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Abstract: The ubiquitous adoption of Android devices has unfortunately brought a surge in malware
threats, compromising user data, privacy concerns, and financial and device integrity, to name a few. To
combat this, numerous efforts have explored automated botnet detection mechanisms, with anomaly-
based approaches leveraging machine learning (ML) gaining attraction due to their signature-agnostic
nature. However, the problem lies in devising accurate ML models which capture the ever evolving
landscape of malwares by effectively leveraging all the possible features from Android application
packages (APKs).This paper delved into this domain by proposing, implementing, and evaluating an image-
based Android malware detection (AMD) framework that harnessed the power of feature hybridization.
The core idea of this framework was the conversion of text-based data extracted from Android APKs into
grayscale images. The novelty aspect of this work lied in the unique image feature extraction strategies
and their subsequent hybridization to achieve accurate malware classification using ML models. More
specifically, four distinct feature extraction methodologies, namely, Texture and histogram of oriented
gradients (HOG) from spatial domain, and discrete wavelet transform (DWT) and Gabor from the frequency
domain were employed to hybridize the features for improved malware identification. To this end, three
image-based datasets, namely, Dex, Manifest, and Composite, derived from the information security centre
of excellence (ISCX) Android Malware dataset, were leveraged to evaluate the optimal data source for
botnet classification. Popular ML classifiers, including naive Bayes (NB), multilayer perceptron (MLP),
support vector machine (SVM), and random forest (RF), were employed for the classification task. The
experimental results demonstrated the efficacy of the proposed framework, achieving a peak classification
accuracy of 93.03% and recall of 97.1% for the RF classifier using the Manifest dataset and a combination
of Texture and HOG features. These findings validate the proof-of-concept and provide valuable insights
for researchers exploring ML/deep learning (DL) approaches in the domain of AMD.

Keywords: image-based data; spatial and frequency domain; malware identification; machine learning
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1. Introduction

In recent times, we have witnessed a rapid development and usage of mobile communication
technology in our daily lives. The popularity of this technology has been due to the encompassing
development of 5G wireless communication standards which provide high speed and reliable
communication infrastructure. At the same time, there has been tremendous advancement in the
communication, storage, and processing of data in the end-user devices in the form of smartphones,
tablets, and various smart internet of things (IoT)-based systems. With a current estimate of about 6
billion existing smartphone users worldwide and a further increase of about 6% annually, it is but
expected that the smartphone market is bound to dominate the technology arena in the near future.
Statistics also suggest that nearly 70% of the smartphones have their operating system based on Android.
Even though our study caters to the Android-based devices and their protection from malware, this
approach can be easily adopted and applied to iphone operating system (iOS)-based systems as well.

The popularity of the Android operating system is due to its usage convenience, being open-source
and high scalability. However, this widespread use of an open-source operating system also comes
under the eyes of malicious hackers and cyber-criminals with evil intent of compromising user data and
privacy. It is reported by Kapersky in their 2021 mobile malware report that there was a detected total of
about 3.5 million malicious installation packages and about 17 thousand mobile ransomware Trojans [1].
Since most of the Android applications are downloaded and installed from the official Google Playstore,
the cyber-criminals target it for hiding their malware in the disguise of clean, safe, and approved apps. It
was found that out of a total of about 2.6 million apps on Google Playstore, 36% of them are classified
as low quality, which are possible targets for hiding Android malware [2]. It is also reported by McAfee
that there has been an increase of 38% in the Linux-based (Android) mobileware additions from the
quater-four (Q4) of year 2020 to quater-one (Q1) of 2021 alone [3]. These malware mainly belong to
the categories of resource consumption, privacy breach, remote control, inappropriate behavior, and
malicious ransom. This results in financial costs to detect and recover damages to the infrastructure
and also results in compromising the reputation of the business in the market and a disadvantage in
comparison to the competitors.

Thus, it is imperative that efficient and timely detection of these malware are given due diligence
and importance to avoid the risks and associated costs which may incur if these malware are successful
in initiating a security breach. As a matter of fact, instead of reacting to amend the losses due to a
security attack, there must be mechanisms to proactively predict an attack scenario and avert it in the
best possible manner. Due to the prevalence of variety of AMD approaches in the literature, we provide
a new taxonomy of AMD approaches in Figure 1 for easier understanding of this research domain.

One of the major categorization of the AMD approaches is based on the information contained in the
malware, namely, signature-based and anomaly-based [4]. Signature-based approaches are fast, simple,
widely available, and have shown good results in malware identification. However, the drawback is
that they rely on the knowledge of signatures of known malware and hence fail to detect unknown or
newly created malware. Also, creating malware signatures requires domain knowledge expertise and
tedious human effort. On the other hand, anomaly-based approaches work on the concept of observing
the behavior of all the applications over a period of time and classifying them as malign or benign. This
historic data (of malware features) is then used as an input to an automated ML algorithm to learn a
model based on the example observations made prior to training. However, this approach, too, requires
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generating malware features, which can be either done manually (handcrafted features [5]) or in an
automated manner (using DL [6]).

 

Figure 1. Taxonomy of the AMD approaches.

Another way of classifying the AMD process is the manner in which the applications are analyzed for
generating the features, namely, static, dynamic, and hybrid. In the static analysis, the focus is on extracting
features from the APKs without actually running the application. This involves using the de-compilation
technology to perform reverse engineering on the Dalvik executable (DEX) file (classes.dex), which has the
Dalvik byte code or/and the application’s global configuration file (AndroidManifest.xml) [6]. The possible
set of features extracted from the DEX executable can be based on Dalvik opcode, string, application
programming interface (API) call, control flow graph, and data flow graph, whereas from the manifest
file the features are usually the package names, components, permissions, environment, and intents. The
benefit of static analysis is that it is faster and the processing overhead is lower however, it is unable to
get relevant features (e.g., permissions or API access rights) if the hackers have used the obfuscation
approach to malign the Android application.

In such a situation, dynamic analysis can be resorted to, where the Android application is actually
run on a real device or in a sandboxed environment. The application’s runtime behavior is observed
over a period of time to identify any anomalous behavior and also record the features related to the log
of system API execution states and collected network traffic. Even though dynamic analysis has the
ability to detect malicious apps which hide using the obfuscation technique, it requires longer analysis
time and data processing overheads. As the Android operating system (OS) keeps evolving in terms of
its architecture and security requirements, the reverse-engineering features have a high possibility of
becoming obsolete over a period of time and, hence, the feature extraction process needs to be repeated
to keep up with the changes. To this end, image-based Android malware approaches have made some
promising contributions in dealing with this challenge [7].

In an image-based AMD approach, the Dalvik byte code and the manifest files contents (which are
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binaries) are converted into images, where each 8 bits (byte code) is transformed into an red green
blue (RGB) pixel. This gives a 2-D color image of the APKs which can be either malign or benign
in nature. So, basically we are transforming the problem of identifying a malware from a traditional
ML-based classification problem to an image classification problem. One of the main reasons for adopting
this approach is to utilize the significantly accurate classification performance of image-based DL models
based on the convolutional neural networks (CNN) [8] or to use handcrafted features with traditional ML
classifiers. Another reason in terms of the general utility and long-term applicability of the said approach
is that it can efficiently handle any small changes which hackers or malware authors incorporate in the
APKs to hide their malicious code. Hence, we adopt this general direction of scope of the work and use
it to build upon the proposed framework for identifying and classifying Android malware.

Research contributions: After the critical study of the existing AMD approaches, it was observed
that the image-based approaches outnumber the nonimage based approaches and, hence, we conclude
their popularity and applicability. Second, Drebin and information security centre of excellence (ISCX)
datasets were most frequently used datasets for Android malware identification. Third, both automated
and handcrafted features have been equally used in the research. Finally, both traditional ML and
automated DL approaches have been used for AMD, each having their own merits and limitations. This
led us to pose these research questions in the context of defining the scope of our work.

• What are the popular AMD approaches and their classification taxonomy?
• How can existing AMD approaches be improved by incorporating better feature information?
• What are the reliable image-based datasets for testing ML-based classification of Android botnets?
• What different categories of image features can be useful in making informed decisions by the

AMD systems?
• Which ML classifiers are usually employed for detection and classification of Android malwares

and how do they compare with each other?

Based on these research questions, the technical and empirical contributions are now clearly laid
down for this research paper.

• To propose and elaborate on a new taxonomy of AMD approaches.
• To propose a novel hybridization of spatial and frequency domain features for accurate identification

of Android malware using image-based datasets.
• To implement and test the proposed approach on the image-based datasets (Dex, Manifest and

Composite) obtained from the ISCX Android Botnet dataset.
• To experiment and evaluate the proposed approach by hybridizing the spatial features (Texture and

histogram of oriented gradients (HOG)) and frequency features (discrete wavelet transform (DWT)
and Gabor).
• To compare the ML classifier (NB, SVM, MLP, and RF) results obtained from the proposed work

with the existing approaches (traditional ML and automated DL) in the literature.

Paper organization: The rest of the paper is organized as follows. In Section 2, the background
information about Android malware, their detection approaches, and the related work in this domain
is presented to provide an overview of the problem domain. This is followed by Section 3, wherein
architectural details of the proposed image-based framework using feature hybridization approach are
elaborated for AMD. Section 4 provides the details of the dataset used, the experimental scenarios
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used, and the resources utilized for performing the experiments to prove the validity of the proposed
methodology. This section also presents the results obtained, the related insights, and their comparison
to other similar work in the extant literature. Finally, the paper is concluded in Section 5 by summarizing
the key contributions of the research, identifying limitations, and suggesting ways for improvements in
the form of future work.

