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Abstract: The greedy block Kaczmarz (GBK) method has been successfully applied in areas such as 

data mining, image reconstruction, and large-scale image restoration. However, the computation of 

pseudo-inverses in each iterative step of the GBK method not only complicates the computation and 

slows down the convergence rate, but it is also ill-suited for distributed implementation. The leverage 

score sampling free pseudo-inverse GBK algorithm proposed in this paper demonstrated significant 

potential in the field of image reconstruction. By ingeniously transforming the problem framework, the 

algorithm not only enhanced the efficiency of processing systems of linear equations with multiple 

solution vectors but also optimized specifically for applications in image reconstruction. A methodology 

that combined theoretical and experimental approaches has validated the robustness and practicality of 

the algorithm, providing valuable insights for technical advancements in related disciplines. 

Keywords: leverage score sampling; greedy block Kaczmarz method; free pseudo-inverse; multiple 

righthand sides; image recovery 

 

1. Introduction 

In the modern fields of scientific research and medical diagnostics [1−3], there is an increasing 

reliance on image restoration techniques [4−7], which are particularly prominent in the field of medical 

imaging. Ensuring image quality is paramount for the authenticity of data [8]. By processing X-ray 

projection data obtained from CT scans, we can reconstruct clear tomographic images with a resolution 

of 𝑛 × 𝑛 pixels. This technology encompasses two main schools: mathematical theoretical analysis [9] 

and iterative methods [10]. The former, like the filtered back projection method [11], is widely used in 
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fields such as CT imaging, while the latter excels in dealing with noise interference and data loss. With 

technological advancements, image restoration is moving toward greater precision and efficiency. 

To reconstruct images, we must solve a large-scale system of linear equations with multiple 

righthand sides, which is presented as follows: 

 𝐴𝑋 = 𝐵 (1) 

In contemporary mathematics and engineering, solving systems of equations stands as a pivotal task, 

particularly in scientific research and industrial applications where efficiency and precision are of 

paramount importance. A variety of numerical methods have been widely adopted [12−15], among which 

the Kaczmarz algorithm [16] is renowned for its iterative projection approach in approximating the true 

solution. The algorithm’s simplicity has facilitated its application across various domains, including 

image reconstruction [12,17], medical imaging [11,18], and signal processing [19,20]. Advances in 

technology have given rise to multiple enhanced versions of the Kaczmarz algorithm [21−31], improving 

performance in large-scale parallel computing and noisy data environments. Notably, with the 

development of free pseudo-inverse techniques, Du and Sun [24] further extended the randomized 

extended average block Kaczmar (REABK) method, proposing a class of pseudo-inverse-free stochastic 

block iterative methods for solving both consistent and inconsistent systems of linear equations, Free 

pseudo-inverse can accelerate convergence speed. Pseudo-inverse approximation is a specific case of 

generalized inverse techniques. For more theoretical analysis and applications, refer to literature [32]. 

Inspired by references [33,34], this paper introduces a faster lazy free greedy block Kaczmarz (LFGBK) 

method, exploring matrix sketching techniques as a key tool for accelerating matrix operations. This 

method employs sampling based on an approximate maximum distance criterion, excelling at selecting 

small, representative samples from large datasets for more efficient computation. The adaptive 

randomized block Kaczmarz (ARBK) [35] algorithm integrates adaptive and randomized block 

selection strategies. However, under certain specific matrix structures, ARBK may experience slow 

convergence or even fail to converge. Additionally, when dealing with large-scale sparse matrices, the 

ARBK algorithm incurs significant memory overhead. Our improved algorithm successfully 

overcomes these drawbacks, offering a more stable and efficient solution. 

Additionally, it not only addresses single righthand side linear equations but also extends to 

multiple righthand side linear equations, solving the memory overflow issues that traditional 

algorithms face when dealing with image processing vectors. A comprehensive theoretical framework 

supports the convergence of these methods. Numerical experiments validate its effectiveness, 

demonstrating improved computational efficiency and laying a solid foundation for further 

optimization of matrix sketching techniques. 

The structure of this paper is as follows: Section 2 introduces the necessary background knowledge. 

Section 3 presents the faster free pseudo-inverse GBK method for solving single righthand side linear 

equation systems. Section 4 proposes the leverage score sampling free pseudo-inverse GBK method 

for solving multiple righthand side linear equation systems. Section 5 details the numerical 

experiments, and Section 6 concludes the paper. 

2. Knowledge preparation 

In this article, we adopt the same notation as in reference [27]. For example, 𝐴(𝑖),  𝐴
𝑇 ,  𝐴†,
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‖𝐴‖,  ‖𝐴‖𝐹,  and [𝑛] , respectively, represent the i-th row of the coefficient matrix A, transpose, 

generalized inverse, spectral norm, F-norm, and the set {1,2, … , 𝑛}. 

Recently, Niu and Zheng combined greedy strategy with the block Kaczmarz method, proposing 

the GBK [29] method for solving large-scale consistent linear equation systems. See Algorithm 1 for 

the specific process. 

Algorithm1 GBK method 

1: Input：𝐴, 𝑏, 𝑙, 𝑥0 ∈ 𝑟𝑎𝑛𝑔𝑒(𝐴
𝑇) 𝑎𝑛𝑑 𝜂 ∈ (0,1). 

2: Output：𝑥𝑙. 

3: for 𝑘 = 0,1,… 𝑙 − 1 do 

4:    Compute 𝜀𝑘 = 𝜂
𝑚𝑎𝑥
1≤𝑖≤𝑚

{
|𝑏𝑖−𝐴(𝑖)𝑥𝑘

|
2

‖𝐴(𝑖)‖2
2 }. 

5:    Determine the sequence of indicator sets. 𝒯𝑘 = {𝑖𝑘: |𝑏𝑖𝑘 − 𝐴(𝑖𝑘)𝑥𝑘|
2
≥ 𝜀𝑘‖𝐴(𝑖𝑘)‖2

2
}. 

