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Abstract: Graph Convolutional Networks (GCNs) demonstrate an excellent performance in node
classification tasks by updating node representation via aggregating information from the neighbor
nodes. Note that the complex interactions among all the nodes can produce challenges for
GCNs. Independent subgraph sampling effectively limits the neighbor aggregation in convolutional
computations, and it has become a popular method to improve the efficiency of training GCNs.
However, there are still some improvements in the existing subgraph sampling strategies: 1) a loss
of the model performance caused by ignoring the connection information among different subgraphs;
and 2) a lack of representation power caused by an incomplete topology. Therefore, we propose a
novel model called Dual-channel Progressive Graph Convolutional Network (DPGCN) via sub-graph
sampling. We construct subgraphs via clustering and maintain the connection information among the
different subgraphs. To enhance the representation power, we construct a dual channel fusion module
by using both the geometric information of the node feature and the original topology. Specifically, we
evaluate the complementary information of the dual channels based on the joint entropy between the
feature information and the adjacency matrix, and effectively reduce the information redundancy by
reasonably selecting the feature information. Then, the model convergence is accelerated through
parameter sharing and weight updating in progressive training. We select 4 real datasets and 8
characteristic models for comparison on the semi-supervised node classification task. The results verify
that the DPGCN possesses superior classification accuracy and robustness. In addition, the proposed
architecture performs excellently in the low labeling rate, which is of practical value to label scarcity
problems in real cases.

Keywords: semi-supervised learning; Graph Convolutional Network; subgraph sampling; dual
channel; clustering
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1. Introduction

Graph-structured data is a non-Euclidean data that represents entity relationship through nodes and
edges [1]. It has become the fundamental form of carrying a complex structure in various domains,
such as the user directed connection in social networks and gene interactions in biology. In recent
years, there has been seen a surge of research interests in utilizing Graph Neural Networks (GNNs) to
handle graph-structured data [2]. As an important branch of GNNs, a Graph Convolutional Network
(GCN) has demonstrated an excellent performance on downstream tasks such as node classification,
graph classification, and link prediction by introducing convolutional operations [3].

GCN updates node representation by aggregating the neighbor nodes’ information. In this way, the
feature information propagates over network topology to node embedding, and then the node
embedding learned as such is used in classification tasks [4]. However, GCN performs the
convolutional operation by iteratively calculating whole nodes layer by layer, which makes the
training process challenging [5]. The neighbor nodes grow exponentially in size, especially with
larger or denser graph data.

To address the above problems, independent subgraph sampling that can efficiently enhance the
training is widely used in GCN variants [6, 7]. Subgraph sampling divides the entire graph into a
number of subgraphs by utilizing various algorithms, such as random wandering [8], node-ordered
sampling [9], etc. Then, the GCN utilizes the subgraphs for batch learning to obtain the node
embedding representation. In this way, the GCN performs convolution operation on smaller scale
data, thereby reducing the demand for computing resource.

In general, subgraph sampling involves two core processes: the subgraph construction method and
the subgraph training strategy. The construction method determines how to quickly and efficiently
extract the essential information from the graph. The training strategy determines how to exploit
subgraphs to achieve results comparable to the entire graph training [10]. However, the existing GCN
variants based on subgraph sampling still suffer from two significant challenges.

• Challenge of model performance: Subgraph sampling exploits incomplete neighbor information
during back-propagation, which compromises the accuracy of gradient estimation. Therefore, the
model performances of the GCNs based on subgraph sampling suffers from the loss of accuracy,
robustness, and convergence speed.
• Challenge of representation: The incomplete topology of the subgraph is susceptible to bias

with downstream tasks, which makes the embedding representation deviate from the ground
truth. Thus, only utilizing the topology of subgraphs can cause the compromise of the
model representation.

To address the challenge of the model’s performance, some sampling strategies randomly backfill
a part of the connection information. For example, GraphSAINT [8], which is a random wandering
sampling strategy, enables to capture higher-order dependencies among nodes while preserving the
local structural information of the graphs, while Cluster-GCN [11] adopts a subgraph construction
method based on graph clustering, which preserves the connection information by randomly adding
edges among different clusters. It is noticed that the above strategies reduce the bias of the gradient
estimation by randomly augmenting the node information for the subgraphs. Although random
backfilling can improve the generalization ability of the model, it can also lead to instability and slow
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convergence during the training process.
To address the challenge of representation, GCN variants construct the multi-channel architecture

to further enhance the representation. For example, AM-GCN [12] extracts the node feature for
constructing the multi-channel architecture, which is able to learn the suitable importance weights
when fusing the topology and node feature information. The essence of multi-channel architecture
depends on the complementary information among the multi-channel, which provides a more
comprehensive perspective for the model [13, 14]. It can be inferred that improving the
complementary information is an effective way to enhance the model’s representation. However,
the existing models rarely attempt to quantify the amount of information complementarity among
the multi-channel.

