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Abstract: Traditional predictive models, often used in simpler settings, face issues like high latency
and computational demands, especially in complex real-world environments. Recent progress in deep
learning has advanced spatiotemporal prediction research, yet challenges persist in general scenarios:
(i) Latency and computational load of models; (ii) dynamic nature of real-world environments; (iii)
complex motion and monitoring scenes. To overcome these challenges, we introduced a novel spa-
tiotemporal prediction framework. It replaced high-latency recurrent models with fully convolutional
ones, improving inference speed. Furthermore, it addressed the dynamic nature of environments with
multilevel frequency domain encoders and decoders, facilitating spatial and temporal learning. For
complex monitoring scenarios, a large receptive field token mixer spatial-frequency attention units
(SAU) and time attention units (TAU) ensured temporal and spatial continuity. This framework out-
performed current methods in accuracy and speed on public datasets, showing promising practical
applications beyond electricity monitoring.
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1. Introduction

With the rapid growth of the video surveillance industry, the network of surveillance systems has
expanded significantly year after year [1]. However, there is an acute shortage of surveillance and
maintenance personnel [2]. Surveillance and maintenance tasks encompass a wide range of activities
characterized by complexity, heavy workloads, tight schedules, harsh working conditions, high-altitude
activities, and heavy lifting, presenting a variety of high-risk factors [3, 4]. Unfortunately, the current
state of incident detection is not encouraging [5]. The urgent need for early warning to support surveil-
lance operations and maintenance highlights the importance of early prediction of abnormal behavioral
patterns through video analysis [6,7]. This has far-reaching implications for both personnel safety and
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the stability of the surveillance operations. Human cognitive and perceptual abilities rely on predictive
mechanisms that anticipate future events and sensory signals [8–10]. The ability of these mechanisms
to rapidly and accurately model and evaluate future events, even when computational power is lim-
ited, offers the potential to effectively model the expectation of future events in complex and dynamic
environments, promising to reduce the frequency of incidents related to surveillance.

In recent years, the rapid advances in artificial intelligence, especially deep learning, have made
significant contributions to the field of spatiotemporal predictive pearning (STL). STL pertains to the
challenging task of video prediction [11–13], wherein the goal is to model the distribution of historical
spatiotemporal data. This necessitates the acquisition of knowledge about the underlying principles
governing our chaotic world [14–16].

After a comprehensive review of prior research on spatiotemporal prediction, it is apparent that
the predominant models employed for video prediction tasks are founded on classical recurrent neural
networks (RNN). While RNNs excel at modeling time series data, their spatial modeling capabilities
are notably lacking [17]. Recognizing this deficiency, recent efforts have sought to bridge the spatial
modeling gap in RNNs by devising hybrid architectures that integrate convolutional neural networks
(CNNs) [17]. In a pioneering development inspired by the long short-term memory (LSTM) networks
within RNNs, [17] introduced the ConvLSTM framework, extending the fully connected (FC) LSTM
structure into a convolutional format to enhance precipitation forecasting accuracy. [18] introduced
another notable approach, PredRNN, which utilizes spatiotemporal LSTM (ST-LSTM) to capture spa-
tial features and temporal dynamics, achieving highly accurate long-term forecasts. These models
achieved significant improvements by reimagining the recurrent units, thus laying the foundation for
subsequent work in spatiotemporal learning [19]. [20] amalgamated 3D convolution and LSTM to ex-
tract short-term-dependent spatial and motion features, bolstering long-term memory at the temporal
level. Moreover, [21] proposed a physically constrained dual-branch structure comprising PhyCell and
ConvLSTM to encode prior physical knowledge via the simulation of partial differential equations in
the potential space. [22] introduced a reversible neural network architecture, constructing a two-way
reversible self-encoder for the acquisition of spatiotemporal insights.

