
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 32(7): 4291–4320.
DOI: 10.3934/era.2024193
Received: 28 May 2024
Revised: 26 June 2024
Accepted: 01 July 2024
Published: 08 July 2024

Research article

Deep multi-input and multi-output operator networks method for optimal
control of PDEs

Jinjun Yong1,2, Xianbing Luo1,* and Shuyu Sun3

1 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
2 School of Mathematics And Big Data, Guizhou Education University, Guiyang 550018, China
3 Computational Transport Phenomena Laboratory, Division of Physical Science and Engineering,

King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Correspondence: Email: xbluo1@gzu.edu.cn.

Abstract: Deep operator networks is a popular machine learning approach. Some problems require
multiple inputs and outputs. In this work, a multi-input and multi-output operator neural network
(MIMOONet) for solving optimal control problems was proposed. To improve the accuracy of the
numerical solution, a physics-informed MIMOONet was also proposed. To test the performance of
the MIMOONet and the physics-informed MIMOONet, three examples, including elliptic (linear and
semi-linear) and parabolic problems, were presented. The numerical results show that both methods
are effective in solving these types of problems, and the physics-informed MIMOONet achieves higher
accuracy due to its incorporation of physical laws.
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1. Introduction

The optimal control problem has been successfully applied in various fields, such as heat transfer
phenomena [1], finance [2], image processing [3], shape optimization [4,5], aerodynamics [6,7], crystal
growth [8], and drug delivery [9]. To solve partial differential equation constrained (PDE-constrained)
optimal control problems, numerous numerical methods have been developed, including finite element
methods, finite differences methods, finite volume methods, spectral methods, and mesh-less methods
(see, e.g., [10–13]). Despite their effectiveness, the optimal control problem remains challenging to
solve, particularly when the problem is nonlinear. Recently, deep learning has emerged as a popular
method for solving partial differential equations, especially nonlinear ones.
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Deep learning methods for solving PDEs have received significant attention, including physics-
informed neural networks (PINN) [14, 15], deep Galerkin method [16], deep Ritz method [17], deep
Nitsche method [18], and deep operator networks (DeepONets) [19, 20]. PINNs can be used to solve
specific PDEs with boundary conditions and loading terms, but they require expensive optimization
computation cost during inference. Therefore, the PDEs with operating conditions and real-time in-
ference cannot be solved by PINNs. The neural operator full-fills well. Various versions of opera-
tor networks have been published, e.g., graph neural operator networks [21], Fourier neural operator
(FNO) [22], physics-informed neural operators (PINO) [23], and deep multiple input operator network
(DeepMIONet) [24].

Neural networks have several advantages over traditional numerical solvers, including being mesh-
free and easier to deal with complex geometric regions. Simulating control problems that involve
these complex geometric regions using traditional numerical methods often requires high-quality grids
and extensive preprocessing before simulation. By contrast, researchers are interested in using neural
networks to replace traditional numerical methods. To solve optimal control problems with PINNs,
methodologies and guidelines have been proposed in previous works [25, 26]. Barry-Straume et al.
used a two-stage framework to solve PDE-constrained optimization problems [27]. Wang et al. used
physics-informed deep operator networks (DeepONets) to learn the solution operator of parametric
PDEs, building a surrogate for solving PDE-constrained optimization problems [28]. In summary, deep
learning approaches, such as PINNs and DeepONets, have shown promise for solving PDE-constrained
optimal control problems, providing an efficient solution without requiring extensive preprocessing or
expensive optimization during inference. Future work could explore further improvements to deep
learning methods and investigate their application in new fields.

In this paper, to solve PDE-constrained optimal control problems with available data, we introduce
a MIMOONet. In the context of the PDE optimal problem, the governing PDE is fully known, and
the objective is to determine a control variable that minimizes the cost function. Initially, the PDE-
constrained optimal control problem is reformulated into a PDE system using the adjoint method.
Subsequently, the PDE system is tackled by using MIMOONets. Additionally, we examine a physi-
cal system described by PDEs and propose physics-informed MIMOONets for addressing the PDE-
constrained optimal control problem. Overall, this method (MIMOONet) has the following advantages:

• MIMOONet can solve PDE-constraint problems governed by different types of PDE.
• MIMOONet can easily approximate nonlinear optimal control problems.
• Compared with traditional numerical methods, its prediction speed is faster.

The remainder of this paper is organized as follows. In Section 2, we introduce the adjoint state
method of solving PDE-constrained optimization problem and optimality system, and provide the
framework of MIMOONets, physics-informed MIMOONets, and the detailed method of our main
technical contribution. In Section 3, we give the deep learning framework of elliptic and parabolic
constrained optimal control problem, and present the numerical results to assess the performance of
the proposed MIMOONets and physics-informed MIMOONets. Finally, Section 4 summarizes the
results, potential pitfalls, and shortcomings, and details the groundwork for future directions.
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2. Methods

Let U, S , V be Banach spaces. We consider the following PDE-constrained optimization problem:u∗, v∗ = arg min
u∈S ,v∈U

J(u, v),

subject to F (u, v) = 0,
(2.1)

where J : S × U → R is a cost function, F : S × U → V is a system of PDEs subject to initial and
boundary conditions, u and v are the state variable and control variable, respectively. Assume that the
problem (2.1) has unique solutions u and v. In the subsequent sections, the MIMOONets method is
presented under this assumption.

2.1. Optimality system

In this subsection, we transform the PDE-constrained optimization problem into an optimality sys-
tem.

The PDE-constrained optimization problem, which involves optimizing an objective function sub-
ject to a set of partial differential equations (PDEs), can be transformed into an optimality system. The
resulting optimality system consists of two sets of equations: the state equations and the adjoint equa-
tions. These equations are coupled and must be solved simultaneously to obtain the optimal solution
to the original PDE-constrained optimization problem.

