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Abstract: Metaheuristic algorithms have garnered much attention among researchers owing to 
their robustness, adaptability, independence from a predetermined initial solution, and lack of reliance 
on gradient computations. The flower pollination algorithm (FPA) and the slime mould algorithm 
(SMA) are efficient methodologies for addressing global optimization challenges. Nonetheless, 
tackling large-scale global problems using a single algorithm often proves challenging due to 
inherent limitations in its mechanism. One effective approach to mitigating this limitation is to hybrid 
the two algorithms employing suitable strategies. We proposed a hybrid algorithm (GFPSMA) based 
on FPA and SMA. First, to address the global exploration issue of FPA, a method was proposed that 
utilized the golden section mechanism to enhance information exchange between random individuals 
and the best individual. Second, to improve the reliability of the random search phase in SMA, an 
adaptive step-size strategy was introduced. Furthermore, a dual-competition mechanism, inspired by 
gaming concepts, was introduced to enhance the integration of the two algorithms. Finally, an elite 
learning method with adjustment conditions was employed to refine the localization of the best 
individual. To assess the performance advantage of GFPSMA, 39 benchmark functions were employed, 
comparing GFPSMA with FPA and SMA along with their six variants, six variants of other 
metaheuristic algorithms, three CEC competition algorithms, totaling 17 algorithms, and strategic 
algorithms for testing. Experimental results demonstrated the favorable performance advantage of 
GFPSMA. Additionally, the feasibility and practicality of GFPSMA were demonstrated in four 
engineering problems. 
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1. Introduction 

Meta-heuristic algorithms are formulated to address the specific optimization demands of 
progressively intricate challenges encountered in actual production, playing a crucial role in optimizing 
problems across diverse states. Consequently, metaheuristic algorithms have undergone continual 
evolution, yielding numerous outstanding MAs, such as the differential evolution algorithm (DE) [1], 
particle swarm optimization (PSO) [2], grey wolf optimizer (GWO) [3], aquila optimizer (AO) [4], 
and human memory optimization algorithm (HMOA) [5].  

Since most MAs has the characteristics of high adaptability to complex problems, initial solution 
without characteristic or gradient information, it replaces traditional mathematical methods such as 
Newton’s method and gradient descent method in dealing with many nonlinear and high-dimensional 
optimization problems [6]. Therefore, many scholars have widely applied metaheuristic algorithms in 
fields, such as Job shop scheduling problem [7], parameter recognition of photovoltaic cells and 
modules [8], feature selection [9], drone technology [10], fake news detection [11], etc., and have 
achieved good optimization results. 

Among these metaheuristic algorithms, the slime mould algorithm (SMA) is a novel intelligent 
algorithm proposed by Li et al. in 2020 [12]. This algorithm simulates the principle of slime moulds, 
a biological dispersal for foraging. SMA is similar to other MAs in that it relies less on the feature 
information of the problem to be optimized due to its black box principle, making it suitable for solving 
global optimization problems in complex environments such as nonconvex, discontinuous, nonlinear, 
and multimodal. Numerous studies have confirmed that SMA is an efficient algorithm for solving 
complex optimization problems in the real world [13–15]. Scholar Yang [16] proposed an intelligent 
algorithm called flower pollination algorithm (FPA) that mimics flower pollination in 2012. The 
mathematical model of this algorithm consists of self-pollination within a local search range and cross 
pollination within a given global search range. Its simple structure and fewer parameters make it more 
competitive compared to many meta heuristic algorithms such as PSO. 

SMA and FPA, as two MAs with excellent search performance, each have their own advantages, 
disadvantages, and application scope. They have played their own characteristics in solving real-world 
problems and provided new optimization ideas. However, due to the limitations of the single 
mechanism of the two algorithms themselves, they are difficult to balance the convergence between 
global and local solutions and easily fall into local optima when dealing with high-dimensional 
problems [17,18]. 

Talbi [19] states that, typically, metaheuristic algorithms balance global exploration and local 
exploitation during the search process, and how to balance the two within limited computational 
resources has always been of interest to researchers. Hybrid metaheuristic algorithms often yield better 
results in many practical and academic optimization problems compared to single algorithms, as 
different algorithms complement each other in specific aspects. Therefore, selecting the appropriate 
algorithm appears particularly crucial. 

The discussed SMA and FPA are types of swarm optimization algorithms within metaheuristic 
algorithms. Research indicates that these two algorithms have different design principles, suggesting 
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variations in optimization performance at different stages. In the case of SMA, the global exploration 
phase consists of a combination of two random search agents, which may lead to SMA being adept at 
exploring the search space and locating the global minimum region [20]. The local search in SMA is 
a search method that only involves the current population individuals with local exploration around 
the precise solution within a small range of (0, 1), making it more prone to local optima. In other 
words, SMA excels in global exploration but has weaker local search capabilities. In FPA, global 
search is guided by the Levy distribution function, combined with step sizes formed by the current 
search individuals and the best individual, for global exploration around the current individual. This 
approach, due to the properties of the Levy distribution function involving short-range moves and long 
jumps [21], results in shorter step lengths overall, making it challenging to achieve effective 
optimization over a wide global range. Additionally, Draa [22] experimentally demonstrated that with 
a probability of 𝑝 = 0.2, i.e., 80% of the iteration process dedicated to local exploitation, FPA exhibits 
optimal search capabilities. The description above explains why FPA has weaker global capabilities 
but stronger local capabilities. Therefore, we propose hybridizing these two algorithms to leverage 
their respective strengths and mitigate weaknesses. 

Considering how existing SMA and FPA can be hybridized to maximize utility, inspired by Talbi’s 
HTH (High-level teamwork hybrid) model [19], which asserts that the performance in the HTH model 
is at least greater than or equal to that of any single algorithm participating in the collaboration, as 
cooperative algorithms provide assistance to other algorithms. Drawing from this model, the GFPSMA 
was developed. SMA and FPA use the same random initial population and then operate independently 
from each other during the iterative process without integration. In the optimization process, after each 
algorithm completes the required computations separately, the full iteration of GFPSMA is finalized 
based on the results of an information exchange inspired by the concept of double game. 

The hybrid algorithm represents the amalgamation of two or more algorithms with commendable 
characteristics in distinct stages, following a rule. This integration enhances the algorithm’s search 
capability to a heightened level [19,23]. Building upon the preceding discourse, this paper introduces 
a hybrid algorithm (GFPSMA) rooted in FPA and SMA. It integrates SMA and FPA algorithms through 
game-inspired principles to address the deficiencies of each, reinforcing their individual strengths. 
Subsequently, it facilitates the exchange of information among effective particles from both sides, 
adhering to formulated rules, culminating in an enhanced optimization approach. 

Game theory has achieved significant results in various areas: literature [24] combining multi-
objective random fractal search with cooperative game theory has led to minimizing the synergistic 
effect to save the golden time. Literature [25] proposes the use of Lagrangian relaxation method in an 
evolutionary game considering environmental feedback during the COVID-19 pandemic outbreak. 
Literature [26] applies Stackelberg game theory to establish a two-level blood supply chain network 
under uncertain conditions during an epidemic outbreak. Literature [27] explores the use of leader-
follower game form in game theory, particularly the Stackelberg competitive game, and compares it 
with genetic algorithm and grey wolf optimizer. The above literature utilizes game theory to address 
practical issues. The application of game theory in this paper aims to enhance the integration of two 
algorithms to improve their capabilities. 

This paper primarily contributes to the following concepts: 
1) Propose a method utilizing the golden ratio mechanism to enhance the exploration of information 

exchange between random individuals and the optimal individual in standard FPA, aiming to 
address the global exploration issue in FPA. 
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2) Proposed an adaptive step strategy to improve the random search phase mechanism in SMA and 
enhance the algorithm’s convergence speed. 

3) Utilized a fusion mechanism based on the idea of dual game theory to implement dual-population 
independent optimization, aiming to achieve complementary advantages of the two algorithms in 
search, thereby enhancing the search performance of the hybrid algorithm. 