Video prediction tasks find diverse applications in robotic vision planning, traffic flow forecast-
ing, autonomous driving, weather prediction, and surveillance systems [11, 23, 24]. For instance, in
robot vision planning, predictive models endowing robots with similar predictive capabilities facili-
tate multitask planning in complex, dynamic environments. While many industries commonly employ
algorithms, including target detection and semantic segmentation [25, 26], to detect violations and is-
sue alerts in real-time video surveillance, hazards in these environments typically manifest after these
violations have occurred. Therefore, employing video prediction tasks in surveillance scenarios can
significantly enhance the early warning capabilities of surveillance systems, thereby boosting safety
and efficiency. Notably, video prediction tasks have yet to be widely adopted in this context, and this
paper outlines three key challenges encountered in this context. (i) Model inference latency and com-
putational demands: Addressing model inference latency is pivotal in surveillance scenarios, where any
delay could compromise safety. Video prediction models must rapidly and accurately forecast future
situations. (ii) Environmental variability in surveillance environments: The real-world surveillance
environment is highly complex, influenced by factors such as weather, lighting, environmental noise,
and seasonal variations. These changes impact video color and brightness, consequently affecting the
model’s performance and prediction accuracy. (iii) Complex motions and scenes in video surveillance:
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Such surveillance typically involves multiple objects like vehicles, pedestrians, and infrastructure, ex-
hibiting varying states, shapes, and complex motion at different times and angles. Ensuring temporal
and spatial continuity is imperative, intensifying the complexity of the video prediction task.

To mitigate model inference latency, prior research has primarily concentrated on directly mod-
eling spatiotemporal relationships using hybrid RNN designs or other networks. However, real-time
prediction tasks often entail trade-offs between speed and accuracy when designing recurrent struc-
tures. As depicted in Figure 1, this paper reviews previous contributions and abstracts the overarching
framework for enhancing spatiotemporal prediction modeling and addressing inference speed. The tra-
ditional RNN structure is replaced with the fully convolutional networks (FCN) architecture for mod-
eling spatiotemporal relations, comprising encoder, decoder, and spatiotemporal learning modules. In
the context of power scenarios, where sampled video frames exhibit substantial inter-frame differences
due to the complex real-world environment influenced by weather, lighting, environmental noise, and
other factors, directly modeling the space-time relationship is challenging. To tackle this challenge,
frequency domain techniques are harnessed to consider the information regarding overall motion pat-
terns. The DWT decomposes images into approximate and detailed components, enabling lossless
reconstruction. A deep CNN is employed to model the time-frequency relationship, especially suited
for complex dynamic environments. Therefore, this paper introduces a multilevel 2D DWT encoder-
decoder, augmenting the traditional encoder-decoder approach. Moreover, to address complex motion
scenarios, a dynamic spatiotemporal attention unit is proposed to dynamically model the temporal and
spatial relationships, ensuring temporal-spatial consistency and continuity. Key innovations of this
paper include:

• The introduction of a novel spatiotemporal prediction framework that employs a FCN instead of
high-latency RNNs. This model computes future video frames in parallel.
• The proposal of multilevel frequency domain codecs, where a wavelet transform encoder estab-

lishes time-frequency relationships within and between consecutive video frames, and an inverse
wavelet transform decoder (IWT) reconstructs these relationships to future frames in a lossless
manner.
• The introduction of the dynamic temporal attention unit (TAU) and spatial attention unit (SAU)

to dynamically model the time-frequency relationship in the potential space, ensuring spatio-
temporal consistency and continuity.

While recurrent-based methods have excelled in STL, they face challenges in computational efficiency.
In addressing the need for parallelizing temporal evolution modeling, we introduce TAU, utilizing
visual attention mechanisms without recurrent architecture. Notable prior works like PredCNN [27]
utilize pure CNNs for temporal modules, while SimVP [35] employs Inception modules within a UNet
architecture for temporal evolution learning. However, we argue that convolutional approaches alone
may not adequately capture long-term dependencies. SimVP, while offering a simple baseline, leaves
substantial room for further enhancements. Our work replaces the Inception-UNet model with efficient
attention modules to improve prediction performance. By employing a straightforward yet powerful
attention mechanism [28], our approach not only facilitates parallelization but also captures long-term
temporal evolution.
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Figure 1. The overview architecture of STU, including spatial encoder, latent translator, and
spatial decoder.