In this paper, we propose a Dual-channel Progressive Graph Convolutional Network (DPGCN) via
subgraph sampling. The DPGCN includes progressive subgraph sampling and a dual channel fusion
module. It is noticed that the progressive network includes two senses: 1) progressiving merging
of the clusters ensures that the connection information among the subgraphs is replenished; and 2)
adopting a parameter-sharing strategy to progressively learning that leads to the acceleration of the
convergence. Furthermore, to reduce the information overlap or redundancy in the dual-channel, we
attempt to quantify the complementary information via the joint entropy between the original topology
and the different feature topologies. Additionally, we compare the DPGCN with eight methods on
four benchmark node classification datasets to verify the effectiveness and advantages of our proposed
method. Our main contributions are as follows:

• We propose a novel progressive subgraph sampling method. This method effectively retains the
connection information among the subgraphs, which improves the convergence speed.
• In order to construct dual-channel module with low information redundancy, we attempt to

quantify the complementary information based on the joint entropy of different channel
topologies (i.e., adjacency matrices).
• Our proposed model demonstrates an excellent performance in semi-supervised node

classification tasks comparing with eight representative models.

2. Related works

The excellent performance of a GCN in downstream tasks prompts a lot of extended work,
which focuses on the improvement of training efficiency and representation. Our proposed model
is constructed to fulfill the above two targets. Specifically, we utilize progressive training via
subgraph sampling to improve model’s efficiency and to enhance the model’s representation via the
dual-channel architecture.

2.1. Subgraph sampling

The traditional GCN utilizes the entire graph for sequential iterative computation that leads to the
complexity of the training process and a growth of the computational cost. To address the challenges,
scholars proposed a series of independent subgraph sampling methods to reduce the computational cost
while maintaining the essential properties of the graph data. For example, Cluster-GCN [11] adopts
the METIS graph clustering method to divide the whole graph into multiple subgraphs, and then trains
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the full batch on each subgraph, which effectively reduces the memory requirement and improves the
training efficiency. GraphSAINT [8] adopts random walk sampling to solve the neighbor explosion and
improves the hardware utilization by significantly reducing the data traffic to the slow memory. IANS-
GCN [9] utilizes local center node sampling to isolate the high-order neighbors and builds a deeper
network to learn more complex graph representations. Although these subgraph sampling methods
already outperform traditional GCNs in classification accuracy, the weak connection information of
the subgraphs still poses the challenges of stability and convergence speed.

2.2. Multi-channel learning

The core of multi-channel learning is utilizing the complementary information of different
channels to obtain comprehensive embedding representation. For example, AM-GCN [12] extracts
the specific and common embeddings from node features, topological structures, and their
combinations simultaneously, and uses the attention mechanism to learn the adaptive importance
weights of the embeddings. MAGCN [15] aggregates the node features from different hops of
neighbors using the multi-view topology of the graph and an attention mechanism. In addition,
MAGCN conducts a theoretical analysis of representation using a rigorous mathematical proof, which
demonstrates its learning potential. PAGCN [16] leverages the principles of contrastive learning and
attention mechanisms to efficiently learn and fuse the node representations of perturbation
augmentation graphs and input graph. Adding multiple channels to enhance the model’s
representation is certainly a feasible strategy. However, blindly adding multiple channels is not
enough to compensate for the efficiency loss caused by an increase in the parameters and computing
resources. In view of this, we attempt to use joint entropy to evaluate the complementary information
of the multiple channels, and then build a lightweight dual-channel fusion module.

3. A Dual-channel Progressive Graph Convolutional Network via subgraph sampling

3.1. Preliminaries

A graph data G = (V, E, A) is composed of N = |V | nodes and |E| edges. The edges represent the
relationship among nodes, which is represented by the adjacency matrix A. A is an N-dimensional
sparse matrix. If nodes i and j are related, A(i, j) is 1, otherwise it is 0. In addition, each node has an
F-dimensional feature vector, where X is the feature matrix of the node.

