
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(7): 4454–4471.
DOI: 10.3934/era.2024201
Received: 02 April 2024
Revised: 28 June 2024
Accepted: 04 July 2024
Published: 15 July 2024

Research article

Complex rhythm and synchronization of half-center oscillators under
electromagnetic induction

Feibiao Zhan1 and Jian Song2,3,*

1 School of Mathematics, Nanjing Audit University, Nanjing 211815, China
2 School of Mathematics, South China University of Technology, Guangzhou 510640, China
3 School of Mathematical and Computational Sciences, Massey University, Auckland 4442, New

Zealand

* Correspondence: Email: masongj vlp@mail.scut.edu.cn.

Abstract: Half-center oscillators are typical small circuits that are crucial for understanding CPG.
The complex rhythms of CPG are closely related to certain diseases, such as epilepsy. This paper con-
sidered the influence of electromagnetic induction on the discharge mode of the half-center oscillators.
First, we analyzed the response of individual firing neuron rhythms to electromagnetic induction when
the slow-variable parameters vary. We also discussed the changes in the dynamic bifurcation structure
when the intensity of electromagnetic induction varies. Furthermore, we determined the effects of mu-
tually inhibitory and self-inhibitory synaptic parameters on the firing rhythm of the half-center oscilla-
tors. The different responses induced by electromagnetic induction interventions, showed that mutually
inhibitory synapses modulate the firing rhythm weakly and self-inhibition synapses have a significant
impact on firing rhythm. Finally, with the change of synaptic parameter values, the combined effects
of autapse and mutually inhibitory synapses on the discharge rhythm of half-center oscillators were
analyzed in symmetric and asymmetric autapse modes. It was found that the synchronous state of the
half-center oscillators had a more robust electromagnetic induction response than the asynchronous
state.

Keywords: complex rhythm; half-center oscillators; synchronization; neuron model; electromagnetic
induction

1. Introduction

Central pattern generator (CPG) rhythms have been discovered in invertebrates such as crustacean
pyloric or gastric and leech heartbeats. CPGs are typical small circuits of neural networks, providing
a new perspective on how circuit dynamics depend on neurons and synapses. CPG can spontaneously
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generate multiple rhythmic patterns in the absence of external stimuli [1, 2], and it is associated with
various motor behaviors, such as swimming and walking [3, 4]. The characteristics of CPG are de-
scribed as the stability and robustness of the firing rhythm of neuronal small circuits. Recently, a large
amount of research has focused on the working mechanism of CPG from both theoretical and exper-
imental perspectives, providing a biological theoretical basis for the study of CPG-inspired rhythmic
motion control [5–8]. Still, only some have directly studied the discharge rhythm of CPG. However,
how to efficiently control and use the flexibility and robustness of CPG to guide research inspired by
it is still being explored. Some researchers believe that the connection of CPG forms attractors, and
each attractor corresponds to a rhythmic motor behavior [9]. Theoretical researchers have explained
the potential internal mechanisms of CPG from a dynamic perspective [10], revealing the mechanism
of the emergence, disappearance, and stabilization of neuronal rhythms in a tri-neuron network with
mutual inhibition under changes in synaptic parameters. Lu et al. investigated the synchronization and
stochastic resonance characteristics of small-world networks based on CPG [11]. Researchers have
studied the impact of transient input on neuronal firing using phase response curves [12, 13].

Recent studies have shown how the morphology of neurons can significantly affect the rhythmic
patterns of CPG circuits [14]. There are many studies on the mechanism of neuronal rhythm generation
[15–19], but it is unclear whether the different firing mechanisms of neurons mean the diversity of CPG
circuit functions. Can the same CPG circuit generate multiple motion behaviors, making its motion
functions diverse [20, 21]. Research has shown that the generation of motor behavior depends on the
rhythmic modulation of CPG. One proposal suggests that the CPG rhythm pattern can simulate the
human central system’s rhythmic activity and control the arm movement rhythm [22]. In addition,
CPG rhythm patterns can improve the diagnosis of multiple diseases. For instance, Mader et al. [1]
explained that CPG can assist in developing therapeutic methods for the recovery of spinal solid cord
injuries. Tassinari et al. reviewed the relationship of central pattern generators with parasomnias and
sleep-related epileptic seizures. They explained some epileptic seizures and parasomnias using the
rhythm patterns of the CPG [23, 24]. Therefore, studying the functioning principle of CPG rhythm
activities is essential for understanding related motor behaviors, improving motor control and disease
diagnosis. It is necessary to examine the diversity of rhythm patterns to understand the function of
CPG. The study of CPG rhythm patterns has recently been discussed [25, 26].