6:    Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝐴𝒯𝑘
† (𝑏𝒯𝑘 − 𝐴𝒯𝑘𝑥𝑘). 

7: end for 

Convergence analysis of the GBK method is described as follows: 

Theorem 1 ([29]) If the linear system of Eq (1) is consistent, then the iterative sequence {𝑥𝑘}𝑘=0
∞  

generated by algorithm 1 converges to the minimum norm solution 𝑥∗ = 𝐴
†𝑏  of the system of 

equations, and satisfies for any 𝑘 ≥ 0, 

 ‖𝑥𝑘+1 − 𝑥∗‖2
2 ≤ (1 − 𝛾𝑘(𝜂)

𝜎𝑚𝑖𝑛
2 (𝐴)

‖𝐴‖𝐹
2 )

𝑘+1

‖𝑥0 − 𝑥∗‖2
2. 

The formula for 𝛾𝑘(𝜂)  is defined as follows: 𝛾𝑘(𝜂) = 𝜂
‖𝐴‖𝐹

2

‖𝐴‖𝐹
2−‖𝐴𝒯𝑘−1‖𝐹

2

‖𝐴𝒯𝑘‖𝐹

2

𝜎𝑚𝑎𝑥
2 (𝐴𝒯𝑘)

 . Here, 𝛾0(𝜂)  is 

defined as 𝜂
‖𝐴𝒯0‖𝐹

2

𝜎𝑚𝑎𝑥
2 (𝐴𝒯0)

, where 𝜂 is in the range(0,1], and 𝜎𝑚𝑖𝑛(𝐴) and 𝜎𝑚𝑎𝑥(𝐴) represent the nonzero 

minimum singular value and maximum singular value of matrix 𝐴.  

In the matrix sketching technique, as described in leverage score sampling [36,37], we select 

samples based on the leverage score of each row. Specifically, we will choose each row with a 

probability proportional to its leverage score. Therefore, rows with higher scores (i.e., rows with 

greater influence in the dataset) will have a greater chance of being selected. 

Algorithm2 Leverage score sampling method based on manifold 

1: Input:𝐴 ∈ ℝ𝑚×𝑛. 

2: Initialize 𝐶 as a 𝑑 × 𝑛 zero matrix. 

3: Initialize the variable 𝑠𝑢𝑚 to 0. 

4: Calculate the singular value decomposition of 𝐴 as 𝑈, 𝑆, and 𝑉. 

5: for 𝑘 = 1,… ,𝑚 

6:     Calculate the sum of the squares of each row in 𝑈 and add it to the 𝑠𝑢𝑚. 

7:     Calculate the probability of each data point being sampled: Calculate the sum of squares for 

each row of 𝑈, then divide by the total 𝑠𝑢𝑚. 

8:     Based on the calculated probabilities, sampling is conducted to obtain the sampling 𝑖𝑛𝑑𝑖𝑐𝑒𝑠.  
9:     Utilize 𝐶 = [𝑖𝑛𝑑𝑖𝑐𝑒𝑠, : ] for 𝑖𝑛𝑑𝑒𝑥𝑖𝑛𝑔. 

10: end for 

11: Return 𝐶 ∈ ℝ𝑑×𝑛. 
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The advantage of this sampling method lies in its ability to select a small, representative subset 

of samples from a large dataset, enabling more efficient computation. The resulting sample set 𝑆 ∈

𝑅𝑑×𝑚, where 𝑑 is the chosen number of samples, can be utilized to estimate various properties of the 

original matrix 𝐴, such as singular value decomposition, principal component analysis, and so on. The 

LFGBK algorithm is similar to the derivation process in reference [38]. 

Remark: In addition to the method proposed in this paper, there are other sampling techniques such 

as random Gaussian matrices, subsampled randomized Hadamard transform (SRHT), and uniform 

sampling. In previous experiments, we also tried other methods like random sparse sampling. Through 

comparison, we found that the method proposed in this paper excels in extracting the main features of 

matrices. Other methods not only have higher computational complexity but may also extract all-zero 

vectors during actual image processing, rendering calculations impossible. Our method effectively 

avoids these issues, which is why we chose to adopt it. 

3. Fast free pseudo-inverse GBK method for solving single righthand side linear equation 

systems 

This chapter introduces an algorithm, namely, the leverage score sampling free pseudo-inverse 

GBK method for single righthand side, and provides a proof of the corresponding convergence theory 

for the algorithm. 

First, each step follows the approximate maximum illustration principle. 

 
|𝑏𝑖𝑘−𝐴(𝑖𝑘)

𝑥𝑘|
2

‖𝐴(𝑖𝑘)
‖
2

2 ≥ 𝜂 max
1≤𝑖≤𝑚

{
|𝑏𝑖−𝐴(𝑖)𝑥𝑘|

2

‖𝐴(𝑖)‖2
2 },  

Second, select the index set 𝒯𝑘 for the block matrix 𝐴𝒯𝑘; then, project the current estimate onto 

each row forming the block matrix 𝐴𝒯𝑘; finally, calculate the average of the projections to determine 

the next iteration. 

Algorithm 3 SLFGBK method 

1: Let 𝐴, 𝑏, 𝑙, 𝑥0 be within the range of (𝐴𝑇), parameter 𝜂 within (0,1), and consider the sequences 

of step sizes (𝛼𝑘)𝑘 ≥ 0 and weights (𝑤𝑘)𝑘 ≥ 0. 

2: Output:𝑥𝑙. 
3: Initialization: 

         Leverage score sampling enables the selection of a small, representative subset from large 

datasets, facilitating more efficient computation.                                                                                                                                                                                         

Algorithm 2 generates a leverage score sampling transformation matrix 𝐴̃ = 𝑆𝐴 ∈ ℝ𝑑×𝑛 and 

vector 𝑏̃ = 𝑆𝑏, where 𝑑 ≪ 𝑚. 