2. Related work

This section presents a detailed review of the research literature in the domain of AMD. Even though
this domain includes multitude of approaches, we choose to give attention to anomaly-based AMD
approaches to limit our scope of work, as mentioned in Section 1. It is proposed to categorize existing
related research work into two broad categories, which are based on the ML and DL models applied
to the task of identifying Android malware. The first category (nonimage-based approach) is the one
where the features from the APKs are extracted directly from the DEX and/or manifest files through
reverse-engineering, and then an ML classifier is used for classifying the application as malign or benign.
In the second category (termed as image-based approach), the DEX and/or manifest binary files are first
transformed to images, followed by feature extraction from these images and finally using either an
ML or DL classifier to classify the APKs as malign or benign. In order to comprehend the research
presented in these two categories, we initially present a summary of three most recent review papers in
the domain of AMD to grasp the basic concepts and terminologies.

2.1. Review papers

In the first review paper which we considered [9], the authors present a comprehensive summary of
close to 300 research papers in the domain of AMD based on ML approaches. They provide details of
the research status by touching upon key perspectives like data acquisition, data preprocessing, feature
selection, ML models, and performance evaluation. Further, they classify the existing studies based
on the type of detection, namely, static, dynamic, and hybrid. Finally, an intuitive classification of the
research papers is done on the basis of four different categories of ML, namely, supervised, unsupervised,
semi-supervised, and reinforcement learning. Even though the review has much detail and rigor, it is
already two years old and, hence, another review paper is necessary to report the latest research approaches.

In the second review paper [6], the authors focus their literature search pertaining to the DL
applications to AMD. They classify about 100 DL papers into five different categories, namely, static
dynamic, hybrid analysis, image-based, and multi-class. Apart from summarizing the existing literature,
they also provide generic architecture and functional flowchart of AMD using DL. Also, they describe
the challenges related to datasets, feature selection, neural network training issues, and multi-class
problem with possible recommendations.

The third review paper [4], is presenting a different perspective on AMD through a focus on approaches
based on static analysis (manifest or code based), dynamic analysis, and hybrid analysis. The authors
classify the papers with accuracy results of more than 90% and less than 90%. Also, apart from detecting
malware, they also focus on research work related to ML applications to detect code vulnerabilities in APKs.
Their other contribution is to study the datasets used, feature selection methods, and a concise comparison
of various ML algorithms in regard to their advantages and disadvantages. One drawback of these two
surveys is that they do not cater to image-based detection of Android malware with the use of DL methods.
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2.2. Nonimage-based approaches

The first paper in this category [10] is where the authors performed static analysis of AMD on the
data obtained from canadian institute of cybersecurity and malware (CICAndMal2017) dataset. They
compare the performance of various ML classifiers such as NB, SVM, k-(nearest neighbor) NN, sequential
minimal optimization (SMO), RF, MLP, and decision trees (DT). The handcrafted permission features
were extracted from APK manifest files, which gave an accuracy of 88.9% for static analysis. Even though
the approach was highly effective in terms of classification accuracy, the limitation was that only one
dataset was used in the research. In another work, the authors demonstrated the effectiveness of combined
usage of RF and principal component analysis (PCA) for identifying malwares using feature extraction
approaches. They were able to achieve an accuracy of 90.33% by using handcrafted features from the
CICAndMal2017 and Androzoo datasets focusing on only both static and dynamic analysis [11]. It was
expected that they would compare the classifier performances with automated approaches.

Extensive study with 4 different ML classifiers was performed on datasets obtained from Google Play,
AndroZoo and AppChina. The classifiers used in the study were RF, SVM, NB, and K-means [12]. The
RF classifier gave an accuracy performance of 81.5% with feature-based classification involving manifest
permissions. The remarkable feature of this research was that the authors experimented with multiple
datasets, however, the results could be improved by considering other static analysis features like OpCode
and API calls. In another research by [13], static analysis was performed on the AMD. Various ML models
from the model driven engineering (MEG)Droid and Droidbit framework were used for the comparative
performance study on identifying malwares based on the handcrafted static features. The MEGDroid-based
algorithms provided an accuracy of 91.6%, proving it to be a versatile solution. However, one scope
of improvement to the study is to incorporate features based on system calls. Malware classification
framework (MalFCS) combines visualization, automated feature extraction, and classification using
CNNs to extract family patterns from entropy graphs. It achieves an accuracy of 0.997 and 1 on Malimg
and Microsoft datasets, respectively [14].

In a research which uses automated feature extraction as opposed to handcrafted features [15],
CNN was utilized for automated feature extraction from the APK files. The code analysis for API
calls, OpCode, and Manifest analysis for permissions were incorporated in the proposed solution.
The CNN approach was applied on the Drebin and AMD datasets by providing a classification
accuracy of 91 and 81%, respectively. The advantage of this approach is that it reduced over-fitting
and, hence, could effectively detect new malwares. An improvement to this research can be to
provide comparison of CNN with other ML/DL approaches. The most recent study by the researchers
in [16] used a basic one-dimensional CNN to automatically learn manifest, intent, and API features
from the APK repository files of a dataset consisting of Android applications from various de-facto
standard datasets. In spite of using hybrid features for training their CNN model, they reported a
low classification accuracy of 90%. Another noteworthy research achieves malware detection accuracy
of 99% by employing the idea of federated Markov chains, which are also effective in preserving the
privacy of end-user data in IoT environments [17].

2.3. Image-based approaches

In the image-based approaches using handcrafted features, the authors in [18], have used the HOG
features from the image-transformed ISCX dataset to detect malign applications. They have used SVM,
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K-nearest neighbor (KNN), DT, RF, Extra Trees (ET), and extreme gradient boosting (XGBoost) as the
ML classifiers to detect malware based on static analysis, and a classification accuracy of 92.4% was
shown by the RF classifier. Since the image datasets are better suited for DL approaches, a comparison
of the results in this direction was expected. In a similar research [5], the authors have augmented their
feature set by combining the DEX files features with the manifest files features from the APKs and
generating a single composite image. A validation accuracy of 87.1% was obtained with composite
images. Even though novelty lies in working with composite images (which do not significantly enhance
performance), an improvement of this work could be to test and compare the performance of existing
ML classifiers with pretrained and fine-tuned CNN classifiers.

In the image-based category of research, there has been emphasis on automated feature extraction, as
opposed to handcrafted approaches mentioned above. In this context, the authors in [19] have used the
CNN model for just arriving at the static features in an automated manner using the images obtained
from the Drebin dataset. However, for performing classification tasks they resorted to traditional
ML classifiers like KNN, SVM, and RF. Out of these ML classifiers, the CNN-SVM combination
achieved the highest classification accuracy of 92.59% with the grayscale images. However, it would
have been insightful to further test their approach on the colored images. A similar study has also
been performed by [20], on a self-compiled nonstandard dataset having images obtained from opcode
features of the Android APK. The strength of their work lies in addressing the obfuscation issue of the
Android malware, but only an accuracy of 89.96% has been achieved. Another work in this category is
by [21], who has used the image-based ISCX Android Botnet dataset to extract features in an automated
manner by applying popular pretrained CNN models with transfer learning. The models considered
were MobileNetV2, RestNet101, visual geometry group (VGG)16, VGG19, InceptionRestNetV2, and
DenseNet121. They achieved a maximum classification accuracy of 91% for Manifest dataset using
the MobileNetV2 classifier. The strong aspect of this research is the variety of pretrained classifiers
which were worked with, however, the classification accuracy could be further improved with data
augmentation approaches. The most recent work in this category is from [22], who has used image-
based data of the APK to retrain the deep CNN model such as ResNet to update them to ResNeXt+, by
achieving a classification accuracy of 90.64%. The positive aspect of this approach is the testing on
seven benchmarked datasets, however, comparison with handcrafted approaches is recommended.

2.4. Basis for proposed methodology

The critical and comparative literature survey on AMD presented above has been concisely summarized
in Table 1. A few conclusions can be readily made from this literature review. First, not all ML/DL-based
approaches have reported high classification accuracies (maximum of 92.59%). Even though there were
other approaches which have higher accuracies, they are not included due to reasons like not being published
in a reputable research database, nonstandard datasets, and highly unrealistic results. Second, most of the
studies focus on only one type of approach, either automated features extraction with DNNs/CNNs or
handcrafted features using traditional ML classifiers. Third, some of the researches have not used standard
datasets in their experiments. Finally, a true and fair comparison among these existing and future studies is
a challenging task and, hence, there is always a scope for more focused research efforts in the domain of
AMD. Therefore, we propose and implement a unique feature hybridization approach which harnesses the
combined merits of spatial-domain features (Texture and HOG) and frequency domain features (DWT and
Gabor) for ML-based AMD, the detailed description of which is presented in the following section.
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Table 1. A comparative summary of recent related work in ML/DL-based AMD.
Paper Year Approach Feature

extraction
Dataset Accuracy Pros Cons

[10] 2023 k-NN, SMO,
SVM, RF, DT,
NB, MLP

Hand-crafted
(non-image
based)

CICAndMal2017
dataset

Static analysis
accuracy of
88.9%

High effectiveness
in terms of
integrated features

Only one
dataset was
used

[11] 2023 RF and PCA Hand-crafted
(static analysis,
non-image
based)

CICAndMal2017
and Androzoo

Accuracy of
90.33%

Cascaded Deep
Forest with PCA is
the novelty

Hybrid analysis
approach could
be compared
to automated
approaches

[12] 2021 RF, SVM, NB, K-
means

Hand-crafted
(non-image
based)

