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Abstract: Although the data fusion of hyperspectral images (HSI) and light detection and ranging 

(LiDAR) has provided significant gains for land-cover classification, it also brings technical obstacles 

(i.e., it is difficult to capture discriminative local and global spatial-spectral from redundant data and 

build interactions between heterogeneous data). In this paper, a classification network named enhanced 

spectral attention and adaptive spatial learning guided network (ESASNet) is proposed for the joint 

use of HSI and LiDAR. Specifically, first, by combining a convolutional neural network (CNN) with 

the transformer, adaptive spatial learning (ASL) and enhanced spectral learning (ESL) are proposed to 

learn the spectral-spatial features from the HSI data and the elevation features from the LiDAR data 

in the local and global receptive field. Second, considering the characteristics of HSI with a continuous, 

narrowband spectrum, ESL is designed by adding enhanced local self-attention to enhance the mining 

of the spectral correlations across the adjacent spectrum. Finally, a feature fusion module is proposed 

to ensure an efficient information exchange between HSI and LiDAR during spectral features and 

spatial feature fusion. Experimental evaluations on the HSI-LiDAR dataset clearly illustrate that 

ESASNet performs better in feature extraction than the state-of-the-art methods. The code is available 

at https://github.com/AirsterMode/ESASNet. 
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1. Introduction 

Remote sensing technologies enable us to gather information about the earth’s surface, which 

may be difficult or impossible to obtain through other means, including rich information about land 

cover, vegetation, bodies of water, and so on. However, a single remote sensing data source is often 

weak to process the edges of complex regions. Hyperspectral images (HSIs) have rich spectral 

information, from visible light to near-infrared. However, it is difficult to recognize objects with the 

same spectrum within HSIs. Conversely, the digital surface model (DSM) based on a laser radar can 

provide accurate height and shape information, though it cannot separate different materials with the 

same height. HSIs and DSM based on light detection and ranging (LiDAR) can complement each 

other’s information. In many areas, the combination of HSI and LiDAR data has been used successfully, 

such as forest monitoring [1], aboveground biomass estimation [2], fuel type mapping [3], and land-

cover classification. The combination of HSI and LiDAR data has provided a positive influence on the 

classification accuracy, as well as increased the difficulty of feature extraction and provided the 

challenge of feature fusion between heterogeneous data. 

Most works focused on improving the effectiveness of feature extraction. Machine learning 

technology was first applied in the HSI and LiDAR data fusion-based classification. Different mapping 

methods, such as multi-core learning, was applied to achieve different classification tasks [4]. However, 

the basic feature stacking approach is inefficient, as it results in the Hughes phenomenon. As part of 

the solution to the problem of a low efficiency for the feature stacking method, there have been many multi-

modal data fusion-based classification methods, which are often grouped into three categories: pixel-level 

fusion, feature-level fusion, and decision-level fusion [5–9]. However, the above methods are highly 

dependent on the quality of the extracted features, which limits their applicability in complex scenes. 

CNN are widely used in deep learning due to their excellent ability to extract local features. Early 

research focused on dual-stream networks, which were designed into two network branches to learn 

data of two different modalities, such as a two-branch CNN [10]. The HSI and LiDAR networks were 

trained separately and the features extracted by the two networks were connected; then, they were 

fused through the fully connected layer to obtain the classification result. In [11], a novel framework 

for the fusion of hyperspectral images and LiDAR-derived elevation data was proposed on the basis of 

CNN and composite kernels. However, as the number of CNN network layers increased, the classification 

accuracy began to decline. To alleviate the problem of a decrease in accuracy, Ge et al. [12] developed a 

fusion network on the basis of a deep residual network. The network extracts spectral and spatial 

information from HSI and LiDAR data, respectively, by applying extinction contour, depth residual block, 

and the local binary method. To further improve the classification accuracy, Zhao et al. took the detailed 

spectral signatures of the HSI and the elevation information of the LiDAR into account and proposed a 

deep CNN architecture which used a hierarchical random walk layer [13]. The local feature extraction 

capability based on CNN significantly improved the classification performance of the HSI and 

LiDAR. However, the CNN lacked perception of long-range information, which limited the 

classification performance. 

Transformers have gradually attracted attention due to their ability to model long sequence 

correlations. Dosovitskiy et al. discovered the long-range correlation between image patches, and 

therefore applied a Transformer from natural language processing to image processing [14]. Some 

works have also applied it to remote sensing classification tasks. Yu et al. [15] implemented a capsule 

vision transformer (ViT), which effectively integrated cross contextual semantic features by utilizing 
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the interaction of long-range global features at different contextual scales. Roy et al. [16] proposed a 

multimodal fusion transformer for the joint classification of HSI and LiDAR. This method used 

LiDAR data as a learnable token to perform feature learning together with HSI tokens. This operation 

could not fully integrate the valid information from these two types of data. Feng et al. [17] proposed 

the Spectral Spatial Elevation Fusion Transformer, which utilized a spatial information recognition module 

and a sliding group spectrum embedding module to integrate the features of hyperspectral and LiDAR to 

a certain extent. Although the Transformer exceled at aggregating information embedded in spectral 

features, it was difficult to define local semantic aspects and did not fully utilize local spatial information. 

To fully utilize the information in HSI and LiDAR data and improve the classification accuracy, 

some works attempted to combine CNN and the Transformer for the hyperspectral LiDAR classification. 

Zhao et al. [18] proposed a dual branch method that consisted of a layered CNN and a Transformer 

network to fuse multi-source heterogeneous information and to improve the joint classification 

performance. However, the above work ignores the domain gap between LiDAR and HSI. There is 

still no tailored combined strategy of a CNN and a Transformer for LiDAR and HSI data separately. 