4) Introduced an elite search method to further enhance the algorithm’s performance by improving 
the search path of the optimal search agent and increasing the probability of GFPSMA escaping 
local optima. 

5) The effectiveness and robustness of GFPSMA are theoretically and practically validated by 
solving 39 test functions containing standard functions, CEC 2017 test suite and addressing 4 
engineering optimization problems. 
The remainder of this paper is as follows: Section 2 gives a brief overview of the work of SMA 

and FPA. Section 3 describes the SMA and FPA algorithms in detail. In Section 4, the improved hybrid 
algorithm of SMA and FPA is introduced in detail. Section 5 describes the simulation experiment and 
data analysis of the test function. Section 6 tests four engineering problems. Finally, Section 7 gives 
the conclusion and the prospect of future research. 

2. Related work 

In order to address the limitations of SMA and FPA, researchers have analyzed the two algorithms 
from various perspectives and offered corresponding methods. The subsequent section furnishes a 
concise overview of enhancements across different facets of FPA and SMA, alongside related research 
on their hybridization with other MA algorithms, divided into three parts. 

2.1. The improvement of FPA 

In the research on the improvement of FPA’s position update formula, Kopciewicz and Lukasik [28] 
proposed a simplified version of the flower pollination algorithm (BFPA). In the study of this method, 
the adverse effects of Levy distribution were expressed, so global cross-pollination was discarded and 
only local self-flower search was performed throughout the search process. The optimization 
performance was validated in the CEC2017 test function and physical and engineering probability 
modeling fields. The main work by Singh et al. [29] utilized the sine-cosine operator instead of Levy 
flight in global search to improve the accuracy of global exploration. In local exploitation, a new 
inertial parameter is proposed to enhance the local search phase. Chen et al. [30] opted for a domain-
based search approach for global exploration. They also restructured the population organization after 
stagnation and demonstrated the algorithm’s convergence using differential equations and stochastic 
function theory. Ozsoydan and Baykasoglu [31] enhanced the search location by locally leveraging the 
carry-out level selection within the roulette process. This was achieved through the incorporation of a 
step function and the proposal of a multi-subgroup solution. The validity of the method was confirmed 
through assessments in multimodal problems. Chen and Pi [17] optimized global exploration by 
leveraging dimension information and improved the population’s optimal solution through the 
implementation of a strategy for mutation. The transformation probability, influences the balance 
between global and local searches in the FPA. Draa [22] compared and analyzed the values of the 
transformation probability. Experimental results demonstrated that setting to 0.2 achieves the optimal 
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optimization effect of FPA. Salgotra and Singh [32] proposed a dynamic transformation probability 
based on the number of iterations and enhanced the advantage of later-stage local search. 

2.2. The improvement of SMA 

To enhance the search approach of SMA, scholars have proposed improvement methods. Deng 
and Liu [33] designed a search strategy for the DE mutation vector, incorporating a population-optimal 
guidance mechanism, and finally devised a new mutation probability to balance global and local 
searches. Experimental data indicate a significant performance improvement compared to the standard 
SMA. Hu et al. [13] proposed a hierarchical strategy, employing a mutual assistance strategy in the 
elite layer and a learning strategy in the regular population layer. Numerical tests and smooth path 
planning at the end demonstrate the effectiveness of this approach. Wang et al. [14] proposed an 
improved PSMA, designing a parallel strategy. This method consists of three sub-methods: improving 
inertia weight, single communication between random group and best group, and multiple 
communications between best group and other groups. Finally, the improved PSMA is applied in 
Distribution Network Reconfiguration. Hu et al. [34] proposed a DFSMA algorithm, focusing on a 
dispersed foraging search strategy. Initially, they introduced the dispersal rate parameter, DR, to 
balance local search frequencies. The concept of dispersed foraging from ABC algorithm was 
incorporated into SMA. DFSMA demonstrated an improvement in classification accuracy in feature 
selection. Ren et al. [35] introduced an MGSMA algorithm. This method incorporates the motion 
theory of MVO to mitigate algorithmic entrapment in local optima, and adds Gaussian kernel 
probability to drive slime moulds during foraging processes. This method primarily finds application 
in multi-threshold image segmentation. In improving search parameters, researchers have also made 
significant contributions. Miao et al. [15] modified the parameter of SMA to Tent chaos as a nonlinear 
factor, enhancing the algorithm’s distribution during the random search phase. Furthermore, they 
utilized Tent chaos to improve the capability of elite individuals. This method is employed for 
maximizing the annual power generation of cascade hydropower systems. Altay [18] chose to improve 
the global exploration oscillation parameter by utilizing 10 different chaotic sequences. 

2.3. Hybrid algorithm 

According to the renowned “No Free Lunch” principle [36], it is understood that a singular 
metaheuristic algorithm often exhibits deficiencies in certain aspects due to its initial design focus on 
specific performance criteria. Consequently, in recent years, the development of hybrid algorithms 
combining foundational MAs has been an active area of research. According to the scholar Talbi, as 
described in the literature [19], we can know that the hybridization of low and high levels has different 
operational connotations. The former involves one metaheuristic algorithm replacing another, while 
the latter implies that each algorithm is self-contained, addressing the optimization function internally. 
Regarding team collaborative work modes, it encompasses both sequential and parallel approaches. 
The former involves a sequential, one-after-another work style, while the latter involves a parallel 
optimization model, where multiple agents work simultaneously and in parallel. There are two ideas 
used in improving hybrid MAs: one is to introduce a certain high-quality feature or part of a certain 
algorithm into another algorithm, such as reference [37]. Another approach is to take the elite solution 
based on the fitness value of the problem to be solved after parallel computing, such as in reference [38]. 
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One of the purposes of improving MAs is to apply algorithms to real-world production and 
practice. Based on the above description of hybrid algorithms, hybrid metaheuristic algorithms are 
extended to solve optimization problems. For example, a combination of PSO algorithm and K-means 
clustering method was used to address the issue of using radio frequency identification (RFID) 
technology for object recognition and tracking [39]. The combination of ABC algorithm and SVM has 
solved the aspect level sensitive classification problem [40]. Numerous studies focus on hybrid 
enhancements of SMA and FPA, exemplified by GBOSMA proposed by Ewees et al. [41], EOSMA 
proposed by Yin et al. [42], and HSMA-WOA proposed by Mohamed et al. [43], which represent 
hybrid algorithms integrating SMA principles. Hybrid algorithms of FPA such as FP-GSA proposed 
by Chakraborty et al. [44], FA/FPA proposed by Kalra and Arora [45], and WOFPA proposed by 
Tawhid and Ibrahim [46]. The aforementioned hybrid algorithms are applied in different applications 
and have achieved notable optimization results. The literature review above is presented in Table 1. 

Table 1. Literature review. 

Year Reference Methods 
2023 [13] Hierarchical strategy 
2022 [14] Design a parallel strategy, improve the inertia weight, and enable communication among 

multiple populations. 
2022 [15] Utilize a new nonlinear function 𝑎 instead of the atctanh function; Introduce randomness 

to the algorithm by adding sine and cosine functions. 
2020 [17] Enhance global search by utilizing dimension information and refining the mutation strategy.
2022 [18] Substitute 10 types of chaos maps for random numbers to evaluate their impact on the 

weight 𝑊. 
2015 [22] Conduct a large number of numerical experiments to validate the choice of the 

transformation probability value.  
2020 [28] The simplified version of FPA without global searching is utilized. 
2018 [29] The sine-cosine operator is incorporated to replace the Lévy flights, with a new inertia 

parameter introduced to enhance the local search phase. 
2021 [30] Implement a domain-based search method for global exploration, and restructure the 

population organization. 
2021 [31] Utilize rank-based selection through a roulette wheel process, incorporate a step size 

function, and enable multi-subpopulation search. 
2017 [32] Enhance the transformation probability, through iterations, employ new mutation operators
2023 [33] Design a new mutation probability using the differential evolution mutation vector. 
2022 [34] Dispersed foraging search with an increased parameter diversity rate. 
2022 [35] MVO motion strategy; Gaussian kernel probability perturbs the current individual. 
2023 [41] Hybrid algorithm of GBO and SMA. 
2022 [42] Hybrid algorithm of EO and SMA 
2020 [43] Hybrid algorithm of WOA and SMA 
2015 [44] Hybrid algorithm of GSA and FPA 
2016 [45] Hybrid algorithm of FA and FPA 
2021 [46] Hybrid algorithm of WOA and FPA 
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3. Background 

In the following section, we introduce the mathematical models of FPA and SMA respectively. 