Consider the following problem [29],

min
u∈S ,v∈U

J(u, v), (2.2)

subject to


F [u(x, t); v(x, t)] = 0, x ∈ Ω, t ∈ [0,T ],
B[u(x, t)] = 0, x ∈ ∂Ω, t ∈ [0,T ],
I[u(x, 0)] = 0, x ∈ Ω,

(2.3)

where x and t denote space and time variables, respectively, the domain Ω ⊆ Rd, ∂Ω is the boundary of
the domain Ω, and B and I are boundary conditions and initial condition, respectively. We construct
the Lagrangian function for the problems (2.2) and (2.3) as follows:

L(u, v, p1, p2, p3) = J(u, v) −
∫ T

0

∫
Ω

p1F (u, v)dxdt −
∫ T

0

∫
∂Ω

p2B(u)dsdt −
∫
Ω

p3I(u)dx. (2.4)

Here, p1, p2, and p3 are Lagrange multiplier functions defined on Ω × [0,T ], ∂Ω × [0,T ] and
∂Ω × 0, respectively. According to the Lagrange principle, we seek the pair (u∗, v∗) and the La-
grange multipliers or adjoint field p = (p1, p2, p3) to satisfy the optimality conditions. Therefore, the
problems (2.2) and (2.3) are equivalent to the following unconstrained problem

(u∗, v∗,p∗) = arg min
u∈S ,v∈U,p

L(u, v,p). (2.5)

Then, the directional derivative of L with respect to u disappears at the optimal point, that is

DuL(u∗, v∗,p∗)δu = lim
ε→0

L(u∗ + εδu, v∗,p∗) − L(u∗, v∗,p∗)
ε

= 0, ∀δu ∈ S . (2.6)
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For the control variable v and Lagrange multipliers p, we have

DvL(u∗, v∗,p∗)δv = 0, ∀δv ∈ U, (2.7)

and
DpL(u∗, v∗,p∗)δp = 0, ∀δp. (2.8)

Therefore, the problems (2.2) and (2.3) can be written in the following way:
DuL(u, v,p)δu = 0,
DvL(u, v,p)δv = 0,
DpL(u, v,p)δp = 0.

(2.9)

Once the optimality system has been derived, it can be solved by using neural networks. Next,
we introduce the MIMOONet and the physics-informed MIMOONet methods for solving the optimal-
ity system.

2.2. Multiple-input operators networks

DeepONets is a learning framework proposed by Lu et al. [19], which enables the learning of
abstract nonlinear operators in infinite-dimensional function spaces. It is inspired by the universal
approximation theorem of operators [30]. The DeepONets network comprises two main components:
the trunk network and the branch network.

The trunk network provides the basis functions for the output function by encoding information
related to the space-time coordinates. It takes as input the space-time coordinates and any other relevant
physical parameters and produces a set of basis functions for the function space. These basis functions
serve as a representation of the output function and are used in the computation of the final output.

The branch network encodes the input function to provide the coefficients at fixed sensor points.
Given an input function, which may be a solution to a PDE or a data-driven function, the branch
network maps it to a set of coefficients that correspond to specific sensor points in the domain. These
coefficients are then combined with the basis functions from the trunk network to produce the final
output function.

Theorem 2.1. Suppose that X is a Banach space, K1 ⊂ X, K2 ⊂ Rd are two compact sets in X and Rd,
respectively. Let V be a compact set in C(K1), G : V → C(K2) a nonlinear continuous operator, σ a
continuous non-polynomial function. Then, for ∀ε > 0, there exist n, p, m ∈ N, constants ck

i , ak
i j, θ

k
i ,

ζk ∈ R, wk ⊂ Rd, x j ∈ K1, i = 1, 2, · · · , n, k = 1, · · · , p, j = 1, · · · ,m, such that

| G(u)(y) −
p∑

k=1

n∑
i=1

ck
iσ(

m∑
j=1

ak
i ju(x j) + θk

i )︸                          ︷︷                          ︸
branch

σ(wk · y + ζk)︸          ︷︷          ︸
trunk

|< ε, (2.10)

for any u ∈ V and y ∈ K2.

DeepONets are designed to learn abstract nonlinear operators in infinite-dimensional function
spaces from a single input function defined on a Banach space, while real-world problems often in-
volve multiple input functions. To address this issue, the DeepMIONet was proposed in [24], which is
defined through the tensor product of Banach spaces.

Electronic Research Archive Volume 32, Issue 7, 4291–4320.
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In DeepMIONets, only the case of two input functions u and v are considered, which are represented
by their respective branch networks. The trunk network provides basis functions that span the function
space, and the outputs of the branch networks are combined with the basis functions by using tensor
products to produce the final output function. Specifically, the output of DeepMIONet Gθ(u, v) can be
written as:

Gθ(u, v) =
p∑

i=1

bu
i bv

i tri, (2.11)

where bu
i and bv

i denote the i-th output of the branch networks corresponding to the input functions
represented by u and v, respectively. And tri is the i-th output of the trunk network.

The architecture of DeepMIONets includes two separate branch networks and a shared trunk net-
work (as shown in Figure 1), which provide basis functions spanning the function space. The branch
networks encode the input functions and provide coefficients at fixed sensor points, while the trunk
network provides basis functions spanning the function space. The outputs of the branch networks and
the trunk network are combined using tensor products to produce the final output function. Specif-
ically, the outputs of the branch networks are the coefficients of the input functions, while the trunk
network provides a set of basis functions that are combined with the outputs of the branch networks
using tensor products to obtain the final output function.

Figure 1. Architectures of MIONet for Gθ(u, v)(x, t): the branch network 1 takes u as input
functional [employs a fully connected neural network (FNN) to take as input the values at m
sensor], the branch network 2 takes v as input functional (employs an FNN to take as input
the values at n sensor), and computes coefficients of the solution for the coordinates, which
are inputs of the trunk network (employs a FNN).

2.3. Multi-input and multi-output operators networks

Here, we focus on using neural operator networks to solve systems of PDEs.

Electronic Research Archive Volume 32, Issue 7, 4291–4320.
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Although DeepONets and DeepMIONet can be used to solve a single PDE, they cannot do it for
a system of PDEs, in which at least two solution operators must be generated and two output oper-
ators are needed for a network. To solve this problem, we propose MIMOONets, which also can be
used to solve systems of PDEs. The MIMOONets framework is composed of a trunk network and
multiple branch networks. The trunk network provides the basis functions of the solution operators,
while the branch networks provide additional groups of coefficients of the solution operators at fixed
sensor points.

We consider the following problem that is a system of PDEs in domain D ⊆ Rd (d is the dimension
of space), {

Li[u1(x), u2(x), · · ·, un(x)] = fi(x), x ∈ D, i = 1, 2, · · ·, n,
Bi[ui(x)] = φi(x), x ∈ ∂D, i = 1, 2, · · ·, n,

where ui and fi are functions, Li is the differential operator, φi is the boundary condition of ui. Let Gi

be the solution of the operator with input functions fi and φi s.t.