For the challenge of feature fusion between heterogeneous data, some works aim to enhance the 

information exchange between HSI and Lidar branches. Wang et al. proposed the modal attention (MA) 

module to integrate the features of hyperspectral and LiDAR and established a feature interaction between 

different modal data [19]. In [20], Wang et al. proposed an adaptive mutual learning fusion network, 

which fused features more effectively by adaptively balancing the weights of HSI and LiDAR features. 

Mohla et al. [21] proposed to use the cross-attention (CA) module to emphasize the spatial information 

of HSI by simultaneously harnessing the LiDAR-derived attention map and adopted the self-attention 

mechanism for a deep feature fusion. However, the above network did not fully exchange information 

between the spectral and spatial information of the HSI data and the elevation information of LiDAR. 

To address the above challenges, in this work, we put forward a network, called the Enhanced 

Spectral Attention and Adaptive Spatial Learning Guided Network (ESASNet), for a more accurate 

data joint classification of HSI and LiDAR. We tailor the feature extraction modules for HSI and 

LiDAR based on a combined CNN with the Transformer. Specifically, ESL is designed to learn subtle 

differences between the spectral dimensions and better utilize the HSI spectral features in a local and 

global receptive field. The local feature extraction capabilities of a CNN are utilized to ensure the 

reliability of the shallow spatial features and the spectral features. HSI has a continuous, narrowband 

spectrum, which means the adjacent spectrum with a similar wavelength has more correlations. ESL 

uses the enhanced local self-attention (ELSA) module [22] to increase the channel capacity and achieve 

an efficient non-local feature extraction by combining attention maps and static matrices through 

Ghosts. LiDAR data is considered to provide accurate elevation information to complement the 

spectral details of HSI. ASL is proposed for LiDAR data to guarantee the global information of LiDAR 

while promoting the preliminary spatial feature fusion of HSI and LiDAR. For the depth feature fusion, 

a feature fusion (FF) module is designed. This gives more weight to the global information and further 

improvest the information interaction of the depth features. Cross-attention is used to exchange the 

global information on the spatial features and the spectral features. In short, our contributions are 

summarized as follows: 

1) We designed a CNN-Transformer-based feature extraction structure, which provides a great 

assistance in extracting spectral information from the hyperspectral data and spatial information from LiDAR. 

2) We designed an ESL module which fully utilizes a spectral correlation to efficiently extract 

more spectral information. 
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3) We designed a more effective FF module based on the cross attention. This module can fully 

promote the interaction between the spectral and spatial information, thus enabling classification 

networks to better balance the information of the spectral and spatial branches. 

4) We conducted sufficient experiments to validate the adaptability of our network in different 

scenarios and the effectiveness of various network modules. 

2. Materials and methods 

Two kinds of remote sensing sources, namely HSI and LiDAR, are combined to classify pixel-

based images. 

Specifically, a hyperspectral image 
M N D

hsi

 X   and the associated LiDAR image 

1M N

lidar

 X  covering the same area on the surface of the earth are given as follows, where M  and 

N  represent the width and height of these two images, respectively, and D  stands for the number 

of original HSI channels.  

We need to perform a Principal components analysis operation on hsiX   to reduce the 

computational redundancy. The HSI channel will be compressed into d as 
M N d

hsi

 X . 

For the training set, its patched image can be expressed as 1={ | , }i i i T

hsi lid i=X X X X , where T  is the 

total number of samples used to train the model. 
i m n d

hsi

 X   and 
1i m n

lid

 X   are the HSI and LiDAR training patches, respectively. 

1{ }i T

iy ==Y   is the ground truth label, where {1,2,..., }i Cy  , and C   represent the classes of the 

ground truth. 

The ESASNet contains two main parts: a spectral-spatial feature learning (SSFL) module and a 

FF module. The detailed architecture of the proposed ESASNet network is shown within Figures 1 and 2. 

The pseudocode is provided within Algorithm 1. 

 

Figure 1. Network structure diagram. 
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Figure 2. a) The content of spatial transformer. b) The content of enhanced local self-attention. 

Algorithm 1 Pseudocode of the proposed ESASNet in Pytorch-Like style 

Require: 

1: X_HSI, X_LiDAR: Dimension reduced hyperspectral image and corresponding LiDAR data; 

2: Network Hyper-parameters: Adam optimizer, Learning rate = 0.01, Batch size = 256, Epochs = 100; 

Ensure: Ensembles of classifier; 

3: # X_hsi, X_lid: Preprocess original inputa data to m × n patch data; Y: GroundTruth label 

4: for (X_hsi, X_lid, Y) in data_loader: # load a mini-batch data 

5:   # Spectral-spatial feature learning (SSFL) Module 

6:   # F_hsi (HSI-based features): m × n × 64; F_spectral, F_spatial: m × n × 64 

7:   F_hsi = Feature_HSI (X_hsi)  

8:   R_spectral, R_spatial = Spectral_Weight (X_hsi), Spatial_Weight (X_hsi, X_lid, α1, α2)  

9:   F_spectral, F_spatial = R_spectral × F_hsi, R_spatial × F_hsi  

10:  # Feature fusion (FF) module  

11:  res1, res2, inter1, inter2 = information_exchange (F_spectral, F_spatial) 

12:  v1,v2 = cross_attn (inter1, inter2) 

13:  out1 = norm (F_spectral + cat (res1, v1)) 

14:  out2 = norm (F_spatial + cat (res2, v2)) 

15:  feature_fusion = channel_emb (out1, out2) 

16:  # Multimodal data classification (MDC) module  

17:  loss = Margin_Loss (nn.softmax (nn.Linear (nn.AdaptiveAvgPool (feature_fusion))), Y)  

18:  # Update trainable parameters  

19: Return classification map; 

2.1. Spectral spatial feature learning module 

1) Hyperspectral feature extractor: The hyperspectral feature extractor consists of 16, 32, and 64 

filters to extract the HSI’s primary features. The primary feature hsiF  is a patch of size 64m n  . 

