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Abstract: The recently developed data-driven eigenmatrix method shows very promising reconstruc-
tion accuracy in sparse recovery for a wide range of kernel functions and random sample locations.
However, its current implementation can lead to numerical instability if the threshold tolerance is not
appropriately chosen. To incorporate regularization techniques, we have proposed to regularize the
eigenmatrix method by replacing the computation of an ill-conditioned pseudo-inverse by the solution
of an ill-conditioned least squares system, which can be efficiently treated by Tikhonov regulariza-
tion. Extensive numerical examples confirmed the improved effectiveness of our proposed method,
especially when the noise levels were relatively high.
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1. Background

Let X be the parameter space and S be the sampling space. Assume g(s, x) is a given kernel function
on S × X that is analytic in x. Suppose the unknown sparse signal f is given by

f (x) =
∑nx

k=1 wkδ(x − xk), (1.1)

with δ being the Dirac delta function, and nx spikes with distinct locations {xk} and weights {wk}. The
observable for any given sampling point s ∈ S is given by the following summation

u(s) :=
∫

X
g(s, x) f (x) dx =

∑nx
k=1 wkg(s, xk). (1.2)

Let {s j} be a chosen set of ns (unstructured) sample locations in S and u j = u(s j) be the unknown
exact values of observations. In practice, we can only obtain noisy observations, which are assumed to
have the following multiplicative form (with an unknown noise magnitude σ > 0):

ũ j = u j(1 + σZ j), (1.3)
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with Z j being independently identically distributed (i.i.d.) standard Gaussian random variables with
zero mean and unit variance. Notice in (1.3) the relative noise (̃u j − u j)/u j = σZ j is assumed to be
normally distributed with a standard deviation σ. Our task is to recover the unknown spike locations
x := [x1; x2; · · · ; xnx] and weights w := [w1; w2; · · · ; wnx] from the observation {̃u j}. Obviously, this
leads to a highly nonlinear inverse problem that is difficult to treat numerically. The standard nonlinear
least square formulation will lead to a nonconvex unconstrained optimization problem that can be better
solved with a good initial guess estimated by the studied eigenmatrix methods.

Depending on the definition of kernel function g, the sparse recovery problem in the above general
form (1.2) covers a list of well-known sparse recovery problems, such as rational approximation [1],
spectral function estimation [2, 3], Fourier inversion [4, 5], Laplace inversion [6–9], and sparse decon-
volution, for which many specially designed numerical algorithms [10,11] were established with good
theoretical support in the past few decades; see references in [12]. Nevertheless, these tailored algo-
rithms rely heavily on the underlying structure of each problem, which are not directly applicable to
general kernel functions with an unstructured sampling grid. The developed data-driven eigenmatrix
method in [12] does not assume any structures in the kernel function and sampling grid and hence
it has a wider applicability that specialized or structured sparse recovery algorithms. Nevertheless, it
requires the computation of the psedudo-inverse of a highly ill-conditioned rectangle matrix, which
can lead to numerical instability when the threshold tolerance does not match with the underlying
noise levels in the measurement data. Our major contribution is to propose a regularized eigenmatrix
method that can handle noisy measurement data through modern Tikhonov regularization techniques,
which demonstrates significantly improved recovery accuracy in tested numerical examples with high
noise levels.

This paper is organized as follows. In Section 2, we briefly review the original eigenmatrix method
and point out its drawbacks. In Section 3, we introduce a new regularized eigenmatrix method based
on Tikhonov regularization techniques. A few numerical examples are presented in Section 4. Finally,
some remarks are concluded in Section 5.