4: for 𝑘 = 0,1,… 𝑙 − 1 do 

5:     Calculation 𝜀𝑘̃ = 𝜂
𝑚𝑎𝑥
1≤𝑖≤𝑚

{
|𝑏̃𝑖−𝐴̃(𝑖)𝑥𝑘

|
2

‖𝐴̃(𝑖)‖2
2 }. 

6:     Define the index set sequence 𝒯𝑘 = {𝑖𝑘: |𝑏̃𝑖𝐾 − 𝐴̃(𝑖𝑘)𝑥𝑘|
2
≥ 𝜀𝑘‖𝐴̃(𝑖𝑘)‖2

2
}. 

7:     Computation 𝑥𝑘+1 = 𝑥𝑘 + (∑ 𝑤𝑖
𝑏̃𝑖−𝐴̃(𝑖)𝑥𝑘

‖𝐴̃(𝑖)‖2
2𝑖∈𝒯𝑘 𝐴̃(𝑖)

𝑇 ). 

8: end for 



3977 

Electronic Research Archive  Volume 32, Issue 6, 3973–3988. 

 𝑥𝑘+1 = 𝑥𝑘 + (∑ 𝑤𝑖
𝑏𝑖−𝐴(𝑖)𝑥𝑘

‖𝐴(𝑖)‖2
2 𝐴(𝑖)

𝑇
𝑖∈𝒯𝑘 ).  

Before presenting the convergence theory for Algorithm 3, let us first introduce a lemma. 

Lemma 1 ([27]): If any vector 𝑢 belongs to the range of 𝐴𝑇, then  

 ‖𝐴𝑢‖2
2 ≥ 𝜆𝑚𝑖𝑛(𝐴

𝑇𝐴)‖𝑢‖2
2  

Theorem 2: The leverage score transformation S satisfies 𝑑 = 𝑂(𝑛2/δ𝜃2) , and 𝑥∗ = 𝐴
†𝑏  is the 

minimum norm solution of the single righthand side linear equation systems, for any k ≥ 0. 

 ‖𝑥𝑘+1 − 𝑥∗‖2
2 ≤ (1 − 𝜓̃𝑘(𝜂)

𝜎𝑚𝑖𝑛
2 (𝐴̃)

‖𝐴̃‖𝐹
2 ) ‖𝑥𝑘 − 𝑥∗‖2

2 (2) 

The function 𝜓̃𝑘(𝜂) = 𝜂𝑡 (
2

𝑡
−

1

𝑡2
𝜎𝑚𝑎𝑥
2 (𝐴̂𝒯𝑘

𝑇 )) 𝜎𝑚𝑖𝑛
2 , 𝜂 ∈ (0,1],  where 𝑟𝑎𝑛𝑔𝑒(𝐴),  𝜎𝑚𝑖𝑛(𝐴),  and 

𝜎𝑚𝑎𝑥(𝐴) represent the range, nonzero minimum singular value, and maximum singular value of matrix 

𝐴, respectively. 

Proof. With algorithm 3 and 𝑟̃𝑘 = 𝑏̃ − 𝐴̃𝑥𝑘, we can obtain 

 𝑥𝑘+1 = 𝑥𝑘 + (∑
1

|𝒯𝑘|

𝑟̃𝑘
𝑖 𝐴̃(𝑖)
𝑇

‖𝐴̃(𝑖)‖2
2𝑖∈𝒯𝑘 ). (3) 

Expand Eq (3) with the set |𝒯𝑘| = 𝑡 and 𝒯𝑘 = {𝑗𝑘1 , … , 𝑗𝑘𝑡}.  

 𝑥𝑘+1 = 𝑥𝑘 + ∑
1

𝑡

𝐴̃(𝑖)
𝑇 𝑒𝑖

𝑇𝑟̃𝑘

‖𝐴̃(𝑖)‖2
2𝑖∈𝒯𝑘   

 = 𝑥𝑘 +
1

𝑡
(
𝐴̃
(𝑗𝑘1

)

𝑇 𝑒𝑗𝑘1
𝑇 𝑟̃𝑘

‖𝐴̃
(𝑗𝑘1

)
‖
2

2 +⋯+
𝐴̃
(𝑗𝑘𝑡

)

𝑇 𝑒𝑗𝑘𝑡
𝑇 𝑟̃𝑘

‖𝐴̃
(𝑗𝑘𝑡

)
‖
2

2 ) (4) 

 = 𝑥𝑘 +
1

𝑡
𝐴̂𝒯𝑘
𝑇 𝐼𝒯𝑘𝑟̃𝑘.   

Among them 

 𝐴̂𝒯𝑘
𝑇 = [

𝐴̃
(𝑗𝑘1

)

𝑇

‖𝐴̃
(𝑗𝑘1

)
‖
2

,
𝐴̃
(𝑗𝑘2

)

𝑇

‖𝐴̃
(𝑗𝑘2

)
‖
2

, … ,
𝐴̃
(𝑗𝑘𝑡

)

𝑇

‖𝐴̃
(𝑗𝑘𝑡

)
‖
2

] ∈ ℝ𝑛×𝑡, (5) 

and 

 𝐼𝒯𝑘 = [
𝑒
(𝑗𝑘1

)

‖𝐴̃
(𝑗𝑘1

)
‖
2

,
𝑒
(𝑗𝑘2

)

‖𝐴̃
(𝑗𝑘2

)
‖
2

, … ,
𝑒
(𝑗𝑘𝑡

)

‖𝐴̃
(𝑗𝑘𝑡

)
‖
2

]

𝑇

∈ ℝ𝑡×𝑑. (6) 



3978 

Electronic Research Archive  Volume 32, Issue 6, 3973–3988. 