Then, the extractor multiplies hsiF  by the spectral feature weight spe , and the spatial feature weight 

spa  (obtained from the following two methods) ensures the stability of the spectral and spatial features. 
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2) ESL module: ELSA is a self-attention mechanism, which overcomes the weakness of the self-

attention mechanism in local finer-level feature learning and has an acceptable cost. In terms of the 

spectral information extraction, using ELSA to highlight the spectral channel of every pixel will further 

enhance the extraction of the spectral features. There are two parts within the module; one is a 

Hadamard attention, which makes up for the lack of LSA in local fine feature learning while reducing 

the memory usage; and the other is the Ghost head, which improves the channel capacity, instead of 

the attention. Specifically, we perform a convolution operation with 64 filters on the input HSI patch 
p pd

hsi p

 

− X . It is made into the size of (64, , )p p ; then, through the enhanced self-local attention 

block, the spectral-level feature weight spe  is as follows: 

 ( ( ( ( ))))spe hsi p hsi pNorm MLP ELSA Norm− − = +X X , (1) 

where ( )Norm   refers to the general regularization method, ( )MLP   is the multi-layer perceptron, 

and ( )ELSA   is the ELSA method. These methods do not change the size of the input data. The final 

spectral feature to be obtained is 
64 p p

spe

 F . 

We can multiply the spectral level feature spe  by the primary feature hsiF  as follows: 

 spe spe hsi F F . (2) 

3) ASL module: We use HSI and LiDAR data to extract the spatial information. A two-layer 

convolution (with 32 and 64 filters, respectively) is used to process the HSI patch 
p pd

hsi p

 

− X  and 

the LiDAR patch data 
1 p p

lidar p

 

− X , and ensures that they end up with the same number of channels 

(
64 d d

hsi conv

 

− X , 
64 d d

lidar conv

 

− X ), where p p  is the size of the patch. 

Taking the benefits of lidar imagery for spatial information representation into account, we use a 

Transformer to enhance the performance of LiDAR in the spatial information. However, we still set 

up an adaptive spatial feature fusion layer to ensure the spatial performance of HSI, as shown below: 

 1 2Transformer( )spa hsi conv lidar conv − − = +X X , (3) 

where 1   and 2   represent various HSI and spatial weights of the enhanced LiDAR images, 

respectively. This makes it possible to adjust the weight ratio more flexibly to increase precision, and 

to adapt the loss function to the whole learning process. Transformer( )   is a two-layer MLP 

composition vision Transformer method. Consequently, to obtain the final spatial features 
64 p p

spa

 F , we multiply the spatial-level feature weight spaF  by the main feature hsiF  as follows: 

 spa spa hsi F F . (4) 

2.2. Feature fusion module 

The FF module is composed of an information exchange stage and a fusion stage. This module finally 

fuses the input the spectral-spatial features (
64

spe

p p F  and 
64 p p

spa

 F ) into a final fusion weight. 
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2.2.1. Information exchange stage 

At this stage, the previously obtained spatial and spectral features exchange their information by 

means of a symmetrical cross-attention structure. Since the input spectral features and the spatial 

features have the same size, the spectral path is used as a representative for the introduction. 

We flatten the input features of size 
64 p p 

  to 
64 N

 , where N p p=   . Then, the linear 

embeddings are used to generate two Ci N  vectors of the same size, which represent the residual 

vector resX  and the interaction vector interX . 

We use a cross-attention mechanism, which is applied on the interaction vectors of the spatial 

features and the spectral features, to achieve a sufficient information exchange between the two 

features. Specifically, the interaction vector will be embedded into the key K  and value V  of each 

head, both of which are of size Chead N . The output is the multiplication of this interaction vector 

with the context vector of another modality path as a cross-attention result: 

 
T

spe spe spe=G K V , (5) 

 = T

spa spa spaG K V , (6) 

 = Softmax( )inter

spe spe spaU X G , (7) 

 = Softmax( )inter

spa spa speU X G . (8) 

Among them, G stands for the global context vector and U  stands for the results generated by the 

two branches. Then, the obtained result vector U   and the residual vector resX   are concatenated. 

Finally, we take the second linear embedding and change the size of the features to 
64 p p 

. 

2.2.2. Fusion stage 

In the second stage of the FFM, where a precise fusion is required, we use a simple channel 

embedding to merge the features of the two paths, which is achieved by a 1 × 1 convolutional layer. In 

addition, a deep convolution layer DWConv 3 × 3 is implemented to realize the skip connection 

structure. In this way, the pooled features of size 
128 p p 

  are fused into the final output of size 

64 p p 
, namely the final fused features Oi . 

2.3. Multi-modal data classification module 

Our task goal is the same as AM3Net [20]; therefore, we refer to the MDC module in it. For the 

i-th training sample, we take the final fused features iO  to the multimodal data classification module 

(MDC module) to classify the input pixels. After global average pooling (GAP) and fully connected 

(FC) layers, we convert iO  to a vector of size (1, C), where C is the number of pixel categories. 

