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Abstract: After Thomas James Willmore, many authors were looking for an immersion of a manifold
in Euclidean space or Riemannian manifold, which is the critical point of functionals whose integrands
depend on the mean curvature or the norm of the second fundamental form. We study a new
Willmore-type variational problem for a foliated hypersurface in Euclidean space. Its general version
is the Reilly-type functional, where the integrand depends on elementary symmetric functions of the
eigenvalues of the restriction on the leaves of the second fundamental form. We find the 1st and 2nd
variations of such functionals and show the conformal invariance of some of them. For a critical
hypersurface with a transversally harmonic foliation, we derive the Euler-Lagrange equation and give
examples with low-dimensional foliations. We present critical hypersurfaces of revolution and show
that they are local minima for special variations of immersion.
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1. Introduction

Many authors, e.g., [1–5], were looking for an immersion ϕ : Mn → M̄n+1 of a smooth manifold
Mn (n ≥ 2) into a Riemannian manifold (M̄, ḡ) or Euclidean space Rn+1, which is a critical point of the
following functionals for compactly supported variations of ϕ:

Wn,p =

∫
M

Hp dV, Jn,p =

∫
M
∥h ∥p dV. (1.1)

Here, dV is the volume form of the induced metric g = ⟨· , ·⟩ on M, h is the scalar second fundamental
form of ϕ(M), H = 1

n traceg h is the mean curvature, and p > 0. These functionals measure how
much ϕ(M) differs from a minimal hypersurface (H = 0) or a totally geodesic hypersurface (h = 0).
The actions (1.1) are a particular case of functionals

WFn =

∫
M

F(H) dV, JFn =

∫
M

F(∥h∥) dV,
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where F is a C3-regular function of one variable, e.g., [6–9]. For a closed smooth hypersurface Mn in
Rn+1, we get Wn,n ≥ Cn, where Cn =

2π(n+1)/2

Γ((n+1)/2) is the area of the unit n-sphere; the equality Wn,n = Cn

holds if and only if Mn is embedded as a hypersphere; see [1].
Variational problems for (1.1) were first posed by Willmore in [10] for W2,2, which belongs to

conformal geometry. The Euler-Lagrange equation for W2,2 is the well known elliptic PDE

∆H + 2 H(H2 − K) = 0, (1.2)

where ∆ is the Laplacian and K is the gaussian curvature of M2 ⊂ R3. Solutions of (1.2) are called
Willmore surfaces. An important class of Willmore surfaces in R3 arises from the stereographic
projection of minimal surfaces in the 3-sphere. By Lawson’s theorem, any compact, orientable surface
can be minimally embedded in the 3-sphere. For a closed orientable surface M in R3, the inequality
W2,2 ≥ C2 = 4π holds with the equality for round spheres. If M2 is a torus in R3, then, according to the
Willmore conjecture proven by Marques and Neves in [4], we have W2,2 ≥ 2 π2; the equality holds if
and only if the generating curve is a circle and the ratio of radii is 1

√
2
. Willmore surfaces have

applications in biophysics, computer graphics, materials science, architecture, etc., e.g., [11].
Reilly [12] and some mathematicians studied variations of more general functionals than (1.1):

WFn =

∫
M

F(σ1, . . . , σn) dV, JFn =

∫
M

F(τ1, . . . , τn) dV, (1.3)

where F ∈ C3(Rn). The elementary symmetric functions σr =
∑

i1<...<ir ki1 . . . kir (0 ≤ r ≤ n) of
the principal curvatures ki satisfy the equality

∑ n
r=0 σr tr = det(id T M + tA), where A is the Weingarten

operator, i.e., ⟨AX,Y⟩ = h(X,Y). The power sums of the principal curvatures, τi = ki
1+. . .+ki

n = trace Ai,
can be expressed as polynomials of σr using the Newton formulas, e.g., [13]. For example, σ0 = 1,
τ1 = σ1 = nH, σn = det A, τ2 = ∥h∥2, and 2σ2 = τ

2
1 − τ2. The r-th (r ≤ n) order Willmore functional,

introduced by Guo in [9],

Wconf
n,r =

∫
M

Q n/r
r dV, Qr =

∑r

j=0
(−1) j+1C j

rS
r− j
1 S j, (1.4)

is a special case of (1.3), invariant under the conformal group of (M̄, ḡ) and vanishing on totally
umbilical hypersurfaces. Here, S r = σr/Cr

n (where Cr
n =

n!
r!(n−r)! is a binomial coefficient) is the r-th

mean curvature function of a hypersurface. In particular, Q2 = S 2
1 − S 2 =

1
n2(n−1) ((n − 1)σ2

1 − 2 nσ2).
Examples of hypersurfaces in Rn+1 that are critical for (1.4) are given in [7, 8].

An interesting problem is the generalization of the Willmore functional to submanifolds with
additional structures, such as foliations or almost products. Let Mn (n ≥ 2) equipped with an
s-dimensional (1 ≤ s ≤ n) foliation F be immersed into a Riemannian manifold (M̄, ḡ). All leaves of
the foliation under consideration have the same dimension. Let hF be the restriction of the second
fundamental form of M on the leaves of F . Denote by τFi (1 ≤ i ≤ s) the power sums, σFr (1 ≤ r ≤ s)
elementary symmetric functions of the eigenvalues kF1 ≤ . . . ≤ kFs of hF , and set S Fr = σ

F
r /C

r
s. We

have τF1 = σ
F

1 = sHF = traceg hF , τF2 = ∥hF ∥
2, (τF1 )2 − τF2 = 2σF2 , etc. For foliation theory, we refer

to [14]. The extrinsic geometry of foliations was developed in [13]. We study Reilly-type functionals
for compactly supported variations of (Mn,F ) immersed in Rn+1:

WFn,s =

∫
M

F(σF1 , . . . , σ
F
s ) dV, JFn,s =

∫
M

F(τF1 , . . . , τ
F
s ) dV, (1.5)
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which, for s = n, reduces to (1.3). For F = (σF1 /s)p and F = (τF2 )p/2, the actions (1.5) read as

Wn,p,s =

∫
M

Hp
F

dV, Jn,p,s =

∫
M
∥hF ∥p dV, (1.6)

which reduces to (1.1) for s = n.

Remark 1. A foliated hypersurface in Rn+1, whose leaves {L} are minimal submanifolds in Rn+1 is
an example of a minimizer for Wn,p,s in (1.6) with even p. A foliated hypersurface in Rn+1 with an
asymptotic distribution TF (e.g., a ruled hypersurface) is a minimizer for Jn,p,s in (1.6). It is interesting
to find critical hypersurfaces for actions (1.6) with HF , 0 or hF , 0 on an open dense set of M.

The following special case of (1.5) is invariant under the conformal group of (M̄, ḡ), see Theorem 1:

Wconf
n,s,r =

∫
M

(QFr )n/r dV, QFr =
∑r

j=0
(−1) j+1C j

r(S
F

1 )r− jS Fj , r ≤ s, (1.7)

and reduces to (1.4) for s = n. Note that QF2 = (S F1 )2 − S F2 =
1

s2(s−1) ((s − 1)(σF1 )2 − 2sσF2 ) is true and
QFr = 0 if kF1 = . . . = kFs , e.g., for hypersurfaces of revolution in Rn+1 foliated by parallels.

We hope that foliated hypersurfaces, which are local minima for (1.5), will be useful for natural
sciences and technology related to layered (laminated) or non-isotropic materials.