A half-center oscillator (HCO) is a unit composed of two neurons that mutually inhibit each other,
and studying the rhythmic pattern of HCO is crucial for understanding CPG [27,28]. Studying motion
control is facilitated by the easy identification of HCO rhythm patterns. Researchers discussed how
neuron parameters affect the rhythmic patterns of HCO to achieve motion control [29], and analyze
how the system parameter space changes the robustness of HCO rhythmic patterns [30]. Recently,
delayed half-center oscillator (DHCO) in-phase and antiphase dynamics behavior and the coexistence
of multiple routes leads to chaos was studied [31, 32]. Noise closely affects the robustness of HCO
rhythm patterns [33], and the impact of electromagnetic induction on neuronal firing rhythms and
diseases such as epilepsy cannot be ignored [34, 35]. Few people have paid attention to the effects of
electromagnetic induction and connection modes on the HCO discharge rhythm. Here, the synaptic
conductance parameters and the effects of electromagnetic induction on the HCO rhythm pattern are
analyzed. Mutual inhibitory neurons can improve the stability of HCO. Here, we explore the rhythmic
pattern of HCO under electromagnetic induction, and a model containing self-inhibitory synapses and
mutual inhibitory synapses is established. We examine the impact of electromagnetic induction and
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connection modes on the HCO rhythm pattern.
This study investigates complex rhythm and synchronization of HCOs under electromagnetic induc-

tion. First, the dynamic changes of individual neurons under electromagnetic induction are analyzed.
Moreover, we discuss the effects of mutual inhibition and self-inhibition synaptic parameters on the
rhythmic patterns of HCO and show their different responses to electromagnetic induction. The results
indicate that mutual inhibition has a weaker effect on the discharge rhythm than self-inhibition. The
study examines the impact of self-inhibition synapses, mutual inhibitory synapses, and electromagnetic
induction on the HCO rhythm pattern, both symmetrically and asymmetrically. It has been found that
the synchronous state of the HCO exhibits a more robust electromagnetic induction response than the
asynchronous state. Rhythm patterns are closely related to motor control. The research of rhythmic
patterns of small circuits contributes to the development of intelligent science. Intelligent science is
inspired by the principle of biological CPG and the establishment of spiking neural networks [36, 37].

The paper is organized as follows. Section 2 presents the materials and methods we used to build
HCO, including the Hodgkin–Huxley (HH) neuron model. Then, Section 3.1 illustrates the rhythmic
discharge of HCOs with different synaptic coupling. Section 3.2 investigates the synchronization of
HCOs with different symmetric and asymmetric autapses. Finally, we have a discussion and conclusion
in Section 4.

2. Materials and methods

2.1. Neuronal model and dynamics under electromagnetic induction

In our CPG, each interneuron is modeled by a simplified HH model. Variable ϕ denotes the magnetic
flux across the membrane, and ρ(ϕ) represents the incremental memductance function of flux controlled
memristor [38], which is used to describe the coupling between membrane potential and magnetic
flux. The incremental memductance function is often described by ρ(ϕ) = α + 3βϕ2, and α, β are
fixed parameters [38, 39]. The term kρ(ϕ)V could be viewed as induction current on the membrane as
follows:

i′ =
dq(ϕ)

dt
=

dq(ϕ)
dϕ

dϕ
dt
= ρ(ϕ)V0 = kρ(ϕ)V.

This microcircuit captures the dynamics by a single compartment, which is described by the following
differential equations [17, 34, 40]:

Cm
dV

dt
= −INa − IK − ILeak + I + kρ(ϕ)V,

dn

dt
=

n∞ − n

τn
,

dI

dt
= ε (−80 − V) .

dϕ

dt
= (k1V − k2ϕ) .

(2.1)

Here, Cm denotes the neural membrane capacitance density (µF/cm2); V represents the membrane
potential (mV); the gating variable n of activated K+ channels denotes the activation probability of
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potassium ion channels; the h variable (the formulations of INa in the original model) represents a
merged refractory variable (Na+ inactivation and K+ activation). It is replaced by 1−n in the simplified
HH model. So, the n gate appears in the formulations of INa. τn is the time constant (ms); I is a voltage-
dependent linear control current; electromagnetic induction parameters are α = 0.1, β = 0.02, k1 =

0.9, k2 = 0.5; and INa, IK , and ILeak are sodium ion current, potassium ion current, and leakage current.
Their expressions are as follows.