Finally, we use the Softmax function to convert the obtained result into a probability distribution 
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i 1ˆ ( ( ( ))) C

iSoftmax FC GAP = y O  . In addition, we use MarginLoss to evaluate the difference 

between the prediction result of the model 
i

ŷ  and the GroundTruth 
i

y , then continuously modify 

the weight of the network. 

After the training of ESASNet is completed, the test pixels 
test

X   and their corresponding 

prediction results 
1ˆ test Cy  can be determined according to the maximum probability as follows: 

 ˆ( ) arg max( )test testClass =X y , (9) 

where ( ) [1,..., ]testClass CX . Therefore, we perform the same processing on all pixels; then, we can 

obtain the whole classification map. 

3. Results and discussion 

3.1. Datasets 

Experiments on the Houston2013, Trento, and Augsburg datasets are carried out in this section. 

The Houston2013 dataset consists of an HSI and a LiDAR image, with the HSI data was acquired by 

an AISA Eagle sensor. This dataset has a total of 15 different classes [23]. Figure 3(a) is the pseudo-

color image of Houston. Figure 3(c),(e) are the 2D LiDAR-derived DSM image and the groundtruth, 

respectively. The Trento dataset is also an HSI-LiDAR pair dataset, which contains 6 classes [24]. 

Figure 3(b) is the pseudo-color image of Trento, (d) is the 2D LiDAR-derived DSM image of Trento, 

and (f) is the groundtruth. Figure 3(g),(h) are the class names of the Houston and Trento datasets, 

respectively. The Augsburg dataset contains 7 classes [25]. Figure 4 is the detail visualization of 

Augsburg. Specially, Figure 4(a) is a pseudo-color image for the HSI, (b) is the 2D LiDAR-derived 

DSM image, (c) is the groundtruth, and (d) are class names. 

As shown by the exact number of the training and test samples in Table 1, the training and test 

data sets for the Houston, Trent, and Augsburg data sets do not overlap. 

 

Figure 3. Visualization of the Houston and Trento datasets. 
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Figure 4. Visualization of the Augsburg dataset. 

Table 1. Train and test samples in each class of Houston2013, Trento, and Augsburg datasets. 

Houston2013 

No. Training Test Totle No. Training Test Totle 

1 198 1053 1251 9 193 1059 1252 

2 190 1064 1254 10 191 1036 1227 

3 192 505 697 11 181 1054 1235 

4 188 1056 1244 12 192 1041 1233 

5 186 1056 1242 13 184 285 469 

6 182 143 325 14 181 247 428 

7 196 1072 1268 15 187 473 660 

8 191 1053 1244 Totle 2832 12197 15029 

Trento 

No. Training Test Totle No. Training Test Totle 

1 129 3905 4034 5 184 10317 10501 

2 125 2778 2903 6 122 3052 3174 

3 105 374 479 
Totle 819 29395 30214 

4 154 8969 9123 

Augsburg 

No. Training Test Totle No. Training Test Totle 

1 146 13361 13507 5 52 523 575 

2 264 30065 30329 6 7 1638 1645 

3 21 3830 3851 7 23 1507 1530 

4 248 26609 26857 Totle 761 77533 78294 

3.2. Quantitative metrics 

The evaluation of classification accuracy in this paper includes overall accuracy (OA), average 

accuracy (AA), and Kappa coefficient (Kappa). These are the three common target indicators that we 

have specified to objectively and effectively assess the classification effect of the HSI-LiDAR fusion 

images. In particular, the percentage of correctly classified pixels throughout all tests is determined by 
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the OA value, and the average of all the class accuracies is shown by the AA value. A multivariate 

statistical technique that accounts for the classification process’s uncertainty elements is kappa 

statistics, which is related to the classification accuracy. 

3.3. Ablation study 

The ablation experiment will arrange and combine the three proposed modules (ESL, ASL, and 

FF) to demonstrate their effectiveness. 

3.3.1. Impact of ESL 

As shown in Table 2, when we used ESL to learn the spectral features of the HSI data, we achieved 

a better performance on the three datasets. The experimental results demonstrate that the ESL module 

extracts information more efficiently in the hyperspectral branch. However, this accuracy improvement 

is limited, mainly due to an insufficient information exchange during the fusion of the original 

hyperspectral features and the LiDAR features, which results in a loss of a lot of information. 

Table 2. Ablation analysis of the designed ESL module, ASL module and FF module 

in terms of OA (%), AA (%), and KAPPA (× 100) on Houston2013, Trento and 

Augsburg datasets. 

Module Trento Houston Augsburg 

ESL ASL FF OA AA Kappa OA AA Kappa OA AA Kappa 

× × × 
98.12 

(0.56) 

97.29 

(0.67) 

97.47 

(0.76) 

95.55 

(1.95) 

96.30 

(1.52) 

95.16 

(2.12) 

77.15 

(0.89) 

36.70 

(0.39) 

65.79 

(1.32) 

√ × × 
98.56 

(0.39) 

97.78 

(0.45) 

98.06 

(0.52) 

95.62 

(3.27) 

96.40 

(0.24) 

95.23 

(3.56) 

77.40 

(1.36) 

36.82 

(0.63) 

66.11 

(2.05) 

× √ × 
98.22 

(0.25) 

97.43 

(0.63) 

97.60 

(0.34) 

96.73 

(0.76) 

97.24 

(0.66) 

96.44 

(0.83) 

79.82 

(2.24) 

43.34 

(5.83) 

70.44 

(2.70) 

× × √ 
99.04 

(0.12) 

98.59 

(0.12) 

98.70 

(0.16) 

98.05 

(0.22) 

98.50 

(0.16) 

97.88 

(0.24) 