The paper is organized as follows: Section 2 contains some lemmas that help us calculate variations
of Reilly-type functionals on foliated hypersurfaces in Rn+1. In Section 3, conformal invariance of (1.7)
is shown, the first variations of the functionals (1.5)–(1.7) are found, and the corresponding Euler-
Lagrange equations for the case of transversally harmonic (for example, Riemannian) foliation are
obtained. Then the second variation on critical hypersurfaces of some Willmore-type functionals is
calculated. In Section 4, applications to hypersurfaces with low-dimensional foliations are given, the
critical hypersurfaces of revolution for the actions (1.6) are presented, and it is shown that they are
local minima for special variations of immersion.

2. Auxiliary results

Let r : Mn → Rn+1 be an immersion of a manifold M into Rn+1 with Euclidean metric ḡ and
the Levi–Civita connection ∇̄. We identify M with its image r(M) and restrict our calculations to
a relatively compact neighborhood U ⊂ M with induced metric g = ⟨· , ·⟩ and normal coordinates
(x1, . . . , xn) centered at a point x ∈ M. Thus, gi j = δi j (the Kronecker symbol) and Γk

i j = 0 at x. We will
denote differentiation of a function f (or a tensor) with respect to the variable xi by fi.

Let ∂i = ∂/∂xi be the coordinate vector fields on U. So, the vectors ri = ∇̄∂ir form a local coordinate
basis for the tangent bundle T M along U, and we get g = gi j dxi dx j, where gi j = ḡ(ri, r j) = ⟨∂i, ∂ j⟩

and the Einstein summation rule is used. Let N be a unit normal vector field to M on U. The vectors
Ni = ∇̄∂iN belong to the tangent space TxM, i.e., ⟨Ni,N⟩ = 0.

Let h be the scalar second fundamental form of M with respect to unit normal N, A = −∇̄N the
Weingarten operator, and H = 1

n traceg h the mean curvature. Denote by h j the symmetric tensor dual
to A j, i.e., h j(X,Y) = ⟨A jX,Y⟩. For example, h2 = gklhlihk j dxidx j = hk

i hk j dxidx j.
Consider a one-parameter family of hypersurfaces rt = r + t u N (|t| < 1). We get a variation

δ r = u N, where δ = (d/dt)| t=0 is the variational derivative operator, and u : U → R is a smooth

Electronic Research Archive Volume 32, Issue 6, 4025–4042.



4028

function supported on a relatively compact neighborhood U. Obviously, (δ r)i = ui N + u Ni. The
Hessian of a function u is a (0,2)-tensor (Hess u)(X,Y) = X(Y(u)) − (∇X Y)u = (ui j − Γ

k
i juk)dxidx j;

see [15], where Γk
i j are the Christoffel symbols. The Laplacian is ∆u = traceg Hess u = gi jui j. Note that

⟨g,Hess u⟩ = ∆ u. The divergence of a vector field X = Xi∂i on M is div X = ∇iXi.

Lemma 1 (see [3] for n = 2). The following evolution equations are true:

δ gi j = −2 u hi j, (2.1)
δ gi j = 2 u hi j, (2.2)
δ hi j = ui j − uhl

i h jl ⇔ δ h = Hess u − u h2, (2.3)
δ ∥h∥2 = 2 ⟨h, uh2 + Hess u⟩, (2.4)
δ(nH) = ∆ u + u ∥h∥2, (2.5)
δ dV = −n uH dV. (2.6)

Proof. Using δ ri = ui N + u Ni, we calculate

⟨δ ri, r j⟩ = ⟨ui N + u Ni, r j⟩ = u ⟨Ni, r j⟩ = −u ⟨N, ri j⟩ = −u hi j.

Thus, since the symmetry hi j = h ji we get the equality (2.1): δ gi j = ⟨δ ri, r j⟩ + ⟨ri, δ r j⟩ = −2 u hi j.
From gilgl j = δ

i
j, it follows that (δgil)gl j = −gil(δgl j) = 2 u gilhl j; hence, (2.2) is true.

We will compute the variation of h. Using ⟨N,Ni⟩ = 0, we find

⟨N, δ ri j⟩ = ⟨N, (u N)i j⟩ = ui j − u ⟨Ni, N j⟩ = ui j − u ⟨hl
i rl, hk

j rk⟩ = ui j − u hl
i h jl.

Note that δN = ciri for some functions ci. Using ⟨N, r j⟩ = 0, we get

gi j ci = ⟨δN, r j⟩ = −⟨N, δ r j⟩ = −⟨N, u j N + u N j⟩ = −u j.

It follows that ci = −gi ju j and δN = −gi ju jri = −uiri. Using the Gauss equation for a hypersurface in
Rn+1, we get at x: ⟨δN, ri j⟩ = ⟨−uiri, h jlN + Γk

jl rk⟩ = 0. Thus, (2.3) is true:

δhi j = δ⟨ri j, N⟩ = ⟨δN, ri j⟩ + ⟨N, δ ri j⟩ = ui j − uhl
i h jl.

Calculating the variation of the mean curvature, we get (2.5):

δ (nH) = δ (gi jhi j) = 2 uhi j hi j + gi j(ui j − uhl
i h jl
)
= u hi j hi j + gi jui j = ∆u + u ∥h∥2.

The formula δ(dV) = 1
2 (traceg δ g) dV for variation of dV is valid for any variation δg of a metric, for

example, [13]. Applying (2.1) to the above gives (2.6). Next, we calculate the variation of ∥h∥2:

δ ∥h∥2 = δ (gikg jlhklhi j)
= 2 u

(
hikg jl + h jlgik)hklhi j + gikg jl((ukl − uhq

khlq)hi j + (ui j − uhq
i h jq)hkl

)
= 2 (uhi jhikh j

k + ukl gikg jl) = 2 u ⟨h, h2⟩ + 2 ⟨h,Hess u⟩,

that proves (2.4). □
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We carry out further calculations for a foliated hypersurface (M,F ) and a foliated neighborhood
U ⊂ M with normal coordinates (x1, . . . , xn) adapted to F , i.e., (x1, . . . , xs) are variables along the
leaves; see [14]. Let ∇F : T M×TF → TF be the induced Levi–Civita connection on the leaves of F .
The leafwise Laplacian on functions is ∆F = traceg HessF = divF ◦ ∇F , where HessF is the Hessian
on the leaves of F . Let P : T M → TF be the orthoprojector, thus, P2 = P and P is self-adjoint. For hF
and its dual self-adjoint operator AF , we can write hF (X,Y) = h(PX, PY) (X,Y ∈ XM) and AF = PAP.
Let h j

F
be the symmetric tensor dual to A j

F
, i.e., h j

F
(X,Y) = ⟨A j

F
X,Y⟩. The symmetric tensor hmix is

given by

hmix(X,Y) =
1
2
(
h(PX,Y) + h(X, PY)

)
− h(PX, PY), X,Y ∈ XM.

We have ⟨hF , hmix⟩ = 0. The equality hmix = 0 means that PA = AP, i.e., TF is an invariant subbundle
for A. Let hF ⊥ be the restriction of h on the normal distribution to F in M; then h2

F ⊥
= gγϵhαγhαϵdxαdxβ,

where s < α, β, γ, ϵ ≤ n. Define symmetric tensors h2
mix = gαβhαihβ jdxidx j + gi jhαihβ j dxαdxβ and

Hess mix
u = gi jgαβuiα dx jdxβ, where 1 ≤ i, j ≤ s and s < α, β, γ, ϵ ≤ n. Let A mix be the (1,1)-tensor dual

to hmix; then A2
mix is dual to h2

mix.
The Newton transformations Tr(AF ) of AF are defined inductively or explicitly by, e.g., [13],

T0(AF ) = id TF , Tr(AF ) = σFr id TF − AF Tr−1(AF ) (0 < r ≤ s),

Tr(AF ) =
∑r

j=0
(−1) jσFr− j A j

F
= σFr id TF − σ

F

r−1 AF + . . . + (−1)rA r
F
.

