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Abstract: We presented a novel deep generative clustering model called Variational Deep Embedding
based on Pairwise constraints and the Von Mises-Fisher mixture model (VDEPV). VDEPV consists of
fully connected neural networks capable of learning latent representations from raw data and accurately
predicting cluster assignments. Under the assumption of a genuinely non-informative prior, VDEPV
adopted a von Mises-Fisher mixture model to depict the hyperspherical interpretation of the data.
We defined and established pairwise constraints by employing a random sample mining strategy and
applying data augmentation techniques. These constraints enhanced the compactness of intra-cluster
samples in the spherical embedding space while improving inter-cluster samples’ separability. By
minimizing Kullback-Leibler divergence, we formulated a clustering loss function based on pairwise
constraints, which regularized the joint probability distribution of latent variables and cluster labels.
Comparative experiments with other deep clustering methods demonstrated the excellent performance
of VDEPV.

Keywords: generative deep clustering; variational autoencoder; von Mises-Fisher mixture model;
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1. Introduction

The clustering problem has undergone extensive research over the past seventy years, making sig-
nificant progress in data mining, pattern recognition, image analysis, and other fields. However, when
dealing with high-dimensional and large-scale data, the computational resources and time costs re-
quired by traditional clustering algorithms increase significantly. To address the challenges of dimen-
sionality and computational complexity, researchers commonly turn to deep learning techniques to
capture essential low-dimensional features in raw data and perform clustering analysis on these fea-
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tures [1–3].
However, deep learning-based clustering faces several challenges, including: 1) Relatively weak

modeling of complex data distributions, limiting deep exploration of data structures; 2) difficulty in
obtaining continuous representations of the feature space, restricting accurate capturing of data con-
tinuity; 3) neglecting compactness within intra-cluster samples and separability between inter-cluster
samples, leading to a less accurate understanding of global cluster structures and local structures; 4)
lacking joint embedding and clustering processes, making it challenging to generate an embedding
space best suited for clustering tasks.

To tackle these issues, we propose a novel generative deep clustering algorithm that fully exploits
the advantages of a deep model based on variational autoencoders(VAE) and a clustering method based
on pairwise constraints. As a generative model, the VAE can naturally handle uncertainty by model-
ing the data generation process within a probability framework. This model typically consists of two
major parts: An encoder maps raw data to a continuous embedding space, and a decoder samples from
the embedding space to reconstruct the original data. We adopt a prior distribution based on the von
Mises-Fisher (VMF) mixture model, which models the embedding space and obtains cluster labels for
the original data. The encoder of the VAE and the VMF mixture model can be viewed as a discrimina-
tive clustering model, trained by minimizing the KL divergence between the encoding distribution of
the data and the distance of the VMF mixture model and maximizing the log term of the reconstruc-
tion distribution of the data. Our choice to adopt the VMF mixture model stems from the following
considerations: A common assumption in the clustering approach using VAE is that the prior in the
latent space follows a multivariate Gaussian distribution. During training, the model can leverage the
mathematical convenience brought about by the properties of the Gaussian distribution. However,
some studies have found that Gaussian distributions in models can violate non-informative prior as-
sumptions in some cases, leading to unstable situations; therefore, it is recommended to consider VMF
distributions as viable alternatives [4]. Additionally, latent variables in the embedding space undergo
L2 norm normalization, exhibiting robust directional characteristics [5, 6]. To address this issue and
effectively model the distribution of the latent space, we adopt the VMF mixture model as the prior
for the VAE. In this paper, the training process adopts rejection sampling [4] to reparameterize the
variational autoencoder.

While generative deep clustering models excel in handling high-dimensional and non-linear data,
effectively modeling data distribution, and obtaining continuous representations in the embedding
space, they often encounter scenarios where samples within the same cluster are sparsely distributed
in the embedding space. The proximity between different clusters is also relatively close, potentially
resulting in suboptimal cluster assignment outcomes. To better reflect the intrinsic structure of the data
and enhance understanding and expressive power of data distributions, we employ data augmentation
techniques and a random sample mining strategy to establish pairwise constraints. Using KL diver-
gence, we calculate the regularization term between posterior distributions of pairwise constraints.
These pairwise constraints include must-link and cannot-link constraints. The proposed pairwise con-
straints do not require additional supervised information. The sample set obtained by randomly map-
ping the original data forms the must-link constraints, while the high-confidence sample set defined
by the VMF mixture model forms the cannot-link constraints. Introducing a clustering loss function
based on pairwise constraints helps enhance compactness within intra-cluster samples and improve
separability between inter-cluster samples, further enhancing clustering performance.
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To create an embedding space optimized for clustering tasks, we propose a unified loss function
that addresses both embedding and clustering objectives simultaneously, enhancing the efficacy of the
learning process. This unified loss function incorporates the loss functions of our VAE-based model as
well as the clustering objectives. We then use a jointly optimized approach to update parameters and
estimate cluster assignments.

In addition, experimental results demonstrate that our proposed method performs better in handling
multiple high-dimensional and large-scale datasets. Therefore, the contributions of this paper include:
• Providing a more suitable nonlinear embedding space for clustering tasks via adopting a von

Mises-Fisher mixture model as the prior distribution in the variational autoencoder.
• Introducing a unified loss function, integrating data augmentation techniques and a random sam-

ple mining strategy as pairwise constraints, simultaneously addressing both embedding and clustering
objectives.
•Achieving competitive results through multiple experiments, compared with state-of-the-art meth-

ods in the field. The experimental outcomes demonstrate the notable superiority of our method across
various datasets and scenarios, confirming its outstanding performance.

2. Related work

There are several studies on deep clustering. Deep clustering is a methodology that merges deep
learning with clustering techniques to extract meaningful representations from unlabeled data and seg-
regate the data into distinct clusters. Compared to traditional clustering methods such as k-means,
hierarchical, and bisecting k-means clustering, deep clustering handles large-scale data more effec-
tively and does not require manually prepared features. Deep clustering can be categorized into three
types based on the organization of modules and the design of functionality: multi-stage, simultaneous,
and generative [2].

In multi-stage deep clustering, representation learning and clustering are divided into two sequen-
tial independent modules. A standard model is to train autoencoders using an unsupervised manner,
then stack the encoding part of the autoencoders for data representation, and finally apply traditional
clustering methods [7]. Zhang et al. used autoencoders and the subspace clustering method to obtain
the self-expression representation and then performed clustering through spectral clustering [8]. Tao
et al. proposed a representation learning method that combines instance discrimination and feature
decorrelation, which is suitable for learning the latent space of clustering [9]. Dang et al. introduced
a nearest neighbor matching method to maintain consistent cluster assignments at the local and global
levels [10]. Most multi-stage deep clustering methods are simple to deploy and have relatively intuitive
structures [11, 12].