INa = gNam∞(V) (1 − n) (V − ENa) ,
IK = gKn (V − EK) ,
ILeak = gL (V − EL) ,

where the parameters gNa and gK are the maximal conductances (mS/cm2); ENa, EK , and EL are the
reversal potentials (mV); and m∞ and n∞ are the steady-state of the ionic gating channels. They are
modeled using:

m∞(V) =
1

1 + exp

−V + 35

5


, n∞(V) =

1

1 + exp

−V + 36

5


.

Figure 1. Time series diagrams of various variables in the neuron model under electromag-
netic induction. (a) The red trajectory represents the potential time series, the blue trajectory
represents the electromagnetic induction sequence diagram, and three-time series diagrams
are next to the green trajectory near the zero line. (b) The enlarged image near the zero
line in the Figure (a), where red represents ρ(ϕ), green represents the gating variable n, and
black represents the feedback current I. Electromagnetic induction parameters k = 0.00002,
ε = 0.001.

First, we present a time series diagram of the neuron model under electromagnetic induction. It is
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found that the membrane potential of neurons exhibits a regular burster discharge pattern (in the Figure
1 red trace), and the time series of the electromagnetic induction parameter ϕ (in the Figure 1 blue
trace) and the peak time of the membrane potential sequence are synchronous. The electromagnetic
induction parameter ϕ affects the membrane potential of neurons at all times, although their amplitudes
differ. The neuronal membrane potential strongly responds to the fluctuations of electromagnetic in-
duction parameter ϕ. We enlarge the green curve near the zero line in the Figure 1(a) to obtain Figure
1(b), where the green trajectory represents the time series of the gating variable; the black trajectory
represents the feedback current I, which is a slow regulating variable. The red trajectory shows the
sequence diagram of the electromagnetic induction term ρ(ϕ) changing over time. Figure 1(b) shows
that compared to the slowly regulated variable I, the change in the electromagnetic induction term is
weaker, but the regulation of the system variables does not weaken. Its impact on the system is equiv-
alent to adding external stimuli that change over time with a red trajectory and the membrane potential
time series displayed by the system under this external stimulus. Below, we will provide the trend of
the dynamic bifurcation diagram of the system as the electromagnetic induction parameters change.

Figure 2. The bifurcation diagram of fast-slow dynamics varies with the electromagnetic
induction parameters. Red represents the phase trajectory; blue represents the maximum and
minimum values of the limit cycle; and green represents the equilibrium point curve. Here
LP represents the saddle-node, and supH represents the supercritical Hopf point. Parameter
ε = 0.001; the electromagnetic induction parameters k are -0.000012, -0.000008, 0, 0.000005
(from (a) to (d)), respectively.

From the above analysis, we know that the neuronal system’s membrane potential strongly responds
to electromagnetic induction as an external stimulus. Here, we take the feedback current I of the system
as a slow variable and provide a bifurcation diagram of the system with the participation of electro-
magnetic induction. First, we can see that the system membrane potential exhibits burster discharge
with ten peaks per burster when the electromagnetic induction parameter k = 0 (in the Figure 2(c)).

Electronic Research Archive Volume 32, Issue 7, 4454–4471.



4459

With k increased to 0.000005, the positive response of the system membrane potential to electromag-
netic induction leads to a significant increase in the number of peaks per burster (in the Figure 2(d)).
Based on the review about classication of bursters [15], here may show a Circle/Circle bifurcation
type. With k reduced to −0.000008, electromagnetic induction exhibits inhibition of action potential,
resulting in burster discharge of membrane potential with only 4 peaks appearing in each burster (in the
Figure 2(b)). When the electromagnetic induction k = −0.000012, the membrane potential exhibits 2
peaks per burster (in the Figure 2(a)). If the electromagnetic induction k further decreases, the system
membrane potential sequence will exhibit a single spiking.

Figure 3. Time series diagram of membrane potential. The parameters ε from top to bottom
are equal to 0.001, 0.005, and 0.01, respectively. On the left side is electromagnetic induction
intervention, parameter k = 0.00005; there is no electromagnetic induction on the right side.