Subtracting 𝑥∗ from Eq (4) simultaneously yields  

𝑥𝑘+1 − 𝑥∗ = 𝑥𝑘 − 𝑥∗ −
1

𝑡
𝐴̂𝒯𝑘
𝑇 𝐼𝒯𝑘𝐴̃(𝑥𝑘 − 𝑥∗) 

 = (𝐼 −
1

𝑡
𝐴̂𝒯𝑘
𝑇 𝐴̂𝒯𝑘) (𝑥𝑘 − 𝑥∗) (7) 

Taking the spectral norm and squaring both sides of Eq (7), and for any positive semi-definite 

matrix Q, satisfying 𝑄2  ≼  𝜆𝑚𝑎𝑥(𝑄)𝑄, we can obtain 

 ‖𝑥𝑘+1 − 𝑥∗‖2
2 = ‖(𝑥𝑘 − 𝑥∗) −

1

𝑡
𝐴̂𝒯𝑘
𝑇 𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2

2
  

   = ‖(𝑥𝑘 − 𝑥∗)‖2
2 −

2

𝑡
‖𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2

2
+

1

𝑡2
‖𝐴̂𝒯𝑘

𝑇 𝐴̂𝒯𝑘((𝑥𝑘 − 𝑥∗)‖2
2
 (8) 

    ≤ ‖(𝑥𝑘 − 𝑥∗)‖2
2 − (

2

𝑡
−

1

𝑡2
𝜎𝑚𝑎𝑥
2 (𝐴̂𝒯𝑘

𝑇 )) ‖𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2
2
  

Using Eq (5) and the inequality |𝑏̃𝑗𝑘 − 𝐴̃(𝑗𝑘)𝑥𝑘|
2
≥ 𝜀𝑘̃‖𝐴̃(𝑗𝑘)‖2

2
, a straightforward calculation yields. 

 ‖𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2
2
= ∑

1

‖𝐴̃(𝑗𝑘)
‖
2

2 |𝑟̃𝑘
𝑗𝑘|

2

𝑗𝑘∈𝒯𝑘  (9) 

 ≥ ∑
1

‖𝐴̃(𝑗𝑘)
‖
2

2 𝜀𝑘̃‖𝐴̃(𝑗𝑘)‖
2

𝑗𝑘∈𝒯𝑘  (10) 

Substituting 𝜀𝑘̃ = 𝜂
𝑚𝑎𝑥
1≤𝑖≤𝑑

{
|𝑏̃𝑖−𝐴̃(𝑖)𝑥𝑘

|
2

‖𝐴̃(𝑖)‖2
2 } into the above equation yields the following result: 

‖𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2
2
≥ ∑ 𝜂 max

1≤𝑖≤𝑑
{
|𝑟̃𝑘
𝑖|
2

‖𝐴̃(𝑖)‖2
2}

𝑗𝑘∈𝒯𝑘

 

≥ 𝜂𝑡∑
|𝑟̃𝑘
𝑖|
2

‖𝐴(𝑖)‖2
2

‖𝐴̃(𝑖)‖2
2

‖𝐴‖𝐹
2

𝑑

𝑖=1

 

= 𝜂𝑡
‖𝑟̃𝑘‖

2

‖𝐴̃‖
𝐹

2  

(11) 

Given 𝑥0 ∈ 𝑟𝑎𝑛𝑔𝑒(𝐴
𝑇) and 𝑥∗ = 𝐴

†𝑏, we have 𝑥𝑘 − 𝑥∗ ∈ 𝑟𝑎𝑛𝑔𝑒(𝐴
𝑇). Therefore, by Lemma 1, 

we can conclude that 

‖𝑟̃𝑘‖
2 = ‖𝐴̃(𝑥𝑘 − 𝑥∗)‖2

2
 

≥ 𝜆𝑚𝑖𝑛
2 (𝐴̃𝑇𝐴̃)‖𝑥𝑘 − 𝑥∗‖2

2Combining the above equation, we can obtain the following 

 ‖𝐴̂𝒯𝑘(𝑥𝑘 − 𝑥∗)‖2
2
≥ 𝜂𝑡

𝜎𝑚𝑖𝑛
2 (𝐴̃)

‖𝐴̃‖𝐹
2 ‖𝑥𝑘 − 𝑥∗‖2

2 (12) 
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From Eqs (8) and (12), we can obtain Eq (2), and the iterative sequence {𝑥𝑘}𝑘=0
∞  converges to the 

minimum norm solution 𝑥∗ = 𝐴
†𝑏 of the system of equations. Hence, Theorem 2 is proved. 

4. Solving multiple righthand side linear systems with leverage score sampling free pseudo-

inverse GBK method  

In this chapter, we introduce an algorithm known as the multi-righthand-side leverage score 

sampling free pseudo-inverse GBK method, and we provide a proof for the corresponding convergence 

theory of the algorithm. 

For most image reconstruction, the system of equations is formulated as follows: 

 𝐴𝑋 = 𝐵 (13) 

In the context, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑑] ∈ 𝑅
𝑛×𝑑 , 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑑] ∈ 𝑅

𝑚×𝑑 , 𝑑 > 1 . 