2. Problem definition

Given Xt:T
in , representing the input spatiotemporal sequences from time t to T , our objective is

to predict future sequences of length T ′ denoted as XT+1:T+T ′
out . These sequences are treated as four-

dimensional tensors, Xt:T
in ∈ R

T×C×H×W , with C, T , H, and W representing channel, temporal or frame
dimension, height, and width, respectively. The model with learnable parameters θ is trained to learn
a mapping Fθ : Xt:T

in 7→ X
T+1:T+T ′
out by capturing spatiotemporal dependencies. Specifically, stochastic

gradient descent is employed to train the model and determine optimal parameters θ⋆ that minimize
the discrepancy between predictions and ground-truth sequences. Mathematically, this is expressed as:

θ⋆ = arg min
θ
L
(
Fθ

(
Xt:T

in

)
, XT+1:T+T ′

out

)
, (2.1)

where L denotes a loss function, with the mean squared error (MSE) serving as the loss metric in this
paper.

3. Proposed methods

Illustrated in Figure 1, our proposed spatio-temporal understanding (STU) framework comprises
three main components: an input encoder, a spatiotemporal learning module, and an output de-
coder. The input encoder transforms individual frames within the input video sequence into a high-
dimensional latent space. The spatiotemporal learning module captures both spatial correlations and
temporal changes within this latent space. Lastly, the output decoder reconstructs future video frames
from the same latent space, offering a comprehensive approach for dynamic video analysis.

Given a batch of input frames B in RB×T×C×H×W , with B denoting the batch size, the input and output
encoders reshape the tensor into dimensions (B × T ) × C × H × W for subsequent processing. The
codec handles each video frame independently and disregards temporal changes. The spatiotemporal
learning module reshapes the tensor into dimensions B × (T × C) × H × W, enabling not only intra-
frame feature extraction but also modeling of inter-frame temporal variations. This transformation
efficiently characterizes spatiotemporal relationships as a set of output potential features, crucial for
understanding complex video dynamics.
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3.1. Multilevel wavelet transform encoder-decoder

To adapt to the changing dynamics of the power system, this study explores the extraction of spatial
multi-scale features from a frequency domain perspective. Since our task is to process video and, thus,
we need to analyze images and extract features from them, an effective way of processing images in
frequency domain is needed, and that’s why we use the 2D wavelet transformation, which performs
greatly in this field. The 2D DWT plays a pivotal role in this process. As illustrated in Figure 2, the
original image is decomposed into four sub-images, each associated with distinct frequency ranges
( fLL, fLH, fHL, and fHH). Here, we give a simple explanation of these four abbreviations, LL, LH, HL
and HH.

• LL(low-low) sub-band: This sub-band contains the low-frequency components in both the hor-
izontal and vertical directions. It generally represents the coarse approximation of the signal or
image, capturing the overall structure and major features with smooth variations.
• LH(low-high) sub-band: This sub-band contains the low-frequency components in the horizontal

direction and the high-frequency components in the vertical direction. It highlights the vertical
details and edges in the signal or image.
• HL(high-low) sub-band: This sub-band contains the high-frequency components in the horizontal

direction and the low-frequency components in the vertical direction. It highlights the horizontal
details and edges in the signal or image.
• HH(high-high) sub-band: This sub-band contains the high-frequency components in both the

horizontal and vertical directions. It captures the fine details and textures in the signal or image,
including noise and sharp transitions.

This decomposition allows for a detailed analysis of the image’s frequency components, essential
for tasks like feature extraction and anomaly detection in dynamic systems.

The approximation component of the original image, for example, can be expressed as x1 =

( fLL⊗ x) ↓2. This representation offers a compact yet informative summary of the original image’s low-
frequency components, which are often crucial for understanding the overall structure and trends in the
data. The high-frequency components, represented by fLH, fHL, and fHH, capture the finer details and
textures of the image, providing a comprehensive view of the spatial characteristics. The nondestruc-
tive reconstruction of the original image using the inverse transform, such as x = IWT(x1, x2, x3, x4),
ensures that the process is reversible, allowing for the original image to be accurately reconstructed
from its wavelet components. This feature is particularly important in applications where the integrity
and fidelity of the reconstructed image are critical, such as in medical imaging or high-definition video
processing.

Furthermore, the sub-images within the four frequency bands produced by the multilevel 2D DWT
undergo further decomposition via the DWT, potentially yielding three or more levels of decomposi-
tion. This multilevel approach allows for a more granular analysis of the image’s frequency compo-
nents, enabling the extraction of features at various scales and resolutions. Typically, wavelet decom-
position requires nonlinear combinations of features, including techniques like soft thresholding and
quantization, commonly used in image denoising and compression [29, 30]. These techniques help in
reducing noise and compressing the image data without significant loss of quality, making them es-
sential in applications where bandwidth or storage space is limited. To adapt the multi-scale wavelet
transformation for video prediction tasks, this paper extends it into an encoder-decoder framework.
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Figure 2. Two-dimensional discrete wavelet transform.