Google Play,
AndroZoo,
AppChina

RF accuracy
81.5%

Multiple datasets
were experimented
with

Other static
features like
OpCode, API
calls could be
considered

[13] 2021 ML algorithms of
MEGDroid and
Droidbot

Hand-crafted
(non-image
based)

AMD
(Android
Malware
Dataset)

MEGDroid
accuracy
91.6%

Very versatile
analysis approach

System calls
were not
accounted for

[15] 2021 CNN Automated
(non-image
based Manifest
and Dex)

AMD
(Android
Malware
Dataset) and
Drebin

Accuracy of
91%

Reduced
overfitting
and detects
new malwares
effectively

Comparison
with other
ML/DL
approaches

[16] 2022 One-dimensional
CNN

Automated
(non-image
based Manifest
and Intents)

Collection of
Android apps
from de-facto
standard
datasets

Accuracy of
90%

Combines intents
and API features
with Manifest
features

Lower accuracy
results

[22] 2024 ResNeXt+ Automated
(image-based)

Seven
benchmarked
datasets

90.64%
accuracy
with ResNet
models

Experimented with
7 benchmarked
datasets

Comparison
with hand-
crafted
approaches is
recommended

[18] 2021 SVM, KNN,
DT, RF, ET,
XGBoost with
HOG features

Hand-crafted
(static analysis,
image-based)

ISCX
Android
Botnet

Accuracy of
92.4% with
RF

Use of ISCX
dataset with
various ML
classifiers

A comparison
with DL
approach was
expected

[5] 2022 SVM, KNN,
DT, RF, ET,
XGBoost with
HOG features

Hand-crafted
(image-based
from dex and
manifest)

ISCX
Android
Botnet

Validation
accuracy of
87.1% with
RF

Combining dex
and manifest
features in a single
image

For comparison
other features
from images
should be
considered

[19] 2020 CNN, CNN-KNN,
CNN-SVM, CNN-
RF

Automated
(image-based)

Drebin Accuracy of
CNN-SVM :
92.59%

Extracts the
features using
CNN and then
classify with ML

Need to
investigate
the colored
malware
images in the
study

[20] 2022 Pre-trained
ResNet CNN

Automated
(image-
based Opcode
features)

Self-
generated
dataset from
various
sources

Accuracy of
89.96%

Focus on
identifying
Obfuscated
Android malware

Lower accuracy
results

[21] 2022 Transfer Learning
on pre-trained
CNN models

Automated
(image-based
features)

ISCX
Android
Botnet

Accuracy of
91%

Used six popular
pre-trained CNN
models with
Manifest images

Lower accuracy
results
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3. Proposed methodology

This section provides the details of the proposed image-based AMD approach, which is based on
the existing related work and pertinent research objectives as identified before in Section 2. Figure 2
provides the major components of the proposed approach and further details of each of these components
are described next.

DEX File Manifest File

Android Application Files

Texture 

Features 

(13)

DWT 

Features

(25)

HOG 

Features

(144)

Gabor 

Features

(64)

Naïve Bayes (NB)

Multi-Layer Perceptron (MLP) 

Support Vector Machines (SVM)

Random Forests (RF)

BenignBotnet

Android APK Dataset

DEX Image Manifest Image Composite Image

Image-based Dataset

Feature Extraction and Fusion

ML Classification

Classifier Output

Figure 2. Proposed image-based Android malware detection approach.

3.1. Android system architecture

Android application is written using Java programming language and is compiled using the Android
Software Development Kit (SDK). All the data and resource files are packed into a single compressed
file as a package with an .apk extension. This .apk file is the one which is downloaded from the
application repository (e.g. Google App store) and installed by the mobile phone users with the Android
operating system. If the files inside this package are modified by the hacker, then the application is
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identified as a botnet. The following files which are part of the package are likely to be compromised
leading to a botnet application [6].

• classes.dex: These files are the traditional java programs which are compiled into a class file as a
byte code and can be executed by the Java virtual machine (JVM). For the Android system, an
optimized version of the JVM is developed which is termed as the Dalvik virtual machine that
executes the Dalvik byte-code instead of the Java byte-code. A dx tool is usually employed to
convert the byte code to the Dalvik code during the packaging of the Android application.
• AndroidManifest.xml: This is a file (also called as configuration file) that describes the complete

information about the Android application. These include registration information about the
activity, service, provider, and receiver when developing an Android application. Also, this file
contains information about the permissions declarations of the Android application along with the
SDK version used for its development. This vital information is used to assess the trustworthiness
of the application.
• Other folders: There are other folders in the .apk package which are assets (stores static files),

lib (native library files), res (files related to layout and style), and meta information (META-INF)
(signature information for apps integrity). In our proposed system, we are utilizing the classes.dex
and AndroidManifest.xml contents to generate the dataset for training the ML classifiers.

3.2. Dataset description

The dataset used for the study in this paper is called as the “ISCX Android Botnet” dataset collected
and prepared by the Canadian Institute for Cybersecurity at the University of New Brunswick [23]. The
dataset consists of 1929 samples of botnets which are categorized in fourteen families and have appeared
in the period of 2010 to 2014. Further details of these botnet names, the year first appeared (sorted with
most recent), number of samples, and the Command and Control (C & C) type utilized for malware
distribution are presented in Table 2. In order to distinguish between a botnet and benign application, we
also collected 2500 clean apps from the Google Playstore, and these apps were tested with the VirusTotal
tool and found to be non-malicious. In this dataset collection, the percentage of botnet samples is 44%
and that of benign samples is 56%, and, therefore, this dataset is a balanced one. This observation is
essential for validating the results of this study.

Figure 3 shows the process to convert the APK dataset into the image-based dataset. The first step is to
unpack the APK repository into individual files (namely, AndroidManifest.xml, META.INF, assests, lib, res,
and classes.dex), out of which only two files are of interest in our proposed approach (AndroidManifest.xml
and classes.dex). A Python script is used to generate column vectors consisting of one byte of binary
data in each array element (read from the two files (AndroidManifest.xml and classes.dex) individually
and termed as Manifest byte vector and Dex byte vector, respectively). Then, equivalent decimal values
of these bytes are calculated to get a pixel value in the range of 0 (corresponding to the binary pattern
of 00000000) to 255 (corresponding to the binary pattern of 11111111). In the next step, these decimal
values (between 0–255) are arranged in a square matrix form (named as the Pixel matrix) with equal
number of rows and columns. The pixel values in the range of 0 to 255 have the grayscale colors
starting from black (corresponding to 00000000) and ending in white (corresponding to 11111111).
Finally, two-dimensional grayscale images (Manifest and DEX images) are obtained using the open
computer vision (OpenCV) tool and stored in the .png format. Also, a composite image is obtained
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by concatenating the pixel values of the Manifest and DEX byte vectors (as obtained in the previous
step, and this results in a larger column vector, where the resulting number of rows is actually the sum
of the rows of the Manifest and DEX column vectors). The reason for choosing image representation
of the data is twofolds, namely, to propose an approach which is independent of the Android OS
updates/upgrades and to utilize the rich modeling and evaluation resources available for classifying
images using ML-based computer vision tools.

Table 2. ISCX Android Botnet dataset details.

Botnet Family Year Samples C&C Type
Notcompatible 2014 76 HTTP
Pletor 2014 85 SMS/HTTP
Sandroid 2014 44 SMS
Wroba 2014 100 SMS/HTTP
Misosms 2013 100 Email
Bmaster 2012 6 HTTP
Rootsmart 2012 28 HTTP
Tigerbot 2012 96 SMS
Anserverbot 2011 244 HTTP
Droiddream 2011 363 HTTP
Nickyspy 2011 199 SMS
Pjapps 2011 244 HTTP
Geinimi 2010 264 HTTP
Zitmo 2010 80 SMS

classes.dex

assests

lib

res

AndroidManifest.xml

META-INF

 

���� ⋯ ���⋮ ⋱ ⋮��� ⋯ 	��
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Composite pixel matrix
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…..
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Manifest Image

DEX Image

Composite Image

Figure 3. Process to convert the APK dataset to image-based dataset.
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3.3. Feature extraction approaches

Feature extraction is a major component of the proposed framework where the image-based dataset is
provided as an input and a set of image-related features are given at the output. These features are utilized
to uniquely identify one image from another and, further, aid in classifying them in either of the two
categories (botnet or benign). Feature extraction also helps in reducing the dimensionality of the dataset
by limiting the number of unique features for image identification. However, extracting features from the
images is a challenging task and requires the system designer to be aware of various options available.
Apart from the types of features, it is required to know how to combine the varied features and also devise
strategies for selecting the most relevant features [24]. Some of the popular spatial features extraction
techniques include statistical features, HOG, local binary pattern (LBP), speed-up robust features (SURF),
and those that extract features in the frequency domain are DWT, Gabor filters, and discrete Fourier
transform (DFT).

In the presence of multitude of image feature extraction approaches, a detailed study was conducted
to identify the choice of features. To this end, we focused on comparing the advantages and drawbacks
of various methods. Even though there are seven broad classes of features extraction approaches, namely,
statistical, structural, transform-based, model-based, graph-based, learning-based, and entropy-based,
we narrowed down to two: statistical (or spatial domain) and transform-based (or frequency domain)
based on the advantages they offer over other approaches [25]. From the spatial domain, we choose
Texture and HOG features. Texture features have the advantages of easy implementation and less
processing time, and also providing significant local spatial dependencies suitable for AMD application.
The HOG features are also less computationally demanding and cater to rotation invariance and, hence,
suitable for applications where data augmentation is required. From the frequency domain, we choose
DWT and Gabor features. Even though DWT involves transformation of image to frequency domain,
still it is less computationally complex compared to other approaches. Further, it can provide features
at different scales by controlling the wavelet functions. For the Gabor approach, it can be very useful
for extracting both low frequency and high frequency image components, and this makes them robust
to resolution variations among images of a particular dataset. Even though no single choice of feature
extraction methods can be a best choice, our main objective was to provide the feature hybridization
concept and perform a proof of concept with the above chosen methods.