3.1. Brief description of standard FPA 

FPA simulates the behavior of biological cross pollination and non-biological self-pollination in 
flowers. In addition, it is necessary to assume the following four provisions: 
1) The global exploration stage of the cross-pollination for plants involves using organisms as 

carriers and following the Levy distribution. 
2) The behavior of non-biological self-pollination spreads pollen through wind, corresponding to the 

local development stage of the algorithm. 
3) The reproduction probability corresponds to the characteristics of flowers, and the similarity and 

correlation between two flowers (individuals) are proportional. 
4) The probability conversion parameter, denoted as and constrained within the interval [0,1], 

governs the reciprocal transformation between exploration (global pollination) and exploitation 
(local pollination) within the FPA algorithm. 
From the above description, it can be seen that cross-pollination (global pollination) and self-

pollination (local pollination) are the core of FPA. 

3.1.1. Global pollination 

The global pollination of FPA can be achieved through formula (1): 

 𝑃௜(𝑡 + 1) = 𝑃௜(𝑡) + 𝐿 ∙ (𝑃௜(𝑡) − 𝑃௕(𝑡)). (1) 

In FPA, with 𝑃௜ denoting the current solution, 𝑃௕ representing the global optimal solution, and 𝐿 representing Levy flight, the step length is calculated by the following formula (2): 

 𝐿~ (ఒ∙௰(ఒ)∙௦௜௡ቀഏഊమ ቁ)గ ∙ ଵఉభశഊ , 𝛽 ≫ 𝛽଴ > 0. (2) 

The parameter 𝜆  is set to 1.5, and Γ(𝜆)  denotes the standard gamma function. As Eq (1) 
employs the global best solution 𝑃௕, each iteration explores the entire global search phase towards the 
global optimum. Furthermore, Levy flight is utilized to randomly adapt the step size in order to 
maintain population diversity. The best solution obtained in each generation serves as the solution for 
the subsequent iteration, ensuring the inheritance of the best solution. 

3.1.2. Local pollination 

The local pollination of FPA can be achieved by formula (3): 

 𝑃௜(𝑡 + 1) = 𝑃௜(𝑡) + 𝜖 ∙ (𝑃஺(𝑡) − 𝑃஻(𝑡)), (3) 

where 𝜖 is a random number following a uniform distribution, and 𝑃஺ and 𝑃஻ represent two random 
individuals within the population, respectively. As illustrated above, global search emphasizes the 
combination of the optimal individual under the influence of the Levy distribution for optimization, 
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while local search focuses on random individuals. Both of these approaches embody the concept of 
escaping local optima. Algorithm 1 describes the pseudo-code of FPA. 

From a global search perspective, the FPA algorithm influences individuals in the population 
simultaneously during global pollination by combining Levy flights and the optimal individual 𝑃௕. 
Due to the attraction of the global optimal individual 𝑃௕ , the FPA algorithm shows a faster 
convergence speed when optimizing simple problems. However, when addressing complex 
optimization problems, if the individual 𝑃௕ in the population becomes trapped in certain local minima 
in the exploration space, other individuals are swiftly drawn towards 𝑃௕ , causing the difference 
between (𝑃௜−𝑃௕) to become very small. 

In the local search component of the basic flower pollination algorithm, a new individual is 
generated using the mutation operation described in Eq (3). As per Eq (3), the new individual is derived 
by adding a perturbation term to the parent individual, which is a product of a random number and the 
difference vector between two individuals. Consequently, the generation of new individuals exhibit 
significant randomness, which helps maintain the diversity of the population, thus enabling the 
algorithm to sustain good continuous optimization capabilities. 

Algorithm 1: Pseudo-code of FPA 
Input: population size 𝑁, maximum number of iterations 𝑇௠௔௫, dimension of problem 𝐷𝑖𝑚. 
Output: best fitness 𝑏𝐹, best position 𝑃௕. 
1).  Define a switch probability 𝑝𝑓𝑝𝑎 ∈ [0, 1]. 
2).  while (𝑡 < 𝑇௠௔௫) 
3).   for 𝑖 = 1: 𝑁 (all 𝑁 flowers in the population) 
4).    if 𝑟𝑎𝑛𝑑 < 𝑝𝑓𝑝𝑎 
5).     Update self-pollination (global positions) via Eq (1). 
6).    else 
7).     Update cross-pollination (local positions) via Eq (3). 
8).    end if 
9).   Evaluate new solutions. 
10).   if new solutions are better, update them in the population. 
11).  end for 
12).  Find the current Min solution 𝑃௕. 
13).  end while. 

3.2. Brief description of standard SMA 

The mathematical model of SMA consists of three stages: approaching the target, surrounding 
the target, and obtaining the target. Fixed parameters 𝑧 and transformation parameters 𝑝 are used 
to control the random search stage, global exploration stage, and local development stage of the 
entire algorithm. 
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3.2.1. Approach food 

The concentration of odor in the air serves as a crucial factor for slime moulds in determining the 
proximity of food. As the concentration of food encountered by slime moulds increases, so does the 
amplitude of the oscillator, and vice versa. The update method is depicted in formula (4): 

 𝑋௜(𝑡 + 1) = ቊ𝑋௕(𝑡) + 𝑣𝑏 ∙ ൫𝑊 ∙ 𝑋஺(𝑡) − 𝑋஻(𝑡)൯, 𝑟 < 𝑝𝑣𝑐 ∙ 𝑋௜(𝑡), 𝑟 ≥ 𝑝 . (4) 

In SMA, 𝑋 is used as the population individual to distinguish it from the population individual 𝑃  of FPA. Here, 𝑟  belongs to the interval (0, 1), 𝑋௕  represents the current best position of the 
population, 𝑋஺ and 𝑋஻ are two random individuals of the population, 𝑣𝑏 belongs to the interval [−𝑎, 𝑎]  and controls global exploration. 𝑣𝑐  is a parameter that linearly decreases from 1 to 0, 
controlling local development. 𝑊 represents the oscillation coefficient of the slime mould, which in 
turn controls the step size in global exploration. 

The transformation parameter 𝑝 is calculated using formula (5): 

 𝑝 = 𝑡𝑎𝑛ℎ |𝑆𝑚𝑒𝑙𝑙(𝑖) − 𝐷𝐹|. (5) 

Among them, 𝑆𝑚𝑒𝑙𝑙(𝑖) represents the fitness value of the i-th individual of the slime moulds 
currently iteration; 𝐷𝐹 represents the fitness of the best individual for slime moulds in the current iteration. 

The values of 𝑣𝑏 and 𝑎 are calculated using formulas (6) and (7) respectively, 

 𝑣𝑏 = [−𝑎, 𝑎], (6) 

 𝑎 = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (− ቀ ௧೘்ೌೣቁ + 1), (7) 

where: 𝑡 is the current number of iterations; 𝑇௠௔௫ represents the maximum number of iterations. 
The weighting coefficient 𝑊  simulates the positive and negative feedback of the biological 

oscillator in the slime mould when encountering different food concentrations, which results in 
changes in the oscillation frequency, as shown in formula (8): 

 𝑊൫𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖)൯ = ቐ1 + 𝑟 ∙ 𝑙𝑜𝑔 ቀ௕ிିௌ௠௘௟௟(௜)௕ிି௪ி + 1ቁ , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 − 𝑟 ∙ 𝑙𝑜𝑔 ቀ௕ிିௌ௠௘௟௟(௜)௕ிି௪ி + 1ቁ , 𝑜𝑡ℎ𝑒𝑟𝑠 , (8) 

 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆𝑚𝑒𝑙𝑙), (9) 

where, 𝐵𝐹  and 𝑤𝐹  are the best and worst fitness in the current iteration process; 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 
represents the population fitness ranking position index. 