This extension incorporates a convolutional layer, as depicted in Figure 3, facilitating the representa-
tion of the coding and decoding process for a video frame. The convolution layer we used in spatial
encoder-decoder is 1×1 kernel, which is aimed to combine the feature information of different tunnels.
That will enhance the network’s perception of global features. This process can be mathematically ex-
pressed as:

zi = σ (Nom (Conv (DWT (xi−1)))) , (3.1)
1 ≤ i ≤ Ne (3.2)

zk = σ (Norm (Conv (IWT (xi−1)))) , (3.3)
Ne + Nt < k ≤ 2Ne + Nt (3.4)

Here, xi−1 represents the output features from the previous layer of the network. “Conv” and “Norm”
refer to 2D convolutional and normalization layers, with group normalization (GN) used for normal-
ization. σ denotes a nonlinear activation function, with GELU [36] serving as the activation function.
Ne and Nt correspond to the number of encoder and spatiotemporal learning modules, respectively.

The sub-band images obtained from each wavelet transformation layer serve as inputs for the con-
volutional layer. This convolutional layer’s purpose is to acquire concise representations for channel
feature compression. The features we obtain from the image are essential information about the im-
ages like edges, texture and structure. The compressed features, in turn, are utilized as inputs for the
subsequent wavelet transformation to achieve frequency decomposition. Notably, the wavelet trans-
form replaces the typical pooling operation, which is often used for downsampling. This replacement
offers a unique advantage: the network can perform subsampling without any loss of information. The
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frequency and positional characteristics obtained through the DWT are particularly advantageous in
preserving texture features when compared to convolutional layer downsampling with a stride of two.
This feature preservation is essential in applications where maintaining the integrity of the original
image is crucial, such as in high-resolution video processing or detailed spatial analysis.

Conv 1×1

2D-DWT

LL LH HL HH

Concat

LL LH HL HH

Spatial Encoder Spatial Decoder

2D-IWT

Conv 1×1

Split

Figure 3. The overview of spatial encoder-decoder based on wavelet.

The proposed STU framework, with its multilevel wavelet transform encoder-decoder, offers a novel
approach to video frame prediction and spatial feature extraction. This methodology has significant
potential for various applications, including but not limited to, dynamic system monitoring, high-
definition video processing, and detailed spatial analysis in scientific research. By combining the
strengths of wavelet transforms with advanced neural network architectures, the STU framework sets
a new standard in the field of video analysis and prediction.

3.2. Spatiotemporal attention unit

The spatiotemporal learning module accepts input potential features from the spatial encoder f and
produces potential spatiotemporal representations for decoding by the spatial decoder f −1. In STU, a
spatiotemporal learning module grounded in pure convolutional networks is introduced to extract these
potential spatiotemporal representations.

In this study, we adopt the MetaFormer [31] design principles, which commonly entail a token mixer
and a channel mixer composition. The token mixer is responsible for extracting spatial features, while
the channel mixer focuses on extracting temporal features. Specifically, as shown in Figure 4, the token
mixer employs DW Conv with an 11 × 11 convolution kernel and a dilation rate of 3. The utilization
of a larger convolution kernel facilitates a broader sensory field coverage, while the use of DW Conv
aims to reduce the computational load of model parameters. Additionally, the DW Conv layers are
interleaved with batch normalization and ReLU activation functions to enhance the nonlinearity and
generalization capability of the model. The channel mixer consists of two convolutional layers with a
1×1 convolutional kernel, enabling efficient feature fusion across the temporal dimension. This design
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Figure 4. The architecture of spatiotemporal translator module.

choice effectively captures the dynamic temporal patterns essential for accurate motion interpretation
in video data.

Moreover, the architecture incorporates residual connections in both mixers, enhancing the gradi-
ent flow during backpropagation and preventing the vanishing gradient problem. This is particularly
beneficial for training deeper models where information needs to be propagated over many layers.

