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Abstract: A stochastic model of leptospirosis with vector and environmental transmission is estab-
lished in this paper. By mathematical analysis of the model, the threshold for eliminating the disease is
obtained. The partial rank correlation coefficient was used to analyze the parameters that have a greater
impact on disease elimination, and a sensitivity analysis was conducted on the parameters through nu-
merical simulation. Further, combined with the data of leptospirosis case reports in China from 2003
to 2021, two parameter estimation methods, Least Squares method (LSM) and Markov Chain Monte
Carlo-Metropolis Hastings method (MCMC-MH), are applied to estimate the important parameters of
the model and the future trend of leptospirosis in China are predicted.
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1. Introduction

Leptospirosis is an acute systemic infectious disease caused by various pathogenic leptospira, which
belongs to natural foci disease. It is epidemic almost all over the world, especially severe in Southeast
Asia. Most provinces, cities, and autonomous regions in China have the existence and epidemic of
this disease. Rodents and pigs are the two major sources of infection, while other livestock such as
cattle, pigs, and pets like cats, dogs, and mice may also transmit leptospirosis. Typically, pathogenic
leptospira can survive longer in a warm and humid environment. People may contract the disease
through ingestion of contaminated food or water, or when the bacteria enter the body through scratches
on the skin or mucous membranes [1].

The application of mathematical models in leptospirosis research has also become increasingly
widespread. Through numerical simulations and data analysis, we can delve deeper into the trans-
mission mechanisms and dynamic characteristics of the disease, providing more precise and effective
means for disease prevention and control. Regarding the research on mathematical models of lep-
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tospirosis, please refer to the literature [2–6]. These models analyze the factors that influence the
transmission dynamics of leptospirosis, pointing out that disease transmission is not only related to
the interaction between rodents and humans [4], but also to their contact with free bacteria in the
environment [6]. They also demonstrate that adopting appropriate intervention mechanisms, such as
reducing the transmission rate, increasing the recovery rate, reducing rodent populations, and reducing
bacterial contamination in water sources, can greatly assist in reducing the spread of the disease in the
population.

In the real world, infectious disease models are inevitably affected by environmental noise, and
deterministic models alone cannot accurately reflect the dynamic behavior of the system when describ-
ing disease transmission processes. In recent years, most scholars have explored stochastic infectious
disease models that consider environmental perturbations [7–12]. The research results indicate that
random perturbations have a certain impact on the spread of diseases.

Therefore, it is highly necessary to further establish and study leptospirosis models that consider
vector-environment interactions and random disturbances.

To establish the model, we make the following assumptions.
(i) Susceptible individuals who come into contact with infected vectors or free bacteria in the envi-

ronment can become infected individuals, and susceptible vectors that come into contact with infected
individuals or free bacteria in the environment can also become infected vectors.

(ii) Infected individuals and vectors both release free bacteria into the environment.
(iii) The host population S h(t), Ih(t), S h(t), vector population S v(t), Iv(t), and the concentration of

bacteria in the environment are all influenced by Gaussian white noise.
(iv) The recruitment rate Λ and the birth rate Π of the vectors are constants. Every parameter within

the system is a nonnegative real number.
Base on the above assumptions, we establish and study a stochastic model of leptospirosis with

host-vector-environment interactions:

dS h(t) = [Λ − µhS h −
β1S hIv

Nh
−
β3S hB
K + B

+ λhRh]dt + σ1S hdB1(t),

dIh(t) = [
β1S hIv

Nh
+
β3S hB
K + B

− µhIh − δhIh − γhIh]dt + σ2IhdB2(t),

dRh(t) = [γhIh − λhRh − µhRh]dt + σ3RhdB3(t),

dS v(t) = [Π −
β2IhS v

Nh
−
β4S vB
K + B

− µvS v]dt + σ4S vdB4(t),

dIv(t) = [
β2IhS v

Nh
+
β4S vB
K + B

− µvIv]dt + σ5IvdB5(t),

dB(t) = [α1Ih + α2Iv − kB]dt + σ6BdB6(t),

(1.1)