One of the objectives of this research is to investigate the effect of the number and type of image features
on the performance of ML classifiers. More specifically, we would like to measure the ML classification
accuracy by combining features from spatial and frequency domains. Hence, we propose to have a hybrid
features approach in our system, which combines four different features, namely, Texture, HOG, DWT,
and Gabor. It is noteworthy that in our framework there is a balanced mix of feature extraction techniques
(Texture & HOG from the spatial domain & DWT and Gabor from the frequency domain) [26]. This leads
us to a total of 246 features which we will be using in our approach with 13, 25, 144, and 64 features coming
from Texture, HOG, DWT, and Gabor techniques, respectively. We have utilized the built-in toolboxes of
Matlab R2022a, namely, image processing, computer vision, image filtering, and wavelet for extracting the
abovementioned features. Features were extracted independently using different methods (Texture, HOG,
DWT, and Gabor) and concatenated to result in 246 features for the purpose of classification. The best
combination of these features is then meticulously selected after extensive experiments to achieve the
objective of high classification accuracy of botnet and clean android APK samples.
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3.3.1. Texture features

Texture features (TF) are those features which are obtained from the image by considering the relevant
spatial domain information. In order to extract the spatial domain features, first a histogram is constructed
based on the gray-level information present in each pixel of the image. Then, the histogram is used as a
basis for the extraction of statistical information of first order from the images. The occurrence of the
pixel intensity level is mathematically modeled as the probability density (PD) given by,

PD(i) =
I(i)
N
, i = 1, 2, ...., L (3.1)

where I is the intensity level present in the histogram, N is total pixels in the image, which is the product
of number of horizontal and vertical pixels, I(i) is the intensity of a specific grayscale level i, and L is
the total number of gray levels in the image.

The PD forms the basis for six first order TFs which can be calculated for an image. These
features include, T F1 (mean) , T F2 (variance), T F3 (skewness), T F4 (kurtosis), T F5 (energy) and
T F6 (entropy ) [27]. Here, Mean refers to the average intensity, Variance signifies the intensity
variation about the mean value, Skewness measures the degree the asymmetry about the mean, Kurtosis
provides an estimate on the number of outliers, Energy measures the histogram’s uniformity, and
Entropy measures the randomness in the histogram distribution. The formulae for these six features are
mentioned below [28],

T F1 =

L∑
i=1

iPD(i) (3.2)

T F2 =

L∑
i=1

(i − µ)2PD(i) (3.3)

T F3 = σ
−3

L∑
i=1

(i − µ)3PD(i) (3.4)

T F4 = σ
−4

L∑
i=1

(i − µ)4PD(i) (3.5)

T F5 =

L∑
i=1

PD(i)2 (3.6)

T F6 = −

L∑
i=1

PD(i)log2PD(i) (3.7)

where PD(i) is the probability density as given in Eq (3.1), i = 1, 2, ..., L, µ is defined as the mean given
by T F1, and σ is defined as the standard deviation estimated by

√
T F2.

The first order features defined above are useful to describe the image characteristics, however they are
a representative of localized information about the image pixels. In order to represent the image with more
details with respect to relative positioning, spatial pixels characteristics need to be looked at. Therefore,
now the second order statistical features are obtained from the spatial co-occurrence matrix M(i, j), where
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we utilize the joint probability distribution of pixel pairs [29]. The joint probability distribution uses
the distance measure d (usually 1 and 2) and phase measure θ (usually 0, 45, 90, and 135o, which
takes into account the relationship among four neighboring pixels). This results in seven second order
statistical features termed as T F7 (angular second moment energy), T F8 (correlation), T F9 (inertia),
T F10 (absolute value), T F11 (inverse Difference), T F12 (entropy), and T F13 (maximum probability),
which are mathematically defined as follows [28],

T F7 =

L∑
i=1

L∑
j=1

[PD(i, j)]2 (3.8)

T F8 =

L∑
i=1

L∑
j=1

i j PD(i, j) − µxµy

σxσy
(3.9)

T F9 =

L∑
i=1

L∑
j=1

(i − j)2 PD(i, j) (3.10)

T F10 =

L∑
i=1

L∑
j=1

| (i − j) | PD(i, j) (3.11)

T F11 =

L∑
i=1

L∑
j=1

PD(i, j)
1 + (i − j)2 (3.12)

T F12 = −

L∑
i=1

L∑
j=1

PD(i, j) log2 PD(i, j) (3.13)

T F13 = max(PD(i, j)) (3.14)

Thereby, we are considering 13 features (first order features are 6 and second order features are 7) in
our study.

3.3.2. HOG features

HOG is an image feature extraction very similar to Canny edge detector or scale-invariant feature
transform (SIFT). It is popularly used in machine vision and image processing applications for objection
identification and classification [5]. Given an image, the HOG algorithm calculates the presence of
gradient orientations in a portion of an image called as a localized area. HOG is considered to be one of
the good image descriptors as it calculates both the magnitude and phase of the gradient of each cell,
and then it computes the features of the image. This is achieved by creating a histogram of the gradients
using both the magnitude and phase information.

The HOG approach usually expects an image to be of size 128 × 64 pixels (height versus width).
The gradient is calculated by combining the magnitude and phase information from the image for
each pixel. Assuming a block of 3 × 3 pixels, first it calculates Gx and Gy for each pixel, based on the
following equations.
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Gx(r, c) = I(r, c + 1) − I(r, c − 1) (3.15)

Gy(r, c) = I(r − 1, c) − I(r + 1, c) (3.16)

where row and column are denoted as r and c for the pixels in an image. Then, Gx and Gy are used to
calculate the magnitude and phase using the following equations,

G =
√

G2
x +G2

y (3.17)

θ = tan−1
(
Gx

Gy

)
(3.18)

After calculating the gradient of each pixel, the gradient matrices (magnitude and phase matrix) are
divided into 20 × 20 cells to form a block. In each block it creates a 9-point histogram by choosing a
bin size of 9 resulting in an angle separation of 20o = (180o/9). In our proposed approach, we use a cell
size of 20 × 20 and a block size of 4 × 4, which gives a HOG vector of 144 features (9 × 4 × 4).

3.3.3. DWT features

DWT is popularly applied for image feature extraction which takes into consideration both the
temporal and frequency information present in images [30]. The process is to decompose any signal
into basic functions called wavelets which have specific properties pertaining to the images that help
in image processing. The coefficients of the wavelets are treated as feature vectors which are used to
train the ML model. DWT is useful in effective removal of a noise from a noise corrupted signal and
its implementation is computationally efficient. DWT in essence transforms a single variable function
into a function of two variables, called translation and scale. It is a general practice to compute the
wavelet coefficients at discrete levels having powers of two. DWT is obtained from continuous wavelet
transform (CWT), which is given below where a signal x(t) is scaled and shifted through a wavelet
function ψ,

W(s, τ) =
∫ ∞

−∞

x(t)
1
|s|1/2

ψ∗(
t − τ

s
)dt (3.19)

where s and τ are scale and translation coefficients.
DWT is obtained from CWT where the s parameter is discretized on a log scale and the τ parameter

is discretized with respect to scale parameter. This is done by making s = 2−m and τ = n × 2−m, where
m and n are some positive integers. Since m and n are nonnegative integers, they take the values as
m = 1, 2, 3, ... and n = 1, 2, 3, ..., which makes the scaling factors as a multiple of 2 and the translation
coefficients as an integral of the scaling factor. By taking higher values of m and n results in finer
representation of image features, however it leads to increased computation requirements. Thus, the
family of wavelets is represented as [31]

ψm,n(t) = 2m/2 ψ(2mt − n) (3.20)

DWT decomposes a discrete signal x[n] into low and high frequency components as given below,
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x[n] =
∑
k∈Z

ci,k gi[n − 2ik] +
∑
k∈Z

di,k hi[n − 2ik] (3.21)

where ci,k are wavelet coefficients and di,k are scaling coefficients for a one-dimensional signal.

ci,k =
∑

n

x[n] g∗i [n − 2ik] (3.22)

di,k =
∑

n

x[n] h∗i [n − 2ik] (3.23)

where gi[n−2ik] are discrete wavelets and hi[n−2ik] are scaling sequences, and their conjugates provide
the coefficient values.

In case of images, which represent two-dimensional data, we define 2-D DWT coefficients, where
each dimension has its own set of coefficients. In a DWT feature extraction approach, N is defined as
the number of levels up to which an image can be decomposed to extract features from each of the
decomposed regions. In our proposed approach, the features from the images are extracted using N = 3
level DWT, resulting in a total of 25 features.