The spatiotemporal learning module can be represented as depicted in the following equation:

zi = Norm
(
DWConvk=11,d=3 (xi−1)

)
(3.5)

xi = Convk=1 (σ (Convk=1 (zi))) + xi−1 (3.6)

Power video surveillance scenes often feature multiple objects with complex motion in the video.
This paper introduces a time-frequency-based attention mechanism to ensure both temporal and spatial
continuity. The attention mechanism is decomposed into an SAU capturing spatial frequency within
frames and a TAU handling relationships between frames. This bifurcated approach allows for more
precise and adaptive attention allocation, significantly improving the model’s ability to focus on rele-
vant spatiotemporal features while disregarding noise and irrelevant information.

For the spatial frequency features extracted by the wavelet encoder, two steps are taken to generate
attention vectors. First, global time channel pooling is applied, producing the spatial attention vector
ASAU by compressing time channel information via a linear layer. In the second step, global pooling
is again employed, but this time on the spatial axes (i.e., axes 2 and 3). This results in the spatial
information being compressed and passed through a linear layer to generate the time channel attention
vector ATAU. The innovative use of global pooling across different axes enables the model to capture
a comprehensive view of the spatial-temporal landscape within the video, allowing for more nuanced
and detailed feature extraction.
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Finally, the attention vectors from the two steps are processed through the Kronecker product to
create the spatiotemporal attention matrixA. This matrix plays a crucial role in modulating the feature
representations, ensuring that the model’s focus is dynamically adjusted to the most salient aspects of
the input data. This is mathematically represented as follows:

ASAU = FC(AvgPoolaxis=1(xi−1)) (3.7)
ATAU = FC(AvgPoolaxis=2,3(xi−1)) (3.8)
A = ASAU ⊗ATAU (3.9)

In these equations,ASAU is a dynamic spatial attention vector with dimensions RB×1×H×W , andATAU is
a dynamic temporal attention vector with dimensions RB×(T×C)×1×1. The FC and AvgPool denote fully
connected (FC) and average pooling layer, respectively. These components are responsible for creating
the spatiotemporal attention matrix, which will be later combined with the token mixer’s output through
a Hadamard product, as expressed in the following formula:

xi = xi−1 ⊙A (3.10)

This comprehensive approach to spatiotemporal feature extraction and attention allocation signif-
icantly enhances the model’s ability to analyze complex video data, making it highly suitable for
advanced applications such as intelligent surveillance, autonomous vehicle navigation, and human-
computer interaction systems.

4. Experiments

In this paper, we will show the results of experiments on publicly available video prediction bench-
mark datasets and power surveillance video prediction datasets. The experiments are implemented
according to different dataset setups to evaluate the performance of the proposed model.

4.1. Experimental data

The evaluation of our model spans a diverse array of datasets, encompassing both synthetic and
realistic scenes, to validate its efficacy and versatility. The datasets used in this study include:

• Moving MNIST [37]: A synthetic dataset of two digits moving within a grid. The digits bounce
off the boundaries, and the model is required to learn the pattern of digit movement and recon-
struct the prediction frames. The sample size of the used data can be seen in the Table 2. This
dataset is widely used as a benchmark in standard spatiotemporal prediction learning tasks.
• PowerAction: A private dataset accumulated over time by the laboratory in the field of electric

power. It is primarily based on electric power scenes such as substations. The dataset consists of
a total of 21,124 sample images, derived from video sampling. It contains a variety of indoor and
outdoor scenes, six types of personnel behaviors (climbing, climbing ladder, smoking, falling,
crossing, moving), and scenarios with different numbers of people (single, multiple) to simulate
a wide range of real-world situations. The main difference between the common power scenarios
and complex power scenarios we deal with is that complex scenarios may combine more than
one behaviors and have a different number of people. The sample distribution of the dataset is
detailed in Table 1.
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• TrafficBJ: This dataset comprises a comprehensive collection of traffic condition data for the road
network within Beijing, sourced from Baidu Map. This dataset features two distinct channels: in-
flow and outflow of traffic. In alignment with methodologies adopted in prior research, this study
has normalized the data to a range between 0 and 1, facilitating more straightforward analysis and
comparison.