where the host population, which represents the human population, is divided into three categories at
time t: susceptible individuals S h(t), infected individuals Ih(t), and recovered individuals Rh(t). The
vector population is divided into susceptible vectors S v(t) and infected vectors Iv(t) at time t. Addi-
tionally, B(t) represents the free-floating bacterial population in the environment. The meanings of
the parameters are as follows. β1 and β2 represent the infection rates of diseased vectors transmitting
the disease to humans and of infected humans transmitting the disease to vectors, respectively. β3 and
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β4 represent the rates at which susceptible humans and susceptible vectors become infected through
contact with bacteria in the environment. µh and µv are natural mortality rate for the human popula-
tion and the vector population, and γh represents the disease-induced mortality rate among humans.
δh represents the recovery rate for infected humans, while λh represents the rate at which recovered
humans revert back to the susceptible state. α1 and α2 represent the rates at which infected humans
and infected vectors release bacteria into the environment, respectively. K serves as a half-saturation
infection parameter, and k is the decay rate of bacteria in the environment. Bi(t) (i = 1, 2, 3, 4, 5, 6)
are standard Brownian motions. Parameters σi (i = 1, 2, · · · , 6) are the intensities of noise, represent-
ing variability and stochastic effects: σ1 represents the variability in the susceptible individuals S h(t),
which arise from fluctuating contact rates or changes in population behavior that affect exposure to
the virus environment and infected vectors; σ2 reflects the random fluctuations in the number of the
infected population Ih(t) due to variations in the disease’s infectiousness, or response to treatment;
σ3 represents stochastic factors affecting the recovered population Rh(t), such as loss of immunity or
the impact of interventions; σ4 represents the variability in the susceptible vectors S v(t), which arise
from fluctuating contact rates or changes in population behavior that affect exposure to the Leptospira
virus environment and infected individuals; σ5 reflects the random fluctuations in the number of the
infected vectors Iv(t) due to variations in the disease¡¯s infectiousness; σ6 represents the random vari-
ation intensity of Leptospira virus B(t) released into the environment by infected humans or disease
vectors.

We assume the initial conditions are

S h(0) ≥ 0, Ih(0) ≥ 0,Rh(0) ≥ 0, S v(0) ≥ 0, Iv(0) ≥ 0, B(0) ≥ 0. (1.2)

The aim of this paper is to build a stochastic model of leptospirosis that incorporates both vector-
borne and environmental transmission to more comprehensively describe the disease’s transmission
characteristics. Furthermore, by combining this model with actual reported data on leptospirosis in
China in recent years, we aim to estimate important parameters of the model using statistical methods
and predict the future trends of leptospirosis in China.

2. The long-term behavior of the solution

To demonstrate that our proposed model is meaningful, we prove that there exists a unique global
positive solution of the system (1.1).

Theorem 2.1. For any initial value (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) ∈ R6
+, the system (1.1) has

a unique positive solution (S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)), and the solution will remain in R6
+ with

probability 1, i.e., (S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)) ∈ R6
+ for all t > 0 almost surly (a.s.).

Proof. Obviously, the system (1.1) has locally Lipschitz continuous coefficients, for any initial value
(S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) ∈ R6

+, and the system (1.1) exists a unique maximal local solu-
tion (S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)), t ∈ [0, τe), where τe is the explosion time. To verify that this
solution of the system (1.1) is global, we just have to prove that τe = ∞ a.s. For this, assume k0 ≥ 1 is
large enough such that (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) all fall within the interval [1/k0, k0]. For
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each integer k ≥ k0, define the stopping time as:

τk = inf
{
t ∈ [0, τe) : S h(t) < (

1
k
, k) or Ih(t) < (

1
k
, k) or Rh(t) < (

1
k
, k)

or S h(t) < (
1
k
, k) or Iv(t) < (

1
k
, k) orB(t) < (

1
k
, k)
}
,

where inf ∅ = ∞ (∅ denotes the empty set). Clearly, when k → ∞, τk are increasing. Let
τ∞ = lim

k→∞
τk, then τ∞ ≤ τe a.s. If τ∞ = ∞ a.s. holds, then τe = ∞ a.s., which means that

(S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)) ∈ R6
+ a.s. for t ≥ 0. Therefore, it suffices to prove that τ∞ = ∞

a.s.
Next, we assume that there exist constants T > 0 and ε ∈ (0, 1), such that P{τ∞ ≤ T } > ε, then,

there exists an integer k1 ≥ k0, such that for any k ≥ k1,

P{τk ≤ T } ≥ ε. (2.1)

Define the function Q : R6
+ → R+ as follows:

Q(S h, Ih,Rh, S v, Iv, B) =(S h − a1 − a1 ln
S h

a1
) + (Ih − 1 − ln Ih) + (Rh − 1 − ln Rh)

+ (S v − b1 − b1 ln
S v

b1
) + (Iv − 1 − ln Iv) + ln(1 +

1
B

),

where a1, b1 are positive constants to be determined later. Obviously, the function u − 1 − lnu is non-
negative for all u > 0.