In simultaneous deep clustering, representation learning and clustering algorithms participate in
training and clustering together, interacting with each other. The DEC proposed by Xie et al. simul-
taneously learned the low-dimensional representation space and clustered centroids by pre-training
multi-layer autoencoders [13]. Ye et al. simultaneously learned the representation and the embedding
of spectral clustering through an autoencoder and introduced sparsity constraints [14]. Thirumoorthy
et al. proposed a shrinking autoencoder and used the Frobenius norm as a penalty term to enhance the
stability of the data representation retrieved for the training input [15]. Cai et al. introduced EDESC,
which breaks away from the self-expressive framework, enabling the learning of subspace bases from
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deep representations to enhance more powerful representations [16]. In simultaneous deep clustering,
the model can learn clustering-oriented representation [17–20].

In generative deep clustering, models like generative adversarial networks (GAN) or VAE are em-
ployed for representation learning and clustering. The variational deep embedding (VaDE) proposed
by Jiang et al. adopted the concept of DEC and applied it to VAE. Dilokthanakul et al. proposed a
method similar to VaDE. Ji et al. replaced VAE’s decoder [21] by calculating the mutual information
of representation and clustering. Wang et al. decoupled input data into specific and standard fea-
tures through VAE and then clustered [22]. VAE and its deformations have been widely studied and
applied [23–27].

The prior distribution is essential for VAE, and many studies are related to priors. Some studies have
verified that changing the standard Gaussian distribution prior can produce some benefits. Davidson et
al. pointed out that the standard Gaussian distribution breaks the assumption of uninformative priors
and proposed using VMF prior [4]. VMF can better explain some data types, such as directional
data, and has obvious advantages over the standard Gaussian distribution in low-dimensional space
[28–30]. As the data dimension increases, researchers have found that in the context of unsupervised
clustering, the Gaussian Mixture Model (GMM) gradually emerges as a preferable choice over the
standard Gaussian distribution for characterizing the distribution of complex latent spaces [21–26,31–
34]. Research on VAE algorithms based on GMM priors is currently relatively mature. Some studies
have pointed out that in the training of VAE, the model may benefit from L2 normalization of the
latent space [35]. Compared with GMM, the VMF mixture model is more suitable for describing
the distribution of normalized data. There are relatively few studies on VAE based on VMF mixture
distribution prior [36–38].

There are also many studies on constrained clustering. In constrained clustering, background knowl-
edge is represented as a set of instance-level constraints. Some studies based on the K-means algorithm,
such as PCKmeans [39] and COPKmeans [40], have proven that pairwise constraints help improve
clustering performance. Goschenhofer et al. studied methods of using unconstrained data and pro-
posed a pseudo-constraint mechanism to overcome confirmation bias [41]. Manduchi et al. proposed
DC-GMM based on VAE to guide clustering through pairwise constraints [42]. Hajjar et al. achieved
multi-view clustering by integrating non-negative latent and spectral latent and proposing consistent
smoothness and orthogonality constraints for all views [43]. Lv et al. employ pairwise similarity
to weight the reconstruction loss and guide supervised similarity learning using pseudo-graphs and
pseudo-labels [44], similar to the idea of constructing pairwise constraints in this paper. Most of the
pairwise constraints are exogenous knowledge [45, 46], while in this paper, the pairwise constraints
are generated by the output of the clustering process, such as pseudo-labels and new data generated
through data augmentation. The main differences between our proposed method and existing methods
lie in several fundamental aspects:

Our approach is built on the VaDE architecture, which is generative deep clustering. By leveraging
VaDE, we can take advantage of the inherent advantages of variational autoencoders while accom-
modating the unique characteristics of the Von Mises-Fisher mixture model. Unlike deep clustering
models such as VaDE, GMVAE, and DC-GMM that rely on Gaussian mixture model prior distribu-
tions within the VAE framework, our method introduces a prior based on the Von Mises-Fisher mixture
model. This choice allows us to capture directional data distributions more efficiently, especially if the
data exhibits circular or spherical patterns. A significant enhancement introduced in our approach is
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the incorporation of unsupervised pairwise constraints for cluster analysis. By exploiting the pairwise
relationships between data points without requiring class labels, we enhance the effectiveness of the
clustering process and improve the overall quality of the clustering results, which is different from
clustering models that use label information.

3. Proposed method

In this section, we first introduce the VDEPV architecture based on VAE, which includes a gen-
erative and inference process. Then, we introduce pairwise constraints based on data augmentation
and random sample mining. Finally, we show the VDEPV framework and provide a joint learning
framework to train the entire network layer using the unified representation learning and clustering
loss function.

3.1. VDEPV Architecture

In this section, we use VAE to construct our VDEPV. The prior distribution describes the distribu-
tion of data embedding; however, it may undermine non-informative assumptions and lead to unstable
situations. We adopted a VMF mixture model instead of the more common standard Gaussian distri-
bution or GMM to avoid this instability.

Since VDEPV is a generative deep model, we describe its generation process first. Let’s consider
a dataset X with N samples, where each sample {xi}

N
i=1 is a D-dimensional observation vector. In the

generation process, K clusters are defined, and for each data point xi, the model learns a latent variable
z ∈ RJ. For each observed sample xi, the procedure begins by selecting a cluster c ∈ {0, 1}K×1 from
the prior probability distribution, parameterized by π. Subsequently, a latent vector z is generated
from the VMF associated with cluster c, with the VMF parameterized by the mean direction µk and
the concentration γk. The generation of the latent variable is based on a specific reparameterization
technique of rejection sampling [4]. Next, we use the neural network g to compute µx and γx. The
sample is then generated from the multivariate VMFV(x|µx, γx).

p(c) =
K∏

k=1

πck
k , (3.1)

p(z|c) = V(z|µk, γk) , (3.2)

pθ(x|z) = V(x|µx, γx) , (3.3)

[µx; ln γx] = g(z; θ) , (3.4)

where

V(z|µk, γk) = Cd(γk) exp(γkµk
T z) , (3.5)

Cd(γk) =
γd/2−1

k

(2π)d/2Id/2−1(γk)
, (3.6)
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where πk satisfies
∑K

k=1 πk = 1, ck and πK denote the kth entry of c and π, respectively. ||µk||
2
2 = 1. g is a

neural network with trainable parameters θ. The generative process of VDEPV refers to Figure 1.

Figure 1. The generative process of VDEPV.

The generative process can be decomposed through the joint probability pθ(x, z, c), which can be
described as

pθ(x, z, c) = pθ(x|z)p(z|c)p(c) . (3.7)

Next, we introduce the inference process of VDEPV. In the inference process, the observed variable
x is mapped by the encoder of VDEPV to a latent variable z in the latent space. This latent space is
a spherical space that L2 has normalized. We use pθ(z, c|x)to describe the inference process. How-
ever, in model training, finding the posterior probability of the latent variable and the parameters for
maximum likelihood estimation is tough. Therefore, a variational distribution qϕ(z, c|x) is introduced
to approximate the posterior distribution of latent variables z and clusters c. Then we define

qϕ1(z|x) = V(z|µ̃, γ̃) , (3.8)

[µ̃, ln γ̃] = f1(x; ϕ1) , (3.9)

qϕ2(c|z) = Multinomial(π̃) , (3.10)

π̃ = f2(z; ϕ2) , (3.11)

where, ϕ1 and ϕ2 are the parameters of the networks f1 and f2, respectively. For convenience, we use ϕ
to collectively represent ϕ1 and ϕ2.