2. Review of the eigenmatrix method

Inspired by the shifting operator defined in Prony’s method and the ESPRIT algorithm [13], the
recently developed eigenmatrix method [12] for unstructured sparse recovery problems shows very ap-
pealing reconstruction accuracy for different kernels and unstructured sampling locations. Its key idea
is to find an ns-by-ns eigenmatrix M such that for all x ∈ X there approximately holds the eigensystem

M g(x) ≈ xg(x), (2.1)

where g(x) = [g(s j, x)]1≤ j≤ns is an ns-by-1 vector of functions on X. In numerical implementations,
we can enforce this approximate relation over a set of collocation nodes {at}

na
t=1 selected in X. More

specifically, if X is the unit disk D on a complex plane, one can select a uniform grid of collocation
nodes on the boundary of the unit disk, which can be justified by invoking the exponentially convergent
trapezoidal rule and the application of the Cauchy integral theorem for analytic functions. If X is the
real interval [−1, 1], one can choose a Chebyshev grid of collocation nodes on [−1, 1], which can be
explained by the Chebyshev quadrature for analytic functions. A general connected domain X can be
treated by introducing a smooth one-to-one map between X and D or [−1, 1]. At this point, there are
no error estimates on the accuracy of the approximation (2.1) in various settings.
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Following the notation and methodology introduced in [12], the original eigenmatrix method based
on the ESPRIT method mainly consists of the following 4 major steps (not including the post-
processing step for simplicity):

The original eigenmatrix method

1) Compute the matrix G = [g(s j, at)] ∈ Cns×na based on the ns sampling locations {s j}
ns
j=1 and

na collocation nodes {at}
na
t=1. Normalize G column-wisely to get Ĝ.

2) Compute the ns × ns eigenmatrix M = ĜΛĜ†, where Λ = diag(at) and Ĝ† is the pseudo-
inverse of Ĝ by thresholding singular values smaller than a given tolerance tol.

3) Given the vector of noisy observations ũ, choose l > nx and then compute rank-nx truncated
SVD of the following matrix

A :=
[

ũ, Mũ, · · · , Mlũ
]
= US V∗. (2.2)

Define V∗+ and V∗− to be the sub-matrix of V∗ by deleting the first column and the last
column, respectively. The nx eigenvalues {x̃k} of the matrix V∗+(V

∗
−)
† yield the estimated

spike locations. Here, we expect (V∗−) to be well-conditioned.
4) With computed {x̃k}, the weights w̃ = [w̃1; w̃2; · · · ; w̃nx] can be estimated via a least squares

problem defined by G̃w̃ = ũ, where G̃ = [g(s j, x̃k)] is of size ns × nx.

As a data-driven approach, it involves the key procedure of (approximately) finding the pseudo-
inverse Ĝ† of a highly ill-conditioned rectangular matrix Ĝ, which was not carefully treated from the
perspective of regularization. To alleviate the issue of large condition numbers of Ĝ, in [12] the author
suggested to choose (a small) na = 32 such that Ĝ is of full column rank and its condition number
is bounded below by 107. Moreover, the thresholding tolerance tol was selected such that ∥M∥ is
bounded by a small constant such as 3. In their MATLAB implementations*, the authors used the
built-in pseudoinverse function pinv based on truncated singular value decomposition (TSVD) with
tol = 10−4∥Ĝ∥F or tol = 10−8∥Ĝ∥F as the thresholding tolerance in different examples. Based on the
discussion in [12], the tolerance tol for each example is chosen to be slightly smaller or comparable to
the noise level, such that the reconstruction is relatively well-conditioned and the computed eigenma-
trix does not cause significantly larger error than the measurement noise. Hence, the current strategy,
of selecting a small na and a small tol, essentially points to some heuristic regularization treatment that
requires manual tuning, which may be less robust in handling a wide range of unknown noise levels.
Nevertheless, the design of the regularization scheme is not the main focus of [12], which for the first
time presents the novel eigenmatrix method for sparse signal recovery. Our following proposed regu-
larized eigenmatrix method provides a more systematic and robust regularization strategy that avoids
the direct computation of the pseudo-inverse Ĝ†.

As suggested in [12], when the number of spikes nx is not known a priori, a general rule is to
select nx as small as possible such that the total least squares fitting error (after post-processing) falls
within the noise level. The commonly used criteria include Akaike information criterion (AIC) [14]
and Bayesian information criterion (BIC) [15, 16]. We will assume nx is already fixed.