These datasets provide a robust platform for evaluating the performance of our proposed model. The
Moving MNIST dataset allows us to test the model’s ability to learn and predict simple, yet dynamic
patterns, while the PowerAction dataset presents a more complex challenge, requiring the model to
understand and predict human behaviors and interactions in various real-world power facility scenarios.
The results of these experiments will demonstrate the model’s capability to handle both synthetic and
realistic video prediction tasks.

Table 1. Sample size of the PowerAction dataset.

Behavioral categories Sample size (statistics)
climb high 3645
climbers 3201
cigarette smoking 3520
fall to the ground 3910
straddle 3587
mobility 3261

Table 2. Sample sizes of other used datasets.

Dataset Sample size
Moving MNIST 20,000
TrafficBJ 20,961

4.2. Experimental details

Referring to the previous evaluation metrics [21], in this paper, we use MSE, structure similarity in-
dex measure (SSIM), and peak signal-to-noise ratio (PSNR) to assess the prediction quality. MSE and
MAE assess the pixel-by-pixel error, SSIM measures the similarity of structural information within the
spatial domain, and PSNR measures the similarity of structural information within the spatial domain
and assesses the quality of the prediction. PSNR is the ratio of the maximum possible power of the
signal to the power of the distorted noise.

In this study, we implement the proposed model using the PyTorch framework and conduct training
on a single NVIDIA-A100 GPU. The model training employs a batch size of 16 video sequences. We
utilize the AdamW optimizer with a learning rate of 0.001 and a weight decay of 0.05. The learning
rate is fine-tuned using a combination of WarmUp and CosineAnneal techniques.

Electronic Research Archive Volume 32, Issue 7, 4321–4339.



4331

t = 2 t = 4 t = 6 t = 8 t = 10

t = 12 t = 14 t = 16 t = 18 t = 20

Input

Target

Prediction

Prediction
Error

Figure 5. Moving MNIST experiment visualization results.

4.3. Experimental results

This study assesses the proposed model’s performance against recent robust baseline models, in-
cluding popular RNN-based models such as ConvLSTM [17], PredRNN [18], PredRNN++ [19],
MIM [24], E3D-LSTM [20], PhyDNet [21], SimVP [32], and TAM [33]. The following quantitative
analyses are conducted on the PowerAction datasets.

4.3.1. Moving MNIST dataset

We first conduct several ablation experiments on DWT, as detailed in Table 3. The number of output
channels and AvgPool and FC layers prove the feasibility of our model, as shown in Tables 4 and 5.
The former two are about the encoder-decoder and the last one is the about translator.

Table 3. Ablation experiment on DWT.

MSE SSIM
Using DWT 20.8 0.949
Without using DWT 22.9 0.931

In the study focusing on the Moving MNIST dataset, a detailed experimental performance com-
parison was conducted to evaluate various models, with the results presented in Table 6. This table
provides a clear comparison between the proposed model in this research and several established mod-
els in terms of MSE and SSIM.

The ConvLSTM [17] showed an MSE of 103.3 and an SSIM of 0.707, indicating a baseline level
of performance in this context. PhyDNet [21] significantly improved upon these metrics, achieving
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Table 4. Ablation experiment on numbers of output channels.

MSE SSIM
Only LL 23.8 0.886
LL & LH 22.5 0.891
LL & LH & HL 21.6 0.915
LL & LH & HL & HH 20.8 0.949

Table 5. Ablation experiment on translator.

MSE SSIM
Without AvgPool (axis = 1) 22.3 0.912
Without AvgPool (axis = 2,3) 23.4 0.897
Without FC 25.8 0.862
Ours 20.8 0.949

Table 6. Experimental performance comparison of moving MNIST dataset.

Method MSE SSIM
ConvLSTM [17] 103.3 0.707
PhyDNet [21] 24.4 0.947
PredRNN [18] 64.1 0.870
MIM [24] 44.2 0.910
PredRNN++ [19] 46.5 0.898
E3D-LSTM [20] 41.3 0.910
SimVP [32] 26.8 0.912
TAM [33] 23.4 0.934
Ours 20.8 0.949