The Inference process can be decomposed by the joint probability qϕ(z, c|x) and can be described as

qϕ(z, c|x) = qϕ1(z|x)qϕ2(c|z) . (3.12)

In the case of using the VMF distributionV(µ̃, γ̃), traditional reparameterization techniques may fail
because the probability density function of the VMF has a certain complexity, making it challenging
to transform the sampling process into a differentiation operation concerning the parameters through

Electronic Research Archive Volume 32, Issue 6, 3952–3972.



3958

simple deterministic transformations. Therefore, rejection sampling schemes are used to obtain the
latent variable z.

Firstly, a variation ω is sampled from the VMF distribution with given shape parameters γ̃. The
sampling process is defined by the probability density function g(ω|γ̃). This probability density func-
tion depends on the distribution of the variation ω, and its form is determined by the characteristics
and parameters of the VMF distribution.

g(ω|γ̃) =
2(π

d
2 )

Γ(d
2 )
Cd(γ̃)

exp(ωγ̃)(1 − ω2)
1
2 (d−3)

Beta( 1
2 ,

1
2 (d − 1))

(3.13)

where g(ω|γ̃) is the probability density function for the sampling variable ω, Γ(·) denotes the gamma
function, Cd(γ̃) is the normalization constant, which depends on the dimension d and the shape param-
eter γ̃, and Beta(·, ·) is the beta function.

Next, employing a specific transformation relationship, the mode vector e1 (i.e., the first coordi-
nate axis) is mapped to the mean vector µ̃ of the VMF distribution through a Householder mapping.
This mapping preserves the length and angles of vectors while transforming e1 into the mean of the
distribution.

Finally, the transformed mean vector µ̃ is combined with the sampled v using a given formula to
obtain the final sample z. This formula preserves the length and direction of the sample and depends
on the previously sampled variation ω.

z = wµ̃ + v
√

1 − w2 (3.14)

This process ensures that the samples obtained from the VMF distribution are differentiable, making
them convenient for tasks like variational inference that require gradient computations. Using these
differentiable samples, one can efficiently perform gradient-based optimization or inference proce-
dures, such as gradient ascent in variational inference, to approximate complex posterior distributions.
This differentiability property enhances the applicability and effectiveness of the VMF distribution in
various probabilistic modeling and machine learning tasks.

3.2. Pairwise constraints of VDEPV

In this paper, we propose pairwise constraints based on data augmentation and random sample
mining strategies, aimed at improving the clustering performance of VDEPV. It is worth noting that
we utilize these pairwise constraints in a fully unsupervised manner. Among these, the must-link
constraints are constructed using data augmentation techniques, while the cannot-link constraints are
built using random sample mining strategies. Next, we will describe in detail the components of these
two types of pairwise constraints.

We employ data augmentation methods to construct the must-link constraints. Specifically, we
apply random mappings T to each image xi in the original image set X, including geometric and pixel
transformations, to generate new images with different data but the same labels as the original images.
This means that one original image can generate multiple derived images, as shown in the Figure 2.
We denote these newly generated images as x j. This mapping relationship can be represented by the
following formula

x j ← T(xi) . (3.15)
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The set of must-link constraints is defined as XML =
{
(xi, x j) : xi and x j belong to the same cluster,

where 1 ≤ i, j ≤ N
}
. Data augmentation techniques introduce diversity into the original data by

applying random transformations, thereby enhancing the scale of the dataset. We used basic data
augmentation techniques, with common operations as follows:

Translation: Also known as shifting, it changes the position of the image by moving pixels along
the horizontal and vertical directions of the image. The offset range is between -3.5 and 3.5.

Rotation: By rotating the image to change its angle, the diversity of the data is increased, making
the model more robust. The range is between -25 and 25.

Elastic deformation: By introducing local non-linear distortions to the image, mimicking the defor-
mations that occur due to the elastic properties of objects. The intensity of the deformation is controlled
within the range of 100 to 300, and the spatial extent of the deformation is controlled within the range
of 10 to 30.

Contrast enhancement: By increasing or decreasing the difference between adjacent pixels in the
image, the contrast of the image is enhanced or reduced. Here, the enhancement factor is set to 1.2.

Original Translate Transform Rotate Elastic Transform

Figure 2. Data augmentation introduces diverse transformations to the original images, gen-
erating a collection of must-linkage constraints. The following showcases three effects: trans-
lation, rotation, and elastic deformation.

Although data augmentation techniques have been proven effective in enhancing data diversity, they
are not suitable for building the cannot-link constraints in our proposed method. This is mainly due to
the nature of the cannot-link constraints, which require identifying differences in labels between data
points. Data augmentation techniques cannot create sample points with different labels. We construct
the cannot-link constraints to address this challenge by adopting a random sample mining strategy. The
set of cannot-link constraints is defined as XCL = {(xi, x j) : xi and x j belong to different clusters, where
1 ≤ i, j ≤ N}. In each training process of VDEPV, the model’s encoder is used to obtain representations
of the input data. Then, the VMF (von Mises-Fisher) mixture distribution model generates pseudo-
labels on the training data. For each image xi ∈ X, we assign the corresponding pseudo-label yi. Next,
we randomly select some images {x j ∈ X} from the dataset, ensuring that the predicted probability
of the pseudo-label y j of the selected new image x j has the maximum difference from the predicted
probability of yi for xi. In this process, for each xi, a set of new image data is generated. This process
is called random sample mining (RSM), which can be described by the following formula:

x j ← RSM(xi) . (3.16)

In this way, we are able to construct the cannot-link constraints, which will play a crucial role in the
subsequent improvement of clustering performance.
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3.3. Joint loss of VDEPV

In this section, we first provide a schematic diagram of the VDEPV architecture, then introduce the
loss functions of VAE and pairwise constraints, respectively, and finally provide a unified loss function.

Compared to standard learning methods in generative deep learning, we simultaneously learn vari-
ational autoencoders and pairwise constrained clustering. As shown in Figure 3, VDEPV includes the
following components: 1) The encoder uses a fully connected layer to map the input image into a
spherical latent space. 2) When sampling latent vectors in a spherical latent space, pairwise constraints
promote the compactness of latent vectors within clusters and the separation between clusters through
posterior probabilities. 3) The decoder uses a fully connected layer to reconstruct the input image from
the latent vectors. 4) Calculate the loss function using the reconstructed data and original input, in-
cluding reconstruction loss, KL divergence, and pairwise constraint regularization terms. 5) Update the
model parameters according to the gradient calculated by the loss function until the model converges
or reaches a predetermined training round. 6) After training, the model can cluster input images.