*https://github.com/lexingying/EigenMatrix
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3. A regularized eigenmatrix method

To make use of modern regularization techniques in the above eigenmatrix method, we need to avoid
explicitly computing the ill-conditioned pseudo-inverse matrix Ĝ†. In view of the matrix A in (2.2),
we only need the matrix-vector products Mkũ for k ≥ 1, which implies that the explicit construction of
matrix M is unnecessary. By the theory of pseudo-inverses, if Ĝ has linearly independent columns,
then there holds Ĝ†Ĝ = Ina , which leads to

Mkũ = (ĜΛĜ†)kũ = ĜΛĜ†ĜΛĜ† · · · ĜΛĜ†︸                       ︷︷                       ︸
k times

ũ = ĜΛkĜ†ũ.

Let v = Ĝ†ũ, then we can rewrite matrix A in (2.2) in the form

A =
[

ũ, ĜΛv, · · · , ĜΛlv
]
. (3.1)

The vector v = Ĝ†ũ can then be obtained from the following ill-conditioned linear system

Ĝv = ũ, (3.2)

since then we can obtain v = Inav = Ĝ†(Ĝv) = Ĝ†ũ. From above, it follows that there is not even a need
to approximately compute the pseudo-inverse Ĝ† or construct the matrix M.

In summary, we propose the following regularized eigenmatrix method without M, which should
be compared with the original eigenmatrix method [12] as listed in Section 2:

Our proposed regularized eigenmatrix method

1) Unchanged.
2) Solve system (3.2) for v by the Tikhonov regularization method (see below).
3) Construct A using (3.1), and leave the remaining parts unchanged.
4) Unchanged.

We reiterate here, that the significant improvement from the original eigenmatrix method is to avoid
explicitly computing the eigenmatrix M that requires the computation of the pseudo-inverse Ĝ†. More-
over, the noisy observation ũ will influence the computation of v through the employed Tikhonov
regularization techniques, which take into consideration the (unknown) noise level in ũ automatically
through the used regularization parameter choice rules. Numerically, we found our proposed method
still works well even when Ĝ has linearly dependent columns.

To demonstrate the role of vector v in the above method, we consider ũ = Ĝv, and we let ak =

diag(Λk) := [ak
1; ak

2; · · · ; ak
na

] be a column vector. We then obtain the following factorization

A = Ĝ
[

v, Λv, · · · , Λlv
]
= Ĝ diag(v) [1, a, · · · , al], (3.3)

which closely fits the desired factorization structure of the eigenmatrix method [12], that is

A ≈ G̃ diag(w̃) [1, x, · · · , xl]. (3.4)

Hence, the entries of the vector v act as the “weights” for the corresponding collocation nodes {at}.
This connection may be helpful to choose better sampling points {s j} and collocation nodes {at}. For
instance, if na = nx such that the chosen collocation nodes are identical to the unknown spike locations,
we would expect to obtain very accurate reconstruction.
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3.1. Tikhonov regularization for solving (3.2)

We are now ready to employ modern regularization techniques [17–21] to solve (3.2). The standard
Tikhonov regularization method approximates the solution v of (3.2) by the unique minimizer of the
following Tikhonov regularized objective functional

min
v

{
∥Ĝv − ũ∥2 + γ∥v∥2

}
, (3.5)

where γ > 0 is a regularization parameter to be determined. Due to the strong convexity with γ > 0,
the unique solution vγ of (3.5) is given by the following regularized normal equation

(Ĝ∗Ĝ + γI)vγ = Ĝ∗ũ. (3.6)

There are many different a priori or a posteriori methods of choosing a good regularization parame-
ter γ > 0, such as Morozov’s discrepancy principle [22] that requires the knowledge of noise level. In
our numerical experiments, we will only apply and compare the established improved maximum prod-
uct criterion (IMPC) [23] and L-curve [24, 25] techniques† for estimating the regularization parameter
γ, since both methods do not require a priori knowledge of the (unknown) noise level in the measured
data ũ. Both methods yield regularization parameters that are very close to each other, and hence de-
liver similar reconstruction accuracy. For large-scale problems, computationally more efficient iterative
regularization techniques [26, 27] (with early stopping) may also be used.