Li[G1,G2, · · ·,Gi] = fi, i = 1, 2, · · ·, n,

and
Bi ◦Gi = φi, on ∂D, i = 1, 2, · · ·, n.

This means that Gi( f1, f2, · · ·, fn, φ1, φ2, · · ·, φn)(y) is the corresponding output function. According
to the results in [24] and [30], the solution ui can be expressed as

ui = Gi( f1, f2, · · ·, fn, φ1, φ2, · · ·, φn)(y). (2.12)

Then, the solution of problem (2.12) can be learned by using MIMOONets, which is defined through
the tensor product of Banach spaces.

Here, we only give the framework of two-input and two-output operators networks (see Figure 2).
The solution operator networks can be described by

G1
θ( f , g) =

p∑
k=1

b1 f
k b1g

ktrk,

G2
θ( f , g) =

p∑
k=1

b2 f
k b2g

ktrk,
(2.13)

where the definitions of b1 f
k , b2 f

k , b1g
k , b2g

k and trk are similar to (2.11). To reduce the generalized error,
we may add a bias b1

0, b
2
0 ∈ R in the last stage:

G1
θ( f , g) =

p∑
k=1

b1 f
k b1g

ktrk + b1
0,

G2
θ( f , g) =

p∑
k=1

b2 f
k b2g

ktrk + b2
0.

(2.14)

Let Gi : C(D) −→ L2(D) be a Borel measurable mapping with Gi ∈ L2(µ). Then, for any ε > 0,
there exists an operator network Gi

θ : C(D) −→ L2(D) , such that

||Gi −Gi
θ||L2(µ) =

(∫
C(D)
||Gi −Gi

θ||L2(µ)dµ( f , g)
) 1

2

< ε,
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here, µ is a probability measure on C(D).
When we have some dataset of the pair solution {u(xk), v(xk)}N1 , the solution can be learned by

MIMOONets. The corresponding loss function can be formulated as follows

L(θ) =
1
N

N∑
k=1

(
| u(xk) −G1

θ( f , g)(xk) |2 + | v(xk) −G2
θ( f , g)(xk) |2

)
. (2.15)

Now we can learn parameter θ by minimizing the loss function (2.15) and using the stochastic
gradient descent method.

Figure 2. Architectures of MIMOONets for Gθ( f , g)(x): the branch network 1 takes f as in-
put functional (employs a FNN to take as input the values at m sensor), the branch network 2
takes g as input functional (employs an FNN to take as input the values at n sensor), and
computes two groups coefficients of the solution for the coordinates, which are inputs of the
trunk network (employs a FNN).

2.4. Physics-informed MIMOONets

A large amount of paired datasets is required to solve PDE systems by using MIMOONets. How-
ever, data acquisition is expensive in many engineering applications and physical systems. Under the
condition of sparse data, it becomes important to introduce physics-informed neural networks to train
MIMOONets by integrating known differential equations with label data in the loss function. We use
automatic differentiation of the outputs of MIMOONets with respect to their input coordinates and
adopt an appropriate regularization mechanism to ensure that the target output functions satisfy the
PDE constraints.

For simplicity, we consider the following problem (without causing confusion, we still use the

Electronic Research Archive Volume 32, Issue 7, 4291–4320.
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preceding symbols): 
L1[u(x); v(x)] = f (x), x ∈ D,
L2[u(x); v(x)] = g(x), x ∈ D,
B1[u(x)] = φ(x), x ∈ ∂D,
B2[v(x)] = ψ(x), x ∈ ∂D.

(2.16)

The solutions u and v can be expressed as{
u = G1( f , g, φ, ψ)(y),
v = G2( f , g, φ, ψ)(y).

(2.17)

For the problem (2.16), the loss function of a physics-informed MIMOONets is defined as follows

L(θ) = Ldata(θ) +Lphysics(θ), (2.18)

where  Ldata(θ) = 1
N

N∑
k=1

(
| u(xk) −G1

θ( f , g, φ, ψ)(xk) |2 + | v(xk) −G2
θ( f , g, φ, ψ)(xk) |2

)
,

Lphysics(θ) = Lpde1(θ) +Lpde2(θ) +LBC1(θ) +LBC2(θ),
(2.19)

and 

Lpde1(θ) = 1
N f

N f∑
k=1
| L1[G1

θ( f , g, φ, ψ)(xk); G2
θ( f , g, φ, ψ)(xk)] − f (xk) |2,

Lpde2(θ) = 1
Ng

Ng∑
k=1
| L2[G1

θ( f , g, φ, ψ)(xk); G2
θ( f , g, φ, ψ)(xk)] − g(xk) |2,

LBC1(θ) = 1
Nφ

Nφ∑
k=1
| B1[G1

θ( f , g, φ, ψ)(xk)] − φ(xk) |2,

LBC2(θ) = 1
Nψ

Nψ∑
k=1
| B2[G2

θ( f , g, φ, ψ)(xk)] − ψ(xk) |2 .

(2.20)

Here, N is the number of initial data points. N f and Ng are the number of sample from the compu-
tational domain Ω for the PDEs. Nφ and Nψ are the number of the boundary points for u and v.

The loss function (2.18) is minimized by learning the parameters θ of the deep neural network.
Sometimes, in order to improve the accuracy of the numerical solution or increase the convergence
rate, we can apply penalty parameters.

2.5. PDE-constrained optimization with physics-informed MIMOONets

For a given PDE-constrained optimal control problem such as (2.2), we use physics-informed MI-
MOONets to solve the optimization problems. The corresponding steps are given as follows. First,
we turn the PDE-constrained optimization problem (2.2) to an optimality system (2.9), which consists
of adjoint equation, state equation, and optimality condition; second, we solve the optimality system
using physics-informed MIMOONets. The detailed computing framework can be seen in Algorithm 1.

Remark 2.1. For MIMOONets (no physics-informed), the algorithm is only need to change “Input:
· · · ” to “Input: N (the number of initial data of {(xi, u(xi), v(xi))})”.
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Algorithm 1 The steps of physics-informed MIMOONets to approximate optimal control problems
Input: N (the number of initial data of {(xi, u(xi), v(xi))}), N f = Ng (the number of internal points),
Nφ = Nψ (the number of boundary points), M (maximum number of iterations), λi, f , g, φ, ψ, Ω.
Output: G f

θ (state variable function), G9
θ (adjoint state variable function).