Figure 3. VDEPV architecture and pairwise constraints. VDEPV consists of variational au-
toencoders stacked on fully connected neural networks, and pairwise constraints are applied
on a spherical latent space to promote intra-cluster compaction and inter-cluster separation.

In order to define the loss function of VDEPV, we introduce the loss function of VAE. The loss func-
tion of VAE usually includes reconstruction loss and KL divergence. The reconstruction loss describes
the decoder’s ability to reconstruct the input data. For VAE, this is usually calculated by comparing the
difference between the original input and the reconstructed data generated by the decoder from vectors
sampled from the latent space. KL divergence measures the difference between the learned latent space
and the distribution of the latent space. KL divergence ensures that the learned latent representation is
statistically close to the distribution of the latent space. It helps to make the latent space more regular,
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prevent overfitting, and improve the model’s generalization ability. The reconstruction loss and KL
divergence can be expressed as

LVAE = Eqϕ(z,c|x)

[
log pθ(x|z)

]
+ KL

[
qϕ1(z|x)||p(z, c)

]
, (3.17)

the first term is the reconstruction loss, and the second is the KL divergence. The minimization goal of
this loss function is to adjust the model parameters during the training process so that the model can
achieve effective data reconstruction.

In order to define the loss function for pairwise constraints, we first introduce the similarity matrix.
We use the matrix A ∈ RM×M to describe the interrelationship of pairs of constraints, where M =

MML + MCL. The representation of A is

A =


A11 A12 · · · A1M

A12 A22 · · · AM2
...

...
. . .

...

A1M A2M · · · AMM

 , (3.18)

where, each element Ai j is used as the weight of the edge connecting samples i and j, indicating their
degree of similarity. For must-link constraints, the obvious dependency between xi and x j within the
same cluster determines Ai j = 1. In contrast, for cannot-link constraints, the clear difference between
xi and x j in different clusters dictates Ai j = −1.

In cases where samples belong to the must-link constraint set, we expect similarities in their at-
tributes and cluster assignments. In contrast, we expect significant differences in their attributes and
cluster assignments for samples not included in the cannot-link constraint set. Given the effectiveness
of the VAE model in capturing data distribution, we adopt the KL distance to quantify the closeness
between the posterior distribution of the augmented data and the true posterior distribution of the orig-
inal data. Combining Eq (3.18) and the KL distance, we design a loss function for pairwise constraints
as follows:

L PC =
1
2

M∑
j=1, j,i

Ai jKL(qϕ(z, c|x j)||pθ(z, c|xi)) . (3.19)

Finally, by combining the Eqs (3.17) and (3.19), we propose a joint loss function

L =LVAE +L PC

= − Eqϕ(z,c|x)

[
log pθ(x|z)

]
+ KL

[
qϕ1(z|x)||p(z, c)

]
+

1
2

M∑
j=1, j,i

Ai jKL(qϕ(z, c|x j)||pθ(z, c|xi)) .

(3.20)

However, in Eq (3.20), the third term to the right of the equal sign is difficult to calculate. Next, we
propose a solution to this problem. According to the properties of conditional variational autoencoders,
minimizing the loss function (3.20) is equivalent to minimizing the following expression

min
ϕ,θ

− log p(xi) +
1
2

M∑
j=1, j,i

Ai jKL(qϕ(z, c|x j)||pθ(z, c|xi))

 , (3.21)
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The above expression can be simplified to

min
ϕ,θ

− log p(xi) +
1
2

M∑
j=1, j,i

Ai jG(ϕ, θ, xi, x j)

 , (3.22)

where
G(ϕ, θ, xi, x j) =

1
2

(KL(qϕ(z, c|xi)||pθ(z, c|xi))) +
1
2

(KL(qϕ(z, c|x j)||pθ(z, c|xi))) . (3.23)

That is, minimizing

min
ϕ,θ

− log p(xi) +
M∑

j=1, j,i

Ai j(log p(xi) − ELBO(ϕ, θ, xi) − ELBO(ϕ, θ, xi, x j)))

 , (3.24)

and
ELBO(ϕ, θ, xi) = −KL(qϕ(z, c|xi)||p(z, c)) + Eqϕ(z,c|xi)

[
log pθ(xi|z)

]
, (3.25)

ELBO(ϕ, θ, xi, x j) = −KL(qϕ(z, c|x j)||p(z, c)) + Eqϕ(z,c|x j)
[
log pθ(xi|z)

]
. (3.26)

Specifying
M∑

j=1, j,i

Ai j = 1 , (3.27)

Therefore, we finally obtain the simplified unified loss function.

L = −

M∑
j=1, j,i

Ai j(ELBO(ϕ, θ, xi) + ELBO(ϕ, θ, xi, x j)) . (3.28)

The pseudo-code of the entire algorithm is shown in Algorithm 1.

4. Experiments

In this section, we first introduce three benchmark handwritten digit image datasets. Subsequently,
we present the details of the VDEPV model’s structure and parameters. We then provide metrics for
evaluating the model’s performance. Finally, we conduct comparisons with state-of-the-art clustering
methods on all datasets to assess the performance of VDEPV.

4.1. Datasets

We use MNIST, QMNIST, and EMNIST to evaluate the clustering performance of VDEPV. MNIST
originates from the National Institute of Standards and Technology in the United States, constituting a
collection of handwritten digit images with 60,000 training samples and 10,000 testing samples, each
depicting a 28x28-pixel handwritten digit image. QMNIST is an extended variant of MNIST developed
by Google Research, utilizing additional label information to enhance the dataset. QMNIST comprises
60,000 training samples and 60,000 testing samples. EMNIST is another extension of MNIST, featur-
ing a broader range of characters and font styles. Compared to MNIST letters, the letters in EMNIST
occupy a larger proportion of the image. As the clustering task is entirely unsupervised, we concatenate
training and testing samples where applicable. Table 1 provides an overview of the quantities, feature
dimensions, and labels of these datasets used in our experiments.
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Algorithm 1: VDEPV Algorithm
1 Input: Dataset X, maximum iteration max iter.
2 Output: Generated model parameters θ, inference models {ϕ1, ϕ2}.
3 while Model parameters {θ, ϕ1, ϕ2} have not converged and iteration count is less than

maximum max iter do
4 Shuffle the dataset X and extract a batch of samples X′;
5 while Dataset X has not been traversed do
6 Construct XML using data augmentation technique: XML =

{
(xi, x j) : xi and x j belong to

the same cluster, xi ∈ X′
}
;

7 Construct XCL using random sample mining technique: XCL = {(xi, x j) : xi and x j

belong to different clusters, xi ∈ X′, x j ∈ X′};
8 Construct similarity matrix A using Eq (3.18);
9 Input XML and XCL into the inference model from Eqs (3.8) to (3.11) to obtain mean µ̃i

and concentration γ̃i for xi, mean µ̃ j and concentration γ̃ j for x j;
10 Generate latent variables zi and z j using Eq (3.14) with {µ̃i, γ̃i} and {µ̃ j, γ̃ j} respectively;
11 Input latent variables zi and z j into the generation model from Eqs (3.1) to (3.4) to

obtain reconstructed samples xi and x j and cluster assignment labels;
12 Compute joint loss function using Eq (3.28);
13 Minimize joint loss function using Adam optimizer;
14 Update model parameters {θ, ϕ1, ϕ2};
15 end
16 end
17 Return: Generated model parameters θ, inference models {ϕ1, ϕ2}.