80.90 

(2.76) 

67.28 

(1.21) 

73.23 

(3.27) 

√ √ × 
98.85 

(0.18) 

98.63 

(0.17) 

98.46 

(0.24) 

96.98 

(1.66) 

97.54 

(1.23) 

96.71 

(1.81) 

83.03 

(1.45) 

39.52 

(2.98) 

74.58 

(1.95) 

√ × √ 
99.06 

(0.18) 

98.53 

(0.15) 

98.73 

(0.25) 

98.52 

(0.19) 

98.54 

(0.18) 

98.21 

(0.22) 

83.58 

(2.45) 

68.93 

(0.91) 

76.69 

(3.00) 

× √ √ 
99.03 

(0.10) 

98.56 

(0.16) 

98.69 

(0.14) 

98.40 

(0.20) 

98.68 

(0.17) 

98.26 

(0.22) 

84.02 

(0.99) 

64.99 

(0.85) 

77.05 

(1.31) 

√ √ √ 
99.26 

(0.09) 

98.91 

(0.13) 

99.01 

(0.12) 

98.69 

(0.18) 

98.82 

(0.17) 

98.57 

(0.19) 

85.11 

(1.04) 

68.99 

(0.89) 

78.79 

(1.34) 

3.3.2. Impact of ASL 

As shown in Table 2, we only use the effects of the ASL module. For the three datasets, the OA 
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increased by 0.10, 1.18, and 2.67% respectively, the AA increased by 0.14, 0.94, and 6.64% 

respectively, and Kappa increased by 0.13, 1.28, and 4.65% respectively. This proves our point of 

using a Transformer to preserve the global information of LiDAR. However, in the network with ESL 

and ASL, we noticed that although the OA improved, the AA of the Augsburg dataset decreased. The 

reason could be that ESL pays more attention to local finer spectral details, while ASL pays more 

attention to the global information. The FF module of the original network did not fully complete the 

information exchange during the fusion process, which led to the classification results being more 

biased towards certain classes. Overall, the ASL module was more effective. 

3.3.3. Impact of FF 

As shown in Table 2, we only used the FF module in the network. As the most important part of 

the entire network, the FF module significantly improved the accuracy of all three datasets. The 

improvement of the three metrics (OA, AA, and Kappa) proved the effectiveness of the FF module. It 

is worth noting that training the network without the FF module will result in the classification being 

focused on specific categories. This is particularly significant on the Augsburg dataset (with a low AA 

metric). After adding the FF module, it uses cross attention to exchange the global information between 

the spectral and spatial features. The FF module enables an effective interaction between the 

hyperspectral information and the LiDAR information, which avoids a reliance on a single branch to 

solve the classification problems. All networks with added FF modules performed better in AA on the 

Augsburg dataset. The classification result is no longer focused on certain classes. 

3.4. Comparative experiments 

For the classification of HSI and LiDAR data, we performed comparative experiments on the 

following joint methods. The evaluation methods included a visual contrast and a quantitative analysis 

of the following: 

TB-CNN [26]: A two-tunnel CNN network that extracts hyperspectral and LiDAR features, respectively. 

EndNet [27]: A network that follows the deep encoder-decoder network architecture. This 

network uses the reconstruction strategy to merge the characteristics. 

MDL-Late [28]: A concatenation-based fusion framework, whose feature fusion process is in the 

late stage. 

MDL-Cross [28]: The goal of the framework is to understand the compact feature representations 

across modalities by interactively updating the parameters. 

S2Enet [29]: A spatial-spectral enhancement module used by the framework to facilitate a cross-

modal information exchange. Specifically, the spectral enhancement module improves the spectral 

representation of the LiDAR data using hyperspectral features, and the spatial enhancement module 

improves the spatial presentation of the hyperspectral data using LiDAR features. 

AM3Net [20]: An adaptive network using multi-scale fusion and mutual learning strategies. It 

uses a combination operator to process the HSI data and uses a spatial feature extraction module to 

extract spatial features of HSI and LiDAR and adaptively fuse them. 

S2EFT [17]: A classification method of the HSI and LiDAR data based on a spectral-spatial-

elevation fusion Transformer (S2EFT) framework. Moreover, the Transformer framework is 

introduced into the task of a multi-source RS image classification. 

GAMF [30]: A novel, graph-attention based, multimodal fusion network (GAMF). It employs 

three major components, including an HIS-LiDAR feature extractor, a graph-attention based fusion 
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module, and a classification module. 

Table 3. The classification result of Houston2013 dataset. 

No. Classes TB-CNN EndNet MDL-Late MDL-Cross S2ENet AM3Net S2EFT GAMF Ours 

1 Grass-healthy 
83.07 

(5.80) 

83.09 

(3.21) 

83.55 

(0.54) 

81.35 

(2.24) 

80.02 

(15.82) 

94.94 

(1.46) 

82.43 

(6.23) 

92.34 

(2.52) 

99.24 

(0.60) 

2 Grass-stressed 
96.13 

(3.88) 

95.25 

(4.81) 

99.08 

(1.76) 

98.79 

(1.56) 

99.87 

(0.28) 

93.87 

(1.89) 

94.92 

(1.41) 

90.38 

(2.67) 

99.56 

(0.44) 

3 Grass-synthetic 
98.38 

(1.48) 

99.83 

(0.16) 

99.29 

(0.71) 

92.06 

(4.42) 

99.91 

(0.26) 

97.57 

(1.12) 

99.40 

(0.35) 

99.56 

(0.32) 

99.61 

(0.21) 

4 Tree 
99.18 

(0.77) 

97.09 

(1.56) 