This paper addresses the solution of multiple righthand side linear equation systems and initially 

presents the index set for each iteration selection in the multiple righthand side linear equation systems. 

 max
1≤𝑖≤𝑚

{
|𝑏(𝑖)−𝐴(𝑖)𝑥𝑘|

‖𝐴(𝑖)‖2
2 } (14) 

Iterate through the following steps: 

𝑥𝑘+1 = 𝑥𝑘 +
𝑏(𝑖) − 𝐴(𝑖)𝑥𝑘

‖𝐴(𝑖)‖2
2 𝐴(𝑖)

𝑇
 

To solve systems of linear equations with multiple righthand sides, our approach involves working 

with the 𝑗  righthand side vector 𝑏𝑗  by selecting the working row 𝒯𝑘𝑗  according to the criterion 

established in Eq (15). 

 max
1≤𝑖≤𝑚

{
|𝐵(𝑖,𝑗)−𝐴(𝑖)𝑥𝑗

(𝑘)
|

‖𝐴(𝑖)‖2
2 } , 𝑗 = 1,2, … , 𝑘𝑏. (15) 

The iterative formula corresponding to the solution at the 𝑗 right endpoint is as follows: 

 
𝑥𝑗
(𝑘+1) = 𝑥𝑗

𝑘 +

𝐵̃
(𝒯𝑘𝑗

,𝑗)
−𝐴̃

(𝒯𝑘𝑗
)
𝑥𝑗
(𝑘)

‖𝐴̃
(𝒯𝑘𝑗

)
‖

2

2 𝐴̃𝒯𝑘𝑗
𝑇

 (16) 

According to the criterion for selecting the index set in Eq (15), each term on the righthand side 

corresponds to the selection of a working row. For the system of linear equations with multiple 

righthand terms as in Eq (13), the Kaczmarz method can be extended to an iterative format that 

simultaneously solves for the righthand side system of linear equations. 

In this context, 𝑋(𝑘+1) = (𝑥1
(𝑘+1), 𝑥2

(𝑘+1), … , 𝑥𝑑
(𝑘+1)) represents the approximate solution at the 

𝑘 + 1 iteration. 
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𝑋𝑘+1 = 𝑋𝑘 + (𝐴̃𝑗𝑘1
𝑇 , … , 𝐴̃𝑗𝑘𝑑

𝑇 )
𝑇
𝑑𝑖𝑎𝑔(

𝐵̃(𝑗𝑘1 ,1)
− 𝐴̃𝑗𝑘1𝑥1

(𝑘)

‖𝐴̃𝑗𝑘1‖2

2 , … ,
𝐵̃
(𝑗𝑘𝑑 ,𝑑)

− 𝐴̃𝑗𝑘𝑑
𝑥𝑑
(𝑘)

‖𝐴̃𝑗𝑘𝑑
‖
2

2 ) 

To reduce computational effort, Algorithm 2 is employed to extract certain rows from matrix A 

corresponding to the index set 𝒯𝑘𝑗. The sub-matrix formed by these rows is denoted as 𝐴̃,, while the 

sub-matrix of B corresponding to the index set 𝒯𝑘 is denoted as 𝐵̃. The specific configurations of 𝐴̃ 

and 𝐵̃ are as follows. 

 𝐵̃𝒯𝑘𝑗
𝑇 = (𝐵𝒯𝑘𝑗1

𝑇 , 𝐵𝒯𝑘𝑗2
𝑇 , … , 𝐵𝒯𝑘𝑗𝑡

𝑇 ) (17) 

and 

 𝐴̃𝒯𝑘𝑗
𝑇 = (𝐴𝒯𝑘1

𝑇 , 𝐴𝒯𝑘2
𝑇 , … , 𝐴𝒯𝑘𝑡

𝑇 ) (18) 

 

The transposed matrix 𝐵𝒯𝑘𝑗𝑖
𝑇

  is represented as (𝐵
(𝒯𝑘𝑗𝑖

,1)
,  𝐵

(𝒯𝑘𝑗𝑖
,2)
, … ,  𝐵

(𝒯𝑘𝑗𝑖
,𝑑)
) , where 𝒯𝑘𝑗𝑖   is an 

element of the index set 𝒯𝑘𝑗. Here, 𝐵(𝒯𝑘𝑗𝑖
,𝑡) denotes the element in the 𝑖 row and  𝑡 column of the sub-

matrix 𝐵̃, and |𝒯𝑘𝑗| denotes the number of row indices contained in the index set 𝒯𝑘𝑗 with |𝒯𝑘𝑗| equal 

to 𝑡. 

The multi-righthand-side method proposed in this paper is a specialized block approach for 

solving large-scale righthand side linear equations using a leverage-based pseudo-inverse GBK 

method. We provide a detailed framework for this method, which involves simultaneous computation 

of multiple righthand sides, with each iteration involving a matrix 𝐵 ∈ 𝑅𝑚×𝑡 containing 𝑡 righthand 

sides, resulting in the selection of 𝑡 row indices. 

Algorithm 4 MLFGBK Method 

1: Let 𝐴, 𝑏, 𝑙, 𝑥0 be within the range of (𝐴𝑇), parameter 𝜂 within (0,1), and consider the sequences of step sizes 
(𝛼𝑘)𝑘 ≥ 0 and weights (𝑤𝑘)𝑘 ≥ 0. 

2:  Output:𝑥. 

3:    Initialization: Algorithm 2 generates a leverage score sampling transformation matrix 𝐴̃ = 𝑆𝐴 ∈ ℝ𝑑×𝑛 and 

matrix 𝑏̃ = 𝑆𝑏, where 𝑑 ≪ 𝑚. 

4: for 𝑘 = 0,1, … 𝑙 − 1 do 

5:    Calculation 𝜀𝑘̃𝑗 = 𝜂 max1≤𝑖≤𝑚
{
|𝐵(𝑖,𝑗)−𝐴(𝑖)𝑋𝑗

(𝑘)
|

‖𝐴(𝑖)‖2
2 } , 𝑗 = 1,2, … , 𝑑. 

6:    Establish the sequence of indicator sets. 𝒯𝑘𝑗 = {𝑖𝑘𝑗: |𝑏̃𝑖𝑘𝑗
− 𝐴̃

(𝑖𝑘𝑗)
𝑥𝑘𝑗|

2

≥ 𝜀𝑘̃𝑗 ‖𝐴̃(𝑖𝑘𝑗)
‖
2

2

}. 