3.3.4. Gabor features

Gabor filter forms the basis for finding features in images by analyzing whether there exists any
specific frequency component in a specific direction in a given localized region of observation. So, it
essentially utilizes the frequency and orientation representation of an image to form a set of features for
image analysis, which is very similar to the way the human visual system functions [32]. The impulse
response of the Gabor filter is a result of the multiplication of two functions, namely, sinusoidal and
Gaussian. Due to this product, we get a complex function which consists of two orthogonal components
that are real and imaginary. The real component is given by

g(x, y; λ, θ, ψ, σ, γ) = exp(−
x
′2 + γ2y

′2

2σ2 )cos(2π
x
′

λ
+ ψ) (3.24)

whereas the imaginary component is given by

g(x, y; λ, θ, ψ, σ, γ) = exp(−
x
′2 + γ2y

′2

2σ2 )sin(2π
x
′

λ
+ ψ) (3.25)

where x
′

= x cos(θ) + y sin(θ) and y
′

= −x sin(θ) + y cos(θ).
In these equations, the wavelength of the sinusoidal function is given by λ, the orientation of the

normal function is denoted as θ, the phase offset is ψ, the standard deviation of the Gaussian function is
labeled as σ, and the spatial aspect ratio is defined as γ (a measure of ellipticity of Gabor function). In
an image, which is a 2-D data, we require a Gabor filter in two-dimensions having different wavelengths
and orientations in order to extract the image features. In our proposed approach, we are using λ = 4
pixels/cycle of the sinusoidal function and θ = 90o that results in a total of 64 features (both magnitude
and phase).
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3.4. ML classifiers

A brief description of the ML classifiers being used in our framework is now presented. It identifies
Android apps as either botnet or benign samples. In general terms, these algorithms take the features (labeled
data) extracted from the image-based data of the APK files as input (as described in the previous sections)
to learn a representative model. This trained model is then used for predicting the target variable of
interest (botnet or benign in this case, which is the type of the Android application sample). These ML
algorithms belong to the group of classifiers called supervised classifiers. In this paper, four prominent
supervised classifiers have been applied for the classification task, which are NB, SVM, MLP, and RF.
Even though there are numerous selection criteria for choosing an ML classifier, the criteria used in
this study is based on simplicity of implementation (for NB), generality of the algorithm (for MLP),
robustness toward data variance (for SVM) and high classification accuracy (for RF). It is to be noted
that these four ML classifiers were practically experimented by using the Weka 3 software, which has
Java-based user-friendly implementations.

3.4.1. Naive Bayes

NB classifier is a supervised ML approach which builds a model on the input data by utilizing the
famous Bayes theorem [33]. NB is a popular choice for a classification problem as its mathematical
modeling is simple to implement. It also exhibits reasonably good performance in terms of prediction
accuracy. Generally speaking, NB devices a model based on conditional probabilities where a new
data instance class to be predicted is represented as a set of features. Essentially, the task of the NB
is to predict an output (target variable), which is dependent on the prior probability, the probability
of observing the data instances given the hypothesis (conditional probability), and the probability of
observing the current data instance itself. One major flaw of the NB is the assumption of statistical
independence among the features of the input dataset (predictors and target), which more often is not
the case. However, this assumption significantly simplifies the mathematical modeling of the NB, but
at the same time has a negative effect on its prediction accuracy. Despite this drawback, NB is still
a preferred modeling choice in scenarios where one is faced with scarcity of training data and it still
performs reasonably well in terms of accuracy of classification.

3.4.2. Multilayer perceptron

MLP is a variation of the basic NN modeling concept which has a feed forward structure and
consists of different layers of neurons [34]. It consists of a set of neurons (resembling the human brain
architecture) arranged in three types of layers, namely, the input, the hidden, and the output. The input
layer has the task of getting the data as an input and it basically implements a linear function. On the
other hand, the hidden and output layers are designed in such a way that they implement a nonlinear
function to model the data which is essentially nonlinearly separable. Therefore, MLP is a good choice
for classifying data which cannot be modeled using linear functions, such as linear regression (LR)
algorithm. Sigmoid function is a popular nonlinear activation function generally used by MLP models.
Although more recently, researchers have also applied the ReLU (rectified linear unit) function in deep
neural networks (DNNs). The key characteristic of MLP is the fully connected nature of the relationship
between the adjacent hidden layers through weighted links. Initially, the MLP layers assign random
weights to the links between the neurons during the training process. As the input layer keeps getting
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the input data instances (as a training set), these weights get iteratively updated. The “adjustment” of the
MLP weights is done based on the amount of error between the predicted output and the actual output
as implemented in the back propagation algorithm. MLPs have the ability to model data of various
types, and as such have been applied in diverse areas such as machine vision, speech recognition, and
natural language processing (NLP).

3.4.3. Support vector machines

SVM is an extension of NN which can model and classify both linear and nonlinear input data. SVM
transforms the input training data into a multidimensional space through the use of hyperplanes in higher
dimensions and then performs the classification task on the new data [35]. Another name for these
hyperplanes is decision planes which “decide” the class the data belongs to. SVM searches for those
vector points in the multidimensional space (support vectors) which define the decision boundary and
also provide significant separation among the data classes. Kernel functions form the core component
of the SVM model which implement the nonlinear mapping of the high-dimensional data. Some of the
popularly used kernel functions in SVM are linear, Gaussian, Sigmoid, polynomial and radial basis,
which have different mathematical complexity, efficiency, and accuracy performance. SVM generalizes
better as compared to other classifiers and, therefore, is more suited for situations where the dataset
consists of more features as compared to the number of training data examples.

3.4.4. Random forests

RF belongs to a class of classifiers called ensemble learning (EL), where multiple classifiers are
generated and the classification results of the constituent classifiers are aggregated to provide an output.
The resultant benefit of such a scheme is that it provides improved prediction accuracy performance
as compared to the case where a single classifier is used to model the training data [36]. Generally
DTs are used with the bagging and boosting methods to realize an ensemble classifier such as an
RF. Boosting method recursively uses multiple DTs to iteratively improve the classification accuracy
of the RF. However, in the bagging method, the constituent DTs make independent classification
decisions and through majority voting, the final prediction accuracy performance result is obtained.
In RFs, the bagging method involves an extra element of randomness where instead of choosing the
predictor with the best split at each node, a predictor variable is chosen randomly from a subset of better
predictors. This randomness in the prediction process makes the RF generalize better as compared to
other classification algorithms and thus avoids the over-fitting problem to a greater extent.

4. Experimental results

In this section we will provide the details of the experimental setup used to devise various scenarios for
testing our proposed approach. Also, we will define the performance metrics used for evaluating the ML
algorithms for the classification tasks. Further, we will provide the detailed results and their discussions,
comparison with existing approaches, and, finally, leading to conclusions obtained from our study.
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4.1. Experimental setup

In order to generate the results for the proposed approach of image-based Android malware
classification, we devised and implemented a set of experiments. There were three sets of parameters in
our study, namely, the ML classifiers, feature extraction approaches, and the dataset types. As already
mentioned, the four ML classifiers we proposed to test were NB, MLP, SVM, and RF. The parameter
settings of these ML algorithms, which we used during the experiments, are enlisted in Table 3. Default
parameter settings of Weka tool were used for the ML algorithms, those of which are not specified in
Table 3. We also have four feature extraction techniques, namely, Texture, DWT, HOG, and Gabor
features, which were abbreviated as Tex, Dwt, Hog, and Gabor, respectively, for the purpose of concise
presentation of results. Finally, we have three different image-based datasets, namely, Dex, Manifest,
and Composite (Dex and Manifest features combined). To provide a comprehensive analysis and testing
of our proposed approach, we performed the following experiments.

Table 3. Experimental parameter settings of ML algorithms.

ML classifier Parameter Value

MLP
Batch size 100
Hidden layers 124
Learning rate 0.3

SVM

Batch size 100
Kernel Radial Basis Function (RBF)
Learning rate 0.001
Loss 0.1
Optimizer Sequential Minimal Optimizer (SMO)
Soft margin (C) 1

RF
Batch size 100
Epochs 100
Tree depth 20

NB
Batch size 100
Distribution Normal
Discretization False

• Dataset effect: In this experiment, we fixed the dataset and implemented all the combinations of
the feature extraction techniques and classification with all the classifiers. Since there were
four feature extraction techniques, we got 15 hybrid combinations of them, namely, 4 single
(Tex, Dwt, Hog, and Gabor), 6 pairs (TexDwt, TexHog, TexGabor, DwtHog, DwtGabor, and
HogGabor), 4 triplets (TexDwtHog, DwtHogGabor, TexHogGabor, and TexDwtGabor) and 1
quadruplet (TexDwtHogGabor). For each of the datasets, we got three sets of results, as depicted
in Figures 4–6, for Dex, Manifest, and Composite datasets, respectively.
• Features effect: In this experiment, we identified the best hybrid feature combination and obtained

Accuracy, Recall, Precision, and F1 score metrics for each of the three datasets. The performance
metrics of the four classifiers were compared to find the best classifier. These results are presented
in Tables 4–6, for Tex, TexHog, and TexDwt feature combinations, respectively.
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• Cross Validation: In this experiment, we performed 10-fold cross validation to get an estimate on
the suitability of the ML classifier models for classifying the unseen image data of the Android
malware. These results are presented in Table 7, where only the best feature combination (TexHog)
is studied.
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Figure 4. Classifier accuracies from Dex dataset for all feature combinations.
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Figure 5. Classifier accuracies from Manifest dataset for all feature combinations.
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Figure 6. Classifier accuracies from Composite dataset for all feature combinations.

4.2. Performance metrics

The following performance metrics were used to evaluate the ML classifier models.

Accuracy =
(T P + T N)

(T P + T N + FP + FN)
(4.1)

Precision =
T P

(T P + FP)
(4.2)

Recall =
T P

(T P + FN)
(4.3)

F1 score =
(2 × Recall × Precision)

(Recall + Precision)
(4.4)

where TP, FP, FN, and TN are true positives, false positives, false negatives and true negatives,
respectively.