Our major contribution is not to develop a new regularization method, but to reformulate the original
eigenmatrix method such that the modern regularization techniques can be seamlessly employed. Such
modern regularization techniques include the asymptotical regularization methods [28,29], accelerated
regularization methods [30, 31], stochastic regularization methods [32–36], and so on. Finally, we re-
mark that the author in [18] presented extensive discussion on the comparison between the Tikhonov
regularization method and the pseudoinverse-type regularization method (i.e., to approximately com-
pute the matrix-vector product Ĝ†ũ via TSVD). In [37], the authors suggested that the Tikhonov regu-
larization works better than pseudoinversion when the condition number is larger than a critical value.
For our studied problems, the condition numbers are very large (ranging from 107 to 1017) and hence
we expect the Tikhonov regularization method to perform better in general.

4. Numerical results

In this section, we will numerically compare the original eigenmatrix method based on pseudo-
inverse (denoted by pinv) and our proposed regularized eigenmatrix method based on IMPC and L-
curve techniques. All simulations are implemented using MATLAB R2024a. To better illustrate the
influence of our proposed regularization techniques on the reconstruction accuracy, we will only com-
pare the recovered spike locations and weights based on the ESPRIT algorithm, without the extra
post-processing step of nonlinear optimization that may further improve the reconstruction accuracy.
To measure the reconstruction accuracy, we report the absolute difference of the spike locations and
weights separately in Euclidean norm as the overall reconstruction errors, that is

errors = (∥x − x̃∥2, ∥w − w̃∥2).
†http://www2.compute.dtu.dk/˜pcha/Regutools/
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We would expect the obtained errors to get smaller as the noise level δ is decreased. We will test
the same examples and sampling locations as described in [12], except that the used noise levels are in-
creased by 10 times to better demonstrate the robustness of our proposed regularization techniques. In
particular, the spike weights {wk} are set to be one and the noisy observation ũ j is constructed by adding
different levels of Gaussian noise to the exact observation u j = u(s j). The obtained errors are affected
by both the used algorithms and the measurement noise, which may show some variance in numerical
simulations. To minimize the influence of randomness, we compare all of the algorithms with the same
random noise for a given noise level δ. For better visual comparison, we used MATLAB’s linkaxes
function to unify the limits of axes in all of the subplots.

Figure 1. Rational approximation (columns from left to right: σ = 10−1, 10−2, 10−3). The
exact spikes are in a solid line and the recovered spikes are in a dashed line. The errors
measure the 2-norm difference in spike locations and weights, respectively.

4.1. Example 1 (Rational approximation)

In this problem, we have X = D, g(s, x) = 1
s−x , and true spike locations

x = 0.9e2πi[0.2;0.5;0.8;1].

We generated ns = 40 random sampling points {s j} outside the unit disk, each with a modulus be-
tween 1.2 and 2.2. We then built the matrix G = [g(s j, at)] with na = 32 uniformly spaced collocation
nodes on the unit circle. Numerically, we notice that Ĝ is of full column rank with rank(Ĝ) = 32 and
a moderate condition number cond(Ĝ) ≈ 107. Figure 1 shows the reconstructed spike locations and
weights in comparison with the exact ones by 3 different methods (from top to bottom: pinv, IMPC,
and L-curve) with 3 different noise levels (from left to right). Clearly, our regularized eigenmatrix
methods (both IMPC and L-curve) deliver improved recovery (with smaller errors in each column),
especially when the noise level gets higher. Both the IMPC and L-curve techniques yield comparable
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regularization parameter γ. Notice the threshold tolerance tol = 10−4∥Ĝ∥F used in the original eigen-
matrix method is independent of the noise level, which may cause degraded reconstruction accuracy if
not appropriately chosen. We also report in Table 1 the reconstruction errors with a range of ns and na

based on the L-curve method, which shows the errors (in the last row) gradually decrease to the noise
level when both ns and na are sufficiently large. Here, the different rows involve different random noise
of the same noise level δ. In particular, the errors in each row are largely saturated when na > 30, and
a much larger na does not seem to worsen the reconstruction, which indicates the eigenmatrix method
is insensitive to the choice of a sufficiently large na.