3.2. Overview of framework diagram

The framework of the traditional subgraph sampling is shown in Figure 1. Its weak connection
information of the subgraphs poses the challenges of stability and convergence speed.

The DPGCN framework is shown in Figure 2. The graph is reconstructed into dual-channel
subgraphs through a clustering sampler. Then, the subgraphs are progressively trained to obtain the
embedding representation. Finally, the dual-channel embedding representations are fused to obtain
the classification result.

In detail, the sampling uses the clustering algorithm to divide the nodes into multiple clusters.
Then, the clusters are sequentially merged to obtain the progressive set of nodes. Finally, the DPGCN
extracts the sub-matrices from the adjacency and distance matrices for the topology channel and the
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feature channels.
Progressive training adopts a parameter sharing strategy, which preserves the parameter of the

previous subgraph to the next subgraph. Thus, only fine-tuning of the parameters in subsequent
training can obtain a superior embedding representation. In addition, we progressively introduce
updated sample weights in the loss function to revise the misclassified samples in subsequent training.

Compared with the traditional architecture, DPGCN has three main aspects: 1) it adopts a novel
subgraph sampling strategy, which allows the connection information to be retained in the subsequent
subgraphs; 2) it constructs a dual-channel architecture in subgraphs to fuse the topology and node
features, which enhances the representation of subgraphs; and 3) it employs the progressive training
strategy, including the updating of the sample weights, as shown by the yellow line. Constantly
updating the samples allows the misclassified samples to be revised in the subsequent training.
Moreover, subsequent training utilizes the parameters of the previous subgraph and only needs to be
fine-tuned, as shown by the blue line in Figure 2.

Figure 1. Traditional subgraph sampling framework.

Figure 2. The framework of DPGCN.
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3.3. Progressive sampling

Using clustering algorithm divides the set of nodes to maximize the similarity of the sample points
inside the class and minimize the similarity of the sample points among the classes. The set of nodes
V is divided into K clusters and the adjacency matrix A is divided into K2 sub-matrices:

A =


A11 · · · A1K
...
. . .

...

AK1 · · · AKK

 . (3.1)

For any diagonal block, Att, (t ≤ K), which denotes the edge Ett inside the set of nodes Vt. For the
remaining matrix blocks, At1 denotes the edge Et1 between the set of nodes Vt and V1, thus G is divided
into the following:

G = [G1, ...,GK] = [(V1, E11), ..., (VK , EKK), E1K , ...EK1], (3.2)

where (E1K , ..., EK1) contains the connection information among different sets of nodes.
In order to retain the correlation among subgraphs, we adopt the following progressive subgraph

sampling strategy: the strategy extracts the set of nodes Vt to construct the first subgraph G1. Then, it
randomly chooses the set (Vc, Ecc, Acc) and the edge (Ect, Etc) to merge them into the previous subgraph
G2. The above steps are continued until all subgraphs have been successfully merged. We can obtain
K progressive subgraphs G = (G1,G2, ...,GK). According to the nodes of different subgraphs, the
corresponding features and labels are X = (X1, X2, ..., XK),Y = (Y1,Y2, ...,YK).

3.4. Evaluation and selection of feature information

While extracting different feature information, the new channel should avoid excessive information
redundancy in order to effectively supplement the information of the original channel. Therefore, a
reasonable selection of the feature information is a previous assurance to achieve the
comprehensiveness and efficiency of the multi-channel architecture. Therefore, we attempt to utilize
the joint entropy in the information theory to evaluate the amount of complementary information
provided by different feature information.

Joint entropy [17] is used to measure the amount of information in multiple stochastic systems under
a joint probability distribution. A higher entropy means that it contains more information [18]. The
definition of the joint entropy H(P, A) of the adjacency matrix A and the new channel P is as follows:

H(P, A) = −
∑
X

∑
Y

p(x, y) log p(x, y). (3.3)

This equation is used to observe the amount of information obtained by a system integrated into a
new view. For a further analysis, we transform the equation as follows:

H(P, A) = H(A) + H(P|A), (3.4)

where H(A) represents the information entropy of the original topological view A. The conditional
entropy H(P|A) represents the amount of information obtained when obtaining a new view P. The
amount of information added by the introduced new view can be represented by the joint entropy.
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Therefore, we use the general methods of distance or similarity measures based on the feature
information, such as the Euclidean distance, the Manhattan distance, the Cosine similarity, and the
Pearson correlation coefficient, to calculate their joint entropy. Specifically, we calculate different
similarity matrices or matrices based on four methods for a pairwise nodes’ features. Then, the
obtained matrices are normalized to be limited between (0, 1). The obtained results are shown in
Table 1.