4.3. Results & discussion

We now begin our results presentation and discussion along the same lines as described in the
experimental setup above.

4.3.1. Dataset effect

The objective of this experiment is to find how the ML classifiers perform across different datasets.
As we mentioned earlier, we have three image datasets obtained from the Dex file, Manifest file, and the
Composite file and four feature extraction techniques.
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• Dex dataset: In Figure 4, we show the accuracy results for the Dex dataset for 15 hybrid combinations
of the feature types for four ML classifiers. The following observations can be readily made from this
figure. First, RF classifier performance is the best as compared to MLP, SVM, and NB. For example,
in the case of TFs, the accuracies of RF, MLP, SVM, and NB are 90.05, 81.45, 75.79, and 61.99%,
respectively. Similar trends are observed even when the features are combined as a pair, triplets,
or quadruplets. Second, the NB classifier is the one which has the least classification performance
across all feature combinations. Third, the hybrid combinations of features do not seem to have
a positive effect on the performance, at least in the Dex dataset scenario. Fourth, the maximum
accuracy of 90.05% is obtained in the Dex dataset for the RF classifier with the TFs alone.
• Manifest dataset: Moving on to the Manifest dataset results, we observe that there is an increase in

the performance results. As can be seen from Figure 5 for the TFs, we obtain accuracies of 90.56,
76.63, 85.39, and 60.45% for RF, MLP, SVM, and NB, respectively. However, the increase in the
performance is for RF and SVM classifiers only. One important conclusion which we can make is
that the Manifest dataset must be a preferred choice (as compared to Dex dataset) for classifying
Android apps as Botnet or Benign. Another observation which can be made is that in this case, the
hybrid feature combination is providing a better performance as compared to a single feature set.
For example, while using RF with TFs alone, we get an accuracy of 90.56%, but by combining the
TFs with DWT features, the accuracy improves to 92.36% (an increase of 1.8%). The maximum
accuracy of 93.03% and a recall of 97.1% is obtained for RF classifier with the combination of
Texture and HOG features.
• Composite dataset: Further, we observe the performance of the ML classifiers on the Composite

dataset for all the feature combinations. It was found that this dataset resulted in reduced accuracies
as compared to the manifest dataset. As can be seen from Fig 6, for the TFs we obtain accuracies
of 89.86, 76.35, 75.45, and 58.33% for RF, MLP, SVM, and NB, respectively. The decrease in
the performance is for all the classifiers. One important conclusion which we can make is that
the Composite dataset is not to be preferred when (as compared to Manifest dataset) classifying
Android apps as Botnet or Benign. Another observation from these results is that the hybrid feature
combination is still providing a better performance as compared to single feature set. For example,
while using RF, we get average accuracies as 85.75, 88.21, 89.86, and 89.86% for the single, pairs,
triplets, and quadruplet feature combinations, respectively. The maximum accuracy of 92.57% is
obtained for the RF classifier with the combination of Texture and DWT features.
• Summary of dataset effect: It was interesting to look at the trends for the ML classifiers across the

datasets, which is depicted in Figure 7. It can be observed that the Dex dataset provides a lower
performance as compared to the Manifest dataset. However, when we use the Composite dataset,
the performance decreases. In general, all the ML classifiers perform the best for the Manifest
dataset (RF is 91%, MLP is 82.46%, and SVM is 83.55%), with an exception of the NB classifier.
It should be noted that these accuracies are averaged over all feature combinations. Again, it can
be seen that RF is the best performer and NB is the least one. So, the conclusion is to use Manifest
dataset for identifying and classifying Android malware as botnet or benign.
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Figure 7. Effect of datasets on accuracies of ML classifiers.

4.3.2. Features effect

The objective of this experiment is to find how the ML classifiers perform based on the type and
combinations of image-based data features. As we mentioned earlier, we have four feature extraction
approaches, namely, Tex, Dwt, Hog, and Gabor, and three datasets, namely, Dex, Manifest, and
Composite. Due to the combination of the features, we propose the term hybridization levels, which can
take values of Single, Pairs, Triplets, and Quadruplet. We now present our observations and discussion
related to the effect of features on the classifier performance.

• Hybridization effect: In order to find the effect of hybridization levels on the ML performance, we
first considered the Manifest dataset results. The reason for choosing this dataset for the study
was based on the fact that in the previous results, we came to the conclusion that the Manifest
dataset was the best option (as compared to the Dex and Composite datasets) for classifying the
Android malware. Since there are multiple combinations in each hybridization level, we calculated
the average accuracies for all the four ML classifiers, and the results are depicted in Figure 8.
We can conclude from the results that there is, in general, an increasing trend in the accuracies as
the hybridization level increases. However, this conclusion is surely true for MLP (accuracy values
of 77.02% for Single, 83.2% for Pairs, 85.67% for Triplets, and 86.7% for Quadruplet). For the
other classifiers (RF, SVM, and NB), an interesting phenomenon is observed for the Quadruplet
case, where the accuracy almost saturates or even decreases. These results also clearly depict
the overall accuracy results across the four ML classifiers, where the best one is the RF and the
worst performer is the NB. SVM and MLP are average performers with similar accuracy results.
From these observations, we conclude that RF is the best performer in terms of accuracy and the
variation in its performance is the least, and as such it is a stable ML classifier. On the other hand,
due to an increase in the features, the MLP classifier shows an increased accuracy performance.
• Hybridization level-wise performance: The next objective was to find the hybridization level-wise

best ML performer. These results are for the RF classifier as it was found to be the best among the
four classifiers. However, we present the accuracies which are averaged over the three datasets.
Due to the space limitations, we only present the final average results. For the Single level case, the
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best performer was the Tex features with an accuracy of 90.56% (see Table 4). In the Pairs level,
the best feature combination was TexHog features with an accuracy of 93.03%. As we increase the
level to Triplets, 92.36% was the best accuracy given by the combination of TexDwtHog. Finally,
in the Quadruplet case, the accuracy was found to be 91.24%. The conclusion of this study is that
for the RF classifier (the best classifier), the best combination of features is TexHog, which means
a hybridization level of Pairs is sufficient to give the best performance. There is no further gain
achieved in the case of higher hybridization levels.
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Figure 8. Effect of hybridization level on accuracies for the Manifest dataset.

Table 4. Testing results for three datasets using only Texture features.

Dataset Classifier Accuracy Recall Precision F1 score

Dex

RF 90.05 0.926 0.880 0.839
MLP 81.45 0.902 0.858 0.818
SVM 75.79 0.848 0.828 0.808
NB 61.99 0.636 0.678 0.725

Manifest

RF 90.56 0.949 0.908 0.870
MLP 76.63 0.836 0.865 0.896
SVM 85.39 1.000 0.805 0.674
NB 60.45 0.575 0.614 0.658

Composite

RF 89.86 0.937 0.888 0.845
MLP 76.35 0.882 0.868 0.855
SVM 75.45 1.000 0.653 0.485
NB 58.33 0.679 0.682 0.686

• Highest performing features: To find the top three feature set performers, we focused only on
the maximum accuracies for the RF classifier for the Manifest dataset. It was found that the
best accuracy of 93.03% was obtained for the TexHog, followed by 92.36% for TexDwt and
TexDwtHog (tied together). These results are also verified from the previous conclusion obtained
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during the hybridization level-wise performance above. This study concludes another interesting
observation that out of the four feature extraction approaches, only Tex, Dwt, and Hog features
are found among the top performers, and the Gabor approach is not contributing much to the
classification performance. Now, in Table 5 (for TexHog case) and Table 6 (for TexDwt case),
we present all the four performance metrics (Accuracy, Recall, Precision, and F1 score) to get
an overall behavior of the classifiers. Also, we present the results across all the three datasets.
The conclusion is that the best performer is the RF classifier for the Manifest dataset using the
TexHog feature combination by providing a classification accuracy of 93.03% and a recall of 97.1%.
However, if someone is interested in using a single feature only, then Tex feature can give a maximum
accuracy of 90.56% with the Manifest dataset. The results of TexDwtHog were not presented since it
had similar performance as compared to the TexDwt, which could be achieved by combining only
two types of features.

Table 5. Testing results for three datasets using Texture and HOG features.

Dataset Classifier Accuracy Recall Precision F1 score

Dex

RF 89.39 0.888 0.877 0.865
MLP 84.02 0.844 0.857 0.870
SVM 80.14 1.000 0.705 0.544
NB 70.95 0.660 0.672 0.684

Manifest

RF 93.03 0.971 0.915 0.865
MLP 86.97 0.850 0.850 0.850
SVM 84.91 1.000 0.790 0.653
NB 62.92 0.560 0.612 0.674

Composite

RF 89.19 0.934 0.867 0.808
MLP 84.46 0.823 0.821 0.819
SVM 77.70 1.000 0.657 0.490
NB 68.69 0.650 0.631 0.613

Table 6. Testing results for three datasets using Texture and DWT features.