4.2. Implementation details

We employ fully connected layers in both the encoder and decoder for all datasets. The encoder
architecture follows the pattern D-500-500-2000-10, while the decoder architecture is structured as
10-2000-500-500-D, where D represents the input dimension. ReLU activation functions are applied
to all hidden layers. When constructing the set of must-links in pairwise constraints, we generate an
appropriate number of augmented instances for each input data (empirically, we observed that setting
M=20 produces the optimal results).

VaDE [34] adopts a pretraining strategy to alleviate the impact of undesirable local minima or saddle
points that may arise during the initial training phase. Motivated by these considerations, we employ
stacked autoencoders (AE) to pre-train our neural network.

We employ the Adam optimizer throughout the experiment, setting the learning rate to 0.001 ini-

Table 1. Datasets description.

Datasets All instances Training instances Testing instances Features Classes
MNIST 70,000 60,000 10,000 784 10
QMNIST 120,000 60,000 60,000 784 10
EMNIST 70,000 60,000 10,000 784 10
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tially and configuring the beta values as (0.3 and 0.5). The learning rate undergoes decay every 10
epochs, with a decay factor of 0.8. The algorithm uses PyTorch 1.10.0 and the Python 3.9.18 frame-
work, running on an NVIDIA GeForce GTX 1060.

4.3. Evaluation

The experiments in this section employ three metrics widely used in clustering tasks to evaluate
model performance: ACC, ARI, and NMI. The purpose of using these metrics is to understand how
well our model performs in terms of clustering. The calculation formulas for these indicators are as
follows:

Unsupervised Clustering Accuracy (ACC) measures the average correct clustering rate for clustered
samples, and its specific calculation is as follows

ACC =
1
N

∑
i

N j
i ,

Here, N j
i denotes the number of data samples in the i-th cluster that is correctly assigned to cluster j.

N represents the total number of samples.
Normalized Mutual Information (NMI): NMI quantifies the mutual information between predicted

and true labels, normalized to the range [0, 1], and

NMI =
2I(X; Y)

H(X) + H(Y)
,

where

I(X; Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
,

and

H(X) = −
∑

i

p (xi) logb p (xi) ,

Adjusted Rand Index (ARI): ARI is derived from the Rand Index (RI), which measures clustering
as a series of pairwise decisions based on correct decision rates:

ARI =

∑
i j

(
ni j
2

)
−
[∑

i

(
ai
2

)∑
j

(
b j
2

)]
/
(

n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
b j
2

)]
−
[∑

i

(
ai
2

)∑
j

(
b j
2

)]
/
(

n
2

) ,
Here ni j represents each element in X × Y .

4.4. Clustering results

We compare our clustering model, VDEPV, with several baseline and state-of-the-art cluster-
ing algorithms, including traditional clustering such as K-means, GMM, and BisectingKMeans;
the multi-stage deep clustering like AE + Spectral Clustering (AE+SC), AE+VMF mixture model
(AE+VMFMM), and AE+GMM, GAN+K-means (GAN-K), VAE+K-means (VAE-K), and SENet
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[8]; the simultaneous deep clustering such as DEC [13] and EDESC [16]; the generative deep clustering
like GMVAE [31], VaDE [34], and DC-GMM [42]; the constrained clustering such as PCKmeans [39],
COPKmeans [40], and PSSC [44].

To assess the clustering performance of VDEPV, we employ standard unsupervised evaluation met-
rics, including Unsupervised Clustering Accuracy (ACC), Normalized Mutual Information (NMI), and
Adjusted Rand Index (ARI). We compare VDEPV with several baseline methods and state-of-the-art
approaches, as shown in Table 2. The table categorizes traditional clustering, multi-stage deep cluster-
ing, simultaneous deep clustering, generative deep clustering, constrained clustering, and VDEPV into
six groups. For original papers providing experimental results, we directly adopt their best results. We
conduct experiments using their code on the same database for papers without experimental results but
with open-source code. The plots distinguish these results by an asterisk (∗) in the upper right corner.
We represent this absence with a dash (−) in the plots for papers that neither provided experimental
results nor opened their code.

Table 2. Clustering results of different algorithms on various datasets.

Methods MNIST QMNIST EMNIST
ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 49.67∗ 42.68∗ 32.42∗ 49.62∗ 42.64∗ 32.38∗ 46.16∗ 39.71∗ 29.66∗

GMM 46.44∗ 47.79∗ 32.28∗ 54.19∗ 50.52∗ 35.97∗ 45.11∗ 41.35∗ 26.75∗

BisectingKMeans 47.98∗ 40.24∗ 29.90∗ 48.14∗ 40.33∗ 30.39∗ 39.84∗ 30.47∗ 20.22∗

AE+SC 68.37∗ 79.73∗ 63.42∗ 69.69∗ 79.12∗ 65.84∗ 68.33∗ 80.64∗ 64.58∗

AE+VMFMM 75.88∗ 76.65∗ 65.29∗ 75.70∗ 77.34∗ 63.31∗ 53.84∗ 68.89∗ 45.76∗

AE+GMM 80.81∗ 82.27∗ 74.94∗ 79.73∗ 84.09∗ 76.20∗ 82.84∗ 80.56∗ 73.26∗

GAN-K 80.43∗ 75.72∗ 61.25∗ 73.38∗ 71.64∗ 56.87∗ 89.27∗ 83.11∗ 76.65∗

VAE-K 75.13∗ 64.18∗ 57.33∗ 74.09∗ 62.99∗ 55.24∗ 67.68∗ 60.43∗ 50.34∗

SENet [8] 96.8 91.8 93.1 − − − 72.1 79.8 76.6
DEC [13] 84.30 83.31∗ 79.20∗ 87.69∗ 83.36∗ 79.15∗ 93.64∗ 88.01∗ 87.07∗