99.35 

(0.61) 

98.14 

(2.13) 

98.42 

(3.22) 

94.02 

(1.55) 

97.34 

(1.72) 

99.83 

(0.12) 

95.64 

(1.10) 

5 Soil 
99.14 

(1.74) 

98.25 

(1.26) 

99.74 

(0.21) 

96.95 

(6.58) 

99.99 

(0.03) 

98.87 

(0.86) 

98.57 

(0.96) 

97.43 

(1.35) 

99.97 

(0.06) 

6 Water 
94.93 

(3.13) 

94.83 

(4.12) 

97.34 

(1.95) 

98.88 

(1.68) 

97.52 

(3.31) 

98.25 

(0.47) 

94.40 

(2.79) 

84.76 

(5.64) 

97.30 

(1.13) 

7 Residential 
82.81 

(4.09) 

79.87 

(4.75) 

90.79 

(2.74) 

92.38 

(4.60) 

88.31 

(6.17) 

92.87 

(1.52) 

91.79 

(5.28) 

96.59 

(1.75) 

99.08 

(0.61) 

8 Commercial 
84.92 

(9.78) 

81.32 

(6.44) 

86.14 

(9.90) 

92.62 

(4.37) 

90.62 

(7.93) 

95.92 

(1.64) 

78.44 

(11.78) 

80.12 

(7.54) 

98.51 

(0.51) 

9 Road 
85.51 

(6.50) 

71.32 

(15.59) 

88.10 

(3.43) 

91.73 

(5.87) 

85.30 

(6.99) 

93.59 

(1.55) 

78.75 

(13.23) 

86.01 

(4.73) 

96.44 

(0.73) 

10 Highway 
58.86 

(14.04) 

70.35 

(11.86) 

82.71 

(9.97) 

64.95 

(13.47) 

84.74 

(7.87) 

99.63 

(0.62) 

55.69 

(21.67) 

76.97 

(10.21) 

99.98 

(0.06) 

11 Railway 
93.76 

(2.70) 

94.74 

(3.43) 

92.53 

(3.29) 

95.50 

(3.39) 

96.46 

(2.17) 

99.35 

(0.67) 

80.07 

(7.43) 

90.82 

(3.46) 

99.95 

(0.09) 

12 Parking Lot-1 
82.93 

(4.52) 

75.48 

(13.47) 

83.43 

(3.83) 

64.97 

(13.38) 

81.38 

(7.54) 

89.26 

(21.96) 

73.48 

(9.80) 

84.87 

(2.89) 

97.26 

(1.32) 

13 Parking Lot-2 
92.91 

(2.24) 

77.47 

(7.32) 

92.60 

(0.66) 

92.56 

(2.81) 

89.14 

(3.54) 

98.95 

(1.99) 

62.45 

(17.26) 

94.29 

(1.93) 

100.00 

(0.00) 

14 Tennis court 
97.13 

(2.24) 

99.62 

(0.77) 

97.21 

(2.24) 

96.92 

(2.68) 

99.05 

(1.74) 

100.00 

(0.00) 

97.57 

(1.12) 

96.39 

(1.48) 

100.00 

(0.00) 

15 Running track 
98.54 

(1.95) 

98.45 

(1.04) 

99.83 

(0.32) 

95.11 

(7.63) 

99.69 

(0.62) 

97.37 

(1.52) 

97.67 

(1.26) 

98.59 

(0.83) 

99.78 

(0.39) 

OA 
88.08 

(1.80) 

86.12 

(2.14) 

91.55 

(1.26) 

88.71 

(1.90) 

91.50 

(2.15) 

95.55 

(1.95) 

84.41 

(1.78) 

90.66 

(0.97) 

98.69 

(0.18) 

AA 
89.88 

(1.46) 

87.80 

(1.82) 

92.78 

(0.96) 

90.19 

(1.68) 

92.69 

(1.75) 

96.60 

(1.52) 

85.54 

(2.27) 

91.26 

(1.84) 

98.82 

(0.17) 

Kappa 
87.07 

(1.96) 

84.95 

(2.32) 

90.84 

(1.37) 

87.75 

(2.07) 

90.78 

(2.34) 

95.16 

(2.12) 

83.10 

(2.69) 

89.91 

(2.07) 

98.57 

(0.19) 

We conducted extensive experiments, with the percentage of different methods being averaged 

after 20 repeated experiments. The numbers in parentheses in the table represent the standard deviation 

of the repeated experiments. 
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As shown in Figure 5 and Table 3, the Houston dataset has a large scale and a sparse distribution 

of labeled samples, leading to an increased similarity between classes. ESASNet resists this similarity 

problem to a certain extent. Compared with the other methods, ESASNet achieved the most consistent 

results with the GroundTruth, and the OA, AA, and Kappa improved by 2.96, 2.47, and 3.22%, 

respectively, compared with the baseline network. 

 

Figure 5. Classification maps obtained by seven methods on the Houston dataset: (a) TB-

CNN (80.08%), (b) EndNet (86.12%), (c) MDL-Late (91.55%), (d) DML-Cross (88.71%), 

(e) S2ENet (91.50%), (f) AM3Net (95.55%), (g) S2EFT (84.41%), (h) GAMF (90.66%), 

(i) Ours (98.69%), and (j) GroundTruth. 