For example, T1(AF ) = σF1 id TF − AF and Ts(AF ) = 0, and the following equalities are true:

trace Tr(AF ) = (s − r)σFr , trace(AF Tr(AF )) = (r + 1)σFr+1,

trace(A2
F

Tr(AF )) = σF1 σ
F

r+1 − (r + 2)σFr+2. (2.7)

The “musical” isomorphism ♯ : T ∗M → T M is used for tensors, e.g., h♯ = A, and for (0, 2)-tensors B
and C, we have ⟨B,C⟩ = trace(B♯C♯) = ⟨B♯,C♯⟩.

Lemma 2. The variations of τFi and σFr are the following:

1
i
δ τFi = ⟨h

i−1
F
,HessFu ⟩ + u (τFi+1 + ⟨h

i−1
F
, h2

mix⟩), (2.8a)

δσFr = ⟨Tr−1(AF ),HessF ♯u ⟩ + u
(
σF1 σ

F

r−1 − (r + 1)σFr+1 + ⟨Tr−1(AF ), A2
mix⟩
)
. (2.8b)

Proof. By (2.3), we obtain δAF = HessF ♯u +u(A2
F
+A2

mix). Using this, (2.7) and the following variations
of τFi and σFr ; see [13]:

δ τFi = i trace(Ai−1
F
δAF ), δ σFr = trace(Tr−1(AF ) δAF ),

we get (2.8a,b). □

Lemma 3. The following evolution equations are true:

δ (s HF ) = ∆F u + u (∥hF ∥2 − ∥hmix∥
2), (2.9)

δ ∥hF ∥2 = 2 ⟨hF , u (h2
F
+ h2

mix) + HessFu ⟩, (2.10)
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δ ∥hmix∥
2 = u ⟨hF + hF ⊥ , h2

mix⟩ + 2 ⟨hmix,Hess mix
u ⟩. (2.11)

For any smooth function f : M × R→ R, the following evolution equation is true:

δ (∆F f ) = ∆F ḟ + 2 u⟨hF ,HessFf ⟩+su⟨∇FHF ,∇F f ⟩+2 h(∇F u,∇F f )−sHF ⟨∇F u,∇F f ⟩. (2.12)

Proof. The Eqs (2.9) and (2.10) can be deduced from Lemma 2, but we will prove them directly. First,
using (2.1) and (2.3), we get for 1 ≤ i, j ≤ s, and 1 ≤ q ≤ n,

δ (s HF ) = δ (gi jhi j) = 2 uhi j hi j + gi j(ui j − uhq
i h jq
)
= ∆F u + u (∥hF ∥2 − ∥hmix∥

2),

that proves (2.9). Also for 1 ≤ i, j, k, l ≤ s and 1 ≤ q ≤ n, we obtain (2.10):

δ ∥hF ∥2 = δ(gikg jlhklhi j) = 4 u ⟨hF , h2
F
⟩ + 2 ⟨hF ,HessFu ⟩ − 2 u ⟨hF , h2

F
⟩ − 2 u ⟨hF , h2

mix⟩.

For 1 ≤ i, j, k, l ≤ s, s < α, β, γ ≤ n, and 1 ≤ q ≤ n, we obtain (2.11):

δ ∥hmix∥
2 = δ(gi jgαβhiαh jβ)

= 2 u
(
hi jgαβ + gi jhαβ

)
hiαh jβ + gi jgαβ

(
uiαh jβ + u jβhiα

)
− u gi jgαβ

(
hl

ihαlh jβ + hl
jhαihlβ

)
= ⟨hF + hF ⊥ , u h2

mix⟩ + 2 ⟨hmix,Hess mix
u ⟩.

The proof of (2.12) is similar to the proof of (19) in [3]: instead of M2, we consider s-dimensional
leaves of F . The variation of the Christoffel symbols is the following tensor, e.g., [3]:

δΓk
i j = −u gkl(h jl,i + hil, j − hi j,l

)
− gkl(uih jl + u jhil − ulhi j

)
. (2.13)

For the Laplacian ∆F f = gi j ( fi j − Γ
k
i j fk) with 1 ≤ i, j, k ≤ s it follows that

δ (∆F f ) = δ (gi j fi j) − δ (gi jΓk
i j fk). (2.14)

For the first term, we get (for 1 ≤ i, j ≤ s)

δ (gi j fi j) = 2 u hi j fi j + gi j ḟi j = 2 u ⟨hF , HessFf ⟩ + ∆F ḟ . (2.15)

For the second term, using (2.13) and Γk
i j = 0 at x, we get for 1 ≤ i, j, k ≤ s, and 1 ≤ q ≤ n,

δ (gi j Γk
i j fk) = gi jδ (Γk

i j) fk = −gi jgkq{u (h jq,i + hiq, j − hi j,q) fk − (uih jq + u jhiq − uqhi j) fk
}

= −2 u gi j gkqh jq,i fk + u gi j gkqhi j,q fk − 2 gi j gkquih jq fk + gi j gkq uqhi j fk. (2.16)

Using the Codazzi–Mainardi equation ∇k hi j − ∇ j hik = 0, e.g., [15], we get for 1 ≤ i, j, k, l ≤ s,

gi j gkl(∇ j hil) fk = gkl(gi j∇l hi j) fk = s (∇kHF ) fk = s ⟨∇FHF , ∇F f ⟩.

Thus, using normal coordinates and −2 u gi jgklh jl,i fk+u gi jgklhi j,l fk = −u gkl(gi jhi j,l) fk, we get s (HF )l =

gi j ∇l hi j for 1 ≤ i, j, l ≤ s. Therefore, (2.16) becomes

δ (gi j Γk
i j fk) = −u gkl(gi jhi j,l) fk − 2 gi jgkluih jl fk + gklul(gi jhi j) fk

= −s u ⟨∇FHF ,∇F f ⟩ − 2 h(∇F u,∇F f ) + s HF ⟨∇F u,∇F f ⟩. (2.17)

Applying (2.15) and (2.17) to (2.14) completes the proof of (2.12). □
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Remark 2. To find the second variation of the functionals (1.5), we also need the variation
δ ⟨h,HessFu ⟩, but we omit this calculation and consider the second variation of the
functionals (1.6) only.

The following property helps to find the Euler-Lagrange equations using the first variation of the
functionals (1.3)–(1.6):

(div P) ◦ P = 0. (2.18)

Here, (div P)X =
∑n

i=1⟨(∇ei P)X, ei⟩, where e1, . . . , en is a local orthonormal basis on M. Note that
Riemannian foliations (and the leaves of twisted products, e.g., [13]) satisfy (2.18).

Lemma 4. A foliated Riemannian manifold (M, g,F ) satisfies (2.18) if and only if F is transversally
harmonic, i.e., the normal distribution has zero mean curvature.

