor was set to 4,
a 32-pixel overlap was introduced.

In the case of the CAVE dataset, a random selection process was utilized to allocate 80% of the
samples to form the training set. The remaining 20% of the dataset was then equally divided, with 10%
allocated to the test set and another 10% to the validation set, ensuring a balanced distribution for
comprehensive model evaluation.

For the Chikusei dataset, the original image size was 2517 × 2335 × 128. We first cropped the
central region of the image, resulting in a size of 2304 × 2048 × 128. We selected an area
of 2304 × 384 × 218 pixels on the left side of the image and divided it into the test set and validation
set. Half of this area was generally used to create 256 × 256 test samples, and the other half was used
to create 64 × 64 validation samples. The validation and test sets did not overlap when cropped. The
remaining data was used as the training set and was divided into 64 × 64 overlapping patches as
training samples. When the upsampling factor was set to 4, there was an overlap of 32 pixels.

Subsequent to the preparation of HR training samples, a bicubic interpolation technique was
employed to generate their LR equivalents, each with dimensions of 32 × 32 pixels. To augment the
dataset and ensure the development of a robust model, data augmentation was performed. This
involved the application of rotation and mirroring transformations to the training samples, effectively
quadrupling the size of the dataset. Such augmentation is critical for improving the model’s
generalization capabilities across varied imaging conditions. In the methodology employed for the
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grouping process, we specified several key parameters to optimize performance. The number of
effective spectral bands N was set to 17, with the overlapping band channel u determined to be 4. To
mitigate overfitting, a dropout rate of 0.3 was implemented, alongside a residual weight res scale
of 0.1 to control the contribution of residual learning. The Pavia Center dataset served as the basis for
both training and evaluation. The cascading of different numbers of S2AF blocks affects the model’s
performance. Here, we denote the number of cascading S2AF blocks as M. As detailed in Table 1, an
increase in M correlates with a rise in the parameter count. Optimal performance was observed when
M = 3, yielding a PSNR of 32.2196 dB, despite a slight decrease in the SSIM by 0.0074 compared to
M = 1. This balance between parameter efficiency and model efficacy led to the selection of M = 3 for
our configuration. We use ADAM as the optimizer for our network, with parameters β1 = 0.9,
β1 = 0.99, and weight decay set to 1e-5. In the proposed model, a strategic warm-up training
approach is employed to facilitate optimal parameter initialization and enhance convergence speed.
Initially, the model undergoes a preliminary training phase for two epochs with a reduced learning
rate of 1e-5. This warm-up phase is designed to guide the model toward a favorable parameter
space, effectively circumventing potential local minima that could impede learning efficiency.
Subsequently, the learning rate is elevated to 1e-4 for the formal training process. To ensure sustained
learning progress and adaptability, the learning rate is further adjusted by a factor of 0.1 every 30
epochs. The implementation of our experiments is conducted within the PyTorch framework,
leveraging the computational capabilities of an NVIDIA RTX A6000 GPU, which boasts a memory
capacity of 47.5 GB.

Table 1. Metrics under different numbers of S2AF modules.

MODELS d PSNR ↑ SSIM ↑ PARAMETER
Ours-M = 1 4 32.1058 0.8556 16,200,702
Ours-M = 2 4 31.9897 0.8482 17,101,080
Ours-M = 3 4 32.2196 0.8542 21,201,124
Ours-M = 4 4 32.0452 0.8530 31,201,968

Notes: The red font indicates the best metric. ↑ represents that a larger value indicates better performance.

4.3. Ablation experiments

The proposed PUDPN method is characterized by the integration of a S2AF unit alongside a
progressive upsampling strategy. To empirically substantiate the effectiveness of these innovations,
ablation studies were conducted. These experiments were designed to compare models equipped with
these modules against their counterparts lacking such components. The objective was to
quantitatively demonstrate the enhancements these modules impart on the model’s performance. The
dataset selected for training comprised images from the Pavia Center dataset, while the evaluation of
model performance was based on test images measuring 256 × 256 pixels, also derived from the
Pavia Center dataset.