3.2.2. Wrap food and oscillation 

During the food search process, slime moulds allocate a portion of individuals for random 
exploration within a given range. This random variation process is incorporated into the SMA 
algorithm’s random search stage. Considering these principles, the formula for updating the overall 
slime mould’s position is (10.1)–(10.3): 
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 𝑋௜(𝑡 + 1) = 𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧, (10.1) 

 𝑋௜(𝑡 + 1) = 𝑋௕(𝑡) + 𝑣𝑏 ∙ ൫𝑊 ∙ 𝑋஺(𝑡) − 𝑋஻(𝑡)൯, 𝑟 < 𝑝, (10.2) 

 𝑋௜(𝑡 + 1) = 𝑣𝑐 ∙ 𝑋௜(𝑡), 𝑟 ≥ 𝑝, (10.3) 

where, 𝑈𝐵 and 𝐿𝐵 represent the upper and lower bounds of the search range, while 𝑧 is a crucial 
parameter controlling the random search stage, and holds a constant value of 0.03. 

Finally, under the control of 𝑣𝑏 , the step size of global exploration gradually approaches 0, 
causing the search individuals to converge towards the optimal individual. Moreover, under the control 
of 𝑣𝑐, local development causes the current individual’s position to approach 0. Algorithm 2 outlines 
the pseudocode for the SMA. 

Algorithm 2: Pseudo-code of SMA 
Input: population size 𝑁, maximum number of iterations 𝑇௠௔௫, Dimension of problem 𝐷𝑖𝑚. 
Output: best fitness 𝑏𝐹, best position 𝑋௕. 
1).  Define 𝑧 = 0.03. 
2).  while (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟) 
3).   Calculate the fitness of all slime mould. 
4).   Update 𝑏𝐹, 𝑋௕. 
5).   Calculate the 𝑊 via Eq (8). 
6).   for 𝑖 = 1: 𝑁 (all 𝑁 flowers in the population) 
7).    Update 𝑝, 𝑣𝑏, 𝑣𝑐. 
8).    if 𝑟𝑎𝑛𝑑 < 𝑧 
9).     Update positions via Eq (10.1). 
10).   else if 𝑟𝑎𝑛𝑑 < 𝑝 
11).     Update positions via Eq (10.2). 
12).   else 
13).    Update positions by Eq (10.3). 
15).   end if 
16).  Evaluate new solutions. 
17).  If new solutions are better, update them in the population. 
18).  end for 
19).  Find the current Min solution 𝑋௕. 
20).  end while 

The updating mechanism of slime mould positions in the standard SMA depends on the relative 
sizes of 𝑟, 𝑝, and 𝑧. When 𝑟 < 𝑝, the update of slime mould positions is determined by the positions 
of the current best individual and two random individuals, leading to random exploration near the 
current optimal position. This enhances the global search capability of SMA in the early stages but can 
slow down the convergence speed due to purposeless random exploration. As the number of iterations 
increases, the slime mold population converges towards the current best position, making SMA prone 
to getting stuck in local optima when solving functions with multiple local optimum values. When 𝑟 ≥ 𝑝 , the update of slime mould positions is determined by the convergence factor 𝑣𝑐  and the 
individual positions of the slime molds. With increasing iterations, 𝑣𝑐 linearly converges from 1 to 0, 
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causing the slime mold population to converge towards the origin. 

4. The proposed algorithm (GFPSMA) 

In this section, we cover the improved GFPSMA algorithm, including: 1) the rationale for hybrid 
algorithms and the selection of SMA and FPA as the two metaheuristic algorithms; 2) the individual 
enhancements of the weakness of SMA and FPA; 3) the integration of both; and 4) an analysis of the 
population distribution of GFPASMA, as well as a summary of the algorithm’s time complexity and 
computational framework. 

Figure 1 depicts the hybrid model of the proposed algorithm GFPSMA. In Figure 1, after the 
initial computation in the same population, 1) the population 𝑃  represents the new population 
obtained when using FPA, while the population 𝑋 represents the new population obtained when using 
FPA, and the new population 𝑆 is obtained through a competitive mechanism. 2) The new best search 
agent 𝐺௕ is obtained using the Householder reflection matrix. 3) Indicates that the new population 𝑆 
and the new optimal search agent 𝐺௕ are used as the same population for iterative computations using 
FPA and SMA, respectively. Additionally, for better clarity on the symbols used in the paper, the 
explanations of the symbols are listed in Table 2. 

Table 2. Symbols. 

Symbols Meaning Symbols Meaning 𝑃௜ FPA population 𝑝𝑓𝑝𝑎 The probability of transition in FPA 𝑃௕ FPA best individual 𝜔1, 𝜔2 Improved FPA global variable weighting 𝐿 Levy function 𝑔𝑜𝑙𝑑 Golden ratio 𝑃஺, 𝑃஻ FPA random individual A, B 𝑋ெ Average position of SMA 
p Conversion probability 𝑆௜ Excellent population obtained by the 

competition between SMA and FPA 𝑋௜ SMA population 𝑠𝑣 Shapley value 𝑋௕ SMA best individual 𝑅 Arrangement of the participating population 𝑊 Inertia weight 𝛽 Annealing probability 𝑧 SMA random phase transition 
probability 

T Current temperature 

𝑋஺, 𝑋஻ SMA random individual A, B 𝑓ௗ௜௦ Observation factor 𝑣𝑏 SMA global search linearly 
decreasing function from 2 to 0 

𝑆௕ The current best individual in the outstanding 
population obtained through competition 
between SMA and FPA 𝑣𝑐 SMA local search linearly 

decreasing function from 1 to 0 
𝑆௕௡௘௪ The next generation’s best individual from the 

outstanding population obtained through 
competition between SMA and FPA 

In the following section, a comprehensive analysis of the proposed improvement strategies for 
GFPSMA is presented to better demonstrate how these strategies enhance the algorithm’s performance. 
Specifically, the focus is on four effective strategies: improvement of global search based on FPA, 
enhancement of the random search phase in SMA, the integration of both using a competitive 
mechanism, and the enhancement of the optimal search individual. 
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Figure 1. The hybridization model of GFPSMA. 

4.1. Improvement of FPA 

Generally, metaheuristic algorithms can be divided into two stages: global exploration and local 
exploitation. Within the given bounds of a problem, a strong exploration technique in the early and 
middle stages serves as the foundation for precise local optimization in the later stage, thus enhancing 
the overall capability of the hybrid algorithm. Various methods have been researched by scholars for 
such problems. For instance, in reference [47], three methods including tournament, proportional, and 
linear rank-based methods are used to accelerate the convergence exploration speed. 

The drawbacks of the FPA’s global search approach are described in detail in Section 1. The FPA 
makes it difficult to fully explore the unknown area near the current flower position in this way. 

It is worth noting that the exchange of information among individuals within the population to 
enhance the search for unknown areas and the absorption of useful information from different 
individual neighborhoods play a crucial role in optimization [48]. 