Here, we investigate the dynamic changes in membrane potential discharge rhythm by adding elec-
tromagnetic induction under different slow variable parameters ε. In the Figure 3, we can see that
the discharge rhythm of the membrane potential exhibits a regular rectangular wave burster (in the
Figure 3(b1)) when the parameter ε = 0.001, and the discharge rhythm of the membrane potential ex-
hibits a parabolic burster when electromagnetic induction is added to the system (in the Figure 3(a1)).
The number of peaks per burster significantly increases. When the parameter ε = 0.005, the sys-
tem exhibits a regular burster discharge rhythm pattern, and the number of bursters within the same
time interval significantly increases (in the Figure 3(b2)), and the burster interval decreases. The ad-
dition of electromagnetic induction transforms the discharge rhythm of the membrane potential from
an initial irregular burster to a regular burster, and the number of peaks per burster increases (in the
Figure 3(a2)). The membrane potential of the system exhibits a periodic burster when the parameter
ε = 0.01 (in the Figure 3(b3)), and two peaks appear in each burster, with a smaller burster interval
than the first two groups. Adding electromagnetic induction results in an irregular discharge rhythm of
the membrane potential. The system’s sensitivity increases with the addition of electromagnetic induc-
tion under this parameter (in the Figure 3(a3)). In summary, electromagnetic induction significantly
impacts the membrane potential rhythm of individual neurons.
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2.2. HCOs-based model

Figure 4. Connection diagram of an improved HCO with autapse (coupled system with
chemical synapse). The solid blue and green circles represent neurons and are labeled as
1 and 2, respectively. These neurons are modeled by the HH model; see Eq (2.1). Black
filled arrows represent inhibitory synapses; see Eq (2.2). The conductance of the connection
between neurons is noted as gi j, i, j = 1, 2. This indicates that the synapse is from neuron i to
neuron j.

Next, we will consider the improved firing rhythm of two neurons that mutually inhibit each other,
also known as HCOs. We have added two self-synapses of neurons here. Considering how the syn-
chronization of neurons changes with changes in two sets of synaptic parameters, we first examine
whether inhibition from autapse and mutual inhibition is consistent. Furthermore, we research HCOs
in both symmetric and asymmetric autapse modes. When only g12 is not 0 and only g11 or g22 is not
0, we investigate the difference in the firing rhythm of neurons. The inhibitory relationship between
neurons is a crucial factor in rhythm generation. The most common structure describing firing rhyth-
mic activities consists of two coupled neurons that inhibit each other (in the Figure 4). This structure is
widely known as an HCO and is symmetrically coupled through both inhibitory connections with g12

and g21. We will start with the most straightforward network where two cells next section and extended
self-inhibition from neurons. Neurons are color-coded (blue and green) based on firing activity. The
synaptic transmission in the structure of the HCO in the Figure 4 is ionotropic synapses. First-order ki-
netic equations model these synapses, which are inhibitory and conductance-based, similar to previous
studies [41–44]: 

Ipre→post = gpre→postH∞(Vpre)
(
Vpre − Epre→post

)
,

H∞(Vpre) =
1

1 + exp

−Vpre − θ

σ


. (2.2)

Here, Vpre is the presynaptic voltage, σ = 1mV is the steepness, θ = −60mV sets the value when
the function is semi-activated, Epre→post = −110 is the reversal potential, and gpre→post is the maximal
conductance (gi j, i, j = 1, 2 in the Figure 4).

For numerical integration of network system, the fourth-order Runge–Kutta algorithm was used
with a time step of 0.05 ms. The total integration time length of each simulation run was 5000 ms.
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Simulations were implemented in Python 3.9.7 on PC with 12th Gen Intel(R) Core(TM) i7-12700H
2.30 GHz CPU.

3. Results

3.1. Rhythmic discharge of HCOs with different synaptic coupling

Figure 5. The discharge rhythm of HCOs when there is only one synaptic conductance
change, i.e., when g12 changes. Here, g11 = g21 = g22 = 0. The coupling conductance
parameters g12 from top to bottom are 0, 0.02, and 0.2, respectively. On the right side is no
added electromagnetic induction; on the left, there is added electromagnetic induction, and
the parameter k = 0.00005 only stimulates neuron 1. Blue represents the membrane potential
sequence of neuron 1, and green represents the membrane potential sequence of neuron 2.