The evaluation criteria and classification maps comparison outcomes for the Trento dataset are 

presented in both Table 4 and Figure 6. The samples of different categories in this dataset are often 

concentrated in different regions, which is convenient for an accurate classification. The buildings and 

roads significantly differed in the elevation information; due to the concentration of the classification 

samples, the LiDAR data will improve the classification accuracy. For some networks that do not use 

the attention mechanism, such as TB-CNN, there are occasional error points in the central area of the 

classification block. ESASNet uses the cross-attention mechanism to ensure the global information of 

the feature; therefore, it achieved better results. The OA, AA, and Kappa increased by 1.14, 1.62, 

and 1.54%, respectively. The comparative experiments and classification performance on the 

Augsburg dataset are listed in Table 5 and Figure 7. The distribution of the labeled samples in the 

Augsburg dataset is highly dense, and the training samples are less than those in the Houston, Trento, 

and other datasets, therefore making the classification task more difficult. Because AM3Net does not 

have an effective attention mechanism, it is easy to cause the classification to be biased towards 

specific categories in the case of a small number of training samples, which results in a poor 

performance. ESASNet uses ELSA to enhance the local finer features, uses a Transformer as attention 

to enhance the global information of LiDAR, and fully exchanges information during FF to obtain 
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obvious performance gains. From the index results, ESASNet improved by 7.96% on OA, 32.29% on 

AA, and 13% on Kappa compared to AM3Net. As proposed, the ESASNet model yields smoother 

classification outcomes as observed through visual comparisons, where it exhibits a reduced intra-class 

noise and sharper classification boundaries. 

 

Figure 6. Classification maps obtained by seven methods on the Trento dataset: (a) TB-

CNN (97.23%), (b) EndNet (86.43%), (c) MDL-Late (97.57%), (d) DML-Cross (97.65%), 

(e) S2ENet (93.69%), (f) AM3Net (98.12%), (g) S2EFT (97.08%), (h) GAMF (97.08%), 

(i) Ours (99.26%), and (j) GroundTruth. 

 

Figure 7. Classification maps obtained by seven methods on the Augsburg dataset: (a) TB-

CNN (81.46%), (b) EndNet (74.56%), (c) MDL-Late (83.40%), (d) DML-Cross (85.09%), 

(e) S2ENet (84.45%), (f) AM3Net (77.15%), (g) S2EFT (73.35%), (h) GAMF (83.83%), 

(i) Ours (85.11%), and (j) GroundTruth. 
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Table 4. The classification result of Trento dataset. 

No. Classes TB-CNN EndNet MDL-Late MDL-Cross S2ENet AM3Net S2EFT GAMF Ours 

1 Apples 
98.94 

(2.89) 

89.68 

(11.60) 

99.76 

(0.15) 

99.75 

(0.21) 

92.58 

(22.04) 

97.37 

(2.16) 

95.56 

(3.62) 

97.41 

(0.47) 

99.64 

(0.27) 

2 Buildings 
98.46 

(0.44) 

96.43 

(0.75) 

97.41 

(0.42) 

96.80 

(1.44) 

97.67 

(0.89) 

97.15 

(2.35) 

98.45 

(1.83) 

99.90 

(0.04) 

97.53 

(0.87) 

3 Ground 
88.55 

(4.22) 

96.93 

(1.36) 

86.84 

(4.79) 

92.03 

(6.28) 

95.95 

(15.98) 

97.75 

(1.94) 

92.78 

(5.96) 

84.93 

(7.43) 

99.96 

(0.10) 

4 Woods 
99.82 

(0.37) 

98.50 

(1.39) 

99.69 

(0.32) 

99.93 

(0.11) 

91.20 

(22.45) 

99.42 

(0.77) 

100 

(0.00) 

99.93 

(0.07) 

99.97 

(0.05) 

5 Vineyard 
96.68 

(6.14) 

70.64 

(18.51) 

97.92 

(1.02) 

99.54 

(0.48) 

95.82 

(9.52) 

99.01 

(0.87) 

97.87 

(1.29) 

99.80 

(0.21) 

99.67 

(0.17) 

6 Roads 
89.65 

(1.17) 

89.21 

(0.63) 

89.33 

(1.90) 

83.84 

(7.24) 

91.21 

(1.29) 

93.05 

(2.35) 

87.05 

(2.20) 

85.98 

(0.46) 

96.70 

(0.95) 

OA 
97.23 

(2.08) 

86.43 

(5.65) 

97.57 

(0.42) 

97.65 

(0.68) 

93.69 

(9.91) 

98.12 

(0.56) 

97.08 

(1.88) 

97.91 

(0.18) 

99.26 

(0.09) 

AA 
95.35 

(1.07) 

90.23 

(2.20) 

95.16 

(0.78) 

95.31 

(1.29) 

94.07 

(9.64) 

97.29 

(0.67) 

95.29 

(2.25) 

94.66 

(1.33) 

98.91 

(0.13) 

Kappa 
96.34 

(2.70) 

82.53 

(6.86) 

96.77 

(0.56) 

96.87 

(0.91) 

91.53 

(13.73) 

97.47 

(0.76) 

96.10 

(1.21) 

97.20 

(0.24) 

99.01 

(0.12) 

Table 5. The classification result of Augsburg dataset. 