Applying Itô’s formula, we obtain

dQ =LQdt + σ1(S h − a1)dB1(t) + σ2(Ih − 1)dB2(t) + σ3(Rh − 1)dB3(t)

+ σ4(S v − b1)dB4(t) + σ5(Iv − 1)dB5(t) −
σ6

1 + B
dB6(t),

where

LQ =Λ − µh(S h + Ih + Rh) − δhIh + Π − µv(S v + Iv) −
α1Ih

B(1 + B)
−
α2Iv

B(1 + B)

+
k

1 + B
−

a1Λ

S h
+ a1µh +

a1β1Iv

Nh
+

a1β3B
K + B

−
a1λhRh

S h
−
β1S hIv

NhIh
−
β3S hB

(K + B)Ih

+ µh + δh + γh −
γhIh

Rh
+ λh + µh −

b1Π

S v
+

b1β2Ih

Nh
+

b1β4B
K + B

+ b1µv −
β2S vIh

NhIv

−
β4S vB

(K + B)Iv
+ µv +

1
2

a1σ
2
1 +

1
2
σ2

2 +
1
2
σ2

3 +
1
2

b1σ
2
4 +

1
2
σ2

5 +
1
2

1 + 2B
(1 + B)2σ

2
6

≤Λ + Π + k + a1µh + (
a1β1

M1
− µv)Iv + a1β3 + µh + δh + γh + λh + µh + (

b1β2

M1

− µh)Ih + b1β4 + b1µv + µv +
1
2

a1σ
2
1 +

1
2
σ2

2 +
1
2
σ2

3 +
1
2

b1σ
2
4 +

1
2
σ2

5 +
1
2
σ2

6.
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Choose a1 =
µvM1

β1
, b1 =

µhM1

β2
, such that

a1β1

M1
− µv = 0,

b1β2

M1
− µh = 0, and

LQ ≤ Λ + Π + k + a1µh + a1β3 + µh + δh + γh + λh + µh + b1β4 + b1µv + µv

+
1
2

a1σ
2
1 +

1
2
σ2

2 +
1
2
σ2

3 +
1
2

b1σ
2
4 +

1
2
σ2

5 +
1
2
σ2

6 := K,

where K > 0 is a constant. The remainder of the proof follows the similar approach given in [13].

Now, the sufficient conditions for the elimination of Ih, Iv are presented. Denote ⟨ f ⟩ =
1
t

∫ t

0
f (s)ds,

and the parameter as follows:

Rm =
(β1 + β2 + β4)µhΠ + β3µvΛ

µhµv(Λ + Π) + (δh + γh)µvΛ
.

To facilitate the proof of the theorem, we first give a related lemma.

Lemma 2.1. [14–16] For any initial value (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) ∈ R6
+, the solution

(S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)) ∈ R6
+ of model (1.1) possesses the following properties:

lim
t→∞

∫ t

0
S h(s)dB1(s)

t
= 0, lim

t→∞

∫ t

0
Ih(s)dB2(s)

t
= 0, lim

t→∞

∫ t

0
Rh(s)dB3(s)

t
= 0,

lim
t→∞

∫ t

0
S v(s)dB4(s)

t
= 0, lim

t→∞

∫ t

0
Iv(s)dB5(s)

t
= 0, lim

t→∞

∫ t

0
B(s)dB6(s)

t
= 0 a.s.

Proof of Lemma 2.1 can be similarly obtained by following the proof of Lemma 2.2 in reference
[14]. The details are omitted here.