The golden ratio is a well-recognized harmonious proportion between geometry and numbers. 
Reference [49] introduced the excellent metaheuristic algorithm, the Golden Sine Algorithm, based on 
the golden section ratio. The form of combining two positions using random numbers makes it difficult 
to highlight the role of the leading individual’s position in the population. The golden ratio, to some 
extent, serves as a position weight that can reflect this role. To address the deficiencies in the global 
exploration of FPA, the golden section mechanism is employed to combine an arbitrary random 
individual with the optimal individual position, forming the dominant searching individual for global 
search, as depicted in Eq (11): 

 𝑃௜(𝑡 + 1) = 𝑥1 ∙ 𝑃௥(𝑡) + 𝑥2 ∙ 𝑃௕(𝑡) + 𝑟 ∙ 𝐿 ∙ ൫𝑃௜(𝑡) − 𝑃௕(𝑡)൯, (11) 

 𝑥1 = 𝜔1 + (1 + 𝑔𝑜𝑙𝑑) ∙ (𝜔2 − 𝜔1), (12) 

 𝑥2 = 𝜔1 + 𝑔𝑜𝑙𝑑 ∙ (𝜔2 − 𝜔1), (13) 

where 𝑃௥  represents a randomly selected individual within the population, 𝑃௕  denotes the best 
individual, 𝑔𝑜𝑙𝑑 is the golden ratio, 𝜔2 is a parameter with a fixed value of 1, and 𝜔1 is a linearly 
decreasing inertia coefficient between 0 and 1, while 𝑟 is a random number within the range of (0, 1). 

Figure 2 shows the 𝑥1 and 𝑥2 running charts with 1000 iterations. From this, it can be observed 
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that in the search state of the FPA algorithm in the early and middle stages, due to the effect of 
coefficients 𝑥1 and 𝑥2, the sum of coefficients of 𝑃௥ and 𝑃௕ decreases from 2 to 1, respectively. 
The amplitude of disturbance is relatively large during the early global exploration. As the algorithm 
iterates further, the disturbance gradually decreases in the middle and later stages, serving to balance 
the algorithm between global and local exploration. Additionally, it can be observed that the 
influence of 𝑃௕ becomes increasingly significant with the increase in iteration times. Thus, the issues 
related to the search range and thorough exploration of the unknown regions near the optimal 
individual are resolved. 

 

Figure 2. Map of 𝑥1 and 𝑥2. 

4.2. Improvement of SMA 

The standard SMA, like other MAs, can be broadly divided into two stages: approaching food 
(global exploration) and warping food (local exploitation). However, when 𝑟 < 𝑧, even if the slime 
mould finds a better food source, some individuals will separate to explore other areas in an attempt 
to find higher quality food sources, which represents the random search stage, as indicated by Eq (10.1). 
The method is based on establishing upper and lower bounds for the problem to be solved, creating a 
difference vector to generate random positions, with the aim of enabling the algorithm to escape local 
optima. However, as the number of iterations increases, the algorithm’s search range shrinks. Utilizing 
the upper and lower bounds for calculating each random position would slow down the convergence 
speed and diminish the optimization ability. In other words, the solutions obtained by SMA during the 
random search stage may not always be reliable. 

The calculation of step size in metaheuristic algorithms is a crucial method to stabilize the random 
search process. In the differential evolution algorithm, the step size is formed by the influence of two 
different positions under the mutation factor. In the particle swarm optimization algorithm, the optimal 
step size formed by the global best and the current best demonstrates that an appropriate step size 
contributes to the optimization of the algorithm. 
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To address this issue, this paper proposes an adaptive update method that combines exponential 
functions with best or average positions instead of directly using fixed upper and lower bounds, as 
depicted in Eq (14): 

 𝑋௜(𝑡 + 1) = ൝ 𝑋௜(𝑡) + 𝑒𝑥𝑝(−|𝑋௜ − 𝑋௕|ଶ) , 𝑟 < ௭ଶ𝑋௜(𝑡) + 𝑒𝑥𝑝(−|𝑋௜ − 𝑋ெ|ଶ) , ௭ଶ < 𝑟 < 𝑧, (14) 

where, 𝑋௕ is the optimal individual position of the SMA algorithm, 𝑋ெ is the average position of 
the SMA population, and the calculation method is shown in Eq (15). Both perform update calculations 
based on a probability of 0.5𝑧, 

 𝑋ெ = ଵே ∑ 𝑋௜ே௜ୀଵ . (15) 

It is not difficult to observe from Eq (14) that in the early stages of iteration, |𝑋௜ − 𝑋௕| and |𝑋௜ − 𝑋ெ| have a longer distance between 𝑋௜ and the best position 𝑋஻ or the average 𝑋ெ, which is 
suitable for conducting a large-scale global search. As the iterative calculation deepens, the slime 
mould population slowly approaches, so the distance also becomes shorter and fluctuates around the 
current position, which is suitable for small-scale local development. 

4.3. The fusion of two algorithms 

Game theory is a mathematical theory that rigorously examines optimal decision-making in real-
world conflict and confrontation situations. It focuses on how decision-makers optimize their benefits 
within a given information structure and explores decision equilibriums among different decision-
makers. Thanks to the contributions of numerous scholars, game theory has evolved into a 
comprehensive discipline and has been extensively studied and applied across fields. 

Based on game theory research, metaheuristic algorithms have also made great progress. Liu and 
Nishi [50] introduced a selection mechanism based on game strategy, established the connection 
between particle swarm optimization and game theory, and enhanced the stability of the algorithm 
under evolutionary pressure. The paper draws on the relevant ideas of game theory for multi-agent 
strategic optimization, proposing the use of a dual competition mechanism that combines the zero-sum 
game in non-cooperative games with the Shapley value in cooperative games to implement a hybrid 
of the two improved algorithms. This approach facilitates the independent optimization of the two 
algorithms, allowing them to complement each other’s strengths during the search process and enhance 
the search performance of the hybrid algorithm. 

Scholars Leboucher et al. [51] improved particle swarm optimization using evolutionary game 
theory. In this approach, game theory is utilized to allow different populations to engage in games as 
decision-makers make evolving decisions over time. This method maintains the ability of the particle 
swarm optimizer to explore particle diversity in the solution space. Similarly, in this study, two 
algorithms are treated as distinct populations, and through iterative processes, the game determines 
which population performs better, leading it into the next cycle. 

Owing to the parallel iterative search conducted by FPA and SMA, which effectively creates a 
dual population calculation merging into a high-quality single population for the next iteration, it is 
crucial to consider the method of merging. MAs typically decide whether to replace old individuals 
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with newly generated search individuals based on the fitness values of the problem being solved. 
Therefore, this paper continues to reference this concept, primarily based on non-cooperative game 
mechanisms and supplemented by cooperative game mechanisms. 

Case1. Non-cooperative - zero-sum games 
The concept of zero-sum game belongs to non-cooperative game theory, where one party’s gain 

signifies the other party’s loss under strict competition. The sum of gains and losses of all parties in 
the game always equals zero, and there is no possibility of cooperation between the parties (perfect 
competition relationship). Equation (16) was utilized to calculate the population for the next iteration, 
based on this concept:  

 𝑆௜(𝑡 + 1) = 𝑚𝑖𝑛 (𝑓൫𝑃௜(𝑡)൯, 𝑓൫𝑋௜(𝑡)൯), (16) 

where 𝑓 is the fitness function, Eq (16) indicates that the fitness values of the population individuals 
for FPA and SMA are compared with each other, and the superior individuals from both are selected 
to enter the next iteration’s high-quality population. 

Case2. Cooperative - Shapley value 
In contrast to non-cooperative games, cooperative games allow participants to coordinate and 

form alliances to promote their own interests. The difference between cooperative and non-cooperative 
games lies in the emphasis on individual rationality in non-cooperative games and collective rationality 
in cooperative games. One important method for computing cooperative games is to calculate the 
contribution of both parties using the Shapley value. The specific calculation method is shown in Eq (17): 

 𝑠𝑣(𝑖) = ∑𝑅[𝑣(𝑠 ∪ {𝑖}) − 𝑣(𝑠)], (17) 

where 𝑠𝑣 is the calculated Shapley value, 𝑅 is a permutation of n participants, and in GPFSMA, 𝑛 = 2 , 𝑣(𝑠 ∪ {𝑖})  is the payment value of the alliance consisting of participant 𝑖  and a set of 
participants before him. In this paper, the payment value refers to the fitness value of the search 
individual, and 𝑣(𝑠)  is the payment value of the alliance consisting of a set of participants 
(excluding 𝑖) before him. 