Table 1. Reconstruction errors with different ns and na by the L-curve method (δ = 10−3).

ns\na 10 20 30 40 50 60
20 (0.859, 2.327) (0.045, 0.129) (0.039, 0.110) (0.039, 0.110) (0.038, 0.109) (0.038, 0.109)
40 (0.548, 2.937) (0.008, 0.019) (0.008, 0.014) (0.008, 0.014) (0.008, 0.014) (0.008, 0.014)
60 (0.603, 1.662) (0.007, 0.017) (0.007, 0.018) (0.007, 0.018) (0.007, 0.018) (0.007, 0.018)
80 (0.984, 1.981) (0.005, 0.003) (0.002, 0.003) (0.002, 0.002) (0.002, 0.002) (0.002, 0.002)
100 (0.785, 2.954) (0.004, 0.004) (0.003, 0.008) (0.003, 0.008) (0.003, 0.008) (0.003, 0.008)
120 (0.987, 2.869) (0.005, 0.008) (0.001, 0.002) (0.001, 0.002) (0.001, 0.002) (0.001, 0.002)
140 (0.851, 4.654) (0.004, 0.009) (0.002, 0.003) (0.002, 0.004) (0.002, 0.004) (0.002, 0.003)
160 (0.699, 2.871) (0.007, 0.017) (0.002, 0.002) (0.001, 0.002) (0.001, 0.002) (0.001, 0.002)
180 (0.787, 2.698) (0.005, 0.009) (0.001, 0.003) (0.001, 0.003) (0.001, 0.003) (0.001, 0.003)
200 (0.970, 3.415) (0.005, 0.005) (0.001, 0.001) (0.001, 0.001) (0.001, 0.001) (0.001, 0.001)
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Figure 2. Spectral function approximation (columns from left to right: σ = 10−1, 10−2, 10−3).
The exact spikes are in a solid line and the recovered spikes are in a dashed line. The errors
measure the 2-norm difference in spike locations and weights, respectively.
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4.2. Example 2 (Spectral function approximation)

In this problem, we have X = [−1, 1], g(s, x) = 1
s−x , and true spike locations

x = [−0.9;−0.2; 0.2; 0.9].

We use ns = 256 uniformly distributed sampling points s j = ±(2 j − 1)πi/β, j = 1, 2, · · · , 128 from
the Matsubara grid on the imaginary axis, and then build the matrix G = [g(s j, at)] with na = 32
Chebyshev collocation nodes on [−1, 1]. Numerically, we notice that Ĝ is not of full column rank
with rank(Ĝ) = 31 and a large condition number cond(Ĝ) ≈ 1015. Figure 2 shows the reconstructed
spike locations and weights in comparison with the exact ones by 3 different methods (denoted by pinv,
IMPC, and L-curve) with 3 different noise levels. Clearly, our regularized eigenmatrix methods (both
IMPC and L-curve) provide more accurate recovery, especially when the noise levels are high.

4.3. Example 3 (Fourier inversion)
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Figure 3. Fourier inversion (columns from left to right: σ = 10−1, 10−2, 10−3). The exact
spikes are in a solid line and the recovered spikes are in a dashed line. The errors measure
the 2-norm difference in spike locations and weights, respectively.

In this problem, we have X = [−1, 1], g(s, x) = eiπsx, and true spike locations

x = [−0.9; 0; 0.5; 0.9].