Proof. Using a local orthonormal frame on M such that ei ∈ TF (1 ≤ i ≤ s), we calculate:

(div P)(PX) =
∑n

i=1
⟨(∇ei P)(PX), ei⟩ =

∑n

i=1

{
⟨∇ei(P

2X), ei⟩ − ⟨P∇ei(PX), ei⟩
}

=
∑n

i=1

{
⟨∇ei(PX), ei⟩ − ⟨∇ei(PX), Pei⟩

}
=
∑

i>s
⟨∇ei(PX), ei⟩ = −⟨X, (n − s)H⊥⟩,

where (n − s)H⊥ = P
∑

i>s ∇eiei is the mean curvature vector of (TF )⊥ and X ∈ XM. □

For any 2-tensor B on M, define the adjoint of the covariant derivative ∇∗B = −
∑

i(∇i B)(ei, ·);
see [15]. We have the formula

∫
M
⟨B,∇B′⟩ dV =

∫
M
⟨∇∗B, B′⟩ dV; see [15]; thus,∫

M
⟨B,Hess u⟩ dV =

∫
M
⟨B,∇(∇u)⟩ dV =

∫
M
⟨∇∗B,∇u⟩ dV =

∫
M

u (∇∗)2(B) dV. (2.19)

The next lemma generalizes (2.19) and the well-known Green’s formula, e.g., [15].

Lemma 5. If a foliated Riemannian manifold (M, g,F ) satisfies (2.18), then the following formulas
are valid for any compactly supported functions u, f , and 2-tensor B:∫

M
f (∆F u) dV =

∫
M

u(∆F f ) dV, (2.20)∫
M
⟨B,HessFu ⟩ dV =

∫
M

u (∇F ∗)2(B) dV. (2.21)

Proof. We have ∆F f2 = divF (∇F f2). One can show that divF (PX) = div (PX) − (div P)(PX) for all
X ∈ XM. Hence, using ∇F f = P∇ f and (2.18), we get

f1∆F f2 = f1 divF (∇F f2) = f1
{
div(P∇ f2) − (div P)(P∇ f2)

}
= div ( f1 P∇ f2) − ⟨P∇ f1, P∇ f2⟩ = div ( f1 P∇ f2) − ⟨∇F f1,∇

F f2⟩.

Using the divergence theorem, gives∫
M

f1(∆F f2) dV = −
∫

M

〈
∇F f1,∇

F f2
〉

dV. (2.22)
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By this, the formula (2.20) is true. Next, using (2.18), we will prove∫
M
⟨φ1,∇

Fφ2⟩ dV =
∫

M
⟨∇F ∗φ1, φ2⟩ dV (2.23)

for any compactly supported (s, t)-tensor φ1 and (s, t + 1)-tensor φ2. Define a compactly supported
1-form ω by ω(Y) = ⟨ιY φ2, φ1⟩ for Y ∈ XM. Take an orthonormal frame (ei) such that ∇Yei = 0 for all
Y ∈ TxM and some x ∈ M. To simplify calculations, assume that s = t = 1, and then at x ∈ M,

− ∇∗Fω =
∑

j
(∇Fe j
ω)(e j) =

∑
i, j
⟨Pe j, ei⟩ (∇ei ω)(e j)

=
∑

i, j,c
⟨Pe j, ei⟩

(
⟨∇eiφ2(e j, ec), φ1(ec)⟩ + ⟨φ2(e j, ec),∇eiφ1(ec)⟩

)
=
∑

i, j,c

[
⟨ ⟨Pe j, ei⟩∇eiφ2(e j, ec), φ1(ec)⟩+⟨φ2(e j, ec), ⟨Pe j, ei⟩∇eiφ1(ec)⟩

]
=
∑

j,c

[
⟨∇Fe j
φ2(e j, ec), φ1(ec)⟩ + ⟨φ2(e j, ec),∇Fe j

φ1(ec)⟩
]
= ⟨φ2,∇

Fφ1⟩ − ⟨∇
∗Fφ2, φ1⟩.

The ∇F ∗ is related to the F -divergence of a vector field ω♯ by divF ω♯ = −∇F ∗ ω. By the above and∫
M

(divF ω♯) dV =
∫

M
div(Pω♯) dV = 0, we obtain (2.23). Applying this twice, we get (2.21). □

3. Main results

In Section 3.1, we find the Euler-Lagrange equations (and first variations) for (1.5)–(1.7), and in
Section 3.2, we find the second variations of (1.5) and (1.6). First, we check the conformity of (1.7).

Theorem 1. The functional Wconf
n,s,r is a conformal invariant of a foliated hypersurface (M,F ) in a

Riemannian manifold (M̄, ḡ).

Proof. Define a new Riemannian metric on M̄ by ḡc = µ2ḡ for some positive function µ ∈ C3(M̄).
Then gc = µ2g is the new induced metric on M; thus, the new volume form of M is dVc = µn dV . If X
is a ḡ-unit vector, then Xc = X/µ is a gc-unit vector. By the well known formula for the Levi–Civita
connection, e.g., [13], we get 2 ∇̄ c

X Y = 2 ∇̄X Y + µ−2(X(µ2)Y + Y(µ2)X − ⟨X,Y⟩∇̄µ2). By this, with
X ∈ TF and Y = N c, the operators A and Ac are related by Ac = 1

µ

(
A − 1

µ
⟨∇̄µ,N⟩ id TF

)
, see also [13].

By the above and AF = PAP, A c
F
= PAcP, we get

Ac
F
=

1
µ

(
AF −

1
µ
⟨∇̄µ,N⟩ id TF

)
, Hc

F
=

1
s

trace Ac
F
=

1
µ

(
HF −

1
µ
⟨∇̄µ,N⟩

)
.

Set BF = HF id TF − AF . Let λB
i be the eigenvalues of BF on F and σB

r be the elementary symmetric
functions of BF . Obviously, B c

F
= 1
µ

BF holds; hence, λB,c
i =

1
µ
λB

i . One can show that QFr = −σ
B
r /C

s
r is

true; see [9]. By the above, µrQF ,cr = QFr holds. Hence, (QFr )n/rdV is a conformal invariant of (M,F )
in (M̄, ḡ): (QF ,cr )n/rdVc = (QFr )n/rdV . Note that if AF is a conformal operator on TF (i.e., proportional
to id TF ), then BF = 0, hence, QFr = 0. □

3.1. The first variation

We can state our main theorem.
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Theorem 2. If (2.18) is valid, then Euler-Lagrange equations for the functionals (1.5) are∑s

r=1

{
(∇F ∗)2(F′r · Tr−1(AF )

)
+ F′r
(
σF1 σ

F

r−1−(r + 1)σFr+1+⟨Tr−1(AF ), A2
mix⟩
)}
− nFH = 0, (3.1a)∑s

i=1

1
i
{
(∇F ∗)2(F′i · Ai−1

F

)
+ F′i
(
τFi+1 + ⟨h

i−1
F
, h2

mix⟩
)}
− nFH = 0. (3.1b)

Proof. Using (2.6), we get the following:

δWFn,s =

∫
M
δ (F(σF1 , . . . , σ

F
s ) dV) =

∫
M

{∑s

r=1
F′r · δσ

F
r − n uFH

}
dV,

δ JFn,s =

∫
M
δ (F(τF1 , . . . , τ

F
s ) dV) =

∫
M

{∑s

i=1
F′i · δ τ

F

i − n uFH
}
dV. (3.2)

From (3.2) and (2.8a,b), we find the first variations of functionals (1.5):

δWFn,s =

∫
M

{∑s

r=1
⟨F′r · Tr−1(AF ),HessF ♯u ⟩ (3.3a)

+ u
∑s

r=1
F′r
(
σF1 σ

F

r−1 − (r + 1)σFr+1 + ⟨Tr−1(AF ), A2
mix⟩
)
− n uFH

}
dV,

δ JFn,s =

∫
M

{∑s

i=1

1
i

F′i
(
⟨hi−1
F
,HessFu ⟩ + u (τFi+1 + ⟨h

i−1
F
, h2

mix⟩)
)
− n uFH

}
dV. (3.3b)

From (3.3a,b), using (2.18) and (2.20), we obtain (3.1a,b). □

Equations (3.4) and (3.5) of the next statement follow from Theorem 2, but we will prove them.