1) To substantiate the utility of the S2AF, we introduced a model variant in which the S2AF was
replaced by three 3 × 3 convolutional layers. The performance evaluation, summarized in Table 2,
compares our original approach (“Ours”) with its S2AF-absent counterpart (“Ours-w/o S2AF”) on test
images scaled up by a factor of 4. The results reveal that the absence of the S2AF module leads to a
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noticeable deterioration in performance metrics, including a reduction in SSIM and PSNR scores across
different test image sizes relative to the “Ours-w/o S2AF” method. By incorporating the S2AF module,
our method effectively fuses spatial and spectral information from multiple dimensions, leveraging
the inherent richness of hyperspectral images. This leads to consistently better reconstruction results
across varying spatial sizes of test images, thereby validating the efficacy of the S2AF module.

2) Table 3 delineates the comparative performance analysis between our proposed method
(“Ours”) and its variant devoid of the progressive upsampling strategy (“Ours-w/o PU”), across test
images of varying dimensions, all subjected to a magnification factor of four. Notably, for test
images sized 64 × 64, our method demonstrates superior performance in terms of the PSNR and
SSIM. In addition, for images sized 128 × 128, our methodology unequivocally surpasses the variant
across all metrics. While the PSNR for images sized 256 × 256 slightly favors the variant method
by 0.0272 dB, our approach maintains an edge in SSIM metrics. These findings collectively validate
that the progressive upsampling strategy we employed can enhance the model’s performance to a
certain extent.

3) In Table 4, we report the reconstruction results of ablation experiments on test samples with
different target sizes from the Pavia Center dataset, at a 4x magnification factor, using different loss
functions. It is evident that incorporating GTV loss on top of L1 loss can lead to better outcomes.

Table 2. Ablation experiment results for the spatial-spectral attention fusion unit (S2AF).

MODELS d HR image size PSNR ↑ SSIM ↑
Ours 4 64 × 64 33.9523 0.8438
Ours-w/o S2AF 4 64 × 64 33.8413 0.8381
Ours 4 128 × 128 33.2196 0.8542
Ours-w/o S2AF 4 128 × 128 31.9682 0.8462
Ours 4 256 × 256 30.2815 0.8365
Ours-w/o S2AF 4 256 × 256 30.1522 0.8277

Table 3. Ablation experiment results for the progressive upsampling strategy.

MODELS d HR image size PSNR ↑ SSIM ↑
Ours 4 64 × 64 33.9523 0.8438
Ours-w/o PU 4 64 × 64 33.8657 0.8432
Ours 4 128 × 128 33.2196 0.8542
Ours-w/o PU 4 128 × 128 32.0811 0.8509
Ours 4 256 × 256 30.2815 0.8365
Ours-w/o PU 4 256 × 256 30.3087 0.8355
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Table 4. Ablation experiment results for the loss functions.

LOSSES d HR image size PSNR ↑ SSIM ↑
L1 4 64 × 64 33.8401 0.8114
GTVLoss 4 64 × 64 28.8261 0.6841
Ours 4 64 × 64 33.9523 0.8438
L1 4 128 × 128 32.1175 0.8150
GTVLoss 4 128 × 128 28.8782 0.6150
Ours 4 128 × 128 32.2196 0.8542
L1 4 256 × 256 30.1552 0.8233
GTVLoss 4 256 × 256 27.8743 0.6521
Ours 4 256 × 256 30.2815 0.8366

4.4. Comparison with five other representative methods

To validate the performance of our proposed PUDPN method, we conducted experiments on three
public datasets and compared it with five other representative methods: PDE-Net [17], SSPSR [19],
GDRRN [22], Deep hs Prior [36], and Bicubic [46].

1) On the Pavia Center dataset, as shown in Table 5, with a test image size of 256 × 256 and a
magnification factor of 4, our method outperformed the others in both metrics, with the best results
emphasized in red. The second-best outcomes are highlighted in blue. PDE-Net formulates
hyperspectral embedding as an approximation of the posterior distribution of a set of carefully defined
hyperspectral embedding events. The approximated posterior distribution helps the model capture the
underlying data distribution more effectively, thus PDE-Net also achieves good performance.
Diverging from SSPSR, our approach not only integrates spatial and spectral attention blocks but also
optimizes the application of these attentions to mitigate the potential dilution of focus on either spatial
or spectral details. This refined extraction and application of spatial and spectral attention information
underpin the superior performance of our method. Furthermore, for a more illustrative comparison,
we visualized the SR results of different comparison methods on three datasets and presented the
corresponding absolute error maps.