EDESC [16] 91.3 86.2 − − − − − − −

GMVAE [31] 93.22 68.26∗ 62.25∗ 64.96∗ 62.44∗ 52.37∗ 68.74∗ 63.09∗ 51.98∗

VaDE [34] 94.06 84.51∗ 81.98∗ 91.64∗ 84.46∗ 83.14∗ 91.48∗ 85.24∗ 83.78∗

DC-GMM [42] 96.7 91.7 93.0 96.02∗ 90.18∗ 91.52∗ 96.51∗ 91.41∗ 92.44∗

PCKmeans [39] 49.62∗ 42.66∗ 32.38∗ 47.33∗ 42.18∗ 30.83∗ 47.11∗ 39.40∗ 28.10∗

COPKmeans [40] 48.41∗ 42.55∗ 31.92∗ 47.22∗ 42.28∗ 30.99∗ 47.43∗ 39.97∗ 29.67∗

PSSC [44] 84.30 76.76 54.92∗ 76.46∗ 78.35∗ 69.62∗ 76.53∗ 74.74∗ 66.59∗

VDEPV 98.25 95.26 96.17 96.49 91.42 92.41 98.62 96.08 96.97

According to the results in the table, apart from traditional clustering methods, SENet, EDESC,
DC-GMM, and PSSC yield superior results compared to other methods within the same group. Si-
multaneous deep clustering and generative deep clustering outperformed multi-stage deep clustering
(excluding SENet). SENet demonstrates the ability to learn data representations for self-expression,
leading to higher clustering performance than multi-stage deep clustering, which only learns general
deep representations. This indicates that simultaneously learning deep representations and clustering
algorithms is an efficient approach for deep clustering, especially for generative deep clustering. The
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main reason lies in the significant advantage brought by simultaneously optimizing deep models and
cluster analysis.

(a) Raw Data (b) GMVAE

(c) VaDE (d) VDEPV

Figure 4. Visualization of embedding space on the MNIST dataset. (a) Space of original
data. (b) Embedding space of GMVAE. (c) Embedding space of VaDE. (d) Embedding space
of VDEPV.

For VAE, both DC-GMM and VaDE are based on GMM priors. It is noteworthy that DC-GMM
belongs to the generative deep clustering group and the pairwise constraints clustering group. The
superiority of DC-GMM over VaDE can be explained by introducing pairwise constraints, guiding
deep models to learn representations more suitable for clustering in the latent space. The pairwise con-
straints used in DC-GMM require additional ground truth labels. However, under the same architecture
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and unsupervised conditions, we achieved better performance than DC-GMM without using labeled
data to tune any hyperparameters in VDEPV. This indicates that, for VAE models, the VMF mixture
distribution prior may be more suitable for clustering tasks than a GMM prior.

To better understand the combined effects of VMF mixture distribution priors and pairwise con-
straints, we employed the t-SNE method to visualize some original image samples from the MNIST
handwritten dataset and partial latent variables z from three deep generative models mapped to a 2D
space, as shown in Figure 4. First, the initial state of the original data samples is displayed in the first
image. Second, the second image illustrates the embedding space based on GMVAE, while the third
image shows the embedding space based on VaDE. Both models primarily utilize GMM. Subsequently,
the fourth image visualizes the embedding space obtained by our proposed method. As shown in the
figures, by imposing pairwise constraints in the latent space, samples of the same category are brought
closer in the latent space, while samples of different categories are pushed apart, thereby increasing the
compactness within clusters and the compactness between clusters. Separability. This change in shape
makes the original data easier to distinguish and cluster in the latent space, thus providing a clearer
spatial structure for subsequent cluster analysis. Furthermore, since the latent space is reshaped into a
more cluster-specific shape, clustering algorithms can exploit this structure more effectively, improving
clustering performance and reducing errors. This process is equivalent to providing a representation
of the feature space of the original data that is more suitable for clustering, making the clustering task
simpler and feasible. Therefore, by changing the shape of the latent space, this method improves the
clustering performance while also improving the understanding and interpretation of the data structure.
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(c). EMNIST

Figure 5. Confusion matrices on three datasets.

Figure 5 clearly demonstrates the outstanding clustering performance of VDEPV on the MNIST,
QMNIST, and EMNIST datasets. The diagonal elements of the confusion matrix represent the number
of samples correctly clustered by the model, while the off-diagonal elements represent the number of
samples incorrectly clustered by the model. The numerical percentages correspond to the respective
clustering accuracy or error rate. Observing the results from (a) to (c), it can be seen that VDEPV
achieves higher clustering accuracy on each category and exhibits good discriminative capability be-
tween different categories. This strong performance is attributed to VDEPV’s specific model prior
and clustering optimization. On the MNIST data set, VDEPV demonstrated excellent clustering ca-
pabilities for simple handwritten digits. For the QMNIST dataset, which contains more complex and
real-world handwritten digit samples, VDEPV can accurately distinguish categories and exhibits a low
error rate. On large-scale and diverse data sets such as the EMNIST data set, VDEPV can also effec-
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tively handle handwritten digits of various styles and variations and achieve reliable clustering results.
The convergence curves of VDEPV are plotted on the MNIST, QMNIST and EMNIST datasets as

shown in Figure 6. By observing the convergence curve, it can be clearly seen that as the number of
iterations increases, the loss of the VDEPV algorithm gradually stabilizes. This phenomenon shows
that the algorithm has better convergence performance when processing data sets such as MNIST,
QMNIST, and EMNIST. Of particular note is the fact that the VDEPV algorithm was able to reach
a steady state after only 5 iterations when processing these datasets. This means that the algorithm
converges quickly and effectively, and has potential applicability in practical applications.

(a). MNIST (b). QMNIST (c). EMNIST

Figure 6. Convergence curve of VDEPV.

In the above analysis, we follow the strategy of VaDE, treating the number of clusters as prior
knowledge. In this regard, we changed the number of clusters to understand their impact on the per-
formance of the MNIST, QMNIST, and EMNIST datasets. Since these datasets all have 10 classes, we
set the number of clusters to 5, 10, 15, and 20, respectively, to see if there are no samples assigned to
additional clusters or different variants within the class. As shown in Figure 7, the number of clusters
is 10, and the clustering performance of VDEPV is highest in ACC, NMI, and ARI. When the number
of clusters increases or decreases, the clustering performance decreases, indicating that data samples
from one class are divided into different clusters.

(a). ACC (b). NMI (c). ARI

Figure 7. Comparison of clustering performance for different numbers of clusters on differ-
ent datasets.

Furthermore, VDEPV exhibits excellent performance across all datasets. The validation of experi-
mental results confirms its effectiveness in clustering tasks.
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5. Conclusions

We introduce an innovative deep generative clustering model called VDEPV based on the von
Mises-Fisher mixture model and pairwise constraints. The von Mises-Fisher mixture distribution prior
enhances the robustness and modeling capability of VAE, particularly in modeling features mapped to
the underlying hypersphere. Pairwise constraints strengthen intra-cluster samples’ compactness and
inter-cluster samples’ separability in the spherical embedding space. Our model facilitates the joint
optimization of deep representation learning and clustering through the proposed unified loss function.
Compared to other advanced clustering methods, VDEPV demonstrates outstanding performance.
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3. K. A. István, F. Róbert, G. Péter, Unsupervised clustering for deep learning: A tutorial survey,
Acta Polytech. Hung., 15 (2018), 29–53. https://doi.org/10.12700/APH.15.8.2018.8.2

4. T. R. Davidson, L. Falorsi, N. D. Cao, T. Kipf, J. M. Tomczak, Hyperspherical variational auto-
encoders, in 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, (2018),
856–865.