Corollary 1. If (2.18) is valid, then the Euler-Lagrange equations for the functionals Wn,p,s, Jn,p,s,
see (1.6), and Wconf

n,s,2, see (1.7), are, respectively, the following:

∆F (Hp−1
F

) + Hp−1
F

(
∥hF ∥2 − ∥hmix∥

2 −
n s
p

HHF
)
= 0, (3.4)

(∇F ∗)2(∥hF ∥p−2hF ) + ∥hF ∥p−2(⟨hF , h2
F
+ h2

mix⟩ −
n
p
∥hF ∥2 H

)
= 0, (3.5)

∆F
(
(QF2 )n/2−1σF1

)
−

s
s − 1

(∇F ∗)2((QF2 )n/2−1T1(AF )
)
+
{
σF1 (σF1 − 2σF2 + ∥A mix∥

2)

−
s

s − 1
(σF1 σ

F

2 − 3σF3 + ⟨T1(AF ), A2
mix⟩) − s2QF2 H

}
(QF2 )n/2−1 = 0. (3.6)

Proof. Using (2.6), (2.9), and (2.10), we calculate the variation

δ (Hp
F

dV) = Hp−1
F

{ p
s
(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)
− nuHHF

}
dV,

δ (∥hF ∥p dV) = ∥hF ∥p−2{p ⟨hF , u (h2
F
+ h2

mix) + HessFu ⟩ − n u ∥hF ∥2 H
}
dV.

Hence, using (2.18), (2.20), (2.21), and (2.6), we find the first variation of the actions (1.6):

δWn,p,s =

∫
M
δ (Hp

F
dV) =

∫
M

Hp−1
F

{ p
s
(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)
− n u HFH

}
dV

=
p
s

∫
M

u
{
∆F (Hp−1

F
) + Hp−1

F

(
∥hF ∥2 − ∥hmix∥

2 −
n s
p

HHF
)}

dV, (3.7)
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δ Jn,p,s =

∫
M
∥hF ∥p−2

{
p ⟨hF , u (h2

F
+ h2

mix) + HessFu ⟩ − n u ∥hF ∥2 H
}
dV

=

∫
M

u
{
p (∇F ∗)2(∥hF ∥p−2hF ) + p ∥hF ∥p−2(⟨hF , h2

F
+ h2

mix⟩ − n ∥hF ∥2 H
)}

dV. (3.8)

From (3.7) and (3.8), the Euler-Lagrange equations (3.4) and (3.5) follow. By (2.8b) we get

δσF1 = ∆F u + u
(
σF1 − 2σF2 + ∥A mix∥

2,

δ σF2 = ⟨T1(AF ),HessF ♯u ⟩ + u
(
σF1 σ

F

2 − 3σF3 + ⟨T1(AF ), A2
mix⟩
)
.

Using QF2 =
1

s2(s−1) ((s − 1)(σF1 )2 − 2 sσF2 ) and (2.8b) for r = 1, 2, we get

s2(s − 1)δQF2 = 2(s − 1)σF1 δσ
F

1 − 2 s δσF2 = 2(s − 1)σF1
(
∆F u + u(σF1 − 2σF2 + ∥A mix∥

2)
)

− 2 s
(
⟨T1(AF ),HessF ♯u ⟩ + u (σF1 σ

F

2 − 3σF3 + ⟨T1(AF ), A2
mix⟩)
)
.

Hence

δWconf
n,s,2 =

n
2

∫
M

(QF2 )n/2−1
{ 1
s2(s − 1)

[
2(s − 1)σF1

(
∆F u + u(σF1 − 2σF2 + ∥A mix∥

2)
)

− 2 s
(
⟨T1(AF ),HessF ♯u ⟩ + u (σF1 σ

F

2 − 3σF3 + ⟨T1(AF ), A2
mix⟩)
)]
− 2 QF2 uH

}
dV. (3.9)

Using (2.20) with f = (QF2 )
n
2−1σF1 and (2.21) with B = (QF2 )

n
2−1T1(AF ) in (3.9), we get (3.6). □

Remark 3. (i) For a hypersurface M ⊂ Rn+1 equipped with a line field (i.e., s = 1) of the normal
curvature κ, the functionals (1.5) and (1.6) coincide with WFn,1 =

∫
M

F(κ) dV and Wn,p,1 =
∫

M
κp dV .

For Wn,2,1 and Jn,2,1, from (3.4) and (3.5) with p = 2 and s = 1, using (∇F ∗)2hF = ∆F κ, we get the
following leaf-wise elliptic PDE: ∆F κ + (κ2 − ∥hmix∥

2 − n
2 Hκ) κ = 0.

(ii) The first variation of the functional Wconf
n.s,r and the Euler-Lagrange equation can be obtained

from (3.1a) and (3.3a), similarly to the corresponding equations in [9] for Wconf
n.r .

(iii) By (3.7) and (3.8) with s = n, the first variations of functionals (1.1) are given by

δWn,p =

∫
M

Hp−1
{ p
n
(
∆ u + u ∥h∥2

)
− nuH2

}
dV,

δ Jn,p =

∫
M
∥h∥p−2

{
p ⟨h, u h2 + Hess u⟩ − n u ∥h∥2H

}
dV.

The corresponding Euler-Lagrange equations are well known:

∆Hp−1 + Hp−1 (∥h∥2 − n2

p
H2) = 0, (3.10)

(∇∗)2(∥h ∥p−2h) + ∥h ∥p−2(⟨h, h2⟩ −
n
p
∥h ∥2H

)
= 0, (3.11)

for example, [3], where n = 2 and M2 ⊂ R3. For p = n = 2, we can use the identity ∥h∥2 − 2 H2 =
1
2 (k1 − k2)2 = 2 (H2 −K), where k1 and k2 are the principal curvatures, H = (k1 + k2)/2, and K = k1k2 is
the gaussian curvature of a surface M2 ⊂ R3. In this case, the Euler-Lagrange equation (3.10) reduces
to (1.2). Using the identity ⟨h, h2⟩ = 8 H3 − 6 HK, the Euler-Lagrange equation (3.11) for p = n = 2
reads as (∇∗)2h + 4 H(H2 − K) = 0.

Electronic Research Archive Volume 32, Issue 6, 4025–4042.



4035

3.2. The second variation

The following statement generalizes Corollary 1 in [3] when M2 ⊂ R3.