Dataset Classifier Accuracy Recall Precision F1 score

Dex

RF 88.71 0.882 0.868 0.855
MLP 79.73 0.767 0.767 0.767
SVM 77.88 1.000 0.660 0.492
NB 67.65 0.609 0.657 0.714

Manifest

RF 92.36 0.954 0.908 0.865
MLP 81.80 0.783 0.793 0.803
SVM 85.62 1.000 0.801 0.668
NB 68.31 0.638 0.630 0.622

Composite

RF 92.57 0.935 0.912 0.891
MLP 83.11 0.812 0.805 0.799
SVM 75.90 1.000 0.616 0.446
NB 73.42 0.717 0.678 0.642
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• Summary of features effect: The experiments conducted for a total 15 features combinations
involving 4 distinct feature extraction approaches (namely, Tex, Hog, Dwt, and Gabor) provided
significant insights related to the proposed feature hybridization concept. However, it is worth
stating the time overhead involved in feature extraction and fusion process. For a total of 4429
images (2500 clean and 1929 botnet), it took a processing time of 173.84, 177.54, 177.16, and
171.75s for Tex, Hog, Dwt, and Gabor features, respectively. It was observed that the time
overheads are very close to each other due to the fact that significant time in the process was
involved in loading the images (using Matlab R2021a functions) and the actual feature extraction
time was significantly lower. The specifications of the machine used had an Intel CPU core i7 11th
gen with a clock frequency of 3.0 GHz and a RAM of 16 GB running on Windows 11.

4.3.3. Cross validation results

The ML classifiers which have been developed using the training images dataset need to be checked
for their generalization ability on the unseen dataset. To verify this, we performed a 10-fold cross
validation of the ML classifiers using the validation dataset. The average validation accuracies have
been depicted in Table 7 for all the four classifiers. In this table we present the best performing feature
combination of TexHog with a hybridization level of Pairs. It should be recalled that the best test
classification accuracy of 93.03% was achieved with RF classifier for the Manifest dataset. However,
for the sake of comparison, we present the Accuracy, Recall, Precision, and F1 score for all the three
datasets. It can be observed from Table 7 that the accuracy of RF is the highest for the Manifest
dataset (89.92%), followed by Dex dataset (87.87%) and Composite dataset (87.04%). Similar patterns
were observed for the test accuracies earlier (refer to Table 5). Also, it should be noted that the other
performance metrics follow the same pattern with RF as the best classifier, followed by MLP, SVM, and
NB. These validation results verify that the ML models are valid and can be used for testing unknown
Android apps for being botnet or benign with a high level of accuracy. One point, however, to be
observed is that the validation accuracies are lower as compared to the test accuracies and it gives an
indication that an increase in the dataset sizes are warranted.

Table 7. 10-fold cross validation results for three datasets using Texture and HOG features.

Dataset Classifier Accuracy Recall Precision F1 score

Dex

RF 87.87 0.917 0.850 0.793
MLP 83.31 0.810 0.807 0.805
SVM 77.38 0.999 0.648 0.480
NB 66.67 0.612 0.625 0.639

Manifest

RF 89.92 0.946 0.875 0.814
MLP 86.56 0.848 0.844 0.842
SVM 84.51 1.000 0.782 0.643
NB 60.05 0.533 0.582 0.642

Composite

RF 87.04 0.898 0.842 0.794
MLP 83.46 0.810 0.810 0.811
SVM 75.56 1.000 0.610 0.439
NB 66.40 0.609 0.625 0.641
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4.3.4. Results from DL approaches

One of the experiments was very important from the point of view of comparing our manual feature
extraction based approach with automated feature extraction from DL approaches. For this purpose, we
considered six most prominent pretrained CNN models, namely, MobileNetV2, InceptionResNetV2,
ResNet101, VGG16, VGG19, and DenseNet121. Both the ML and DL approaches were tested on the
DEX and Manifest datasets, which were images-based datasets from ISCX Android Botnet repository.
Since for both the approaches the inputs were image-based data, it was fair to compare their performance
in terms of classification accuracy, precision, recall, and F1 score. These results for all the six pretrained
CNN models are presented in Table 8. It is to be noted that these results have also been reported in our
work in [21], but have been included here as well for the ease of readability and comparison purposes.

Table 8. Testing results of six pretrained DL models on DEX and Manifest datasets.

DEX Manifest

Model Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

MobileNetV2 88.0 86.3 86.8 86.6 91.0 89.2 89.9 89.5
InceptionResNetV2 85.0 83.1 83.8 83.5 87.0 85.2 85.8 85.6
ResNet101 90.0 88.1 88.7 88.4 91.0 89.2 89.8 89.5
VGG16 88.0 86.2 86.8 86.5 89.0 87.3 87.8 87.4
VGG19 89.0 87.2 87.8 87.5 89.0 87.1 87.9 87.6
DenseNet121 84.0 82.3 82.9 82.7 90.0 88.3 88.8 88.5

The results with DL models are also exhibiting similar trends as observed with our results in the
ML-based approach. In general, the classification accuracy was better from the Manifest dataset as
compared to the DEX dataset. For example, the MobileNetV2 had a better accuracy (e.g. 91%) for
the Manifest dataset as compared to the Dex dataset (e.g. 88%). Also, the MobileNetV2 was the best
performer in the Manifest dataset category (accuracy of 91%), with ResNet101 having very similar
performance. However, since MobileNetV2 has a simpler model structure and is less computationally
demanding, it is considered the best performer both in terms of accuracy and lesser complexity. The
summary of this comparison with our approach is presented subsequently.

4.3.5. Confusion matrices

Finally, we look at the figures from the confusion matrices to correlate with the accuracy performance
results obtained earlier. Figure 9 presents the confusion matrices for three best feature combinations for the
RF classifier obtained from the test classification results, namely, Tex, TexHog, and TexDwt cases for the
Manifest dataset. The fourth confusion matrix is for the case of DL approach (specifically, MobileNetV2)
for the purpose of comparison with our approach. First, on the average, the benign class prediction
percentages (94.9% for Tex, 97.1% for TexHog, and 95.4% for TexDwt) are better than the botnet class
percentages (90.4% for Tex, 90.7% for TexHog, and 90.5% for TexDwt). The reason for this is that we
have more training examples of benign class (2500 instances) as compared to the botnet class (1929
instances). Second, the errors in predicting the botnet as benign (5.1% for Tex, 2.9% for TexHog, and
4.6% for TexDwt) are less than the errors in predicting benign as botnet (9.6% for Tex, 9.3% for TexHog,
and 9.5% for TexDwt). This is a desirable characteristic of our model as it is fine to get more false
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alarms (predicting benign as botnet), than to miss detect a botnet and treat it as benign. Third, the best
prediction accuracy (90.7%) of the botnet class is achieved by the TexHog case, which was also the best
scenario in the case of the test and validation results. Finally, it is observed that the DL approach has lower
values for the two metrics, namely, benign class prediction (92.2%), botnet class prediction (89.2%), and
higher for two metrics, namely, predicting botnet as benign (7.8%) and benign as botnet (10.8%). These
values from the confusion matrices clearly prove that our proposed approach (feature hybridization with
classification using ML classifiers) performs better than the DL approaches (automated feature extraction
and classification).
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Figure 9. Confusion matrices for the best combination of features for Manifest dataset.

4.3.6. Comparison with existing research

In order to put our research work in context of the existing results available in the literature, we now
provide a comparative study. For this purpose, first we looked at some existing solutions, which have
extensively studied classification performance and their robustness has been validated [39]. Even though
they performed very well, the datasets used by these approaches are different than the ISCX dataset, these
solutions cater to dynamic AMD and are focused on obfuscation studies, and ours is a static approach. As
such, a direct comparison could not be made in the context and scope of the proposed work. However, we
have included a comparative study table with nonimage-based AMD approaches (see Table 9). This table
shows that our approach outperforms some of the approaches in the nonimage-based category, which are
both using handcrafted features and automated features, in spite of being applied to varied datasets. To the
best of our knowledge the ISCX dataset was not used for nonimage-based study.

Then, we explored the comparison with image-based approaches a summary of which is presented in
Table 10. It is to be noted that the comparison cannot be done on a one-to-one basis, as the experimental
setup, conditions, and model parameters are bound to be different. The factors which we have tried to
make common for comparison is the dataset (ISCX), dataset type (manifest features), classifier (RF),
and the feature extraction technique (HOG features). First, we compare our validation accuracy results
with the paper by Yerima et. al [5] who has also used the Manifest dataset, and in this case we get
about 1% increased accuracy of 88.2% as compared to theirs (which was 87.1%). However, they get
better performance when using the XGBoost classifier, which cannot be compared with RF classifier
performance as in our case. Second, for the testing recall results, the approach in [18] achieves a
performance of 93% and our approach reaches 97.1%. We have achieved a significant performance
gain of about 4%, however they have used auto-encoders along with HOG, while we have used TFs
with HOG. It is well-known that auto-encoders [37], which belong to the DL category of models, also
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require high computational resources. It is to be noted that the testing accuracy results are comparable
for both the approaches. So, in conclusion, we achieve better results with reduced model training costs
and computational complexity. A quantitative comparison in terms of computational requirements (e.g.,
central processing unit (CPU)/ graphics processing unit (GPU) cycles, memory capacity, and execution
times) is envisioned as a future extension to the research presented in this paper.

Finally, the last comparison is with the approaches in the automated feature extraction category using
DL approaches. Here, we demonstrate a very important insight, namely, handcrafted features-based
approaches (our approach) can perform better or at par with DL-based approaches. In one of the recent
works [21], the authors have used the same image-based dataset (ISCX Android Botnet) and experimented
with the Transfer Learning feature of popular pretrained CNN models, such as MobileNetV2, RestNet101,
InceptionRestNetV2, VGG16, VGG19, and DenseNet121. They achieved a maximum classification
testing accuracy of 91% for the Manifest dataset using the MobileNetV2 classifier. This concludes
that DL (or CNN) approaches fail to reach the classification testing accuracy of 93.03% (falls short
by about 2%, which is a significant accuracy loss), which we have achieved in the current paper by
leveraging the handcrafted feature extraction. In another work by Ganesh et. al [38], they used the
CNN model that automatically extracts the features (from a different dataset called as Drebin) as
compared to our handcrafted features. While they have used complex classification model (CNNs) with
higher computational costs, we have used manually-extracted features which are not computationally
demanding, and the results are the same (93% testing classification accuracy). In conclusion, our study
achieves either better performance or comparable to the ones in the extant literature, with reduced
computational complexity.