Table 1. Joint entropy of different methods.

Cora ACM Citeseer UAI Texas Chameleon
Euclidean distance 0.6412 0.7243 0.7028 0.3095 0.6923 0.9790
Cosine similarity 0.0170 0.0775 0.0071 0.2322 0.7825 0.0172
Pearson correlation 0.0179 0.0309 0.0024 0.0259 0.7807 0.0016
Manhattan distance 0.0136 0.0285 0.0570 0.1088 0.6408 0.5382

It is observed that the joint entropy of the Euclidean distance matrix is superior, (i.e., the amount
of complementary information provided by the Euclidean distance matrix is higher). This means that
when considering both the original adjacency matrix and the Euclidean distance matrix, the model has
a greater amount of information. The smaller joint entropy of the other methods indicates that the
other method’s feature information may have a significant information overlap. Thus, the fusion may
not bring a significant enhancement for the representation.

After evaluation, we choose the Euclidean matrix to represent the geometric structure to construct
dual channels for fusion learning. In addition, we introduce the neighborhood radius r, (i.e., the
node’s distance beyond the neighborhood radius r is set as the maximum value). The purpose is to
flexibly adjust the learning range of the model’s feature channels by adjusting the neighborhood
radius r. Finally, the distance matrix is added to multiple progressive subgraphs G, where D denotes
the distance matrix.

G =
[

(V1, E1, A1) (V2, E2, A2) ... (V, E, AK)
(V1, E1,D1) (V2, E2,D2) ... (V, E,DK)

]
(3.5)

3.5. Progressive training via GCN

For the L-layer GCN, in each layer of convolutional computation, the model is expressed as follows:

Z l+1 = A
′

XlW l, Xl+1 = σ(Z l+1), (3.6)

where A
′

is the normalized and regularized adjacency matrix that represents the topological structure.
Xl is the embedding of the previous layer. W l is the feature transformation matrix of the current
layer. The feature transformation matrix serves downstream tasks after learning. σ(·) is an activation
function, which uses the Relu activation function.

The model initializes the sample weight of any node as α = 1/ |V1|. Thus, we obtain the sample
weight matrix of G1 as S1 = [α1

1, α
1
2, · · ·, α

1
|V1 |

]. Next, the subgraph G1 is inputted into the dual-channel
to obtain the embedding representation. Thus, the embedding representation of the dual channel can
be obtained as follow:
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[
Z 2

t

Z 2
f

]
=

 A′1σ
(
A′1X1W1

t

)
W2

t

D′1σ
(
D′1X1W1

f

)
W2

f

 , (3.7)

where the feature transfer matrix of the original channel is (W1
t ,W

2
t ). The feature transfer matrix of the

added channel is (W1
f ,W

2
f ). The topology channel Z 2

t focuses on the local structural features of the
nodes and their direct connections, while the feature channel Z 2

f focuses on extracting the unstructured
features of the distance matrix. To achieve a faster computation, the model adopts maximum pooling
to fuse the embedding representation of the two channels:

Zi = max(Z 2
t ,Z

2
f ). (3.8)

Maximum pooling extracts the most significant node features on the topology channel and the
feature channel to obtain the embedding representation Z. In contrast to the attention fusion
mechanism, maximum pooling ensures that the most significant feature information is fused into the
embedding representation without increasing the complexity condition of the model. The resulting
embedding representation is passed through the last layer to further integrate the information to get
the final node classification. W3 is the feature transformation matrix for the downstream task. This
results in the prediction of the subgraph G1 as follows:

output1 = σ(A′1Z1W3),Y1 = so f tmax(output1). (3.9)

Additionally, the loss of the subgraph G1 is follows:

LG1 = −
∑
j∈Vi

α1
jy j log(ȳ j), α1

j ∈ S1. (3.10)

By training the subgraph G1, we obtain the set of misclassified nodes Q1. Thus, we get the pseudo-
loss ε1 based on the misclassified samples of the subgraph G1:

ε1 =
1

2 |Q1|

∑
t∈Q1

(1 − output1(xt, ȳt) + output1(xt, yt)), (3.11)

where output1(xt, ȳt) is the confidence level of the incorrect category, output1(xt, yt)) is the confidence
level of the correct category, and the range of pseudo-loss ε1 is (0, 0.5). The sample weight α2

t is
as follows:

α2
t =

{ 1
|V2 |
·
ε1

1−ε1
, t ∈ (V1 −Q1)

1
|V2 |
, t < (V1 −Q1)

, t ∈ V2, (3.12)

where (V1 − Q1) denotes the set of nodes correctly classified in the classification of subgraph G1. By
weight updating, the misclassified samples Q1 are corrected in the loss calculation for subgraph G2.

In order to clearly express the algorithmic process, the following is the pseudo-code of the DPGCN:
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Algorithm 1: DPGCN
Input: The graph dataset G = (V, E, A); The number of node classes K; GCN encoder g(·); The

maximal number of iterations h; The max patience p; The neighborhood radius r;
Output: The final node classification result Y
Using K-means to cluster feature matrices X and obtain [V1,V2, ...,VK];
Using the node set Vi and the nearest neighbor radius r to calculate the distance matrix
[D1,D2, ...,DK];

Integrate to obtain the sequential training sample set G = [G1,G2, . . . ,GK]
for i = 1; i ≤ K; i + + do

for j = 1; j ≤ h; j + + do
Calculate node embeddings Z 2

t ,Z
2
f using the encoder via Eq (3.7);

Obtain fused node embeddings Zi using global max pooling via Eq (3.8);
Calculate the loss function of subgraph Gi via Eq (3.10) and update patience;
if patience ≥ max patience then

Break
end
Update parameters W by applying gradient descent to minimize LGi

end
Calculate the sample weight S i+1 for subgraph Gi+1 via Eq (3.12)
Save the optimal model W to the next subgraph Gi+1 for training;

end
Calculate the classification results Y
Return The classification results Y

4. Experiments

4.1. Experiment setup

4.1.1. Datasets

Our proposed model was evaluated on 4 real-world datasets, and the details of the datasets are
shown in Table 2.

Table 2. Datasets used in the experiments.

Data Nodes Edges Classes Features Test Label rate
Cora 2708 5429 7 1433 1000 0.05
Citeseer 3327 4732 6 3703 1000 0.05
Squirrel 5201 2089 4 217,073 1000 0.05
Acm 3025 26,256 3 1870 1000 0.03

4.1.2. Baselines

In this paper, the DPGCN is compared with 8 models to verify the effectiveness of the proposed
method, and the comparison algorithms are described as follows:
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GCN [3]: A classic semi-supervised graph convolutional network model that learns node
representation by aggregating information from neighbors.

GAT [19]: A graph neural network model that uses an attention mechanism to aggregate the
node features.

SGC [20]: A simplified linear model of graph convolution. The resulting function is collapsed into
a single linear transformation by iteratively removing nonlinearities between the GCN layers.

Cluster-GCN [11]: A model that reduces computation by dividing the graph data into multiple
subgraphs and independently performs graph convolution operations on each subgraph.

MOGCN [21]: The model uses an encoder based on multi-scale information fusion. MOGCN
constructs a multilevel adjacency matrix and uses the GCN to obtain the output of different
adjacency matrices.

PAGCN [16]: A framework that utilizes contrast learning and attention mechanisms to efficiently
learn and fuse the node representation of perturbation-enhanced graphs and input graphs.

SGAT [22]: A Sparse Graph Attention Network (SGAT) that integrates sparse attention mechanisms
into a graph attention network by regularizing the edges of the graph. A 2-head indicates the use of a
two-layer SGAT model.

hLGC [23]: A simplified graph convolution operator which adds complexity and nonlinearity by
linear transformations or control nonlinearities, where a series of simple graph convolution operators
are proposed. An hLGC enhanced linear graph convolution is one of them.

4.1.3. Parameters setting

For a complete evaluation of the models, the above comparison models use the parameters suggested
in their papers to ensure an optimal performance. For the DPGCN, each channel uses two layers of
GCN encoders. The model uses the Adam optimizer with a learning rate of 0.001 to 0.005. The
discard rate is 0.5. The weight decay setting is 5e-4. The neighborhood radius to constructe the feature
information is 0.7. For all methods, the paper is run 20 times. The experimental configuration is shown
in Table 3.