 𝑆௜(𝑡 + 1) = ቊ𝑋௜(𝑡), 𝑖𝑓 𝑠𝑣(𝑋௜(𝑡)) > 𝑠𝑣(𝑃௜(𝑡))𝑃௜(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (18) 

Finally, based on 𝑠𝑣 in Eq (18), the population of both algorithms will enter the next iteration 
calculation. 

The article proposes an approach to effectively integrate two forms of game theory, drawing 
inspiration from the simulated annealing algorithm. It introduces an annealing probability model 𝛽 to 
determine the feasibility of using cooperative games for computation in the iterative search process, 
as expressed in Eq (19):  

 𝛽 = 𝑒𝑥𝑝(−𝛥𝑡ᇱ/𝑇), (19) 

 𝛥𝑡′ = 𝑓(𝑋௜(𝑡) − 𝑃௜(𝑡)), (20) 

where 𝑇଴ is set to 1000 based on experiments in this paper, and the cooling efficiency is set to 0.9 
according to references [37]. 𝛥𝑡′, which represents the difference in fitness values between FPA and 
SMA at iteration 𝑡, when 𝛥𝑡′ is less than 0, Case 1 is used to calculate the entire population solution. 
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Otherwise, the population solution is calculated using Case 2 with a probability of 𝛽 . Figure 3 
illustrates the process of the competitive mechanism. 

 

Figure 3. Competitive mechanism. 

4.4. Improvement of the best individual 

In the revised Eq (10.2) for SMA global exploration and the new exploration strategy Eq (13) 
for the improved FPA proposed in this paper, the best individual guides the entire population toward 
the global optimal direction of the problem. Any deviation from this guidance may lead to the failure 
of the entire optimization process, particularly in multimodal functions with multiple local optima. If 
low-quality solutions are utilized during the early and middle stages of global exploration, it is likely 
that the overall optimization accuracy of the algorithm will not reach a high level. Hence, we introduce 
a conditional elite learning method to enhance the positioning of the best individual. 

The Householder reflection transform is a special orthogonal transformation in linear algebra used 
to map a vector or matrix to another location through plane reflection. It is widely applied in numerical 
computation, eigenvalue computation, and solving systems of linear equations. The principle of the 
Householder reflection transform is elaborated in the literature [52] and illustrated in Figure 4. Overall, 
this transform is a highly valuable tool in linear algebra, with significant relevance in scientific 
computation and engineering applications. 

 

Figure 4. Householder reflection transformation. 
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The key to constructing the Householder reflection matrix lies in the selection of the mirror 
normal vector. In this method, the normalized current population individual is chosen as the vector, 
and then the Householder matrix for the current iteration is obtained. Subsequently, the current 
population undergoes the reflection transformation, while retaining the excellent individuals. The 
calculation process is illustrated in Eqs (21) and (22): 

 𝑆௥௘௙௟௘௖௧ = 𝑆௜ ∙ (𝐼 − 2𝑢 ∙ 𝑢்), (21) 

 𝑆௕௧௘௠௣(𝑡) = 𝑚𝑖𝑛 (𝑓൫𝑆௜ ∪ 𝑆௥௘௙௟௘௖௧൯), (22) 

where 𝑢 is the normalized vector for the current individual, 𝐼 is the identity matrix, and 𝑆௥௘௙௟௘௖௧ is 
the position matrix corresponding to the reflected population. 𝑆௜ ∪ 𝑆௥௘௙௟௘௖௧  Selecting the fittest 
individuals from 𝑆௜ ∪ 𝑆௥௘௙௟௘௖௧ to form the new optimal individuals, 𝑆௕௧௘௠௣. The reflection process is 
illustrated in Figure 5. 

 

Figure 5. Flow chart. 
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In the optimization process, generating a reflection point and perturbing the best individual each 
time would increase the computational complexity of the algorithm. To detect whether the algorithm 
has fallen into a local optimum, it is possible to make a judgment by comparing the observation factor 
with 0, where the observation factor can be represented by Eq (23): 

 𝑓ௗ௜௦ = |𝑓(𝑆௕) − 𝑓(𝑆௕௡௘௪)| − 𝑒( ೟೅೘ೌೣ)഍
, (23) 

where 𝑓 is the fitness value of the problem function. 
It is necessary to disturb the optimal individual based on the calculated value from the observation 

factor 𝑓ௗ௜௦. Before the given number of function evaluations or iterations is completed, two scenarios 
can be observed for Eq (23): Case 1) When the absolute difference |𝑓(𝑆௕) − 𝑓(𝑆௕௡௘௪)| equals 0, it 
indicates that the current optimal solution has stagnated, and if the overall 𝑓ௗ௜௦ value is less than 0, 
the algorithm falls into local optima; Case 2) As the number of iterations increases, if the rate of 

decrease of the former is less than 𝑒( ೟೅೘ೌೣ)഍
, then 𝑓ௗ௜௦ will also be less than 0, signifying that it is 

stuck in local optima as well. When it is determined that disturbance is required based on the value of 𝑓ௗ௜௦ , the reflection operation is computed; otherwise, no reflection operation is performed on the 
optimal individual. 

After the reflection operation is completed, the optimal reflection agent 𝑆௕௧௘௠௣ is obtained. In 
order to maintain the position of the best individual at its optimal position, greedy selection is 
performed between the reflective optimal individual 𝑆௕௧௘௠௣ and the best individual 𝑆௕ in the high-
quality population, i.e., Eq (24): 

 𝑆௕(𝑡 + 1) = ቊ𝑆௕௧௘௠௣(𝑡), 𝑖𝑓 𝑓 ቀ𝑆௕௧௘௠௣(𝑡)ቁ < 𝑓൫𝑆௕(𝑡)൯𝑆௕(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (24) 

4.5. Summary of GFPSMA 

In summary, we propose a new hybrid algorithm, GFPSMA. First, GFPSMA introduces a method 
that utilizes the golden section mechanism to enhance the exploration between random individuals and 
the optimal individual, to address the global exploration issue of FPA. Second, a self-adaptive step 
strategy is incorporated into SMA to improve the random search stage mechanism. Third, a dual-
competition mechanism based on game inspiration is introduced to better integrate the two algorithms. 
Finally, an elite learning approach with adjustable conditions is used to improve the position of the 
optimal individual. 

Next, this section will present 1) the algorithm flowchart and pseudocode of GFPSMA, 2) 
population distribution analysis, and 3) analysis of the algorithm’s time complexity. 

4.5.1. The flowchart of GFPSMA 

The GFPSMA flowchart is shown in Figure 5. The pseudocode is shown in Algorithm 3. 
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Algorithm 3. Pseudo-code of GFPSMA 
Input: population size 𝑁, maximum number of iterations 𝑇௠௔௫, dimension of problem 𝐷𝑖𝑚, fixed parameter 𝑧. 
Output: Best fitness 𝑏𝐹, Best position 𝑆௕. 
1.  while (𝑡 < 𝑇௠௔௫) 
2.   Calculate the fitness of all population. 
3.   Find 𝑏𝐹, 𝑆௕. 