Theorem 2.2. Assume (S h(t), Ih(t),Rh(t), S v(t), Iv(t), B(t)) ∈ R6
+ is the solution of model (1.1) that sat-

isfies the initial condition (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) ∈ R6
+. If Rm < 1, then (Ih(t), Iv(t), B(t))

converges to (0, 0, 0) exponentially with probability one (a.s.), indicating the elimination of the disease,
and furthermore,

lim
t→∞

S h(t) =
Λ

µh
, lim

t→∞
S v(t) =

Π

µv
, lim

t→∞
Rh(t) = 0 a.s.

Proof. Let P(t) = Ih(t) + Iv(t). Applying Itô’s formula, we have

dP(t) =
[β1S h

Nh
Iv +
β3S hB
K + B

− µhIh − δhIh − γhIh +
β2Ih

Nh
S v +

β4S vB
K + B

− µvIv

]
dt + σ2IhdB2(t) + +σ5IvdB5(t).

(2.2)
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Integrating both sides of (2.2) from 0 to t and dividing by t, we obtain

P(t)
t
=

P(0)
t
+ β1⟨

S h

Nh
Iv⟩ + β3⟨

S hB
K + B

⟩ − (µh + δh + γh)⟨Ih⟩ + β2⟨
Ih

Nh
S v⟩

+ β4⟨
S vB

K + B
⟩ − µv⟨Iv⟩ +

1
t

∫ t

0
σ2Ih(s)dB2(s) +

1
t

∫ t

0
σ5Iv(s)dB5(s)

≤
P(0)

t
+ β1⟨Iv⟩ + β3⟨S h⟩ − (µh + δh + γh)⟨Ih⟩ + β2⟨S v⟩ + β4⟨S v⟩−

µv⟨Iv⟩ +
1
t

∫ t

0
σ2Ih(s)dB2(s) +

1
t

∫ t

0
σ5Iv(s)dB5(s).

(2.3)

Notice
d(S h(t) + Ih(t) + Rh(t))

≤[Λ − µ(S h + Ih + Rh)]dt + σ1S h(t)dB1(t) + σ2Ih(t)dB2(t) + σ3Rh(t)dB3(t)
(2.4)

and
d(S v(t) + Iv(t)) = [Π − µv(S v + Iv)]dt + σ4S v(t)dB4(t) + σ5Iv(t)dB5(t). (2.5)

Integrating both sides of (2.4) and (2.5) from 0 to t and dividing by t, then, taking the upper limit, we
obtain

lim sup
t→∞

⟨S h(t) + Ih(t) + Rh(t)⟩ ≤
Λ

µh
a.s.

lim sup
t→∞

⟨S v(t) + Iv(t)⟩ =
Π

µv
a.s.

Thus
lim sup

t→∞
⟨S h(t)⟩ ≤

Λ

µh
, lim sup

t→∞
⟨Ih(t)⟩ ≤

Λ

µh
, lim sup

t→∞
⟨Rh(t)⟩ ≤

Λ

µh
a.s.

lim sup
t→∞

⟨S v(t)⟩ ≤
Π

µv
, lim sup

t→∞
⟨Iv(t)⟩ ≤

Π

µv
a.s.

Taking the upper limit of both sides of (2.3), and according to Lemma 2.1, we can obtain the desired
result

lim sup
t→∞

P(t)
t
≤ β1 ·

Π

µv
+ β3 ·

Λ

µh
− (µh + δh + γh) ·

Λ

µh
+ β2 ·

Π

µv
+ β4 ·

Π

µv
− µv ·

Π

µv

=
µh(Λ + Π) + (δh + γh)Λ

µh
(Rm − 1) < 0.

Then
lim
t→∞

P(t) = 0.

Hence
lim
t→∞

Ih(t) = 0, lim
t→∞

Iv(t) = 0.

For the sixth equation in (1.1), by integrating both sides from 0 to t, dividing by t, and then taking the
upper limit, we can derive that lim

t→∞
B(t) = 0.
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Similarly, applying the same method to the third equation in (1.1), we can obtain lim
t→∞

Rh(t) = 0.
Since

d(S h(t) + Ih(t)) =[Λ − µhS h − µhIh − δhIh − γhIh + λhRh]dt

+ σ1S h(t)dB1(t) + σ2Ih(t)dB2(t),

based on the conclusions obtained above, we can derive that lim
t→∞

S h(t) = Λ
µh

. Similarly, we can obtain

that lim
t→∞

S v(t) = Πµv
.