5. K. V. Mardia, P. E. Jupp, K. V. Mardia, Directional Statistics, John Wiley & Sons, 2000.
https://doi.org/10.1002/9780470316979

6. J. Taghia, Z. Ma, A. Leijon, Bayesian estimation of the von-Mises Fisher mixture model
with variational inference, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), 1701–1715.
https://doi.org/10.1109/TPAMI.2014.2306426

Electronic Research Archive Volume 32, Issue 6, 3952–3972.

https://dx.doi.org/https://doi.org/10.1016/j.engappai.2022.104743
https://dx.doi.org/https://doi.org/10.48550/arXiv.2206.07579
https://dx.doi.org/https://doi.org/10.12700/APH.15.8.2018.8.2
https://dx.doi.org/https://doi.org/10.1002/9780470316979
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2014.2306426


3970

7. F. Yuan, L. Zhang, J. She, X. Xia, G. Li, Theories and applications of auto-
encoder neural networks: A literature survey, Chin. J. Comput., 42 (2019), 203–230.
https://doi.org/10.11897/SP.J.1016.2019.00203

8. S. Zhang, C. You, R. Vidal, C. Li , Learning a self-expressive network for subspace clustering, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021),
12393–12403. https://doi.org/10.1109/CVPR46437.2021.01221

9. Y. Tao, K. Takagi, K. Nakata, Clustering-friendly representation learning via
instance discrimination and feature decorrelation, preprint, arXiv:2106.00131.
https://doi.org/10.48550/arXiv.2106.00131

10. Z. Dang, C. Deng, X. Yang, K. Wei, H. Huang, Nearest neighbor matching for deep clustering, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021),
13693–13702. https://doi.org/10.1109/CVPR46437.2021.01348

11. M. Nasrazadani, A. Fatemi, M. Nematbakhsh, Sign prediction in sparse social net-
works using clustering and collaborative filtering, J. Supercomput., 78 (2022), 596–615.
https://doi.org/10.1007/s11227-021-03902-5

12. N. Alami, M. Meknassi, N. En-nahnahi, Y. E. Adlouni, O. Ammor, Unsupervised neural networks
for automatic arabic text summarization using document clustering and topic modeling, Expert
Syst. Appl., 172 (2021). https://doi.org/10.1016/j.eswa.2021.114652

13. J. Xie, R. Girshick, A. Farhad, Unsupervised deep embedding for clustering analysis, in Interna-
tional Conference on Machine Learning, (2016), 478–487.

14. X. Ye, C. Wang, A. Imakura, T. Sakurai, Spectral clustering joint deep embedding learning
by autoencoder, in 2021 International Joint Conference on Neural Networks (IJCNN), 2021.
https://doi.org/10.1109/IJCNN52387.2021.9533825

15. K. Thirumoorthy, K. Muneeswaran, A hybrid approach for text document clustering using Jaya op-
timization algorithm, Expert Syst. Appl., 178 (2021). https://doi.org/10.1016/j.eswa.2021.115040

16. J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, Z. Zhang, Efficient deep embedded subspace clustering,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
https://doi.org/10.1109/CVPR52688.2022.00012

17. Y. Li, P. Hu, Z. Liu, D. Peng, J. T. Zhou, X. Peng, Contrastive clustering, in
Proceedings of the AAAI Conference on Artificial Intelligence, 35 (2021), 8547–8555.
https://doi.org/10.1609/aaai.v35i10.17037

18. K. Do, T. Tran, S. Venkatesh, Clustering by maximizing mutual information across views,
in Proceedings of the AAAI Conference on Artificial Intelligence, (2021), 9928–9938.
https://doi.org/10.1109/ICCV48922.2021.00978

19. Y. Shen, Z. Shen, M. Wang, J. Qin, P. H. S. Torr, L. Shao, You never cluster alone, Adv. Neural
Inf. Process. Syst., 34 (2021), 27734–27746.

20. H. Zhong, J. Wu, C. Chen, J. Huang, M. Deng, L. Nie, et al., Graph contrastive cluster-
ing, in Proceedings of the AAAI Conference on Artificial Intelligence, (2021), 9224–9233.
https://doi.org/10.1109/ICCV48922.2021.00909

Electronic Research Archive Volume 32, Issue 6, 3952–3972.

https://dx.doi.org/https://doi.org/10.11897/SP.J.1016.2019.00203
https://dx.doi.org/https://doi.org/10.1109/CVPR46437.2021.01221
https://dx.doi.org/https://doi.org/10.48550/arXiv.2106.00131
https://dx.doi.org/https://doi.org/10.1109/CVPR46437.2021.01348
https://dx.doi.org/https://doi.org/10.1007/s11227-021-03902-5
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.114652
https://dx.doi.org/https://doi.org/10.1109/IJCNN52387.2021.9533825
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.115040
https://dx.doi.org/https://doi.org/10.1109/CVPR52688.2022.00012
https://dx.doi.org/https://doi.org/10.1609/aaai.v35i10.17037
https://dx.doi.org/https://doi.org/10.1109/ICCV48922.2021.00978
https://dx.doi.org/https://doi.org/10.1109/ICCV48922.2021.00909


3971

21. Q. Ji, Y. Sun, J. Gao, Y. Hu, B. Yin, A decoder-free variational deep embedding for un-
supervised clustering, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 5681–5693.
https://doi.org/10.1109/TNNLS.2021.3071275

22. W. Wang, J. Bao, S. Guo, Neural generative model for clustering by separating particularity and
commonality, Inf. Sci., 589 (2022), 813–826. https://doi.org/10.1016/j.ins.2021.12.037

23. J. Mirecka, M. Famili, A. Kota’nska, N. Juraschko, B. Costa-Gomes, C. Palmer, et al., Affinity-
VAE for disentanglement, clustering and classification of objects in multidimensional image data,
preprint, arXiv: 2209.04517. https://doi.org/10.48550/arXiv.2209.04517

24. J. Xu, Y. Ren, H. Tang, X. Pu, X. Zhu, M. Zeng, et al., Multi-VAE: Learning disentan-
gled view-common and view-peculiar visual representations for multi-view clustering, in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, (2021), 9234–9243.
https://doi.org/10.1109/ICCV48922.2021.00910

25. G. Chen, S. Long, Z. Yuan, W. Zhu, Q. Chen, Y. Wu, Ising granularity image analysis on
VAE–GAN, Mach. Vision Appl., 33 (2022). https://doi.org/10.1007/s00138-022-01338-2

26. E. Palumbo, S. Laguna, D. Chopard, J. E. Vog, Deep generative clustering with multimodal varia-
tional autoencoders, in ICML 2023 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2023.