Table 5. Quantitative comparison of different methods on the Pavia Center dataset. The best
results are highlighted in red font, while the second-best results are highlighted in blue font.

MODELS d HR image size PSNR ↑ SSIM ↑
Bicubic 4 256 × 256 29.3110 0.7948
GDRRN 4 256 × 256 29.6292 0.8018
Deep hs Prior 4 256 × 256 29.4749 0.8164
SSPSR 4 256 × 256 30.1413 0.8306
PDE-Net 4 256 × 256 29.2435 0.8057
PUDPN (Ours) 4 256 × 256 30.2815 0.8366

Figure 6 elucidates the comparative performance of various SR models on the Pavia Center
dataset, including ground truth, bicubic interpolation, Deep hs Prior, GDRRN, SSPSR, PDE-Net, and
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our proposed PUDPN model. The sequence of images in the first row of each figure delineates the SR
outcomes for a specific spectral band, arranged in the order mentioned. Subsequently, the second row
in each figure reveals the absolute error maps corresponding to the SR results displayed above. These
error maps, serving as a visual gauge, quantify the pixel-level reconstruction accuracy, thereby
offering a nuanced view of the spatial fidelity achieved by each model. Notably, regions of lower error
are depicted in cooler hues, facilitating an intuitive assessment of spatial reconstruction quality.

A detailed visual analysis demonstrates the exceptional reconstruction capability of our PUDPN
model. This is highlighted in the region outlined by the red rectangle in the figure. The yellow
rectangle, in turn, shows an enlarged view of this area, the performance of the Deep hs Prior model,
which is predicated on leveraging the inherent prior knowledge embedded within the network’s
structure for image reconstruction, was found wanting. This shortfall is primarily attributed to the
indiscriminate application of uniform iteration parameters across disparate data samples, a practice
that likely undermines the adaptability and, consequently, the efficacy of the model.

Figure 6. In the Pavia Center dataset, with an upsampling factor of 4 and selecting the
32-21-11 bands as R-G-B, visualizations of pseudo-colored images of different models’ re-
constructed images (first row) and their corresponding error maps (second row) are shown.
From left to right, they are: ground truth, bicubic [46], Deep hs Prior [36], GDRRN [22],
SSPSR [19], PDE-Net [17], and PUDPN (ours).

2) Table 6 presents a comparative analysis of the quantitative results achieved by six SR methods
applied to the CAVE dataset, utilizing an upsampling factor of d = 4 and evaluating performance on
images resized to 256 × 256 pixels. PDE-Net exhibits the best overall performance among the
evaluated methods, while our proposed PUDPN method achieves the second-best performance.
Although our PUDPN model slightly lags behind PDE-Net in terms of PSNR and SSIM metrics, the
visualizations in Figures 7–9 and the error maps reveal that the reconstructed images still outperform
PDE-Net in certain regions. Particularly in the regions highlighted by the red rectangles, the superior
reconstruction accuracy of PUDPN is evident. Furthermore, although PDE-Net leads by 0.4 dB in
PSNR and by 0.005 in SSIM on the CAVE dataset, our proposed PUDPN method surpasses PDE-Net
by 1 dB in PSNR and by 0.03 in SSIM on the Pavia Center dataset. Furthermore, on the subsequent
Chikusei dataset, PDE-Net continues to lag behind our PUDPN method in both metrics. Overall, our
method remains superior to PDE-Net.
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Table 6. Quantitative comparison of different methods on the CAVE dataset.

MODELS d HR image size PSNR ↑ SSIM ↑
Bicubic 4 256 × 256 33.4488 0.9355
GDRRN 4 256 × 256 31.5601 0.8832
Deep hs Prior 4 256 × 256 31.0288 0.9064
SSPSR 4 256 × 256 35.5034 0.9512
PDE-Net 4 256 × 256 36.2361 0.9571
PUDPN (Ours) 4 256 × 256 35.8857 0.9525

Figure 7. In the CAVE dataset with an upsampling factor of 4, a test image with content of
toys was selected. The 30th spectral band of the reconstructed images by different models
was visualized (first row), along with the corresponding reconstruction error maps (second
row). The models are arranged from left to right as follows: ground truth, bicubic [46],
Deep hs Prior [36], GDRRN [22], SSPSR [19], PDE-Net [17], and PUDPN (ours).