No. Classes TB-CNN EndNet MDL-Late MDL-Cross S2ENet AM3Net S2EFT GAMF Ours 

1 Trees 
86.41 

(10.46) 

82.46 

(11.11) 

84.12 

(5.12) 

89.45 

(4.44) 

86.97 

(4.67) 

88.15 

(1.57) 

85.43 

(3.52) 

92.94 

(2.53) 

94.67 

(0.74) 

2 Grass pure 
87.34 

(20.30) 

82.55 

(5.29) 

94.92 

(2.52) 

92.66 

(8.77) 

92.92 

(6.95) 

84.13 

(2.48) 

80.92 

(4.55) 

96.57 

(1.54) 

86.79 

(2.32) 

3 Grass surface 
49.25 

(10.98) 

36.63 

(10.98) 

58.38 

(14.51) 

53.72 

(24.89) 

62.28 

(14.37) 

0.00 

(0.00) 

44.30 

(16.89) 

0.00 

(0.00) 

58.16 

(2.18) 

4 Dirt and sand 
84.70 

(3.54) 

73.79 

(6.76) 

80.86 

(4.09) 

87.09 

(4.88) 

84.24 

(4.58) 

84.62 

(1.95) 

70.51 

(8.72) 

88.61 

(2.84) 

87.84 

(1.60) 

5 Road materials 
58.16 

(15.74) 

24.89 

(15.16) 

56.93 

(19.11) 

54.06 

(18.65) 

53.13 

(18.57) 

0.00 

(0.00) 

36.90 

(12.68) 

0.00 

(0.00) 

83.35 

(1.65) 

6 Water 
12.82 

(7.26) 

10.78 

(4.30) 

16.12 

(9.35) 

3.67 

(4.61) 

13.18 

(6.63) 

0.00 

(0.00) 

8.11 

(4.53) 

0.00 

(0.00) 

25.73 

(3.09) 

7 
Building 

Shadow 

27.72 

(11.25) 

42.24 

(4.57) 

37.87 

(10.80) 

39.45 

(7.32) 

41.73 

(7.95) 

0.00 

(0.00) 

22.76 

(11.69) 

0.00 

(0.00) 

46.38 

(4.80) 

OA 
81.46 

(8.53) 

74.56 

(2.35) 

83.40 

(2.07) 

85.09 

(2.91) 

84.45 

(3.41) 

77.15 

(0.89) 

73.35 

(2.73) 

83.83 

(0.79) 

85.11 

(1.04) 

AA 
58.06 

(5.90) 

50.47 

(2.76) 

61.32 

(3.24) 

60.01 

(4.60) 

62.06 

(3.88) 

36.70 

(0.39) 

49.85 

(3.32) 

39.73 

(0.47) 

68.99 

(0.89) 

Kappa 
73.67 

(11.99) 

63.47 

(3.00) 

76.53 

(2.62) 

78.84 

(3.72) 

77.97 

(4.89) 

65.79 

(1.32) 

61.71 

(2.82) 

76.20 

(1.83) 

78.79 

(1.34) 
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Table 6 represents the impact of different patch sizes on the network on three datasets. We use 

OA for comparison, with standard deviation in parentheses. The table shows an optimal value for 

accuracy with patch size of 25 × 25 for the Trento dataset and the Augsburg dataset, and 29 × 29 for 

the Houston dataset. These results also indicate that our network requires a larger patch to enhance the 

ability of the feature extraction. 

Table 6. Impact of different patch size for the OA on three datasets. 

Patch size Trento Houston Augsbarg 

9 × 9 94.45 (0.71) 95.63 (0.38) 65.22 (2.92) 

13 × 13 97.82 (0.61) 98.19 (0.24) 71.63 (4.99) 

17 × 17 98.53 (0.51) 98.15 (0.21) 80.20 (1.95) 

21 × 21 98.42 (0.31) 98.30 (0.24) 81.24 (2.05) 

25 × 25 99.26 (0.09) 98.41 (0.21) 85.11 (1.04) 

29 × 29 98.69 (0.18) 98.69 (0.18) 81.94 (1.63) 

33 × 33 98.04 (0.23) 98.31 (0.14) 81.43 (1.79) 

3.5. Impart of training samples 

Evaluating the performance of a model under different sample sizes is a key aspect of evaluating 

the model quality. Deep learning models typically require a small amount of training data to achieve 

advanced learning capabilities due to the current task typically using training samples determined by 

predecessors. Therefore, we used the OA obtained from 20, 40, 60, 80, and 100% of the original 

training samples for comparison. 

For the convenience of the comparison, we only used four representative networks (S2EFT, 

GAMF, AM3Net, and Our) for comparison on the Trento dataset. As shown in Figure 8, we used OA 

as a measurement metric. 

OA

(%)

Rate  

Figure 8. OA of original training samples with different rates (20, 40, 60, 80, 100%). 

GAMF and S2EFT, which are excellent hyperspectral classification networks, performed well on 

the original sample size. However, the small number of training samples lead to a rapid decrease in 

their accuracy. The shallow feature extraction of GAMF and the lack of shallow feature processing in 

S2EFT resulted in an excessive loss of their shallow feature information. AM3Net adopts dual branch 

shallow feature extraction to ensure an information extraction. Therefore, the accuracy is ensured 

under different samples. 
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Due to its efficient spectral spatial feature extraction module, our network minimizes the loss of 

the shallow feature information. Additionally, the efficient fusion module ensures the effectiveness of 

the information exchange. Our network enables us to maintain a good performance even in low 

sample situations. 

4. Conclusions 

This paper proposed a network called ESASNet for HSI-LiDAR data fusion and classification. 

ESASNet proposed a CNN-Transformer-based feature extraction structure to provide a great assistance 

in extracting spectral information from hyperspectral data and spatial information from LiDAR. To 

fully utilize the spectral correlation and extract more spectral information more efficiently, the ESL 

module was designed to maximize the extraction of spectral information from HSI. A more efficient 

FF module was proposed to assign more weight to the global information and further improve the 

information exchange of the deep features. Experiments on HSI-LiDAR fusion datasets, such as 

Houston, Trento, and AugsBurg, showed that the ESASNet network had a higher accuracy and was 

better than some of the most advanced methods at present. 
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