To better analyze the impact of different parameters on the spread of infectious diseases on the
surface, we will proceed with a further parameter sensitivity analysis. We conduct 1000 samplings of
the parameters using the Latin Hypercube Sampling (LHS) method [17]. By calculating the Partial
Rank Correlation Coefficient (PRCC), we will be able to screen out the parameters that have a signif-
icant impact on the population size. This will help us identify more accurate measures to control the
epidemic.

Observing Figure 1, it is evident that the parameters with significant impacts on disease transmission
are β3, δh, γh, µv. Here, β3 is positively correlated with Rm, while δh, γh, µv are negatively correlated
with Rm. In other words, the smaller the contact rate of humans with free bacteria in the environment,
the higher the human mortality rate due to the disease and the natural mortality rate of the vector
population; and the faster the recovery rate from the disease, the smaller the basic reproduction number
will be, making it easier to eliminate the disease. In fact, as the contact rate of humans with free
bacteria in the environment declines, so does the likelihood of contracting the virus. Similarly, when the
mortality rate stemming from the illness is high, infected individuals may perish during the infection
period, thereby diminishing their capacity to spread the disease to others, resulting in a lower average
transmission rate per infected individual. Furthermore, a high natural mortality rate among vectors
lessens their chances of transmitting the disease to humans and curtails the release of virus particles
into the environment. Lastly, an increase in the recovery rate of infected individuals reduces their
chances of transmitting the disease to vectors. All these scenarios contribute significantly to a decrease
in the Rm value.
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Figure 1. The correlation PRCC index of each parameter on Rm.

Next, we perform numerical simulations on the system (1.1) by using the high-order Milstein
method mentioned in [18, 19], which is based on the concept of Itô’s formula and stochastic Taylor
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expansion. The Milstein method improves the accuracy of the estimates by introducing higher-order
infinitesimals. Compared to the Euler-Maruyama method, the Milstein method is more precise. How-
ever, the Milstein method requires the stochastic process to be twice differentiable, which can make its
implementation more complex. It is primarily suitable for stochastic differential equations with con-
tinuous sample paths. For stochastic differential equations with discontinuous sample paths or jump
processes, other types of numerical methods may be required.

Assuming an initial condition of (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0)) = (400, 100, 150, 500, 120,
1000), the specific parameter values are as follows: Λ = 35 day−1, Π = 30 day−1, β1 = 0.004 day−1,

β2 = 0.001 day−1, β3 = 0.003 day−1, β4 = 0.002 day−1, λh = 0.1 day−1, δh = 0.6 day−1, µh =

0.01 day−1, µv = 0.1 day−1, K = 10 cells · ml−1, k = 0.5 day−1, α1 = 0.08 cells · ml−1 · day−1,
α2 = 0.09 cells · ml−1 · day−1 and γh = 0.7 day−1.
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Figure 2. Numerical simulations of deterministic and stochastic systems Ih under different
β3 and δh. (a) and (c) represent the corresponding deterministic model of (1.1), while (b) and
(d) represent the stochastic model (1.1).

Figures 2 and 3 demonstrate the specific time-varying situation of the number of infected individu-
als or infected vectors when these four parameters β3, δh, γh, µv change, while other parameters remain
unchanged, respectively. From these two figures, it can be observed that despite changes in the pa-
rameters, both the infected population and the infected vectors ultimately go extinct, but the time of
extinction differs. Specifically, as β3 decreases, the extinction time of Ih shortens. Similarly, when δh
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and γh increase, the extinction time of Ih decreases. Additionally, as µv increases, the extinction time
of Iv also shortens.
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(a) γh = 0.7, 0.8, 0.9
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Figure 3. Numerical simulations of deterministic and stochastic systems Ih and Iv under
different γh and µv. (a) and (c) represent the corresponding deterministic model of (1.1),
while (b) and (d) represent the stochastic model (1.1).