7:    Calculation 

 

𝑋𝑘+1 = 𝑋𝑘 + (𝐴̃𝑗𝑘1
𝑇 , … , 𝐴̃𝑗𝑘𝑑

𝑇 )
𝑇
𝑑𝑖𝑎𝑔 {

𝐵̃
(𝑗𝑘1

,1)
−𝐴̃𝑗𝑘1

𝑥1
(𝑘)

‖𝐴̃𝑗𝑘1
‖
2

2 , … ,
𝐵̃
(𝑗𝑘𝑑

,𝑑)
−𝐴̃𝑗𝑘𝑑

𝑥𝑑
(𝑘)

‖𝐴̃𝑗𝑘𝑑
‖
2

2 }. 

8: end for 

This article exclusively discusses the scenario where 𝛼𝑘 equals 1. The convergence theory for 

solving large-scale righthand side linear equation groups with the LFGBK method is presented below: 
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Theorem 3: Assume that the linear equation system (13) is consistent, and so are its extracted 

subsystems. The iterative sequence 𝑋(𝑘)  from 𝑘 = 0  to infinity, generated by Algorithm 4 starting 

from the initial value 𝑥0, converges to the least squares solution 𝑋∗ = 𝐴†𝐵. The expected error for the 

iterative sequence solutions 𝑋(𝑘) from 𝑘 = 0 to infinity is: 

 𝐸‖𝑋(𝑘+1) − 𝑋∗‖
𝐹

2
≤

(

 
 
1 −

𝜎𝑚𝑖𝑛
2 (𝐴̃

(𝒯𝑘𝑗
)
)

‖𝐴̃
(𝒯𝑘𝑗

)
‖

𝐹

2

)

 
 
𝐸‖𝑋𝑘 − 𝑋∗‖𝐹

2
 (19) 

The tilde-decorated 𝐴 and 𝐵, denoted as 𝐴̃ and 𝐵̃, respectively, represent the sub-matrices formed 

by the rows corresponding to the index set 𝒯𝑘𝑗 within matrices 𝐴 and 𝐵. 

Proof. According to Algorithm 4 and reference [39], we have 

 𝑥𝑗
(𝑘+1) = 𝑥𝑗

𝑘 +

𝐵̃
(𝒯𝑘𝑗

,𝑗)
−𝐴̃

(𝒯𝑘𝑗
)
𝑥𝑗
(𝑘)

‖𝐴̃
(𝒯𝑘𝑗

)
‖

2

2 𝐴̃𝒯𝑘𝑗
𝑇   

Since 𝑋∗ = 𝐴†𝐵 is the least squares solution, we infer that 𝑥𝑗
∗ = 𝐴†𝐵(:,𝑗) for 𝑗 = 1,2, … , 𝑑, where 

𝐵(:,𝑗) denotes the 𝑗 column of matrix 𝐵. 

Further, 

 𝐸‖𝑋(𝑘+1) − 𝑋∗‖
𝐹

2
= 𝐸∑ ‖𝑥𝑗

(𝑘+1) − 𝑥𝑗
∗‖

2

2
𝑡
𝑗=1 = ∑ 𝐸‖𝑥𝑗

(𝑘+1) − 𝑥𝑗
∗‖

2

2
𝑡
𝑗=1  (20) 

For 𝑗 = 1,2,… , 𝑑, it can be deduced that 

 ‖𝑥𝑗
(𝑘+1) − 𝑥𝑗

∗‖
2

2
= ‖𝑥𝑗

(𝑘) − 𝑥𝑗
∗‖

2

2
− 𝐸‖𝑥𝑗

(𝑘+1) − 𝑥𝑗
𝑘‖

2

2
  

Then 

 𝐸‖𝑥𝑗
(𝑘+1) − 𝑥𝑗

𝑘‖
2

2
=

|𝐵̃
(𝒯𝑘𝑗

,𝑗)
−𝐴̃

(𝒯𝑘𝑗
)
𝑥𝑗
(𝑘)
|

2

‖𝐴̃
(𝒯𝑘𝑗

)
‖

2

2 = max
𝒯𝑘𝑗𝑖

∈𝒯𝑘𝑗

{

|𝐵̃
(𝒯𝑘𝑗𝑖

,𝑗)
−𝐴̃

(𝒯𝑘𝑗𝑖
)
𝑥𝑗
(𝑘)
|

2

‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖

2

2 }  

The specific details of the term 𝐸‖𝑥𝑗
(𝑘+1) − 𝑥𝑗

𝑘‖
2

2
 are elaborated in the proof of Theorem 3.2 in [39]. 
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Due to 

max
𝒯𝑘𝑗𝑖

∈𝒯𝑘𝑗

{
 
 

 
 |𝐵̃

(𝒯𝑘𝑗𝑖
,𝑗)
− 𝐴̃

(𝒯𝑘𝑗𝑖
)
𝑥𝑗
(𝑘)|

2

‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2

}
 
 

 
 

 

=

max
𝒯𝑘𝑗𝑖

∈𝒯𝑘𝑗

{
 
 

 
 |𝐵̃

(𝒯𝑘𝑗𝑖
,𝑗)
− 𝐴̃

(𝒯𝑘𝑗𝑖
)
𝑥𝑗
(𝑘)|

2

‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2

}
 
 

 
 

‖𝐴𝑘𝑥𝑗
(𝑘) − 𝐵̃(:,𝑗)‖

2

2 ‖𝐴𝑘𝑥𝑗
(𝑘) − 𝐵̃(:,𝑗)‖

2

2
 

=

max
𝒯𝑘𝑗𝑖

∈𝒯𝑘𝑗

{
 
 

 
 |𝐵̃

(𝒯𝑘𝑗𝑖
,𝑗)
− 𝐴̃

(𝒯𝑘𝑗𝑖
)
𝑥𝑗
(𝑘)|

2

‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2

}
 
 

 
 