// Execute improved FPA and calculate the population 𝑃 of FPA 
4.   For 𝑖 = 1 𝑡𝑜 𝑁 
5.    if 𝑟 < 𝑝𝑓𝑝𝑎 
6.     Update self-pollination (global positions) via Eq (11). 
7.    else 
8.     Update cross-pollination (local positions) via Eq (3). 
9.    end 

// Execute improved SMA and calculate the population 𝑋 of FPA. 
10.  Calculate the 𝑊 via Eq (8). 
11.   for  𝑖 = 1 𝑡𝑜 𝑁 
12.   Update 𝑝, 𝑣𝑏, 𝑣𝑐. 
13.   if 𝑟 < 𝑧 
14.    Update random Search positions via Eq (14).  
15.   else if 𝑟 < 𝑝 
16.    Update Approach food (global positions) via Eq (10.2). 
17.   else 
18.    Update wrap food (local positions) via Eq (10.3). 
19.   end if 
20.  end for 

// Integrating two algorithms and using a competitive mechanism 
21.  Calculate fitness 𝑃 and 𝑋. 
22.  Calculate Difference in fitness values 𝛥𝑡′. 
23.  if 𝛥𝑡ᇱ > 0 
24.   Update hybrid high-quality population 𝑆 via Eq (16). 
25.  else if 𝑟 < 𝛽 
26.   Calculate 𝑠𝑣 via Eq (17). 
27.   Update hybrid high-quality population 𝑆 via Eq (18). 

// Update the best individual using a conditional elite learning strategy. 
28.  Calculate observation factors 𝑓ௗ௜௦ via Eq (23). 
29.  if 𝑓ௗ௜௦ < 0 
30.   Calculate elite learning position 𝑆௕௧௘௠௣ via Eq (22). 
31.   Update best positions, via Eq (24). 
32.  end 
33.  𝑡 = 𝑡 + 1. 
34. end while 
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4.5.2. Analysis of population distribution 

To visually illustrate the distinct population distributions at different stages of the optimization 
process for standard SMA, FPA, and GFPSMA, the Shifted and Rotated Levy Function in CEC2017 
is utilized as the benchmark. The population size is set to 30, with a dimension of 2, and the maximum 
number of iterations is 𝑡 = 200. The scatter plot of population distributions, as shown in Figure 6, 
displays the dimensions in the horizontal axis for the 2-dimensional states and the computed function 
values in the vertical axis. 

 
(a1) Iteration = 1 in SMA (b1) Iteration = 1 in FPA (c1) Iteration = 1 in GFPSMA 

 
(a2) Iteration = 100 in SMA (b2) Iteration = 100 in FPA (c2) Iteration = 100 in GFPSMA 

 
(a3) Iteration = 200 in SMA (b3) Iteration = 200 in FPA (c3) Iteration = 200 in GFPSMA 

Figure 6. Population distribution observed at various stages in SMA, FPA and GFPSMA. 

From Figure 6 (a1),(b1),(c1), it can be observed that when 𝑡 = 1, the populations of all three 
methods are relatively dispersed, located between [-100, 100], with little difference in function values. 
As the computation progresses and reaches the middle stage at 𝑡 = 100, as shown in Figure (a2),(b2),(c2), 
FPA exhibits the highest function values, and the search range remains between [-100, 100]. This 
indicates that the standard SMA’s global search approach is relatively weak, making it difficult to 
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locate local small ranges for complex problems. SMA The function values of SMA are in an 
intermediate position among the three, as indicated in the figure, and the search range also gradually 
narrows, reducing the algorithm’s population diversity and deepening the trend of aggregation. Clearly, 
GFPSMA exhibits a relatively dispersed population in a small range, maintaining population diversity 
while also achieving the optimal computed function values. Finally, when 𝑡 = 200 , as shown in 
Figure (a3),(b3),(c3), the state of FPA remains unchanged, indicating its lack of ability to optimize 
complex multimodal problems. Except for individual population individuals, SMA is completely 
clustered, leading to local optima, resulting in the final function values being among the three. On the 
other hand, the hybrid algorithm GFPSMA, using a competitive mechanism, leverages the advantages 
of both algorithms to achieve a better population distribution and search near the optimal. In summary, 
the strategy proposed in this paper is efficient, and GFPSMA has a strong adaptive search mechanism 
that can quickly find the best solution to solve the problem at hand. 

4.5.3. Analysis of time complexity 

In this paper, the time complexity of GFPSMA is calculated using big 𝑂 notation. Assuming the 
population size is 𝑁, the problem dimension is 𝐷𝑖𝑚, and the maximum number of iterations is 𝑇௠௔௫. 
GFPSMA mainly calculates the following components: 

1) The computational complexity of initialization is 𝑂(𝑁).  
2) In the FPA part of GFPSMA, the time complexity of population position updates is 𝑂(𝑁 × 𝐷𝑖𝑚).  
3) In the SMA section of GFPSMA, the computational cost of sorting is 𝑂(𝑁 × 𝑁𝑙𝑜𝑔𝑁), the 

computational complexity of weight updates is 𝑂(𝑁 × 𝐷𝑖𝑚), and the time complexity of population 
position updates is 𝑂(𝑁 × 𝐷𝑖𝑚).  

4) The computational complexity of competitive selection is 𝑂(𝑁) , the time complexity of 
simulated annealing probability is 𝑂(𝑁). 

5) The computational complexity of elite learning operator is 𝑂(𝐷𝑖𝑚), and the time complexity 
of observation factor is 𝑂(𝑁). 

In summary, the maximum total complexity of GFPSMA can be estimated as Eq (25): 

 𝑂(𝑇𝑖𝑚𝑒) = 𝑁 + (𝑁 × (𝐷𝑖𝑚 + 𝑙𝑜𝑔𝑁 + 1) + 𝐷𝑖𝑚) × 𝑇௠௔௫. (25) 

5. Algorithm testing and result analysis 

In this section, we evaluate the optimization ability of GFPASMA in numerical experiments by 
comparing the results of 39 different types of test functions. The experimental steps are as follows: 1) 
Experiment and algorithm settings, 2) comparison of GFPASMA with related variant algorithms, 3) 
comparison of GFPASMA with other variant algorithms, 4) comparison with competitive 
algorithms, 5) comparison of results from various strategies, 6) data statistics, and 7) GFPASMA 
diversity measurement, exploration, and development analysis. 

5.1. Experimental setup and test functions 

The test environment for this experiment is an AMD 7735H CPU@3.20GHz, running on the 
Windows 11 operating system, with the programming and computational software being Matlab 
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R2021a. The population size is set to 50, the maximum number of iterations is 5000, and the number 
of independent executions is 30 to ensure reliable test results. To clearly compare the differences in 
algorithm performance, this paper uses the mean (Mean), standard deviation (Std), and best value (Min) 
as evaluation metrics. Among these metrics, the mean (Mean) is selected as the basis for ranking, as a 
smaller mean represents better stability in algorithm performance and superior ranking. Table 3 
presents the comparison algorithms used in this study, with the algorithm parameters set according to 
relevant literature. 

Table 3. Parameter settings for each algorithm. 