3. Predicting the trend of leptospirosis in China

In this section, we utilize the reported leptospirosis case data in China from 2003 to 2021 to predict
the future epidemic situation of the disease. The data comes from China’s statistical Yearbook [20], as
shown in Figure 4. The population recruitment rate of Λ = 7.74 × 106 is estimated based on China’s
population statistics from 2003 to 2021, the natural death rate of humans is µh = 0.0064, and the
number of newly reported leptospirosis cases in 2003 was 1728 [20]. Assuming that the recruitment
rate of vectors carrying leptospira is Π = 1.0812× 105, these vectors are susceptible to external factors
that can lead to death, with a natural death rate of µv = 0.8125 [21]. The specific values of the
parameters are listed in Table 1.

Let the cumulative number of leptospirosis cases in the human population be defined as Dh(t), and

dDh(t)
dt

=
β1S hIv

Nh
+
β3S hB
K + B

. (3.1)

To predict the disease, it is necessary to first estimate the two important parameters that affect the
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spread of the disease, namely, β1, β3. We utilize the numerical solution Dh(t) from model (3.1)
to fit the data. Let Θ(β1, β3) represent the vector of parameters to be estimated, and Dh(t,Θ)
represent the numerical solution of model (3.1) corresponding to the parameters Θ. The vector
Y(Yk, k = 1, 2, 3, ..., 19) represents the 19 statistical data points, and tk is the corresponding time for
each data point. Take the initial value of the variable as (S h(0), Ih(0),Rh(0), S v(0), Iv(0), B(0),Dh(0)) =
(7.74×106, 1728, 307, 1.0812×105, 1.867×103, 1.42×102, 1728), and the initial value of the parameter
(β1, β3) = (3.2326 × 10−3, 1.2 × 10−4). Random disturbance intensities are taken as σ1 = σ2 = σ3 =

σ4 = σ5 = σ6 = 0.1. We estimate the parameters using two methods below: one is the least squares
method, and the other is the Markov Chain Monte Carlo (MCMC) method.
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Figure 4. The Report on Leptospirosis Cases in China from 2003 to 2021.

Table 1. Parameter values and sources.

Parameter Parameter value Source Parameter Parameter value Source

Λ 7.74 × 106 year−1 [20] Π 1.0812 × 105 year−1 [22]
β2 1 × 10−5 year−1 Fitted β4 1 × 10−5 year−1 Fitted
K 4.65 × 108 cells·ml−1 Fitted k 0.162 year−1 [20]
µh 0.0064 year−1 [20] µv 0.8125 year−1 [21]
α1 3 cells·ml−1·year−1 [20] α2 100 cells·ml−1·year−1 Fitted
λh 0.08082 year−1 [21] δh 0.03328 year−1 [23]
γh 0.08889 year−1 [23]

1) The least squares method (LSM). The goal is to find the optimal values ofΘ(β1, β3) that minimize
the least squares criterion:

LS =
19∑

k=1

|Dh(tk,Θ) − Yk|
2. (3.2)

To achieve this, we utilize the fmincon command in the mathematical software MATLAB for numerical
optimization. Based on the biological background, we set the ranges of Θ to be ((0, 0), [0.5, 0.5]),
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which serve as the constraint conditions. Using the optimization algorithm, we obtain the estimated
values of the parameters. Then, we run the program 100 times and calculate the average of the output
parameters β1 = 0.0032308, β3 = 0.00011993, which serve as the required parameter estimates. Figure
5(a),(b) present numerical simulations of the cumulative number of leptospirosis cases in 100 sample
paths and their mean output path, respectively.

2) Markov Chain Monte Carlo-Metropolis Hastings method (MCMC-MH). Now, we estimate the
parameters using the MCMC parameter estimation method combined with MH sampling. LetΘ(β1, β3)
be the proposed parameter and Θ′(β1, β3) be the current parameter. The proposed parameter follows
Θ = Θ′ + ε, where ε is the step size of random walk that follows a uniform distribution. According to
Bayesian statistical inference, the posterior distribution is given by:

P(Θ|Y) = L(Y |Θ)P(Θ), (3.3)

where the likelihood function is L(Y |Θ) = −
19∑

k=1

|Dh(tk,Θ) − Yk|
2, and P(Θ) is the non-informative

prior distribution, assumed to be a constant C. The acceptance probability is defined as: α(Θ,Θ′) =
min{1, exp(L(Y |Θ) − L(Y |Θ′))}. The ranges of Θ are also ((0, 0), [0.5, 0.5]). After performing 5000
iterations of MCMC calculations, with a burn-in period of 1000 iterations, we computed the average
of the last 4000 iterations to obtain the estimated values of the parameters as β1 = 0.0050193, β3 =