‖𝐴𝑘𝑥𝑗
(𝑘) − 𝐵̃(:,𝑗)‖

2

2

∑ ‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2 ‖𝐵̃(𝒯𝑘𝑗𝑖
,𝑗)
− 𝐴𝒯𝑘𝑗𝑖

𝑥𝑗
(𝑘)‖

2

2

‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2
𝑡
𝑖=1

 

≥

‖𝐴̃
(𝒯𝑘𝑗)

𝑥𝑗
(𝑘) − 𝐵̃(:,𝑗)‖

2

2

∑ ‖𝐴̃
(𝒯𝑘𝑗𝑖

)
‖
2

2

𝑡
𝑖=1

 

≥

𝜎𝑚𝑖𝑛
2 (𝐴̃

(𝒯𝑘𝑗)
)

‖𝐴̃
(𝒯𝑘𝑗)

‖
2

2 ‖𝑥𝑗
(𝑘) − 𝑥𝑗

∗‖
2

2

 

(21) 

In this context, 𝐵̃(:,𝑗) denotes the 𝑗 column of the matrix 𝐵̃. 

 𝐸‖𝑋
(𝑘+1) − 𝑋𝑗

𝑘‖
2

2
= ‖𝑥𝑗

(𝑘) − 𝑥𝑗
∗‖

2

2
− 𝐸‖𝑥𝑗

(𝑘+1) − 𝑥𝑗
𝑘‖

2

2
  

 ≤

(

 
 
1 −

𝜎𝑚𝑖𝑛
2 (𝐴̃

(𝒯𝑘𝑗
)
)

‖𝐴̃
(𝒯𝑘𝑗

)
‖

2

2

)

 
 
‖𝑥𝑗

(𝑘) − 𝑥𝑗
∗‖

2

2

 (22) 

Thus, by combining Eqs (20) and (22), we can derive inequality (19). 

The proof of Theorem 3 reveals that the convergence rate of Algorithm 4 is related to the sub-

matrix 𝐴̃ sampled during each leveraged iteration. 
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5. Numerical experiment 

In this section, we evaluate the effectiveness of large-scale image restoration equations using 

several algorithms through comparative examples: the GBK method [29], the semi-stochastic block 

Kaczmarz method with simple random sampling for single righthand sides [40], the LFGBK method 

for single righthand sides, the semi-stochastic block Kaczmarz method with simple random sampling 

for multiple righthand sides [40], and the LFGBK method for multiple righthand sides. All experiments 

are implemented in MATLAB, with metrics such as peak signal-to-noise ratio (PSNR), structural 

similarity index (SSIM), mean squared error (MSE), and computational time (CPU in seconds) 

reported. Following the approach of [27], the PSNR, SSIM, MSE, and CPU metrics reflect the average 

iterations and computational time needed for 50 repeated calculations. During all computations, we 

initialize the matrix 𝑥 = 𝑧𝑒𝑟𝑜𝑠(𝑛,𝑚) and set the righthand side 𝐵 = 𝐴𝑋, where 𝑋 represents images 

from MATLAB’s Cameraman, Phantom, and Mri datasets, each sized 100 × 100 . Matrix 𝐴  is 

constructed with elements corresponding to the product of the number of X-ray beams (4), the range 

of scanning angles t (0° to 179°), and the image pixels. The stopping criterion is set as 𝑅𝑆𝐸 =
‖𝑋𝑘−𝑋∗‖2

2

‖𝑋∗‖2
2 ≤ 10−6 . In practice, the condition 𝑂(𝑛2/𝛿𝜃2)  is quite stringent, but in many real-world 

computations, a sketching factor of 𝑑 = 𝑛2  yields satisfactory results. We consider matrices 𝐴 ∈
ℝ(4∗180∗𝑛,𝑚) of two types: type a, generated by radon(), and type b, generated by randn(). 

Based on the numerical results from Tables 1 and 2, when variable A is generated using radon, 

we can draw the following conclusions: ⅰ) The GBK method, single righthand side SRBK (single RHS 

SRBK) method, single RHS LFGBK method, multiple righthand side SRBK (multiple RHS SRBK) 

method, and multiple RHS LFGBK method all demonstrate effectiveness in solving equation systems 

for image restoration. ⅱ) The GBK method, single RHS SRBK method, single RHS LFGBK method, 

multiple RHS SRBK method, and multiple RHS LFGBK method show similar restoration quality; 

however, the single RHS LFGBK and multiple RHS LFGBK methods significantly outperform the 

GBK, Single RHS SRBK, and Multiple RHS SRBK methods in terms of time efficiency. ⅲ) The 

LFGBK method exhibits superior acceleration effects at η = 0.9 compared to η = 0.8. ⅳ) The MLFGBK 

method displays more pronounced acceleration effects at η = 0.9 than at η = 0.8. 

GBK SSRBK SLFGBK MSRBK MLFGBK 

𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

          

          

          

Figure 1. Reconstructed images when A is generated by radon(). 
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Table 1. Numerical experimental results of the GBK method, SSRBK method, and 

SLFGBK method when 𝐴 is generated by radon(). 

  GBK SSRBK SLFGBK 

data Metrics 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

Cameraman PSNR 19.595 17.996 19.076 17.640 17.595 17.519 

SSIM 0.999 0.998 0.999 0.998 0.999 0.999 

MSE 0.011 0.015 0.012 0.017 0.017 0.017 

CPU 234.78 335.37 55.00 94.755 11.581 7.543 

Phantom PSNR 73.636 72.694 73.639 73.655 72.377 72.430 

SSIM 1.000 1.000 1.000 1.000 1.000 1.000 

MSE 0 0 0 0 0 0 

CPU 266.67 279.43 56.186 75.168 12.496 8.556 

Mri PSNR 29.319 28.936 28.068 29.023 28.057 28.112 

SSIM 0.969 0.975 0.924 0.919 0.962 0.978 

MSE 0.001 0.001 0.001 0.001 0.001 0.001 

CPU 259.86 375.48 60.963 162.06 19.340 15.563 

Table 2. Numerical experimental results of the SSRBK method, MSRBK method, and 

MLFGBK method when 𝐴 is generated by radon(). 