1. Take N f sample points {xi} in Ω, Nφ = Nψ sample points {x j} on ∂Ω.
2. Generate G f

θ , Gg
θ using Multiple input multiple output Deep ONet.

3. For k = 1 to M
4. Calculate L(θ) according to (2.18),
5. Update neural network parameter θ,
6. Endfor
7. Output G f

θ , Gg
θ .

3. Main results

In the following demonstrations, to showcase the effectiveness of MIMOONs, some numerical
examples of elliptic, semi-linear elliptic, parabolic, and second-order hyperbolic optimal control prob-
lems are provided. Data-driven MIMOONs or physics-informed MIMOONs are employed with uni-
form distribution random sampling on the solution domain during the training process. In the subse-

quent examples, the relative error of the numerical solution u is calculated by:
||u − u∗||
||u∗||

, where the

reference solution u∗ is an analytical solution, or finite element approximated solution with 100 × 100
spatial grid.

3.1. Linear elliptic optimal control problem

We start with an example involving finding an optimal heat source under homogeneous Dirichlet
boundary conditions. The model can be represented as follows,

min J(u, v) =
1
2

∫
Ω

(u − ud)2dx +
α

2

∫
Ω

v2dx, (3.1)

subject to
{
−∆u − v = f , in Ω,
u = 0, on ∂Ω,

(3.2)

where Ω is a bounded domain, u : Ω → R is the unknown temperature satisfying (3.2), ud : Ω → R is
the given desired temperature, v is the unknown control function, f is the source term in Ω, α ≥ 0 is a
regularization parameter. Here, we set Ω = (0, 1) × (0, 1), ud(x, y) = (1 − 10π) sin(πx) sin(πy), λ = 1,
f (x, y) = (5 + 2π2) sin(πx) sin(πy). When, u(x, y) = sin(πx) sin(πy), v(x, y) = −5 sin(πx) sin(πy), the
J(u, v) gets the global minimum. We know that the optimal control problems (3.1) and (3.2) can be
transformed into the optimality system as follows

−∆u − v = f , in Ω,
∆p + u = ud, in Ω,
αv + p = 0, in Ω,
u = 0, on ∂Ω,
p = 0, on ∂Ω.

(3.3)

Electronic Research Archive Volume 32, Issue 7, 4291–4320.
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We use the MIMOONets to solve the PDEs system (3.3). The solution operator G1 and G2 of f and
ud can be represented as follows, 

G1
θ( f , ud) =

p∑
k=1

b1 f
k b1ud

k trk,

G2
θ( f , ud) =

p∑
k=1

b2 f
k b2ud

k trk,
(3.4)

where the branch network 1 and the branch network 2 are two separate 5-layer fully connected neural
networks (FNN). Every hidden layer and output layer has 300 neurons. The input layer per network
has 100 neurons. The trunk network is 5-layer FNN with 300 neurons per hidden layer and 150 neurons
output layer. Relu or Tanh is used as the activation function. The loss function of the deep MIMOONets
is denoted by

Ldata(θ) =
1
N

N∑
k=1

(
| u(xk, yk) −G1

θ( f , ud)(xk, yk) |2 + | p(xk, yk) −G2
θ( f , ud)(xk, yk) |2

)
. (3.5)

We use the same network structure as MIMOONets to consider the physics-informed MIMOONets.
The activation function is Tanh. The corresponding loss function can be expressed as follows

L(θ) = Ldata(θ) +Lphysics(θ), (3.6)

where
Lphysics(θ) = Lpde1(θ) +Lpde2(θ) +LBC1(θ) +LBC2(θ), (3.7)

and 

Lpde1(θ) = 1
N f

N f∑
k=1
| −

∂2G1
θ ( f ,ud)(xk ,yk)
∂x2 −

∂2G1
θ ( f ,ud)(xk ,yk)
∂y2 +G2

θ( f , ud)(xk, yk) − f (xk, yk) |2,

Lpde2(θ) = 1
Nud

Nud∑
k=1
|
∂2G2

θ ( f ,ud)(xk ,yk)
∂x2 +

∂2G2
θ ( f ,ud)(xk ,yk)
∂y2 +G1

θ( f , ud)(xk, yk) − ud(xk, yk) |2,

LBC1(θ) = 1
NBC

NBC∑
i=1
| G1

θ( f , ud)(xi, yi) |2,

LBC2(θ) = 1
NBC

NBC∑
i=1
| G2

θ( f , ud)(xi, yi) |2,

(3.8)

where N is the number of initial data points. N f and Nud denotes the number of integration points of
f and ud in the computational domain Ω, respectively. NBC is the number of the boundary points on
the ∂Ω.

To evaluate the loss, we randomly sample N = 10, 000 training points (xk, yk) ∈ Ω, N f = Nud =

10, 000 residual training points (xk, yk) ∈ Ω. We select NBC = 400 equidistant boundary training points
(xi, yi) ∈ ∂Ω.

Table 1. MIMOONets for an optimal control of elliptic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Relu (0.62 ± 0.08)% (0.39 ± 0.05)%
10,000 Tanh (1.00 ± 0.15)% (0.98 ± 0.12)%
40,000 Relu (0.14 ± 0.03)% (0.11 ± 0.03)%
40,000 Tanh (0.45 ± 0.05)% (0.45 ± 0.06)%
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Table 2. Physics-informed MIMOONets for an optimal control of elliptic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Tanh (0.26 ± 0.04)% (0.28 ± 0.05)%
40,000 Tanh (0.13 ± 0.04)% (0.14 ± 0.05)%

(a) (b) (c)

Figure 3. MIMONet iterations 10,000 times with Rule. (a) Train loss. (b) The absolute value
of the error of u. (c) The absolute value of the error of p.

(a) (b) (c)

Figure 4. MIMONet iterations 10,000 times with tanh. (a) Train loss. (b) The absolute value
of the error of u. (c) The absolute value of the error of p.

(a) (b) (c)

Figure 5. Physics-informed MIMONet iterations 10,000 times, λ0 = λ1 = λ2 = 1, λ3 = λ4 =

100. (a) Train loss. (b) The absolute value of the error of u. (c) The absolute value of the
error of p.
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We utilize the Adam optimizer from PyTorch to train the networks, and take the corresponding
learning rate 0.001. At the same time, we can choose different parameters to improve the accuracy of
deep physics-informed MIMOONets method for the following format

L(θ) = λ0Ldata(θ) + λ1Lpde1(θ) + λ2Lpde2(θ) + λ3LBC1(θ) + λ4LBC2(θ).