Figure 8. In the CAVE dataset with an upsampling factor of 4, a test image with content of
peppers was selected. The 30th spectral band of the reconstructed images by different models
was visualized (first row), along with the corresponding reconstruction error maps (second
row). The models are arranged from left to right as follows: ground truth, bicubic [46],
Deep hs Prior [36], GDRRN [22], SSPSR [19], PDE-Net [17], and PUDPN (ours).
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Figure 9. In the CAVE dataset with an upsampling factor of 4, a test image with content of
faces was selected. The 30th spectral band of the reconstructed images by different models
was visualized (first row), along with the corresponding reconstruction error maps (second
row). The models are arranged from left to right as follows: ground truth, bicubic [46],
Deep hs Prior [36], GDRRN [22], SSPSR [19], PDE-Net [17], and PUDPN (ours).

3) Table 7 presents a comparative study of five SR techniques on the Chikusei dataset, with an
emphasis on an upsampling factor of d = 4 and an evaluation image size of 256 × 256. Our PUDPN
method emerges as the frontrunner, achieving the highest PSNR value, 0.1184 dB above the SSPSR,
the next best method. The reconstructed images and their error maps, depicted in Figure 10, facilitate
a direct comparison between the methods. Notably, the PUDPN, PDE-Net, and SSPSR methods,
while not capturing significant contour details, excel in reconstructing specific areas, indicating their
superior performance over alternative models. A comparison between the Chikusei and Pavia Center
datasets suggests a superior reconstruction performance on the former. This is likely due to the
Chikusei dataset’s larger size and its abundance of uniform areas, which enhances model training
efficiency. The PUDPN method, in particular, showcases the best recovery results in areas marked by
red rectangles, affirming its leading position in SR technology.

Table 7. A Quantitative comparison of different methods on the Chikusei dataset, with the
best results highlighted in red font.

MODELS d HR image size PSNR ↑ SSIM ↑
Bicubic 4 256 × 256 37.4098 0.9131
GDRRN 4 256 × 256 37.9635 0.9123
Deep hs Prior 4 256 × 256 38.1485 0.9233
SSPSR 4 256 × 256 38.3621 0.9232
PDE-Net 4 256 × 256 37.6435 0.9242
PUDPN (Ours) 4 256 × 256 38.4805 0.9246
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Figure 10. In the Chikusei dataset, with an upsampling factor of 4 and selecting the
70-100-36 bands as R-G-B, visualizations of pseudo-colored images of different models’
reconstructed images (first row) and their corresponding error maps (second row) are shown.
From left to right, they are: ground truth, bicubic [46], Deep hs Prior [36], GDRRN [22],
SSPSR [19], PDE-Net [17], and PUDPN (ours).

5. Conclusions

In this paper, we propose a novel framework for hyperspectral image SR, termed the progressive
upsampling deep prior network (PUDPN). Central to our approach is the integration of a S2AF
module, aimed at exploiting the rich spatial and spectral information embedded within
hyperspectral images. The PUDPN framework addresses critical challenges in the field, including
high-dimensionality, limited availability of training samples, and the need for significant upsampling
ratios. To this end, we have developed a group convolutional upsampling (GCU) network that
incorporates a parameter-sharing, progressive upsampling strategy, enhanced by residual connections
to preserve both high- and low-level image details. Comparative analyses on three widely recognized
datasets demonstrate the superiority of PUDPN over five benchmark methods in terms of both
quantitative and qualitative metrics. Additionally, ablation studies provide further insights into the
efficacy of the proposed framework.

Despite the excellent performance of the proposed PUDPN on specific datasets, it faces challenges
in cross-dataset applications due to inconsistencies in the number of bands and significant differences
in image features. Additionally, due to the limitations of convolution operations in capturing global
information, the model’s ability to capture global features needs to be further enhanced.

Given the unique encoder-decoder structure of the U-Net architecture, which facilitates multi-scale
feature extraction and integration, enabling better capture of global and local information in images
and enhancing the quality of super-resolved images, we plan to explore integrating the sliding
window mechanism from the swin transformer [47] into the U-Net architecture. This integration aims
to enhance the model’s ability to extract global features, more effectively utilize the spatial and
spectral characteristics of deep images, and further improve image reconstruction and model
generalization through network structure optimization and feature learning enhancement.
Additionally, we will investigate effective transfer learning strategies to overcome dataset
discrepancies and enhance the model’s versatility and stability.
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