Table 9. Comparison with existing research on nonimage-based AMD approaches.

Paper Approach Dataset Results Pros Cons
Zhang et. al
(2023) [11]

RF with PCA CICAndMal2017 90.33% (test
accuracy)

PCA with cascaded
RF

Comparison with
automated feature
extraction is missing

Hasan et. al
(2021) [13]

Various
traditional ML
approaches

Android
Malware
Dataset

91.6%
accuracy

Robustness analysis
done

Could have included
system calls
information

Millar et. al
(2021) [15]

Basic CNN
models

Android
Malware
Dataset

91.00%
(testing
accuracy)

Caters to new
malware detection

Basic CNN to be
compared with pre-
trained DL models

Mohammed
et. al
(2022) [16]

1-D CNN
models

Various datasets
combined

90.00%
accuracy

Uses Manifest and
Intents information

Lower classification
accuracy

Proposed
approach
(this paper)

(HOG +

Texture) with
RF

ISCX Android
Botnet
(manifest)

93.03%
(testing
accuracy)

Feature
hybridization (TF,
DWT, HOG, Gabor)
and comparison
with DL approaches

Comparison with
dynamic approaches
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Table 10. Comparative study with existing research on image-based AMD approaches.

Paper Approach Dataset Results Pros Cons
Yerima et. al
(2022) [5]

HOG with RF ISCX Android
Botnet
(manifest)

87.1%
(validation
accuracy)

Composite image of
DEX and manifest
features

Comparison with
DNN is missing

Proposed
approach (this
paper)

HOG with RF ISCX Android
Botnet
(manifest)

88.2%
(validation
accuracy)

Choice and control
over features, Feature
hybridization (TF,
DWT, HOG, Gabor)

Comparison with
DNNs in terms
of computational
requirements

Yerima et. al
(2021) [18]

(HOG +

Autoencoders)
with RF

ISCX Android
Botnet
(manifest)

93% (testing
recall)

Six different ML
classifiers compared

Comparison with
DL was expected

Proposed
approach (this
paper)

(HOG +

Texture) with
RF

ISCX Android
Botnet
(manifest)

97.1%
(testing
recall)

Choice and control
over features, Feature
hybridization (TF,
DWT, HOG, Gabor)

Comparison with
DNNs in terms
of computational
requirements

Mohammed et.
al (2022) [21]

Transfer
Learning on
pre-trained
CNN models

ISCX Android
Botnet
(manifest)

91.00%
(testing
accuracy)

Uses six popular pre-
trained CNN models
with Manifest images

The testing
accuracy obtained
is 2% less than
our approach

Proposed
approach (this
paper)

(HOG +

Texture) with
RF

ISCX Android
Botnet
(manifest)

93.03%
(testing
accuracy)

Choice and control
over features, Feature
hybridization (TF,
DWT, HOG, Gabor)

Comparison with
DNNs in terms
of computational
requirements

4.3.7. Insights summary

Based on the experiments we conducted and the results achieved therein, we now present meaningful
and valuable insights to the researchers in this domain in a concise manner below:

• Best ML Classifier: RF was the best ML classifier in terms of classification accuracy across all
datasets and feature space (see Table 5).
• Consistent ML Classifier: MLP is the only classifier which provided a consistent improvement in

the classification accuracy with an increase in the number of hybridization levels (see Figure 8).
• Spatial v/s Frequency domain features: One of the very important insight was the consistently

better performance of spatial domain features as compared to frequency domain features. More
specifically, HOG and Texture features gave the highest classification accuracy with various ML
classifiers (see Table 5).
• Pairs hybridization is the best: It was found with experimentation that going from single to a pair

of features resulted in an improved performance in the case of RF, NB, and SVM. A further increase
in the hybridization levels (triplets and quadruplets) did not achieve any further gain (see Figure 8).
• Feature agnostic ML classifier: It was found with experimentation that going from single to a pair

of features resulted in an improved performance in the case of RF, NB, and SVM. A further increase
in the hybridization levels (triplets and quadruplets) did not achieve any further gain (see Figure 8).
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• Best dataset: The Manifest dataset outperformed the DEX and composite datasets. This led us to
reason that the metadata present in the Manifest file is a much more valuable and contributing factor
in the classification process as compared to the actual data present in the DEX file (see Figure 7).
• ML v/s DL: Based on the experimental results, it was concluded that for the image-based ISCX

Android Botnet dataset, the use of ML classifiers on the handcrafted features achieved better
performance (by about 2% improved classification accuracy) as compared to DL/CNN classifiers
using automated feature extraction (see Table 10).
• Comparison criteria: We have observed that most of the research work in the literature focuses

only on the classification accuracy as a criteria for performance comparison. However, we believe
that other criteria such as computational requirements (e.g., CPU/GPU cycles, memory capacity,
and execution times), control over feature space and model choice, versatility, and explainability
should also be taken into account (see Tables 10, 9 and 1).

4.3.8. System optimization, evolution, and sustainability

There have been numerous AMD solutions presented in the past and will also be presented in the
future. The proposed solution in this paper is one among such multitude of solutions. The AMD solution
presented in this paper could only be evaluated on a certain limited set of data, ML classifiers, and
feature extraction techniques due to the predefined scope of work (feature hybridization being the core
contribution and novelty) and constraints of time. In order to critically evaluate our proposed solution
and find means for improvements, we consider the following three crucial issues of system optimization,
evolution, and sustainability.

• Optimization: There have been efforts in other security research domains with respect to efficiency
improvements and safety considerations, by borrowing concepts from network theory and control
theory. Heterogeniety in the Android Malware samples can be addressed by the use of heterogenous
network representational learning to mine implicit patterns for advanced malware identification [40].
Further, to cater for the need to identify new/recent malwares, it is recommended to incorporate
online learning mechanisms as opposed to routine offline learning from static data. The system
would benefit from a feedback control loop from the output (e.g., reduction in classification
accuracy) to the input (e.g., to increase the dataset samples or the learning rate) for optimized
performance [41].
• Evolution: One of the important considerations in the performance measurement of a system

is its variability with the passage of time. An AMD solution implemented today will have a
degraded performance tomorrow as it will not be able to identify new malwares. This requires that
the system is studied over an extended period of time [42]. In order to capture the time-varying
system behavior, provisions need to be made for retraining the models at regular intervals [43].
Therefore, the results presented earlier lose their significance as new data becomes available for
fine-tuning the ML models. Thus, further work can focus on incorporating and modeling metrics
like malware data evolution rate, labeled data availability, resource constraints, and performance
accuracy targets.
• Sustainability: There has been significant attention to making AMD systems as sustainable as

possible [44]. This led to the concept of self-evolving AMD systems which stand the test of time
and can identify even the most recent malwares. As time passes, the APK evolves based on the
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user needs and requirements, and this also results in the increase in the type and severity of Android
malwares. In order to be abreast of such evolutions, AMD systems need to be assessed at regular
intervals and over a long span of time. Solutions such as Droidspan [45] have incorporated the metric
of sustainability, which gives us an indication of how frequently the ML model requires updates if
the features become deteriorated. As far as a qualitative comparison is concerned, our proposed work
tries to reasonably match the performance of exisitng approaches, as we are using a dataset which
spans over 5 years as compared to other approaches which cover more time span (e.g., 8 years). It
falls short in accuracy and model updatability, but scores better in terms of feature engineering due
to the hybridized nature of feature modeling.

5. Conclusions and future work

To address the need for an automated and efficient botnet detection system, this research paper
proposed, implemented, and evaluated an image-based AMD framework using the feature hybridization
concept for identifying and classifying botnet infected Android applications. To achieve this objective,
the framework consisted of Android malware data collection, conversion from file-based data to images,
feature extraction, and applying supervised ML classifiers. The ISCX Android Botnet dataset was
converted to images and categorized as Dex, Manifest, and Composite datasets. Feature extraction
from images was performed using Texture, HOG, DWT, and Gabor approaches and all of their fifteen
combinations were used to test the classifier performances. The ML classifiers used to identify the
Android botnets were NB, SVM, MLP, and RF. It was found from the experimental results that the
best ML classifier was RF, followed by MLP, SVM, and NB, due to the fact that RF ensembles the
prediction results of multiple classifiers for improved classification accuracy. The dataset which resulted
in the best prediction was the Manifest dataset, since the metadata present in the manifest file contains
comprehensive, valuable, and distinguishable information about specific Android application, which
aided in assessing the trustworthiness of the application.

In the single features case, the Texture features provided the best performance because they
extracted both the first and second order spatial features from the images, which significantly
distinguished a botnet image from a benign image. The best performing hybridization level was a
pairing of Texture and HOG features, which confirmed the fact that an ensemble of features from the
same domain (spatial) provided enhanced information to make an informed classification decision.
The best classification testing accuracy of 93.03% and a recall of 97.1% was achieved by the RF
classifier for the Manifest dataset with the hybridized features coming from Texture and HOG
approaches. Some of the areas for further improvement in this research are to perform multi-class
classification to identify the fourteen different families of Android malware from the ISCX Android
Botnet dataset. Another interesting study could involve the comparison (in terms of computational
requirements) of handcrafted feature extraction approaches to automated feature extraction using DL
models such as CNN, you only look once (YOLO), or pretrained DNNs (e.g., GoogleNet, AlexNet,
or VGG19).
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