Table 3. Experimental environment configuration.

Component Basic configuration
CPU Intel(R) Core(TM) i5-8300H
Memory 32 GB DDR4
Graphics card NVDIA RTX 1050
System Windows10
CUDA Cuda 11.6
Environment library Python3.8; PyTorch 1.13

4.2. Experimental results and analysis

4.2.1. Accuracy analysis of node classification

We compare the DPGCN with eight different models to compare their accuracy and the experimental
results are shown in Table 4, where the best results are highlighted in bold.
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Table 4. ACC of node classification tasks.

Model
Datasets
Cora ACM Citeseer Pubmed

DPGCN 0.832 0.912 0.716 0.816
GCN 0.817 0.878 0.704 0.792
GAT 0.828 0.874 0.726 0.791
SGC 0.812 0.863 0.719 0.789
PAGCN 0.831 0.909 0.704 0.793
Cluster-GCN 0.812 0.901 0.714 0.807
hLGC 0.830 0.892 0.703 0.808
SGAT-2head 0.819 0.902 0.706 0.802
MOGCN 0.824 0.901 0.724 0.792

According to the results in Table 4, the DPGCN performs well in most of the datasets, improving
by 0.15–2.1%, 0.3–4.9%, and 0.83–2.64% on Cora, ACM, and Pubmed, respectively. Thus, the
DPGCN demonstrates a high accuracy and an excellent performance in the semi-supervised node
classification task, indicating the effectiveness of the model. Compared with the classical subgraph
sampling model Cluster-GCN, the DPGCN retains the connection information among the subgraphs,
which makes the model classification accuracy higher. Therefore, this progressive sampling method
provides a new solution to the plague of accuracy loss in traditional sampling models.

In addition, compared with the PAGCN and the MOGCN, which are two representative
multi-channel models, the DPGCN exhibits a higher accuracy rate. It verifys that the dual-channel
strategy is effective and the complementary information is crucial. Reasonably fusing different feature
information can help to enhance the representation.

4.2.2. Convergence speed analysis

To further explore the performance of the DPGCN, five representative models are used for
comparison on the Cora dataset. The number of iterations is set to 500. The experimental results are
shown in Figures 3 and 4.

Observing the result, the DPGCN demonstrates its fast convergence speed in the Cora dataset, which
is a significant advantage. In particular, the DPGCN is able to achieve a high level of classification
accuracy after about 60 iterations. The fast convergence is partly attributed to the parameter sharing
mechanism. Parameter sharing not only reduces the number of parameters and the computational
burden, but also effectively transfers the information during the multiple subgraphs.

In addition, progressive sample weights also play a key role in training the DPGCN. By dynamically
adjusting the sample weights, it can ensure that the model focuses on the samples that are difficult to
classify. As the iteration proceeds, the sample weights are continuously adjusted so that the model can
gradually adapt to learn the whole data distribution.
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Figure 3. Convergence curve of ACC.

Figure 4. Convergence curve of LOSS.

4.2.3. Node classification analysis of low label rate

In real scenarios, models often face the situation of high cost or scarcity in labeling the data.
Therefore, we select Cora, Citeseer, ACM, and Pubmed data for low label rate experiments. The
experimental results are shown in Table 5.
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Table 5. Node classification task of low label rate.
Label number DPGCN GCN GAT SGC PAGCN Cluster-GCN hLGC SGAT-2head MOGCN

Cora 14 0.686 0.438 0.445 0.409 0.476 0.436 0.453 0.457 0.419
28 0.729 0.623 0.668 0.617 0.721 0.603 0.652 0.671 0.715

Citeseer 12 0.448 0.247 0.331 0.243 0.289 0.232 0.33 0.281 0.281
18 0.592 0.436 0.584 0.423 0.604 0.498 0.574 0.493 0.589

ACM 9 0.671 0.518 0.563 0.501 0.567 0.502 0.552 0.562 0.566
15 0.853 0.656 0.646 0.446 0.735 0.653 0.677 0.712 0.681

Pubmed 9 0.625 0.439 0.42 0.457 0.51 0.399 0.432 0.402 0.402
15 0.776 0.605 0.566 0.558 0.635 0.622 0.625 0.624 0.685

Observing the experimental results, the DPGCN performs more outstandingly in low label rate
experiments. Compared to the other methods, the result not only demonstrates the adaptability and
robustness of DPGCN to different data distributions, but also shows the great potential of the model in
dealing with sparse labels.