The section discusses the reciprocal inhibition between two neurons, which are HCOs (in the Figure
4). The synchronous firing of neurons contains essential neural information. Here, we investigate the
synchrony of HCO rhythm activity. First, we investigate the firing rhythm when the synaptic conduc-
tance g12 is not zero; only neuron 1 inhibits neuron 2. When g12 = 0, neurons 1 and 2 have a wholly
synchronized discharge pattern (in the Figure 5(b1)), which is reasonable. By changing g12 to 0.02 in
Figure 5(b2), it is found that the firing rhythm of neuron 1 does not change, while the firing rhythm
of neuron 2 gradually changed from the state of synchronous neuron 1 (the first two burster patterns)
to an asynchronous state, until it reached an asynchronous state. When g12 = 0.2, the discharge mode
of neuron 1 remains unchanged, and the discharge modes of the two neurons directly exhibit a strictly
asynchronous state (in the Figure 5(b3)), with the burster mode states of neurons 1 and 2 alternating.
We obtain the firing rhythm on the left side of Figure 5 when only neuron 1 in the system adds elec-
tromagnetic induction. We can observe that the rhythmic pattern of neuron 1 under electromagnetic
induction is consistent under all three sets of coupled conductance parameters. Under weak coupling
conductance (g12 = 0.02), the rhythmic pattern of neuron 2 transitions to irregular discharge, meaning
that the discharge rhythm of neuron 2 is greatly affected by electromagnetic induction (in the Fig-
ure 5(a2)). At a relatively strong coupling conductance coefficient (g12 = 0.2) (in the Figure 5(a3)),
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the burster firing rhythm pattern of neuron 2 is strengthened. We can see a significant increase in the
number of peaks per burster, and the stability of the burster pattern is also more robust.

Figure 6. The discharge rhythm of HCOs. Only when the self-inhibitory synaptic conduc-
tance is not 0, that is, when only g11 is changed, here g12 = g21 = 0. As a comparison, we
always take g22 = 0.05 in all the figures. The coupling conductance parameters g11 from
top to bottom are 0, 0.2, and 0.35, respectively. On the right side, there is no added electro-
magnetic induction; on the left, there is added electromagnetic induction, and the parameter
k = 0.00005. Neurons 1 and 2 are both being stimulated at the same time. Blue represents
the membrane potential sequence of neuron 1, and green represents the membrane potential
sequence of neuron 2.

Here, we consider the discharge rhythm when the self-inhibitory synaptic conductance changes,
where g12 = g21 = 0. It is evident from the righthand side of Figure 6 that the firing neuron 2 has a
consistent firing rhythm, unaffected by neuron 1 within a fixed g22. Its firing rhythm is different from
that when the coupling conductance g11 = 0 (blue trace in the Figure 6(b1)), and at this point, the firing
rhythm of neuron 1 (in the Figure 6(b1)) is entirely consistent with that of neuron 1 in the Figure 5(b1).
In the Figure 6(b2), when g11 = 0.2, neuron 1 shows a regular burster pattern with four peaks in each
burster. This pattern is distinct from the firing rhythm pattern in the Figure 5(b3), where the coupling
parameter g12 between neuron 1 and neuron 2 is 0.2. The different firing patterns might indicate that
the inhibitory effects of autapse and mutually inhibitory synaptic conductance on neurons are different.
This is an exciting observation worth noting. Here, self-inhibition reduces the number of peaks per
burster in neuron 1 (in the Figure 6(b2)). When increasing g11 to 0.35, the discharge pattern of neuron
1 exhibits an irregular rhythm, appearing to be a burster pattern with three peaks in each burster (in
the Figure 6(b3)). Continuing to increase the self-coupling synaptic conductance g11, the firing rhythm
of neuron 1 may transform into a burster rhythm pattern with two peaks in each burster and a regular
burster discharge pattern, which is not shown here. These all indicate that self-synaptic coupling is
essential to regulating the diversity of discharge rhythms. The left side of Figure 6 shows the discharge
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rhythm pattern obtained by adding electromagnetic induction to the system. In all three cases, the
discharge pattern of neuron 2 is undoubtedly wholly consistent. The firing pattern of neuron 1 (in the
Figure 6(b1)) is consistent with the firing rhythm of neuron 1 in the Figure 5(b1) when g11 = 0.2 (in the
Figure 6(a2)), and the addition of electromagnetic induction increases the number of peaks per burster
in the neuron 1. When g11 = 0.35, the irregular discharge pattern of neuron 1 remains irregular under
electromagnetic induction as if the number of peaks in each burster increases. Under these three types
of autapse, perhaps electromagnetic induction enhances the discharge of membrane potential. We also
found that the impact of electromagnetic induction on the discharge mode of HCOs varies depending
on the different synaptic connections. The effects of self-synaptic inhibition and mutual inhibition on
the firing patterns of neurons are also other, as shown by comparing Figures 5 and 6. Therefore, this
suggests that the effects of electromagnetic induction on HCOs must be carefully considered in terms
of their synaptic connections.