We take λ0 = λ1 = λ2 = 1, λ3 = λ4 = 100. The experimental results are shown in Table 2 and Figure 5.
Figures 3–5 show that both the deep MIMOONets method and the deep physics-informed MI-

MOONets method are effective for optimal control problems with elliptic constraints; also, the activa-
tion function Relu converges faster than Tanh with the MIMOONets method. However, the precision
of the deep MIMOONets method can be achieved with only a small amount of data by means of the
deep physics-informed MIMOONets method.

3.2. Semi-linear elliptic optimal control problem

A semi-linear elliptic constrained optimal control problem is considered here. The model is de-
scribed as follows

min J(u, v) =
1
2

∫
Ω

(u − ud)2dx +
α

2

∫
Ω

v2dx, (3.9)

subject to
{
−∆u + u3 = v, in Ω,
u = 0, on ∂Ω.

(3.10)

The problems (3.9) and (3.10) lead to the following optimality system

−∆u + u3 − v = 0, in Ω,
∆p − 3u2 p + u = ud, in Ω,
αv + p = 0, in Ω,
u = 0, on ∂Ω,
p = 0, on ∂Ω.

(3.11)

Table 3. MOONet for an optimal control of semi-linear elliptic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Relu (0.62 ± 0.08)% (0.076 ± 0.011)%
10,000 Tanh (6.35 ± 0.35)% (5.58 ± 0.22)%

Table 4. Physics-informed MOONet for an optimal control of semi-linear elliptic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Tanh (2.40 ± 0.15)% (1.60 ± 0.12)%
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We use a multi-output operators network (MOONet) to solve the PDEs system (3.11). The corre-
sponding solution operators G1 and G2 are shown below

G1
θ(ud) =

p∑
k=1

b1ud
k trk,

G2
θ(ud) =

p∑
k=1

b2ud
k trk,

(3.12)

where the branch network is a 5-layer FNN with 300 neurons per hidden layer and output layer. The
input layer contains 100 neurons. The trunk network is composed of five hidden layers with 300
neurons in each layer and 150 neurons in the output layer. The loss function for known data is similar
to (3.5). Takeing into account the physics-informed MOONet and α = 1, the corresponding loss
function is expressed as follows

L(θ) = λ0Ldata(θ) + λ1Lphysics(θ), (3.13)

where
Lphysics(θ) = λ2Lpde1(θ) + λ3Lpde2(θ) + λ4LBC1(θ) + λ5LBC2(θ), (3.14)

and 

Lpde1(θ) = 1
N1

N1∑
k=1
| −

∂2G1
θ (ud)(xk ,yk)
∂x2 −

∂2G1
θ (ud)(xk ,yk)
∂y2 + (G1

θ(ud)(xk, yk))3 −G2
θ(ud)(xk, yk) |2,

Lpde2(θ) = 1
N2

N2∑
k=1
|
∂2G2

θ ( f ,ud)(xk ,yk)
∂x2 +

∂2G2
θ ( f ,ud)(xk ,yk)
∂y2 − 3(G1

θ(ud)(xk, yk))2G2
θ(ud)(xk, yk)

+G1
θ(ud)(xk, yk) − ud(xk, yk) |2,

LBC1(θ) = 1
NBC

NBC∑
i=1
| G1

θ( f , ud)(xi, yi) |2,

LBC2(θ) = 1
NBC

NBC∑
i=1
| G2

θ( f , ud)(xi, yi) |2 .

(3.15)

When we use physics-informed MOONet, we choose N = N1 = N2 = 10, 000, NBC = 400,
λ0 = λ1 = λ2 = 1, λ3 = λ4 = 300. Not using physics-informed MOONet, we take N = 10, 000,
λ0 = 1, the others are 0. The sample data are collected by finite difference and sequential quadratic
programming. The experimental results are shown in Tables 7 and 8.

We find that the Relu of the activation function converges faster than Tanh using the MOONETS
method, which is similar to the linear elliptic optimal control problem. The deep physical information
MOONets method requires very little data to achieve the same precision of the deep MOONets method.

3.3. Parabolic optimal control problem

We consider the following parabolic optimal control problem,

min J(u, v) =
1
2

∫ T

0

∫
Ω

(u − ud)2dxdt +
α

2

∫ T

0

∫
Ω

v2dxdt, (3.16)

subject to


∂tu − ∆u − v = f , in D,
u = 0, on ∂Ω,
u(x, 0) = sin(πx), in Ω,

(3.17)

Electronic Research Archive Volume 32, Issue 7, 4291–4320.



4304

where Ω = (0, 1), D = Ω × (0,T ], u : D→ R is the unknown term satisfying (3.17), ud : D→ R is the
given desired temperature distribution, v is the unknown control function, f is the source term in D, and
α ≥ 0 is a regularization parameter. Here, we set ud(x, t) = sin(πx)(t+1)+ 1

2et sin(πx)− 1
2 (et−e) sin(πx),

α = 1, f (x, t) = sin(πx) + π2(t + 1)(sin(πx) + 1
2 (et − e) sin(πx), φ(x) = sin(πx). When v(x, t) =

−1
2 (et − e) sin(πx), u(x, t) = (t + 1) sin(πx) , the J(u, v) gets the global minimum.

The optimal control problems (3.16) and (3.17) can be transformed into the optimality system,



∂tu − ∆u − v = f , in D,
∂t p + ∆p + u = ud, in D,
αv + p = 0, in D,
u(x, 0) = sin(πx), in Ω,
p(x,T ) = 0, in Ω,
u(x, t) = 0, on ∂Ω × (0,T ],
p(x, t) = 0, on ∂Ω × (0,T ].

(3.18)

For the PDEs system (3.18), we use MIMOONets to solve it. The operator G1 and G2 can be learned
from the source term f , ud and φ. Their representations are as follows


G1
θ( f , ud, φ) =

p∑
k=1

b1 f
k b1ud

k b1φk trk,

G2
θ( f , ud, φ) =

p∑
k=1

b2 f
k b2ud

k b2φk trk.
(3.19)

Here, we select 100 sensors points for input functions f , ud and φ. Three branch networks are three
separate 5-layer FNN with 300 neurons per hidden layer and output layer. The trunk network is a 5-
layer FNN with 300 neurons per hidden layer and 150 neurons for output layer. Relu or Tanh is used
as the activation function.