Theorem 3. If (2.18) is valid, then the Euler-Lagrange equation for WFn,s of (1.5) with F = F(HF ) is

∆F F′ + F′(∥hF ∥2 − ∥hmix∥
2) − s n FH = 0. (3.12)

At a critical hypersurface satisfying (2.18), the second variation of WFn,s with F = F(HF ) is

δ2WFn,s = −

∫
M

n
s

{
F′∆F u − u∆F F′

}
uH dV +

∫
M

{F′
s
(
2 u⟨hF ,HessFu ⟩ + s u⟨∇FHF ,∇F u⟩

+ 2 h(∇F u,∇F u) − s HF ∥∇F u∥2
)
+

F′′

s2 ∆F u
(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)}

dV

+

∫
M

u
{(F′′

s2 (∥hF ∥2 − ∥hmix∥
2) −

n
s

HF′
)(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)
− F(∆ u + u∥h∥2)

+
F′

s
(
2 ⟨hF , u (h2

F
+ h2

mix) + HessFu ⟩ − u ⟨hF + hF ⊥ , h2
mix⟩ − 2 ⟨hmix,Hess mix

u ⟩
)}

dV. (3.13)

Proof. By (3.3a) with F = F(σF1 /s), using ⟨id T M, h2
mix⟩ = ∥hmix∥

2 and ⟨id TF ,HessFu ⟩ = ∆F u, we find
the first variation of the functional WFn,s with F = F(HF ), see (1.5):

δWFn,s =

∫
M

{F′
s
∆F u +

(F′
s

(∥hF ∥2 − ∥hmix∥
2) − n FH

)
u
}
dV = 0. (3.14)

If (2.18) is valid, then using (3.14) and (2.20), we obtain (3.12). Our next aim is to calculate

δ2WFn,s = δ

∫
M

{F′
s
∆F u +

(F′
s

(∥hF ∥2 − ∥hmix∥
2) − n FH

)
u
}
dV

= −

∫
M

{F′
s
∆F u +

(F′
s

(∥hF ∥2 − ∥hmix∥
2) − n FH

)
u
}
n uH dV

+

∫
M
δ
(F′

s
∆F u

)
dV +

∫
M
δ
{(F′

s
(∥hF ∥2 − ∥hmix∥

2) − n FH
)

u
}
dV. (3.15)

For the first integral in the last line of (3.15), using (2.9), (2.12), and δu = 0, we get∫
M
δ
(F′

s
∆F u

)
dV =

∫
M

{F′
s
(
2 u⟨hF ,HessFu ⟩ + s u⟨∇FHF ,∇F u⟩

+ 2 h(∇F u,∇F u) − sHF ⟨∇F u,∇F u⟩
)
+

F′′

s2 ∆F u
(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)}

dV. (3.16)

For the second integral in the last line of (3.15), using (2.11), we get∫
M
δ
{(F′

s
(∥hF ∥2 − ∥hmix∥

2) − n FH
)

u
}
dV

=

∫
M

u
{(F′′

s2 (∥hF ∥2 − ∥hmix∥
2) −

nF′

s
H
)(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)
− F(∆ u + u∥h∥2)

+
F′

s
(
2 ⟨hF , u (h2

F
+ h2

mix) + HessFu ⟩ − u ⟨hF + hF ⊥ , h2
mix⟩ − 2 ⟨hmix,Hess mix

u ⟩
)}

dV. (3.17)
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By (3.15), (3.16), and (3.17), noting that the first variation vanishes at a critical immersion, we get

δ2WFn,s = −

∫
M

n
s

{
F′∆F u +

(
F′(∥hF ∥2 − ∥hmix∥

2) − s n FH
)

u
}
uH dV

+

∫
M

{F′
s
(
2 u⟨hF ,HessFu ⟩ + s u⟨∇FHF ,∇F u⟩ + 2 h(∇F u,∇F u) − s HF ∥∇F u∥2

)
+

1
s2 F′′∆F u

(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)}

dV

+

∫
M

u
{(F′′

s2 (∥hF ∥2 − ∥hmix∥
2) −

nF′

s
H
)(
∆F u + u (∥hF ∥2 − ∥hmix∥

2)
)
− F(∆ u + u∥h∥2)

+
F′

s
(
2 ⟨hF , u (h2

F
+ h2

mix) + HessFu ⟩ − u ⟨hF + hF ⊥ , h2
mix⟩ − 2 ⟨hmix,Hess mix

u ⟩
)}

dV. (3.18)

From (3.18) and (3.12), at a critical hypersurface, we get (3.13). □

Similarly, one can obtain the Euler-Lagrange equation for the functional JFn,s with F = F(∥hF ∥),
see (1.5), but we do not present it here. From Theorem 3, with F = Hp

F
, we obtain the following.

Corollary 2. At a critical hypersurface satisfying (2.18), the second variation of the action Wn,p,s

in (1.6) is

δ2Wn,p,s = −

∫
M

np
s

{
Hp−1
F
∆F u − u∆F (Hp−1

F
)
}
uH dV +

∫
M

p
s

Hp−2
F

{
HF
(
2 u⟨hF ,HessFu ⟩

+ s u⟨∇FHF ,∇F u⟩+2h(∇F u,∇F u)−sHF ∥∇F u∥2
)
+

p−1
s
∆F u
(
∆F u+u (∥hF ∥2−∥hmix∥

2)
)}

dV

+

∫
M

Hp−2
F

u
{ p

s

( p−1
s

(∥hF ∥2−∥hmix∥
2)−n HHF

)(
∆F u+u (∥hF ∥2−∥hmix∥

2)
)
−H2

F
(∆ u+u∥h∥2)

+
p
s

HF
(
2 ⟨hF , u (h2

F
+ h2

mix) + HessFu ⟩ − u ⟨hF + hF ⊥ , h2
mix⟩ − 2 ⟨hmix,Hess mix

u ⟩
)}

dV. (3.19)

Proof. Substituting F′ = p Hp−1
F

and F′′ = p(p − 1) Hp−2
F

in (3.13), we obtain (3.19). □

Remark 4. By (3.18) with s = n, the second variation of the action WFn =
∫

M
F(H) dV is

δ2WFn = −

∫
M

{
F′ ∆ u+

(
F′∥h∥2−n2 FH

)
u
}
u H dV+

∫
M

{F′
n
(
2 u⟨h,Hessu⟩+n u⟨∇H,∇u⟩

+ 2 h(∇ u,∇u)−nH ∥∇u∥2
)
+

F′′

n2 ∆ u
(
∆ u + u ∥h∥2

)}
dV

+

∫
M

u
{(F′′

n2 ∥h∥
2 − HF′ − F

)(
∆ u + u ∥h∥2

)
+

2 F′

n
⟨h, uh2 + Hess u⟩

}
dV. (3.20)

This is compatible with a special case of Eq (7) in [3] for n = 2. As a special case of (3.20), the second
variation of the functional Wn,p in (1.1) with n = 2 has the following form compatible with [3]:

δ2W2,p =

∫
M

Hp−2
{ p(p − 1)

4
(∆ u)2 + p H

(
h(∇ u,∇ u) + 2 u⟨h,Hessu⟩ + u⟨∇H,∇u⟩ − H∥∇u∥2

)
+
(
(2p2−4p − 1)H2−p(p−1)K

)
u∆ u + (4p(p − 1)H4−2(p − 1)(2p + 1)KH2+p(p−1)K2)u2

}
dV.
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4. Applications

We consider critical hypersurfaces equipped with two-dimensional foliations (i.e., s = 2) in
Section 4.1, and discuss critical hypersurfaces of revolution and their stability in Section 4.2.

4.1. Hypersurfaces with two-dimensional foliations

For s = 2, it is natural to present the functionals (1.5) in the following form:

WFn,2 =

∫
M

F(HF ,KF ) dV. (4.1)

where KF = det AF = σF2 is the Gaussian curvature of the leaves. For n = s = 2, (4.1) reduces to the
functional WF2 =

∫
M

F(H,K) dV seen in [3]. The following equalities are true:

∥hF ∥2 = k2
F ,1 + k2

F ,2 = 4 H2
F
− 2 KF , ⟨hF , h2

F
⟩ = k3

F ,1 + k3
F ,2 = 8 H3

F
− 6 HFKF .