  SLFGBK MSRBK MLFGBK 

data Metrics 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

Cameraman PSNR 17.595 17.519 17.611 17.732 17.894 17.876 

SSIM 0.999 0.999  0.999 0.999 0.999 0.999 

MSE 0.017 0.017 0.017 0.016 0.016 0.016 

CPU 11.581 7.543 18.027 14.207 3.196 2.880 

Phantom PSNR 72.377 72.430 72.492 72.532 72.486 72.760 

SSIM 1.000 1.000 1.000 1.0000 1.000 1.000 

MSE 0 0 0 0 0 0 

CPU 12.496 8.556 43.106 38.075 20.874 20.023 

Mri PSNR 28.057 28.112 28.081 28.234 28.161 28.506 

SSIM 0.962 0.978 0.901 0.899 0.895 0.891 

MSE 0.001 0.001 0.001 0.001 0.001 0.001 

CPU 19.340 15.563 42.535 37.575 18.237 17.539 

Based on the numerical results from Tables 3 and 4, when variable A is generated using randn, 

we can draw the following conclusions: ⅰ) The GBK method, single RHS SRBK method, single RHS 

LFGBK method, multiple RHS SRBK method, and multiple RHS LFGBK method all demonstrate 

effectiveness in solving equation systems for image restoration. ⅱ) The GBK method, single RHS 

SRBK method, single RHS LFGBK method, multiple RHS SRBK method, and multiple RHS LFGBK 

method show similar restoration quality; however, the Single RHS LFGBK and Multiple RHS LFGBK 

methods significantly outperform the GBK, single RHS SRBK, and multiple RHS SRBK methods in 

terms of time efficiency. ⅲ) The LFGBK method exhibits superior acceleration effects at η = 0.9 

compared to η = 0.8. ⅳ) The MLFGBK method displays more pronounced acceleration effects at η = 0.9 

than at η = 0.8. 
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GBK SSRBK SLFGBK MSRBK MLFGBK 

𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

          

          

          

Figure 2. Reconstructed images when A is generated by randn(). 

Table 3. Numerical experimental results of the GBK method, SSRBK method, and 

SLFGBK method when 𝐴 is generated by randn(). 

  GBK SSRBK SLFGBK 

data Metrics 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

Cameraman PSNR 20.122 19.195 18.419 17.594 17.519 17.552 

SSIM 0.999 0.998 0.998 0.998 0.999  0.999 

MSE 0.009 0.012 0.014 0.017 0.017 0.017 

CPU 3.651  6.916 1.433 3.596 1.698 0.723 

Phantom PSNR 73.904 72.475 74.040 73.704 72.619 72.464 

SSIM 1.000 1.000 1.000 1.000 1.000 1.000 

MSE 0 0 0 0 0 0 

CPU 68.434 129.151 19.739 35.465 7.776 6.878 

Mri PSNR 30.615 29.072 29.289 28.899 28.080 28.169 

SSIM 0.912 0.900 0.893  0.884 0.892 0.905 

MSE 0 0.001 0.001 0.001 0.001 0.001 

CPU 63.758 122.983 28.132 31.338 9.451 8.641 

Table 4. Numerical experimental results of the SSRBK method, MSRBK method, and 

MLFGBK method when 𝐴 is generated by randn(). 

  SLFGBK MSRBK MLFGBK 

data Metrics 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 𝜂 = 0.8 𝜂 = 0.9 

Cameraman PSNR 17.519 17.552 17.748 17.762 17.860 17.805 

SSIM 0.999  0.999 0.999 0.999 0.999 0.999 

MSE 0.017 0.017 0.016 0.016 0.016 0.016 

CPU 1.698 0.723 14.582 11.879 2.005 1.672 

Phantom PSNR 72.619 72.464 72.398 72.629 72.695 72.353 

SSIM 1.000 1.000  1.000 1.000 1.000 1.000 

MSE 0 0 0 0 0 0 

CPU 7.776 6.878 47.513 45.431 13.824 13.757 

Mri PSNR 28.080 28.169 28.241 28.093 28.241 28.328 

SSIM 0.892 0.905 0.904 0.904 0.902 0.897 

MSE 0.001 0.001 0.001 0.001 0.001 0.001 

CPU 9.451 8.641 54.802 38.773 11.533 10.332 
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6. Conclusions 

This study aims to explore a new image reconstruction algorithm, the LFGBK method, which 

utilizes a greedy strategy. The core of this method lies in transforming the image reconstruction 

problem into solving a linear system problem with multiple righthand sides. In traditional Kaczmarz 

algorithms, the iterative process of gradually approaching the solution is often inefficient and 

susceptible to the influence of initial value selection. However, the LFGBK method introduces 

leverage score sampling and extends from solving single righthand side linear equations to solving 

multiple righthand side linear equations, which is crucial for handling large-scale problems due to the 

time-consuming and resource-intensive nature of pseudo-inverse computation on large matrices. By 

avoiding pseudo-inverse calculation, the LFGBK method significantly improves the algorithm’s 

computational efficiency. To validate the effectiveness of the proposed algorithm, this study conducts 

in-depth research through theoretical analysis and simulation experiments. The theoretical analysis 

confirms the convergence of the LFGBK method, ensuring the reliability and stability of the algorithm. 

The simulation experiments, compared with traditional Filtered Back Projection (FBP) methods, 

demonstrate the advantages of LFGBK in terms of image reconstruction quality. The experimental 

results show that the LFGBK method significantly preserves image details and reduces noise, proving 

its practicality and superiority in image reconstruction tasks.  
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