27. L. Yang, C. Cheung, J. Li, J. Fang, Deep clustering by gaussian mixture variational autoencoders
with graph embedding, in Proceedings of the AAAI Conference on Artificial Intelligence, (2019),
6440–6449.

28. Y. Liang, Z. Lin, F. Yuan, H. Zhang, L. Wang, W. Wang, Towards polymor-
phic adversarial examples generation for short text, in ICASSP 2023-2023 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023.
https://doi.org/10.1109/ICASSP49357.2023.10095612

29. K. Yonekura, Quantitative analysis of latent space in airfoil shape generation using variational
autoencoders, Trans. JSME, 87 (2021). https://doi.org/10.1299/transjsme.21-00212

30. T. Nishida, T. Endo, Y. Kawaguchi, Zero-Shot domain adaptation of anomalous
samples for semi-supervised anomaly detection, in ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023.
https://doi.org/10.1109/ICASSP49357.2023.10095897

31. D. Nat, A. M. M. Pedro, G. Marta, C. H. L. Matthew, H. Salimbeni, A. Kai, et al., Deep unsu-
pervised clustering with gaussian mixture variational autoencoders, preprint, arXiv:1611.02648.
https://doi.org/10.48550/arXiv.1611.02648

32. W. Wu, Y. Liu, M. Guo, Constructing training distribution by minimizing variance of risk criterion
for visual category learning, in 2012 19th IEEE International Conference on Image Processing,
(2012), 101–104. https//doi.org/10.1109/ICIP.2012.6466805

33. W. Wu, Y. Liu, W. Zeng, M. Guo, C. Wang, X. Liu, Effective constructing training sets for ob-
ject detection, in 2013 IEEE International Conference on Image Processing, (2013), 3377–3380.
https//doi.org/10.1109/ICIP.2013.6738696

Electronic Research Archive Volume 32, Issue 6, 3952–3972.

https://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3071275
https://dx.doi.org/https://doi.org/10.1016/j.ins.2021.12.037
https://dx.doi.org/https://doi.org/10.48550/arXiv.2209.04517
https://dx.doi.org/https://doi.org/10.1109/ICCV48922.2021.00910
https://dx.doi.org/https://doi.org/10.1007/s00138-022-01338-2
https://dx.doi.org/https://doi.org/10.1109/ICASSP49357.2023.10095612
https://dx.doi.org/https://doi.org/10.1299/transjsme.21-00212
https://dx.doi.org/https://doi.org/10.1109/ICASSP49357.2023.10095897
https://dx.doi.org/https://doi.org/10.48550/arXiv.1611.02648
https://dx.doi.org/https//doi.org/10.1109/ICIP.2012.6466805
https://dx.doi.org/https//doi.org/10.1109/ICIP.2013.6738696


3972

34. Z. Jiang, Y. Zheng, H. Tan, B. Tang, H. Zhou, Variational deep embedding: An
unsupervised and generative approach to clustering, preprint, arXiv:1611.05148.
https://doi.org/10.48550/arXiv.1611.05148

35. W. Liu, Y. Zhang, X. Li, Z. Liu, B. Dai, T. Zhao, et al., Deep hyperspherical learning, Adv. Neural
Inf. Process. Syst., 30 (2017).

36. Q. Li, W. Fan, Mixture density hyperspherical generative adversarial networks, in Proceedings
of the 2022 6th International Conference on Innovation in Artificial Intelligence, (2022), 31–37.
https://doi.org/10.1145/3529466.3529475

37. L. Yang, W. Fan, N. Bouguila, Deep clustering analysis via dual variational autoencoder with
spherical latent embeddings, IEEE Trans. Neural Networks Learn. Syst., 34 (2021), 6303–6312.
https://doi.org/10.1109/TNNLS.2021.3135460

38. W. Fan, H. Huang, C. Liang, X. Liu, S. Peng, Unsupervised meta-learning via spher-
ical latent representations and dual VAE-GAN, Appl. Intell., 53 (2023), 22775–22788.
https://doi.org/10.1007/s10489-023-04760-9

39. S. Basu, A. Banerjee, R. Mooney, Active semi-supervision for pairwise constrained clustering,
in Proceedings of the 2004 SIAM International Conference on Data Mining, (2004), 333–344.
https://doi.org/10.1137/1.9781611972740.31

40. K. Wagstaff, C. Cardie, S. Rogers, S. Schroedl, Constrained k-means clustering with background
knowledge, in Proceedings of the Eighteenth International Conference on Machine Learning, 1
(2001), 577–584.

41. J. Goschenhofer, B. Bischl, Z. Kira, ConstraintMatch for semi-constrained cluster-
ing, in 2023 International Joint Conference on Neural Networks (IJCNN), (2023).
https://doi.org/10.1109/IJCNN54540.2023.10191186

42. L. Manduchi, K. Chin-Cheong, H. Michel, S. Wellmann, J. E. Vogt, Deep conditional gaussian
mixture model for constrained clustering, Neural Inf. Process. Syst., 34 (2021), 11303–11314.

43. S. E. Hajjar, F. Dornaika, F. Abdallah, Multi-view spectral clustering via constrained nonnegative
embedding, Inf. Fusion, 78 (2021), 209–217. https://doi.org/10.1016/j.inffus.2021.09.009

44. J. Lv, Z. Kang, X. Lu, Z. Xu, Pseudo-Supervised deep subspace clustering, IEEE Trans. Image
Process., 30 (2021), 5252–5263. https://doi.org/10.1109/TIP.2021.3079800

45. L. Bai, J. Liang, Y. Zhao, Self-Constrained spectral clustering, IEEE Trans. Pattern Anal. Mach.
Intell., 45 (2022), 5126–5138. https://doi.org/10.1109/TPAMI.2022.3188160

46. C. Hinojosa, E. Vera, H. Arguello, A fast and accurate similarity-constrained subspace clustering
algorithm for hyperspectral image, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021),
10773–10783. https//doi.org/10.1109/JSTARS.2021.3120071

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 6, 3952–3972.

https://dx.doi.org/https://doi.org/10.48550/arXiv.1611.05148
https://dx.doi.org/https://doi.org/10.1145/3529466.3529475
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3135460
https://dx.doi.org/https://doi.org/10.1007/s10489-023-04760-9
https://dx.doi.org/https://doi.org/10.1137/1.9781611972740.31
https://dx.doi.org/https://doi.org/10.1109/IJCNN54540.2023.10191186
https://dx.doi.org/https://doi.org/10.1016/j.inffus.2021.09.009
https://dx.doi.org/https://doi.org/10.1109/TIP.2021.3079800
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2022.3188160
https://dx.doi.org/https//doi.org/10.1109/JSTARS.2021.3120071
https://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Proposed method
	VDEPV Architecture
	Pairwise constraints of VDEPV
	Joint loss of VDEPV

	Experiments
	Datasets
	Implementation details
	Evaluation
	Clustering results

	Conclusions