3.2. Synchronization of HCOs with different symmetric and asymmetric autapse

Here, we examine the synchronization state of two neurons with a half-center oscillator by phase
difference ∆(n) and average phase difference S = 1

N

∑N
n=1 ∆

(n)(N is the number of samples within the
range of values of the vertical coordinate parameter) [45], as shown in the Figure 7. Figure 7(a1)
shows the branch diagram of the phase difference when two mutually inhibitory coupling conductance
and self-synaptic conductance are equal, respectively, under the introduction of electromagnetic in-
duction in neuron 1. The calculation results show that, without introducing electromagnetic induction,
the HCO exhibits a fully synchronized state. We will discuss the discharge mode of the HCO under
symmetric self-synaptic conductance, i.e., fixed self-synaptic conductance g11 = g22 = 0 (in the Fig-
ure 8) and g11 = g22 = 0.2 (in the Figure 9). When we fixed g11 = 0.2 and g12 = 0.1, we analyzed
the synchronous branches of the HCO in the presence or absence of electromagnetic induction (in the
Figure 7(a2),(a3)), respectively. It can be observed that the addition of electromagnetic induction fun-
damentally changes the phase difference of the HCO. We show the change in phase difference before
and after the addition of electromagnetic induction in the Figure 7(b), which is obtained by taking the
difference in phase difference at the corresponding points in the Figure 7(a2),(a3) as the dependent
variable. The independent variables are conductance g21 and g22. We will also discuss the discharge
rhythm of the HCO under asymmetric self-coupling conductance (in the Figure 10).

We present the phase difference diagram of the HCO when electromagnetic induction stimulates
neuron 1, and when the autapse conductance and mutual inhibition conductance are equal, respectively
(in the Figure 7(a1)). We also calculated that when the autapse conductance and mutual inhibition
conductance are equal (not shown in the Figure), the HCO, without introducing electromagnetic in-
duction, is in an absolute and completely synchronized state. Here, Figure 8(b2) is a special case of
complete synchronization (where g11 = g22 = 0, g12 = g21 = 0.2). At this point, whether reducing the
conductance g12 to 0.02 or increasing g12 to 0.4 (in the Figure 8(b1),(b3)), not only will it change the
synchronization state of the discharge patterns of the two neurons, but it will also affect the discharge
rhythm patterns of the two neurons. We observed that the addition of electromagnetic induction to the
synchronized state not only fundamentally altered the synchronization of the two neurons but also re-
sulted in significant changes in the firing neuron rhythms (as shown in the Figure 8(a2)). This suggests
that the discharge mode of the system in the synchronous state is more responsive to the addition of
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electromagnetic induction than the asynchronous rhythm modes. These findings are consistent with
our previous analysis. The number of peaks in each neurons 1 and 2 burster in the HCO gradually in-
creases as the conductance parameter g21 increases from 0.02 to 0.4. Electromagnetic induction seems
to make the peak changes in the firing rhythm of neurons not continuous in each burst but rather a
direct burst of multiple peaks. Therefore, electromagnetic induction has a more profound impact on
the synchronization of HCOs.

Figure 7. The combined effect of synaptic conductance gii and gi j on synchronization in the
HCO. The color bar indicates the phase difference ∆(n), which is similar with the definition
in Ref [45]. Dark blue zone corresponds to the zero phase difference (indicates complete
synchronization). Dark red color indicates the maximum phase difference. Three black
curves representing fixed horizontal axis values and the average phase difference (S) with
changes in vertical axis values. (a1) When g11 = g22 = gii, g12 = g21 = gi j, the phase
difference diagram with changes in gii and gi j, k = 0.00005, only stimulating neuron 1; (a2)
Fix g11 = 0.2, g12 = 0.1, the phase difference diagram with changes in g21 and g22, k = 0;
(a3) Fix g11 = 0.2, g12 = 0.1, and the phase difference diagram with changes in g21 and g22,
k = 0.00005, only stimulating neuron 1; (b) Comparison chart of phase difference between
(a2) and (a3).
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Figure 8. The discharge rhythm of the HCO when the autapse conductance g11 = g22 = 0.
Here, g21 is fixed at 0.2. The conductance parameters g12 from top to bottom are 0.02, 0.2,
and 0.4, respectively. On the right side, there is no electromagnetic induction; on the left,
electromagnetic induction is added, and the parameter k = 0.00005 only stimulates neuron
1. Blue represents the membrane potential sequence of neuron 1, and green represents the
membrane potential sequence of neuron 2.