We use the same network structure of the MIMOONets as the network structure physics-informed
MIMOONets where the activation function is Tanh. The corresponding loss function for the deep
MIMOONets is expressed by

Ldata(θ) =
1
N

N∑
k=1

(| u(xk, tk) −G1
θ( f , ud, φ, ψ)(xk, tk) |2 + | p(xk, tk) −G2

θ( f , ud, φ, ψ)(xk, tk) |2). (3.20)

The deep physics-informed MIMOONets loss function is the following form

L(θ) = λ0Ldata(θ) + λ1Lphysics(θ), (3.21)

where

Lphysics(θ) = λ2Lpde1(θ) + λ3Lpde2(θ) + λ4LIC(θ) + λ5LTC(θ) + λ6LBC(θ), (3.22)
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and 

Lpde1(θ) = 1
N f

N f∑
k=1
|
∂G1

θ ( f ,ud ,φ)(xk ,tk)
∂t −

∂2G1
θ ( f ,ud ,φ)(xk ,tk)

∂x −G2
θ( f , ud, φ)(xk, tk) − f (xk, tk) |2,

Lpde2(θ) = 1
Nud

Nud∑
k=1
|
∂G2

θ ( f ,ud ,φ)(xk ,tk)
∂t +

∂2G2
θ ( f ,ud ,φ)(xk ,tk)

∂x2 +G1
θ( f , ud, φ)(xk, tk) − ud(xk, tk) |2,

LIC(θ) = 1
NBC

NBC∑
i=1
| G1

θ( f , ud, φ)(xi) − φ(xi, ti) |2,

LTC(θ) = 1
NIC

NTC∑
i=1
| G2

θ( f , ud, φ)(xi, ti) |2,

LBC(θ) = 1
NBC

NBC∑
i=1

(| G1
θ( f , ud, φ)(xi, ti) |2 + | G2

θ( f , ud, φ)(xi, ti) |2).

To calculate the value of the loss function, we take the random sample of initial data points N =
10, 000, the numbers of the residual training points N f = Nud = 10, 000, the number NIC and NTC

of the initial and termination condition points x ∈ Ω are 100, and the number NBC of the boundary
condition is 100. Then, we use the Adam optimizer to train the deep MIMOONets and physics-
informed MIMOONets (λi = 1, i = 0, 1, 2, 3; λ j = 100, j = 4, 5, 6) by minimizing the loss of Eqs (3.20)
and (3.21). The learning rate is 0.002. The experimental results are shown in Tables 5 and 6, and
Figures 6–8.

Table 5. MIMOONets for parabolic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Relu (0.11 ± 0.04)% (0.24 ± 0.05)%
10,000 Tanh (0.60 ± 0.10)% (1.60 ± 0.13)%
40,000 Relu (0.054 ± 0.006)% (0.10 ± 0.04)%
40,000 Tanh (0.40 ± 0.05)% (0.88 ± 0.10)%

Table 6. Physics-informed MIMOONets for parabolic problem.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Tanh (0.52 ± 0.12)% (4.9 ± 0.27)%
40,000 Tanh (0.32 ± 0.08)% (4.7 ± 0.21)%
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(a) (b) (c)

Figure 6. MIMONet iterations 10,000 times with Rule for parabolic-constraint optimal con-
trol problem. (a) Train loss. (b) The absolute value of the error of u. (c) The absolute value
of the error of p.

(a) (b) (c)

Figure 7. MIMONet iterations 10,000 times with tanh for parabolic-constraint optimal con-
trol problem. (a) Train loss. (b) The absolute value of the error of u. (c) The absolute value
of the error of p.

(a) (b) (c)

Figure 8. Physics-informed MIMONet iterations 10,000 times for parabolic-constraint op-
timal control problem (λi = 1, i = 0, 1, 2, 3; λ j = 100, j = 4, 5, 6). (a) Train loss. (b) The
absolute value of the error of u. (c) The absolute value of the error of p.

We found that both the deep MIMOONets method and the deep physics-informed MIMOONets
method are effective for parabolic optimal control problem, and the activation function Relu converges
faster than Tanh with the MIMOONets method. We also found that the physics-informed MIMOONets
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not only attains comparable accuracy to the original MIMOONets but also satisfies the underlying
PDEs constraint.

3.4. Hyperbolic optimal control problem

Consider the following hyperbolic optimal control problem [13]:

min J(u, v) =
1
2

∫ T

0

∫
Ω

(u − ud)2dxdt +
α

2

∫ T

0

∫
Ω

v2dxdt, (3.23)

subject to


utt − ∆u − v = f , in D,
u = 0, on ∂Ω × [0,T ],
u(x, 0) = φ(x), ut(x, 0) = ψ(x), in Ω,
a ≤ v ≤ b, in D, a, b ∈ R,

(3.24)

where Ω = [0, 1]2, D = Ω × (0,T ]. In the experiment, we take ud(x, t) = sin(πx1) sin(πx2)(et + 2 +
2π2(t − T )2), T = 1, α = 1, a = 0.2, b = 0.8, f (x, t) = (1 + 2π2)et sin(πx1) sin(πx2) −max{a,min{b, (t −
T )2 sin(πx1) sin(πx2)}}, φ(x) = sin(πx1) sin(πx2), ψ(x) = sin(πx1) sin(πx2). The exact solution u(x, t) =
et sin(πx1) sin(πx2), v(x, t) = max{a,min{b, (t − T )2 sin(πx1) sin(πx2)}}.

Based on (3.23) and (3.24), the following optimality system can be obtained,

utt − ∆u − v = f , in D,
ptt − ∆p − u = −ud, in D,
v = max{a,min{b,− p

α
}}, in D,

u(x, 0) = φ(x), ut(x, 0) = ψ(x), in Ω,
u(x, t) = 0, on ∂Ω × [0,T ],
p(x,T ) = 0, pt(x,T ) = 0, in Ω,
p(x, t) = 0, on ∂Ω × [0,T ].

(3.25)

The solution operator of system (3.25) can be represented by G1 and G2 as follows:
G1
θ( f , ud, φ, ψ) =

p∑
k=1

b1 f
k b1ud

k b1φk b1ψk trk,

G2
θ( f , ud, φ, ψ) =

p∑
k=1

b2 f
k b2ud

k b2φk b2ψk trk.
(3.26)

In the experiment, we use 100 sensor points as input functions f , ud, φ, and ψ. Each of the four
branch networks consists of an independent 5-layer FNN, with 300 neurons in each hidden layer and
output layer. The trunk network is a 5-layer FNN with 300 neurons per hidden layer and 150 neurons
for the output layer. The activation function used is either Relu or Tanh.