From (2.9) and (2.10) with s = 2, we obtain the following evolution equations:

δ (2 HF ) = ∆F u + u (4 H2
F
− 2 KF − ∥hmix∥

2), (4.2)

δ ∥hF ∥2 = 4 u (4 H3
F
− 3 HFKF ) + 2 ⟨hF , u h2

mix + HessFu ⟩. (4.3)

Using (4.2) and (4.3) in δKF = 2 HF δ (2 HF ) − (1/2)δ (∥hF ∥2), we get the evolution equation

δKF = 2 HF ∆F u − ⟨hF , u h2
mix + HessFu⟩ + 2 u HF (KF − ∥hmix∥

2). (4.4)

For n = 2, (4.2)–(4.4) reduce to the equations in [3].
The next statement for (Mn,F 2) immersed in Rn+1 generalizes Theorem 1 in [3] with n = 2.

Theorem 4. If (2.18) is valid, then the Euler–Lagrange equation for the action (4.1) with s = 2 is

∆F
(1
2

F′H + 2 HF F′K
)
− (∇F ∗)2(F′KhF ) + F′H

(
2 H2

F
− KF −

1
2
∥hmix∥

2)
+ F′K

(
2 HF (KF − ∥hmix∥

2) − ⟨hF , h2
mix ⟩
)
− n FH = 0, (4.5)

where F′H, F
′
K denote partial derivatives of F(HF ,KF ) with respect to HF and KF . At a critical

hypersurface foliated by surfaces (s = 2) and satisfying (2.18), the second variation of the
functional (4.1) with F = F(HF ) is given by

δ2WFn,2 = −

∫
M

n
2

{
F′∆F u − u∆F F′

}
uH dV +

∫
M

{F′
2
(
2 u⟨hF ,HessFu ⟩+2 u⟨∇FHF ,∇F u⟩

+ 2 h(∇F u,∇F u) − 2 HF ∥∇F u∥2
)
+

F′′

4
∆F u

(
∆F u + u (4 H2

F
− 2 KF − ∥hmix∥

2)
)}

dV

+

∫
M

u
{(F′′

4
(4 H2

F
− 2 KF − ∥hmix∥

2) −
nF′

2
H
)(
∆F u + u (4 H2

F
− 2 KF − ∥hmix∥

2)
)

+
F′

2
(
4 u HF (4H2

F
− 3 KF ) + 2 u ⟨hF , h2

mix⟩ + 2 ⟨hF ,HessFu ⟩ − F(∆ u+u∥h∥2)

− u⟨hF + hF ⊥ , h2
mix⟩ − 2⟨hmix,Hess mix

u ⟩
)}

dV. (4.6)
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Proof. Using (4.2) and (4.4) in δ F(HF ,KF ) = 1
2 F′H · δ (2 HF ) + F′K δKF , and applying (2.6), we

calculate the first variation of the functional (4.1) with s = 2:

δWFn,2 =

∫
M
δ
(
F(HF ,KF ) dV

)
=

∫
M

{1
2

F′H
(
∆F u + u (4 H2

F
− 2 KF − ∥hmix∥

2)
)

+ F′K
(
2 HF ∆F u − ⟨hF , u h2

mix + HessFu⟩ + 2 u HF (KF − ∥hmix∥
2)
)
− n u HF

}
dV

=

∫
M

{(1
2

F′H + 2 HF F′K
)
∆F u − F′K⟨hF , HessFu⟩ +

(
F′H
(
2 H2

F
− KF −

1
2
∥hmix∥

2)
+ F′K

(
2 HF (KF − ∥hmix∥

2) − ⟨hF , h2
mix ⟩
)
− n FH

)
u
}
dV. (4.7)

From (4.7), using (2.21), we get (4.5). From Theorem 3 with s = 2 we get (4.6). □

Remark 5. Let F = F(HF ), then from (4.5) we obtain

∆F
(
F′H
)
+ F′H

(
4 H2

F
− 2 KF − ∥hmix∥

2) − 2 nFH = 0.

From this, with F = H2
F

, or from (3.4), we get the Euler-Lagrange equation for Wn,2,2, see (1.6):

∆F HF +
(

4H2
F
− 2 KF − ∥hmix∥

2 − n HHF
)
HF = 0.

The following particular case of (4.6), or Corollary 2 with s = 2, is true.

Corollary 3. At a critical hypersurface satisfying (2.18), the second variation of Wn,p,2 is

δ2Wn,p,2 = −

∫
M

np
2

{
Hp−1
F
∆F u − u∆F (Hp−1

F
)
}
uH dV +

∫
M

p
2

Hp−2
F

{
2 HF

(
u⟨hF ,HessFu ⟩

+ u⟨∇FHF ,∇F u⟩+h(∇F u,∇F u)−HF ∥∇F u∥2
)
+

p−1
2
∆F u
(
∆F u+u(4 H2

F
−2 KF−∥hmix∥

2)
)}

dV

+

∫
M

Hp−2
F

u
{ p
2

( p − 1
2

(4 H2
F
−2KF−∥hmix∥

2) − n HHF
)(
∆F u + u (4 H2

F
−2KF−∥hmix∥

2)
)

− H2
F

(∆ u + u∥h∥2) +
p
2

HF
(
4 u (4H3

F
− 3 HFK2

F
) + 2 ⟨hF , u h2

mix + HessFu ⟩

− u ⟨hF + hF ⊥ , h2
mix⟩ − 2 ⟨hmix,Hess mix

u ⟩
)}

dV.

The following consequence of Theorem 4 was proven for n = 2 in [3].

Corollary 4. The Euler-Lagrange equation for the functional WF2 with F = F(H,K) is given by

∆
(1
2

F′H + 2 HF′K
)
− (∇∗)2(F′Kh) +

(
2 H2 − K

)
F′H + 2 HKF′K − n HF = 0.

4.2. Hypersurfaces of revolution

Hypersurfaces of revolution in Euclidean space Rn+1 are naturally foliated into
(n − 1)-spheres (parallels) and equipped with rotationally symmetric metrics g = dρ2 + ρ2ds2

n−1 – a
special case of a warped product metric; see [15]. Such a hypersurface can be represented as a graph

xn+1 = f (ρ), where the function f ∈ C2 is monotonic, ρ =
√

x2
1 + . . . + x2

n and (xi) are Cartesian
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coordinates in Rn+1. We obtain the parametrization r = r(ϕ1, . . . , ϕn−1; f (ρ)), of M, where
(ϕ1, . . . , ϕn−1; ρ) are cylindrical coordinates in Rn+1. The principal curvatures of M (functions of ρ) are
k1 = . . . = kn−1 =

f ′

ρ (1+( f ′)2)1/2 ≤
1
ρ

for parallels and kn =
f ′′

(1+( f ′)2)3/2 for profile curves (geodesics on M). If
the profile curve is a straight line ( f ′′ ≡ 0), then kn ≡ 0 and M is a cone, a cylinder, or a hyperplane.
To exclude these cases, we will assume f ′′ , 0. We get

n H = (n − 1) k1 + kn, HF = k1, ∥hF ∥2 = (n − 1)k2
1, ∥h∥

2 = (n − 1)k2
1 + k2

n,

⟨h, h2⟩ = (n−1) k3
1 + k3

n, ⟨hF , h
2
F
⟩ = (n−1)k3

1, hmix = h2
mix = 0. (4.8)

Recall that λ j = j( j + n − 2) corresponds to the solutions with multiplicities N j = Cn
n+ j =

(n+ j)!
n! j! of the

eigenvalue problem ∆ u + λ u = 0 on a unit (n − 1)-sphere. Any constant function on the round sphere
spans the space of λ0-eigenfunctions of the Laplacian. Let⊥ denote the orthogonality of functions with
respect to the L2 inner product. The sphere S 2(ρ) of radius ρ in R3 is not a local minimum of W2,p under
volume-preserving deformations for p > 2. For p ≥ 1, S 2(ρ) is a local minimum of W2,p under volume-
preserving, nonconstant deformations u provided u ∈ {v : ∆ v = (2/ρ2)v}⊥, see Propositions 2 and 3
in [3]. According to (3.12), a hypersurface of revolution in Rn+1 foliated by (n − 1)-spheres-parallels
{Lρ} is a critical point of the action WFn,s with F = F(HF ), see (1.5), if and only if

(F′/F) ((n − 1)k2
1 + k2

n) − s n ((n − 1)k1 + kn) = 0.