Figure 9. The discharge rhythm of HCO varies with the parameter g12, where g21 = 0.2 when
g11 = g22 = 0.2. The conductance parameters g12 from top to bottom are 0.02, 0.2, and 0.4,
respectively. On the right side, there is no electromagnetic induction, while on the left side,
electromagnetic induction is added, and the parameter k = 0.00005 only stimulates neuron
1. Blue represents the membrane potential sequence of neuron 1, and green represents the
membrane potential sequence of neuron 2.

According to the phase difference analysis above, the two neurons in the HCO exhibit a fully syn-
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chronized state when the autapse conductance and mutual inhibition conductance are equal, respec-
tively, and no electromagnetic induction is introduced (not shown in the Figure). Figure 8(b2) shows
the discharge rhythm when g11 = g22 = 0. In the Figure 9(b2), neurons 1 and 2 demonstrate an HCO
with synchronized discharge rhythm when autapse and mutual inhibition conductance parameters are
0.2. Here, we present the discharge rhythms of the HCO when the two autapse conductance parameters
are equal to 0 and 0.2, respectively (in the Figure 8(b2) and Figure 9(b2)). It is evident that the con-
ductance parameters of autapse significantly affect the neuron’s discharge rhythm. With g12 reduced to
0.02 (in the Figure 9(b1)), synchronization disappears, peak count decreases, and amplitude increases.
When increasing g12 = 0.4 (in the Figure 9(b3)), the synchronization state of the system will also dis-
appear, the amplitude of the peaks will increase, and the number of peaks in each burster will decrease,
but it is still more than when g12 = 0.02. In an HCO, the left side of Figure 9 is obtained when elec-
tromagnetic induction stimulates neuron 1, and we can see that the synchronization state of the system
immediately disappears (in the Figure 9(a2)). Neuron 1 is more sensitive to electromagnetic induction
when g12 = 0.02 (in the Figure 9(a1)), while at this time, neuron 2 has almost no change in the peak
number of each burster except for the change in the initial discharge time of the burster. When the
value of g12 is 0.4 (in the Figure 9(a3)), the changes in the firing rhythms of neurons 1 and 2 show an
enhanced response to electromagnetic induction. From the variation of the discharge rhythm from top
to bottom on the left side, we can see that the larger the g12, the better the robustness of the HCO, and
the discharge rhythm in the synchronous state is more sensitive to the intervention of electromagnetic
induction.

Figure 10. The discharge rhythm of HCOs varies with g12 when g11 = 0.2 and g22 = 0.1,
where g21 = 0.2. The conductance parameters g12 from top to bottom are 0.02, 0.1, and 0.4,
respectively. There is no electromagnetic induction on the right side, but there is electromag-
netic induction on the left side that only stimulates neuron 1 with the parameter k = 0.00005.
Blue represents the membrane potential sequence of neuron 1, and green represents the mem-
brane potential sequence of neuron 2.

Previously, we discussed the discharge rhythms of HCOs in two cases where the conductance of two
autapses is equal. Here, we will consider the discharge rhythm of the HCO at g11 = 0.2, g12 = 0.1, g21 =
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0.2, and g22 = 0.1 (in the Figure 10(a2),(b2)), that is, how the discharge rhythm of the HCO changes
when the autapse conductance is not equal (corresponding to a position point in the Figure 7(a2),(a3)).
In addition, we also discussed the discharge rhythms of the system at g12 = 0.02 and 0.4, as shown in
the Figure 10 (a1),(b1),(a3),(b3), respectively. Compared with Figure 9(b2) (g12 = g22 = 0.2), here we
change g12 and g22 from 0.2 to 0.1, respectively, to obtain Figure 10(b2) (g12 = g22 = 0.1). The number
of bursts and the intensity of the burst mode vary considerably. The discharge timing of the burster
mode has undergone significant changes. When the value of g12 is 0.02, the firing rhythm of neuron
1 is significantly affected by electromagnetic induction. The peak number of each burster in neuron 2
remains unchanged, but the firing time of the burster mode is changing (in the Figure 10(a1)). When g12