We employ the same network structure as the physics-informed MIMOONets, using Tanh as the
activation function. The corresponding loss function for the deep MIMOONets is expressed as follows:

Ldata(θ) =
1
N

N∑
k=1

(| u(xk, xk
2, tk) −G1

θ( f , ud, φ)(xk
1, x

k
2, tk) |2

+ | p(xk
1, x

k
2, tk) −G2

θ( f , ud, φ)(xk
1, x

k
2, tk) |2). (3.27)
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The deep physics-informed MIMOONets loss function is the following form

L(θ) = λ0Ldata(θ) + λ1Lphysics(θ), (3.28)

where

Lphysics(θ) = λ2Lpde1(θ) + λ3Lpde2(θ) + λ4LIC(θ) + λ5LTC(θ) + λ6LBC(θ), (3.29)

and 

Lpde1(θ) = 1
N f

N f∑
k=1
|
∂2G1

θ ( f ,ud ,φ,ψ)(xk
1,x

k
2,t

k)
∂t2 −

∂2G1
θ ( f ,ud ,φ,ψ)(xk

1,x
k
2,t

k

∂x2
1

−
∂2G1

θ ( f ,ud ,φ,ψ)(xk
1,x

k
2,t

k

∂x2
2

−max{a,min{b,−G2
θ ( f ,ud ,φ,ψ)(xk

1,x
k
2,t

k)
α

}} − f (xk
1, x

k
2, t

k) |2,

Lpde2(θ) = 1
Nud

Nud∑
k=1
|
∂2G2

θ ( f ,ud ,φ)(xk
1,x

k
2,t

k))
∂t2 +

∂2G2
θ ( f ,ud ,φ,ψ)(xk

1,x
k
2,t

k))
∂x2

1
+

∂2G2
θ ( f ,ud ,φ,ψ)(xk

1,x
k
2,t

k))
∂x2

2

+G1
θ( f , ud, φ, ψ)(xk

1, x
k
2, t

k) − ud(xk
1, x

k
2, t

k) |2,

LIC(θ) = 1
NBC

NBC∑
i=1

(| G1
θ( f , ud, φ, ψ)(xi

1, x
i
2, t

i) − φ(xi
1, x

i
2) |2

+ |
∂G1

θ ( f ,ud ,φ,ψ)(xi
1,x

i
2,t

i)
∂t − ψ(xi

1, x
i
2) |2),

LTC(θ) = 1
NIC

NTC∑
i=1

(| G2
θ( f , ud, φ, ψ)(xi

1, x
i
2, t

i) |2 + | ∂G2
θ ( f ,ud ,φ,ψ)(xi

1,x
i
2,t

i)
∂t |2).

LBC(θ) = 1
NBC

NBC∑
i=1

(| G1
θ( f , ud, φ, ψ)(xi

1, x
i
2, t

i) |2 + | G2
θ( f , ud, φ, ψ)(xi

1, x
i
2, t

i) |2).

(3.30)

In the experiment, uniformly random samples are taken with N = 10, 000 initial data points, and
the number of residual training points is N f = Nud = 125, 000. The sample size for initial condition
points NIC and termination condition points NTC in Ω is 10,000, and the number of points on the
spatiotemporal boundary ∂Ω × [0,T ] is NBC = 400 × 100. For the sampling of sensor points for input
functions, besides the source function f (x1, x2, t), 100 sensor points are uniformly randomly sampled.
However, for the source function f (x1, x2, t) in the spatiotemporal space D, Latin hypercube sampling
is used to sample 100 sensor points. Subsequently, we use the Adam optimizer to train the deep
MIMOONets and physics-informed MIMOONets (λ0 = 0, λi = 1, i = 1, 2, 3; λ j = 100, j = 4, 5, 6)
by minimizing the loss of Eqs (3.27) and (3.28). The learning rate is set to 0.0001. The experimental
results are shown in Tables 7 and 8, and Figures 9–11.

Table 7. MIMOONets for hyperbolic control problem at t = 0.5.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Relu (0.48 ± 0.08)% (1.89 ± 0.09)%
10,000 Tanh (3.85 ± 0.30)% (21.20 ± 1.10)%
40,000 Relu (0.32 ± 0.06)% (1.09 ± 0.30)%
40,000 Tanh (0.72 ± 0.08)% (1.90 ± 0.50)%
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Table 8. Physics-informed MIMOONets for hyperbolic control problem at t = 0.5 without
data.

Iterations Activation function Relative L2 error of u Relative L2 error of p
10,000 Tanh (6.25 ± 0.80)% (13.57 ± 1.20)%
40,000 Tanh (1.72 ± 0.30)% (5.2 ± 0.31)%

(a) (b) (c)

Figure 9. MIMONet iterations 40,000 times with Rule for hyperbolic problem (t = 0.5). (a)
Train loss. (b) The absolute value of the error of u. (c) The absolute value of the error of p.

(a) (b) (c)

Figure 10. MIMONet iterations 40,000 times with tanh for hyperbolic problem (t = 0.5). (a)
Train loss. (b) The absolute value of the error of u. (c) The absolute value of the error of p.

(a) (b) (c)

Figure 11. Physics-informed MIMONet iterations 40,000 times for hyperbolic problem
(λ0 = 0, λi = 1, i = 1, 2, 3; λ j = 100, j = 4, 5, 6). (a) Train loss. (b) The absolute value
of the error of u. (c) The absolute value of the error of p.
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For hyperbolic optimal control problems, both the deep MIMOONets method and the deep physics-
informed MIMOONets method are effective. In the experiments, the MIMOONets method adopts a
data-driven approach, and the Relu activation function converges faster than Tanh. As for the physics-
informed MIMOONets method, we adopt a non-data-driven mode and conduct experiments by con-
sidering the PDE as a constraint. The experimental results are excellent.

4. Conclusions

In this work, a novel deep learning framework is presented, which enables the construction of
fast surrogates for solving PDE-constrained optimization problems using MIMOONets and physics-
informed MIMOONets. The MIMOONets frameworks (MIMOONets and physics-informed MI-
MOONets) offer flexibility and faster implementation compared to other traditional methods. Com-
pared with MIMOONets, the physics-informed MIMOONets require little paired input-output data,
and are more efficient and cost-effective.