The superior performance of the DPGCN in low labeling rate experiments verifies that the model
has a strong representation. Therefore, the strategy of the DPGCN effectively responds to the challenge
of insufficient representation in traditional subgraph sampling models.

4.2.4. Ablation experiment

The DPGCN demonstrates an excellent performance on different data, especially with more
outstanding performance in the low label rate experiments. We conduct ablation experiments to
further explore the contribution of each component in the DPGCN. The model contains two main
components: progressive subgraph sampling and dual-channel fusion module. Therefore, we set up
only progressive subgraphs to get variant 1, DPGCN-P, and only dual-channel fusion to obtain
variant 2, DPGCN-D. In this paper, we set up different label rates on Cora and Citeseer to compare
the two variants with the original model. The experimental results obtained are shown in Figure 5.

Figure 5. The ablation experiment.

The results show that the progressive subgraph sampling (DPGCN-P) component outperforms the
dual-channel fusion module with low labeling rates. The reason for the phenomenon is that when

Electronic Research Archive Volume 32, Issue 7, 4398–4415.



4411

the training samples are small, adding feature channels provides less complementary information. the
DPGCN-P is able to play a major role by capturing the features of the limited labeled data and fully
utilizing the neighbor node features. When the number of training samples increases, the feature
channel is able to provide richer information. In this case, the dual-channel information fusion plays
an important role. The model obtains a superior embedding representation by capturing the feature
information of nodes on different channels.

Overall, two main components are utilized to the advantage in different situations. The DPGCN
effectively combines the two components to obtain an excellent representation.

4.2.5. Parameter sensitivity analysis

The DPGCN model involves a hyperparameter, namely the neighborhood radius r. In order to
explore the sensitivity of the parameter, the Cora and ACM datasets are selected for the experiment.
The number of training nodes are 14 and 9. The interval of the neighborhood radius is set to [0.1, 0.9].
The step size is 0.1. The results of the experiment are shown in Figure 6. The blue points in the
box-and-line plots represent the average value of the accuracy under this neighborhood radius.
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Figure 6. Parameter sensitivity analysis.

To summarize there are two main reasons that make the parameter insensitive: 1) the neighborhood
radius only affects the information in the feature map channel that does not affect the model globally;
and 2) even though the neighborhood radius is a fixed value at the setup, the parameter applies to all
subgraphs. This means that as the subgraphs incrementally increase, the neighborhood radius actually
increases as well. This gradual increase makes the neighborhood radius compatible with the subgraph
size so that the appropriate local information can be adaptively captured on subgraphs of different sizes,
making the whole model insensitive to changes in the neighborhood radius.

4.2.6. Visualization analysis

The Cora and ACM datasets are chosen for the visualized using T-SNE (t-distributed stochastic
neighbor embedding) dimensionality reduction. The classification results are obtained and shown in
Figure 7. The final node classification results of the different algorithms on the Cora and ACM datasets
can be clearly observed in this figure, where the first row is visualized for the Cora dataset and the
second row is the ACM dataset.
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Observation of the visualization results shows that the DPGCN is able to provide clearer category
boundaries and exhibits more obvious segmentation effects in the visualization. This further validates
that the DPGCN successfully integrates the information from the dual channels and achieves a higher
accuracy in the node classification task.

(a) DPGCN (b) HLGC (c) GCN

(d) DPGCN (e) HLGC (f) GCN

Figure 7. Visualization analysis.

5. Conclusions and future works

We designed a DPGCN via subgraph sampling. The model utilizes clustering sampling and
geometric information in the feature space for effective learning. Through parameter sharing and
updating sample weights, DPGCN obtained better node classification results. In subgraph sampling,
we sequentially merged clusters to ensure maximum embedding utilization. In the feature space
fusion, the joint entropy in information theory was utilized to evaluate the feature information. The
experimental results compared the DPGCN with current state-of-the-art graph neural networks. Its
superiority on several benchmark datasets was verified for the semi-supervised node classification
task. It was noticed that DPGCN is particularly outstanding in label-poor environments, which shows
a strong stability and an excellent accuracy performance.

In future studies, we will continue to explore the role of geometric information in feature space and
try to explain this principle in the field of flow learning. Additionally, there are also some improvements
to the model, such as how to improve the adaptive selection of the optimal complementary feature
information to further enhance the expressive power of the model.
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