increases by 0.1 or 0.4, the HCO becomes more sensitive to the addition of electromagnetic induction
(in the Figure 10(a2),(a3)). The firing rhythm of neuron 1 directly receiving electromagnetic induction
stimulation will undergo fundamental changes. The left panel of Figure 10 shows the firing rhythm of
neuron 2. The larger the conductance g12, the better the robustness of the system, which is consistent
with our previous analysis (in the Figure 9). Here, we discuss the changes in the HCO discharge
patterns of symmetric autapse (in the Figures 8 and 9) and asymmetric autapse (in the Figure 10), as
well as the influence of electromagnetic induction on the discharge patterns. It is important to consider
the connection modes of autapse and non-autapse connections.

4. Conclusions

In this article, we analyze the discharge rhythm of an individual neuron model under electromag-
netic induction and demonstrate it as a classical burster pattern. We show the time series of slow
variables, gate variables, and the electromagnetic induction term ρ(ϕ). It is found that the electromag-
netic induction term ρ(ϕ) has a minor regulatory effect on the firing rhythm of neurons compared to
slow variables. Moreover, we demonstrate an individual neuron’s fast-slow dynamics branch diagram,
which varies with different electromagnetic induction parameters. We discover that electromagnetic
induction has a profound impact on the dynamic characteristics of individual neurons. Next, we ex-
amined the firing rhythms of three groups of neurons with different slow variable parameters ε. We
concluded that the addition of electromagnetic induction fundamentally changes the firing rhythm of
an individual neuron. We are interested in the effect of electromagnetic induction on the HCO. Here,
we examine the improved HCO discharge mode, which includes the addition of autapse. The impact
of autapse and mutually inhibitory synapses under electromagnetic induction on the rhythmic patterns
of the HCO are considered (in the Figures 5 and 6). When the synaptic parameter values are the same,
there is a significant difference in the performance of self-inhibitory synaptic and mutually inhibitory
synaptic discharge patterns. Electromagnetic induction affects the discharge rhythm of the HCO dif-
ferently based on the type of synapses, whether self-inhibitory or mutually inhibitory. Therefore, it is
essential to take note of the connection modes of the synapses during the experiment.

Furthermore, we investigate the synchronization phenomenon of the improved HCO. The change
in phase difference of the HCO with and without the introduction of electromagnetic induction is ana-
lyzed when synaptic parameters change. We discuss a comparison plot of the phase difference before
and after the introduction of electromagnetic induction, which more intuitively shows the change in
phase difference caused by the introduction of electromagnetic induction. By further exploring the
discharge modes of the HCO and summarizing the changes in the discharge modes of the two sym-
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metric autapses (in the Figures 8 and 9), it can be found that the discharge mode in the synchronous
state of the system has a more robust response to electromagnetic induction compared to the asyn-
chronous rhythmic mode. It is apparent that the larger the conductance g12, the greater the robustness
of the HCO. At the same time, the discharge rhythm of neuron 1 directly receiving electromagnetic
induction stimulation changes significantly, while the discharge rhythm of neuron 2 passively receiv-
ing stimulation is affected by the value of g12. The larger the value of g12, the stronger the response of
neuron 2. Finally, we analyze the changes in the discharge mode of the HCO with changes in synaptic
conductance parameters under asymmetric autapse. The response patterns of the HCO of symmetric
and asymmetric autapse to electromagnetic induction are different, manifested by the diverse discharge
modes of the HCO.

Therefore, these rules of the HCO need to be paid attention to, including different synaptic connec-
tions, the response of different synaptic connections to electromagnetic induction, the different effects
of electromagnetic induction on its synchronization, and the different effects of symmetric and asym-
metric autapse on the discharge mode of the HCO. In our study, we examined chemical synapses be-
tween neurons and did not consider any electrical coupling that may have been present between them.
In future studies, we will analyze the synergistic effects of electrical and chemical coupling in HCO or
CPG, which can lead to very different rhythmic patterns. Our current model demonstrates that synaptic
conductance can influence the rhythm pattern of the HCO. The diversity of rhythm activities in CPG
is essential for its flexibility and robustness, which can resist interference from external information.
Synaptic conductance and electromagnetic induction changes can produce many different rhythm ac-
tivities, making the CPG less susceptible to external interference. Of course, the relationship between
rhythmic activities of HCO (or CPG) and epilepsy and other diseases will also be paid attention to.
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