an MSE of 24.4 and an SSIM of 0.947. This demonstrated a substantial enhancement in both error
reduction and structural similarity. PredRNN [18] delivered an MSE of 64.1 and an SSIM of 0.870. Its
successor, PredRNN++ [19], showed comparable performance with an MSE of 46.5 and an SSIM of
0.898. Another notable model, MIM [24], exhibited an MSE of 44.2 and an SSIM of 0.910, indicating
its competitive performance in capturing the dynamics of the Moving MNIST dataset. The E3D-
LSTM [20] demonstrated its effectiveness with an MSE of 41.3 and an SSIM of 0.910. From the
above results, we can find that since RNN is based on sequence structure, RNN-based models are
generally inferior to CNN-based models in image processing. CNN-based models have operations like
convolution and pooling, which are effectively good at extracting features from images and thus process
images well. However, the model proposed in this paper achieved the most notable performance,
outstripping all others with the lowest MSE of 20.8 and the highest SSIM of 0.949. These results
clearly illustrate that the proposed model not only substantially reduces the prediction error but also
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significantly enhances the structural similarity, thus leading to a considerable performance gain over
the baseline and other advanced models.

Furthermore, the qualitative visualization of the prediction results, as illustrated in Figure 5, pro-
vides additional insights into the performance of the proposed model. This visualization is crucial as
it offers a tangible representation of how well the model can predict the motion in the Moving MNIST
dataset. In summary, the experimental results highlight the superiority of the proposed model in han-
dling the Moving MNIST dataset. Its ability to achieve the lowest MSE suggests a high degree of
accuracy in predicting the movement of digits, which is a central aspect of the dataset. Simultane-
ously, the highest SSIM indicates that the proposed model is exceptionally proficient in maintaining
the structural integrity of the digits during prediction, which is a critical measure of performance in
video prediction tasks. These results collectively underscore the effectiveness of the proposed model in
tackling the complex dynamics and nuances of the Moving MNIST dataset, setting a new benchmark
in this area of research.

4.3.2. TrafficBJ

In the analysis of the TrafficBJ dataset, as detailed in Table 7, the experimental results highlight the
efficacy of the proposed model in this study. The visual comparison of prediction results, as shown
in Figure 6, reveals the model’s ability to accurately predict future events despite notable differences
between input and predicted frames. The discrepancies are mainly around the middle of the frames, but
the overall trends closely match the real frames. This demonstrates the model’s strong spatial-temporal
learning capabilities, especially in real-world scenarios, underscoring its practical applicability in urban
traffic analysis and forecasting.

In the performance comparison, as seen in the table, various methods are evaluated using the MSE
and MAE metrics. The ConvLSTM [17], PhyDNet [21], PredRNN [18], MIM [24], PredRNN++ [19],
and E3D-LSTM [20] methods present varying levels of performance. However, our proposed method
significantly outperforms the others with the lowest MSE of 35.6 and MAE of 15.8. This superior
performance not only reflects the model’s precision in predicting traffic conditions but also highlights
its potential as a robust tool for traffic management and urban planning, offering valuable insights for
future advancements in the field.

Table 7. Experimental performance comparison of TrafficBJ dataset.

Method MSE MAE
ConvLSTM [17] 48.5 17.7
PhyDNet [21] 41.9 16.2
PredRNN [18] 46.4 17.1
MIM [24] 42.9 16.6
PredRNN++ [19] 44.8 16.9
E3D-LSTM [20] 43.2 16.9
SimVP [32] 37.8 16.5
TAM [33] 36.7 16.2
Ours 35.6 15.8
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Figure 6. TrafficBJ experiment visualization results.

4.3.3. PowerAction dataset

In the study involving the PowerAction dataset, the experimental outcomes are meticulously de-
tailed in Table 8, offering a comparative analysis of various predictive models. This dataset, known
for its complex motion scenarios related to power-related locations, presents a significant challenge in
predictive modeling. The research employs a pretrained Yolov5s target detection model, as described
in Yolov5s [34], to assess the quality of the model’s predictions and to detect potential rule violations.
With a confidence threshold set at 0.7, the detection of frames serves as an indirect indicator of the
perceptual quality of the predicted frames. The visual representations in Figure 7 demonstrate that
the detection model is capable of producing high-quality output frames, reflecting the favorable visual
quality of the predictions.