0.000096193. The 95 percent confidence interval for β1 and β3 is (1.432 × 10−3 − 9.941 × 10−3),
(1.5036× 10−5 − 2.2604× 10−4), respectively. By substituting the estimated parameters into the model
(3.1), we can obtain any 100 paths of Dh(t). Figure 6(a),(b) present numerical simulations of the
cumulative number of leptospirosis cases in 100 sample paths and their mean output path, respectively.
Figure 6(c),(d) show the posterior distribution plots and trace plots for β1, β3, respectively.
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Figure 5. LSM analysis chart for parameters β1 and β3.

It can be seen from Figures 5 and 6 that both simulation results of the model (3.1) by two methods
match the cumulative data of leptospirosis cases in China from 2003 to 2021. Next, we calculate
the error value between the average curve and the real data, and compare the results from both two
methods. It can be seen from Table 2 that the parameter values estimated by the two methods are
very close, but the estimation error by the MCMC-MH method is smaller than LSM. Finally, using the
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parameters estimated by the MCMC-MH method, we calculate the basic reproduction number for the
transmission of leptospirosis in China, Rm ≈ 0.00075197 < 1, and predict that leptospirosis will be
eliminated in China in 26 years (see Figure 7).
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Figure 6. MCMC analysis chart for parameters β1 and β3.
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Figure 7. Prediction chart of the future trend of leptospirosis.
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Table 2. Error comparison.

Method The estimated value of β1 The estimated value of β3 MAPE RSME
LSM 0.0032308 0.00011993 0.6236 4190.7348
MCMC 0.0050193 0.000096193 0.61821 3968.3587

4. Conclusions

This article establishes a stochastic leptospirosis model with both vector and environmental trans-
mission. Through mathematical analysis of the model, a threshold for disease elimination is derived.
Then, using the partial rank correlation coefficient, an impact analysis was conducted on the model
parameters to identify the key parameters that have a significant influence on disease elimination. Fur-
thermore, a sensitivity analysis of these parameters was carried out through numerical simulations,
which further revealed the mechanisms of their role in the disease transmission process. This analyt-
ical approach provides a powerful tool for gaining a deeper understanding of how model parameters
affect disease transmission. In the end, using data from China’s leptospirosis case reports from 2003
to 2021, two parameter estimation methods, LSM and MCMC-MH, are applied to estimate the cru-
cial parameters of the model. The simulation results of the number of infections in model (1.1) using
parameters obtained from two parameter estimation methods align well with the cumulative data of
leptospirosis cases in China from 2003 to 2021. It is predicted that under the current control measures,
leptospirosis in China will be completely eliminated after 26 years.

Common leptospirosis models [3,5,22] tend to only consider the interaction between hosts and vec-
tors, overlooking the influence of environmental factors. In this paper, by incorporating environmental
transmission factors into the model design and considering environmental disturbance, we construct
a more comprehensive and realistic stochastic infectious disease model, providing a new perspective
for a more accurate understanding of the transmission mechanisms of leptospirosis. Specifically, the
parameter estimation method used in this article, which combines MH sampling with MCMC, has
served as a good demonstration for parameter estimation in stochastic differential systems with numer-
ous parameters. This approach of combining actual data with parameter estimation not only enhances
the accuracy and reliability of the model, but also provides strong support for predicting the future
trends of leptospirosis in China. The stochastic model of leptospirosis and its related analysis methods
established in this article have important theoretical and practical significance for understanding the
transmission patterns of other similar vector-borne diseases and predicting future epidemic trends.

However, it must be said that when we make predictions, we only estimate two important param-
eters, and some parameters are based on subjective assumptions fitted to the data, which may reduce
the accuracy of the prediction. In addition, the model does not fully consider the impact of human
behavior, socioeconomic factors, and climate change on disease transmission. The neglect of these
factors may limit the accuracy and applicability of the model. In the future, we will incorporate human
behavior, socioeconomic factors, and climate change into our model, and strive to utilize actual data
to estimate more parameters in order to improve the accuracy and applicability of the model. This
will help us gain a deeper understanding of the dynamics of disease transmission and design effective
interventions to protect public health.
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