In this case, kn and k1 are functionally related; hence, M is a Weingarten hypersurface.
The following theorem studies the stability of hypersurfaces of revolution critical for (1.6).

Theorem 5. A hypersurface of revolution M : xn+1 = f (ρ) ( f ′′ , 0) in Rn+1 foliated by (n−1)-spheres-
parallels {Lρ} is a critical point of the action Wn,p,n−1 or Jn,p,n−1, see (1.6), if and only if

f (ρ) =
∫ √

C1ρ2p−2n+2 − ρ4p−4n+4

C1 − ρ2p−2n+2 dρ +C2, C1,C2 ∈ R. (4.9)

A critical hypersurface is not a local minimum of Wn,p,n−1 for p > n ≥ 2 with respect to general
variations, but it is a local minimum for variations u = u(ϕ1, . . . , ϕn−1) satisfying u|Lρ ⊥ ker∆F .

Proof. 1. Let M be critical for the action Wn,p,n−1 under general deformations. Since all principal
curvatures ki are constant on parallels, from (3.4) and (3.5), we get, respectively,

p ∥hF ∥2 − n(n − 1) HHF = 0, p ⟨hF , h2
F
⟩ − n ∥hF ∥2 H = 0. (4.10)

Using (4.8) in (4.10), yields kn = (p − n + 1) k1 , 0, which is the differential equation for f = f (ρ),

ρ f ′′ = (p − n + 1) f ′(1 + ( f ′)2). (4.11)

The solution of (4.11) is given by (4.9).
2. Let u = u(ϕ1, . . . , ϕn) be the eigenfunction of ∆ on S n−1(1) with the eigenvalue λ j, then ∆F u +

λ j ρ
−2 u = 0. Since our hypersurface of revolution (M, g) is a warped product, its volume form is

decomposed as dV = dVρ · d ρ, see [16]. For any function a(ρ) we have, see (2.22),∫
M

a∥∇F u∥2dV =
∫ ρ2

ρ1

a
( ∫

Lρ
∥∇F u∥2dVρ

)
d ρ = −

∫ ρ2

ρ1

a
( ∫

Lρ
u∆F u dVρ

)
d ρ = −

∫
M

a u∆F u dV.
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Using (3.19) with s = n − 1, Example 1, the equalities ∇u = ∇F u and

⟨∇ k1,∇u⟩ = 0, h(∇F u,∇u) = k1∥∇
F u∥2, ⟨h,Hess u⟩ = ⟨hF ,HessFu ⟩ = (n − 1) HF∆F u,

we find the second variation of Wn,p,n−1:

δ2Wn,p,n−1 =
1

(n − 1)2

∫
M

kp−2
1
{
p(p − 1)(∆F u)2

+ (n − 1)(5 np − n − 9 p + 1)k2
1 u∆F u − (n − 1)2(p − n)(p − n + 1)k4

1 u2}dV. (4.12)

If the variation u = u(ϕ1, . . . , ϕn−1) satisfies ∆F u = 0, then by (4.12) we get

δ2Wn,p,n−1 = −

∫
M

(p − n)(p − n + 1)kp+2
1 u2 dV,

which is negative for p > n; hence, our critical hypersurface is not a local minimum of Wn,p,n−1.
Let u satisfy u|Lρ ⊥ ker∆F . Using the inequalities

∫
S n−1(1)

u∆ u dV ≥
∫

S n−1(1)
λ1u2 dV and∫

S n−1(1)
(∆ u)2 dV ≥

∫
S n−1(1)

λ1u2 dV , see, for example, [3], we get

∫
Lρ

u∆F u dVLρ ≥

∫
Lρ
λ1ρ

−4u2 dVLρ ,

∫
Lρ

(∆F u)2 dVLρ ≥

∫
Lρ
λ1ρ

−4u2 dVLρ .

By these estimates, (4.12) and the inequality ρ−4 ≥ k2
1, we find

δ2Wn,p,n−1 ≥
1

(n − 1)2

∫
M

{
p(p − 1)(n − 1)2 + (n − 1)2(5 np − n − 9 p + 1)

− (n − 1)2(p − n)(p − n + 1)
}
kp+2

1 u2dV =
∫

M

{
n(p − n) + p(6 n − 11) + 1

}
kp+2

1 u2dV.

Hence, δ2Wn,p,n−1 > 0 for all p ≥ n ≥ 2. □

Example 1. (i) Let M3 : x4 = f (ρ) ( f ′′ , 0), ρ =
√

x2
1 + x2

2 + x2
3 be a hypersurface of revolution in

R4 foliated by parallels (2-spheres). We get H = 1
3 (2 k1 + k3) and HF = k1. Let M3 be critical for

the functional W3,p,2 or J3,p,2 with p ≥ 3, see (1.6), under general deformations. From (4.10) we get

k3 = (p − 2)k1 , 0. The solution to (4.11) is f (ρ) =
∫ √C1ρ2p+4−ρ4p

ρ2p−C1 ρ4 dρ +C2, where C1,C2 ∈ R.

(ii) Let M2 : x3 = f (ρ) ( f ′′ , 0), ρ =
√

x2
1 + x2

2 be a surface of revolution in R3 foliated by

parallels (circles). The principal curvatures are k1 =
f ′

ρ(1+( f ′)2)1/2 for parallels and k2 =
f ′′

(1+( f ′)2)3/2 for
profile curves. Let M2 be critical for the action W2,p,1 or J2,p,1 with p ≥ 2 under general deformations.
Then k2 = (p − 1)k1 , 0; hence, the equality H2/K = p2

4 (p−1) is true. The solution to (4.11) is f (ρ) =∫ √C1ρ2p+2−ρ4p

ρ2p−C1 ρ2 dρ +C2, where C1,C2 ∈ R, it is illustrated on Figure 1 for p = 2, 3, . . . , 8.

Electronic Research Archive Volume 32, Issue 6, 4025–4042.



4041

Figure 1. Graphs of f (ρ) for f (2
5 ) = 1, f ′( 2

5 ) = 2
5 , n = 2 and p = 2, 3, . . . , 8.

5. Conclusions

This paper explores a generalized (for foliated hypersurfaces in a Riemannian manifold) form of the
classical Willmore functionals, which is the Reilly-type functional. The 1st and 2nd variations of such
functionals in the Euclidean space are computed, and the conformal properties of some of them are
shown. Examples of critical hypersurfaces with low-dimensional transversally harmonic foliations and
critical hypersurfaces of revolution, which are local minima for a specialized family of variations, are
given. The results obtained are important for researchers working in the field of geometric variational
problems and for scientists involved in the design of layered (laminated) or non-isotropic materials.
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