Although our methods (MIMOONets and physics-informed MIMOONets) were initially designed
for solving PDE-constrained optimization problems, they can also be extended to multi-equation-
coupled problems, including hyperbolic and parabolic optimal control problems [31], Cahn-Hilliard-
Navier-Stokes equation [32], and other scenarios. Moreover, they can be effectively employed for
real-time prediction in optimal systems governed by PDEs.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Granted No.
11961008) and Funding from the Scientific Research Fund Project of Guizhou Education University
(Granted No. 2024ZD007).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. G. Fabbri, Heat transfer optimization in corrugated wall channels, Int. J. Heat Mass Transfer, 43
(2000), 4299–4310. https://doi.org/10.1016/S0017-9310(00)00054-5
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A. Supplementary visualizations of elliptic optimal control problem

We present some numerical images for solving elliptic optimal control problems (3.1) and (3.2)
using deep MIMOONets and physics-informed MIMOONets framework. The data-driven results are
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shown in Figures A.1–A.6. When there is no data, we can also use deep physics-informed MIMOONets
to solve the problem. The experimental results are shown in Figure A.7.

(a) (b)

Figure A.1. MIMONet iterations 10,000 times with Relu for elliptic constraint optimal con-
trol problem. (a) The error of u: u −G1

θ( f , ud). (b) The error of p: p −G2
θ( f , ud).

(a) (b)

Figure A.2. MIMONet iterations 10,000 times with Tanh for elliptic constraint optimal
control problem. (a) The error of u : u −G1

θ( f , ud). (b) The error of p: p −G2
θ( f , ud).
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(a) (b)

(c) (d) (e)

Figure A.3. MIMONet iterations 40,000 times with Relu for elliptic constraint optimal con-
trol problem. (a) Train loss error. (b) The absolute value of the error of u. (c) The absolute
value of the error of p. (d) The error of u: u −G1

θ( f , ud). (e) The error of p: p −G2
θ( f , ud).

(a) (b)

Figure A.4. Physics-informed MIMONet iterations 10,000 times for elliptic constraint opti-
mal control problem (λ0 = λ1 = λ2 = 1, λ3 = λ4 = 100). (a) The error of u: u−G1

θ( f , ud). (b)
The error of p: p −G2

θ( f , ud).
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(a) (b)

(c) (d) (e)

Figure A.5. MIMONet iterations 40,000 times with Tanh for elliptic-constraint optimal con-
trol problem. (a) Train loss. (b) The absolute value of the error of u. (c) The absolute value
of the error of p. (d) The error of u: u −G1

θ( f , ud). (e) The error of p: p −G2
θ( f , ud).

(a) (b)

(c) (d) (e)

Figure A.6. Physics-informed MIMONet iterations 40,000 times with Tanh for elliptic con-
straint optimal control problem (λ0 = λ1 = λ2 = 1, λ3 = λ4 = 100). (a) Train loss. (b) The
absolute value of the error of u. (c) The absolute value of the error of p. (d) The error of u:
u −G1

θ( f , ud). (e) The error of p: p −G2
θ( f , ud).
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(a) (b)

(c) (d) (e)

Figure A.7. Physics-informed MIMONet iterations 40,000 times for elliptic-constraint opti-
mal control problem (λ0 = 0, λ1 = λ2 = 1, λ3 = λ4 = 100, and there is no initial data). (a)
Train loss. (b) The absolute value of the error of u. (c) The absolute value of the error of p.
(d) The error of u: u −G1

θ( f , ud). (e) The error of p: p −G2
θ( f , ud).
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B. Supplementary visualizations of parabolic optimal control problem

We present some numerical images for solving parabolic optimal control problems using deep MI-
MOONets and physically informed MIMOONets frameworks. The data-driven results are shown in
Figures B.1– B.6. When there is no initial data, we can also use MIMOONets based on depth physical
information to solve this problem, and the experimental results are shown in Figure B.7.

(a) (b)

Figure B.1. MIMONet iterations 10,000 times with Relu for parabolic-constraint optimal
control problem. (a) The error of u: u −G1

θ( f , ud, φ). (b) The error of p: p −G2
θ( f , ud, φ).

(a) (b)

Figure B.2. MIMONet iterations 10,000 times with Tanh for parabolic-constraint optimal
control problem. (a) The error of u: u −G1

θ( f , ud, φ). (b) The error of p: p −G2
θ( f , ud, φ).
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(a) (b)

(c) (d) (e)

Figure B.3. MIMONet iterations 40,000 times with Relu for parabolic-constraint optimal
control problem. (a) Train loss. (b) The absolute value of the error u. (c) The absolute value
of the error of p. (d) The error of u: u −G1

θ( f , ud, φ). (e) The error of p: p −G2
θ( f , ud, φ).

(a) (b)

(c) (d) (e)

Figure B.4. MIMONet iterations 40,000 times with Tanh for parabolic-constraint optimal
control problem. (a) Train loss. (b) The absolute value of the error u. (c) The absolute value
of the error of p. (d) The error of u: u −G1

θ( f , ud, φ). (e) The error of p: p −G2
θ( f , ud, φ).
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(a) (b)

Figure B.5. Physics-informed MIMONet iterations 10,000 times for parabolic-constraint
optimal control problem (λi = 1, i = 0, 1, 2, 3; λ j = 100, j = 4, 5, 6, there is no initial data).
(a) The error of u: u −G1

θ( f , ud, φ). (b) The error of p: p −G2
θ( f , ud, φ).

(a) (b)

(c) (d) (e)

Figure B.6. Physics-informed MIMONet iterations 40,000 times for parabolic-constraint
optimal control problem (λi = 1, i = 0, 1, 2, 3; λi = 100, i = 4, 5, 6, there is no initial data).
(a) Train loss. (b) The absolute value of the error of u. (c) The absolute value of the error of
p. (d) The error of u: u −G1

θ( f , ud, φ). (e) The error of p: p −G2
θ( f , ud, φ).
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(a) (b)

(c) (d) (e)

Figure B.7. Physics-informed MIMONet iterations 40,000 times for parabolic-constraint
optimal control problem (λ0 = 0; λi = 1, i = 1, 2, 3; λ j = 100, j = 4, 5, 6, there is no initial
data). (a) Train loss. (b) The absolute value of the error of u. (c) The absolute value of the
error of p. (d) The error of u: u −G1

θ( f , ud, φ). (e) The error of p: p −G2
θ( f , ud, φ).
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