The experimental results, as shown in Table 8, include the performance of various models evaluated
using the metrics SSIM and PSNR. The ConvLSTM [17], presents an SSIM of 0.731 and a PSNR of
23.8. On the other hand, PhyDNet [21] achieves an SSIM of 0.814 and a PSNR of 25.8, indicating a
notable performance improvement. The PredRNN model [18] further advances these metrics, record-
ing an SSIM of 0.849 and a PSNR of 27.6. In contrast, the MIM model [24] shows an SSIM of 0.761
and a PSNR of 24.9. Notably, the PredRNN++ model [19] delivers an SSIM of 0.874 and a PSNR of
28.3, while the E3D-LSTM model [20] leads with an SSIM of 0.889 and a PSNR of 29.2. The Power-
Action dataset is a more complex dataset in comparison to the above two datasets. We can find that in
this dataset, even the best RNN-based model is still inferior to the CNN-based models. The reason is
generally the same as what we have mentioned in the Moving MNIST dataset: The RNN-based model
has sequence structure and is not as good at image processing as the CNN-based model.
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Figure 7. PowerAction experiment visualization results.

Among all, the model proposed in this research outshines the rest, achieving the highest SSIM of
0.921 and an impressive PSNR of 34.3. These results highlight the exceptional capability of the pro-
posed model in maintaining structural integrity and enhancing the clarity and quality of predictions,
making it particularly suited for handling the complexities of the PowerAction dataset. The combi-
nation of quantitative metrics and qualitative visualizations in this study underscores the significant
advancements made in predictive modeling for complex motion scenarios.

Table 8. Experimental performance comparison of PowerAction dataset.

Method SSIM PSNR
ConvLSTM [17] 0.731 23.8
PhyDNet [21] 0.814 25.8
PredRNN [18] 0.849 27.6
MIM [24] 0.761 24.9
PredRNN++ [19] 0.874 28.3
E3D-LSTM [20] 0.889 29.2
SimVP [32] 0.901 31.2
TAM [33] 0.912 32.1
Ours 0.921 34.3

5. Conclusions

Given the suboptimal state of power violation identification, there is an imminent demand for early
detection of hazardous behaviors in practical scenarios. In response, this study introduces a novel spa-
tiotemporal prediction framework employing full convolution, thereby replacing high-latency cyclic
structures. This transformation enables parallel reasoning of future video frames and significantly
enhances model inference speed. Furthermore, we introduce a multilevel frequency domain codec,
tailored to the dynamic electric power environment, for improved learning of spatial dependencies and
temporal dynamics. This is accomplished by establishing time-frequency relationships within and be-
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tween consecutive video frames. For power video surveillance scenarios, which frequently involve
multiple objects, we propose the incorporation of a token mixer with an extensive sensory field. To
ensure temporal and spatial continuity, we decompose attention into SAUs within frames and TAUs
between frames. This approach surpasses existing methods in terms of accuracy and speed across pub-
lic datasets, standard spatiotemporal prediction tasks, and cross-dataset generalization. Experimental
results on PowerAction, a behavioral dataset within the electric power domain, demonstrate that STU
exhibits promising practical applications. This paper establishes a robust baseline for power video pre-
diction research and introduces innovative perspectives for realizing power violation recognition.

Future research in electricity rule violation detection should focus on optimizing computational ef-
ficiency, adapting to dynamic environments, understanding complex motion scenes, enhancing model
robustness, integrating with existing systems, ensuring scalability and ease of deployment, and address-
ing data privacy concerns. Researchers should aim to reduce computational load using lightweight
model architectures, knowledge distillation, model pruning, and hardware accelerators like GPUs and
TPUs. Adapting to real-world environments requires online and reinforcement learning for continu-
ous updates and transfer learning for different grid conditions. Advanced techniques combining CNNs
and RNNs are crucial for understanding complex motions and scenes, while synthetic data generation
can diversify training datasets. Ensuring robustness involves extensive testing and developing anomaly
detection mechanisms. Integration with existing systems necessitates standardized APIs and communi-
cation protocols, and collaboration with industry partners. Scalability and deployment can be achieved
by designing architectures suitable for edge devices and cloud platforms and creating automated de-
ployment pipelines. Addressing data privacy involves robust encryption and secure data transmission
to comply with regulations. Focusing on these areas will enhance the effectiveness and reliability of
detection systems, support safe power grid operations, and promote industry advancements in intelli-
gence and security, enabling effective performance in complex environments.
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