We generated ns = 128 random sampling points {s j} in [−5, 5], and then build the matrix G = [g(s j, at)]
with na = 32 Chebyshev collocation nodes on [−1, 1]. Numerically, we notice that Ĝ is of full column
rank with rank(Ĝ) = 32 and a moderate condition number cond(Ĝ) ≈ 107. Figure 3 presents the
reconstructed spike locations and weights in comparison with the exact ones by 3 different methods
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(denoted by pinv, IMPC, and L-curve) with 3 different noise levels. Again, our regularized eigenmatrix
method (both IMPC and L-curve) delivers more accurate recovery. It is worthwhile to point out that
the original eigenmatrix method also works very well for this problem with small noise levels, likely
due to the relatively smaller condition number cond(Ĝ) ≈ 107.

4.4. Example 4 (Laplace inversion)

In this problem, we have X = [0.1, 2.1], g(s, x) = xe−sx, and true spike locations

x = [0.2; 1.1; 1.6; 2.0].

We generated ns = 100 random sampling points {s j} in [0, 10] and then build the matrix G = [g(s j, at)]
with na = 32 shifted Chebyshev collocation nodes on [0.1, 2.1]. Notice here that Ĝ is not of full column
rank with rank(Ĝ) = 17 and a large condition number cond(Ĝ) ≈ 1017. In [12], the author only tested
very low noise levels (σ = 10−5, 10−6, 10−7) with a very small threshold tolerance tol = 10−8∥Ĝ∥F ,
which may conceal the essential difficulty of highly ill-conditioned G. Hence, we will test with higher
noise levels (σ = 10−3, 10−4, 10−5), where we found the moderate threshold tolerance tol = 10−4∥Ĝ∥F
works better in treating higher noise levels.
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Figure 4. Laplace inversion (columns from left to right: σ = 10−3, 10−4, 10−5). The exact
spikes are in a solid line and the recovered spikes are in a dashed line. The errors measure
the 2-norm difference in spike locations and weights, respectively.

Figure 4 shows the reconstructed spike locations and weights in comparison with the exact ones
by 3 different methods (denoted by pinv, IMPC, and L-curve) with 3 different noise levels. Again,
our Tikhonov regularized eigenmatrix methods (both IMPC and L-curve) demonstrate more accurate
recovery, which is expected since the most appropriate choice of a threshold tolerance tol requires
careful tuning by hand.

Electronic Research Archive Volume 32, Issue 7, 4365–4377.



4374

4.5. Example 5 (Sparse deconvolution)

In this problem, we have X = [−1, 1], g(s, x) = 1
1+4(s−x)2 , and true spike locations

x = [−0.9; 0; 0.5; 0.9].

We generated ns = 128 random sampling points {s j} in [−5, 5], and then build the matrix G = [g(s j, at)]
with na = 32 Chebyshev collocation nodes on [−1, 1]. Numerically, we notice that Ĝ is not of full
column rank with rank(Ĝ) = 31 and a large condition number cond(Ĝ) ≈ 1014. Figure 5 displays the
reconstructed spike locations and weights in comparison with the exact ones by 3 different methods
(denoted by pinv, IMPC, and L-curve) with 3 different noise levels. Again, our Tikhonov regularized
eigenmatrix methods (both IMPC and L-curve) provide more accurate recovery.
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Figure 5. Sparse deconvolution (columns from left to right: σ = 10−1, 10−2, 10−3). The exact
spikes are in a solid line and the recovered spikes are in a dashed line. The errors measure
the 2-norm difference in spike locations and weights, respectively.

5. Conclusions

The original eigenmatrix method requires the computation of a pseudo-inverse matrix based on a
chosen threshold tolerance, which cannot take into account the noise in data. Our proposed regu-
larized eigenmatrix method addressed this shortcoming by incorporating modern regularization tech-
niques, which provide improved recovery as consistently verified by the numerical examples presented
above. The generalization of our approach to multidimensional data recovery problems [38,39] is very
straightforward, where the major step of computing Ĝ†ũ can be treated in the same way without ex-
plicitly constructing the pseudo-inverse matrix Ĝ†. For future work, we will be investigating ways to
optimize sampling locations.
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