Algorithms Parameters 
FPA 𝜆 = 1.5, 𝜖 = [0,1] 
SMA 𝑧 = 0.03 
GFPSMA 𝑧 = 0.03, 𝑔𝑜𝑙𝑑 = 0.618, 𝜉 = 6 
MSMA 𝑧 = 0.03, 𝐸 = 100, 𝑁 = 10 
TLSMA 𝑧 = 0.03, 𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑓𝑎𝑐𝑡𝑜𝑟 = [1, 2] 
ESMA 𝑧 = 0.03, 𝑁 = 30 
WOFPA 𝑏 = 1.4, 𝛽଴ = 0.1, 𝛽଴ = 0.2 
MBFPA 𝑆𝑒𝑛𝑠𝑜𝑟𝑦 𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 𝑐 = 0.01, 𝑎 = [0.1, 0.3] 
MFPA 𝑆𝑤𝑖𝑡𝑐ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃 = 0.8, 𝛾1 = 1, 𝛾2 = 3 
AGWO 𝑠 = 0.01, 𝛽 = 1.5 
HSCA 𝐿 = 1, 𝛽 = 0.99 
PSOsono 𝑉௠௔௫ = 30, 𝑉௠௜௡ = −30, 𝑟 = 0.5 
VPPSO 𝛼 = 0.3, 𝑁1 = 15, 𝑁2 = 15 
ESOA 𝑓 = [2, 0], 𝐵𝐹1, 𝐵𝐹2 = 1 𝑜𝑟 2 
MsRwGWO 𝑎 = [2, 0] 
SHADE 𝑃𝑏𝑒𝑠𝑡𝑟𝑎𝑡𝑒 = 0.1, 𝐴𝑟𝑐𝑎𝑡𝑒 = 2 
LSHADE_SPACMA 𝐻 = 5, 𝑁௠௜௡ = 4, 𝑃𝑏𝑒𝑠𝑡௥௔௧௘ = 0.11, 𝐴𝑟𝑐௥௔௧௘ = 1.4, 𝐹஼௉ = 0.5, 𝑐 = 0.5 
RPBSO m = 3, p୭୬ୣ = 0.5, p୰ = 0.005 
HHO 𝐸଴: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 − 1 𝑡𝑜 1, 𝐽 = 2(1 − 𝑟𝑎𝑛𝑑), (𝑢, 𝑣) = (0, 1) 
AO 𝑈 = 0.00565, 𝜔 = 0.005, 𝛼 = 𝛽 = 0.1  
AOA 𝐶1 = 2, 𝐶2 = 6, 𝐶3 = 2, 𝐶4 = 0.5 
PSO Inertia weight decreases linearly from 0.9 to 0.4, 𝐶ଵ = 2, 𝐶ଶ = 2 
GWO 𝑎 = [2, 0] 
DE Scaling factor = 0.5; crossover probability = 0.5 
SCA 𝐴 = 2 

The selection of a test dataset is a crucial determinant in evaluating the performance of an 
algorithm. References [53–55] emphasize the significance of classic benchmark functions. The test 
set includes two parts: CEC2017 and standard functions, as shown in Tables 4 and 5, covering a total 
of 39 functions including unimodal, multi-modal, hybrid, and composite functions. When evaluating 
the performance of metaheuristic algorithms, it is important to consider various aspects. On one hand, 
single-modal functions have only one global optimum, making them suitable for evaluating the 
algorithm’s local search capability. On the other hand, multi-modal functions have multiple local 
optima, making them suitable for evaluating the algorithm’s global search capability. Hybrid and 
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composite functions combine the characteristics of single-modal and multi-modal functions, making 
them meaningful for evaluating the algorithm’s ability to handle complex functions. 

Table 4. Standard test functions. 

Functions Dimension Interval Optimal 
Unimodal and multimodal test functions 

SF1(𝑥) = ෍ 𝑥௜ଶ௡௜ୀଵ  
30, 50 [-100, 100] 0 

SF2(𝑥) = ෍ |𝑥௜| + ෑ |𝑥௜|௡௜ୀଵ௡௜ୀଵ  
30, 50 [-10, 10] 0 

SF3(𝑥) = ෍ (෍ 𝑥௝௜௝ୀଵ )ଶ௡௜ୀଵ  
30, 50 [-100, 100] 0 

SF4(𝑥) = 𝑚𝑎𝑥 {|𝑥௜|, 1 ≤ 𝑖 ≤ 𝑛} 
30, 50 [-100, 100] 0 

SF5(𝑥) = ෍ [100(𝑥௜ାଵ − 𝑥௜ଶ)ଶ + (𝑥௜ − 1)ଶ]௡ିଵ௜ୀଵ  
30, 50 [-30, 30] 0 

SF6(𝑥)=∑ −𝑥௜𝑠𝑖𝑛ඥ|𝑥௜|௡௜ୀଵ  
30, 50 [-500, 500] -12,569.5 

SF7(𝑥)=∑ [𝑥௜ଶ − 10 𝑐𝑜𝑠(2𝜋𝑥௜)] + 10௡௜ୀଵ  
30, 50 [-5.12, 5.12] 0 

SF8(𝑥)=-20exp(-0.2ටଵ௡ ∑ 𝑥௜ଶ௡௜ୀଵ ) − 𝑒𝑥𝑝 ቀଵ௡ ∑ 𝑐𝑜𝑠(2𝜋𝑥௜)௡௜ୀଵ ቁ + 20 + 𝑒 
30, 50 [-32, 32] 0 

SF9(𝑥) = 14000 ෍ 𝑥௜ଶ௡௜ୀଵ − ෑ 𝑐𝑜𝑠 ൬𝑥௜√𝑖൰ + 1௡௜ୀଵ  
30, 50 [-600, 600] 0 

SF10(𝑥) = గ௡ {10 𝑠𝑖𝑛(𝜋𝑦ଵ) + ∑ (𝑦ଵ − 1)ଶ[1 + 10𝑠𝑖𝑛ଶ(𝜋𝑦௜ାଵ)] +௡ିଵ௜ୀଵ(𝑦௡ − 1)ଶ} + ∑ 𝑢(𝑥௜, 10,100,4)௡௜ୀଵ , 

𝑦௜ = 1 + ௫೔ାଵସ , 

𝑢(𝑥௜, 𝑎, 𝑘, 𝑚) = ቐ 𝑘(𝑥௜ − 𝑎)௠, 𝑥௜ > 𝑎0, −𝑎 < 𝑥௜ < 𝑎𝑘(−𝑥௜ − 𝑎)௠, 𝑥௜ < −𝑎 

30, 50 [-50, 50] 0 
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Table 5. CEC2017 test functions. 

Functions Dimension Interval Optimal 
Unimodal and simple multimodal test functions  CF1(𝑥) = Shifted and Rotated Bent Cigar Function 10, 30, 50 [-100, 100] 100 CF3(𝑥) = Shifted and Rotated Zakharov Function 10, 30, 50 [-100, 100] 300 CF4(𝑥) = Shifted and Rotated Rosenbrock’s Function 10, 30, 50 [-100, 100] 400 CF5(𝑥) = Shifted and Rotated Rastrigin’s Function 10, 30, 50 [-100, 100] 500 CF6(𝑥) = Shifted and Rotated Expanded Scaffer’s F6 Function 10, 30, 50 [-100, 100] 600 CF7(𝑥) = Shifted and Rotated Lunacek Bi-Rastrigin Function 10, 30, 50 [-100, 100] 700 CF8(x) = Shifted and Rotated Non-Continuous Rastrigin’s Function 10, 30, 50 [-100, 100] 800 CF9(𝑥) = Shifted and Rotated Levy Function 10, 30, 50 [-100, 100] 900 CF10(𝑥) = Shifted and Rotated Schwefel’s Function 10, 30, 50 [-100, 100] 1000 
Hybrid functions CF11(𝑥) = Hybrid Function 1 (N = 3) 10, 30, 50 [-100, 100] 1100 CF12(𝑥) = Hybrid Function 2 (N = 3) 10, 30, 50 [-100, 100] 1200 CF13(𝑥) = Hybrid Function 3 (N = 3) 10, 30, 50 [-100, 100] 1300 CF14(𝑥) = Hybrid Function 4 (N = 4) 10, 30, 50 [-100, 100] 1400 CF15(𝑥) = Hybrid Function 5 (N = 4) 10, 30, 50 [-100, 100] 1500 CF16(𝑥) = Hybrid Function 6 (N = 4) 10, 30, 50 [-100, 100] 1600 CF17(𝑥) = Hybrid Function 6 (N = 5) 10, 30, 50 [-100, 100] 1700 CF18(𝑥) = Hybrid Function 6 (N = 5) 10, 30, 50 [-100, 100] 1800 CF19(𝑥) = Hybrid Function 6 (N = 5) 10, 30, 50 [-100, 100] 1900 CF20(𝑥) = Hybrid Function 6 (N = 6) 10, 30, 50 [-100, 100] 2000 
Composition functions CF21(𝑥) = Composition Function 1 (N = 3) 10, 30, 50 [-100, 100] 2100 CF22(𝑥) = Composition Function 2 (N = 3) 10, 30, 50 [-100, 100] 2200 CF23(𝑥) = Composition Function 3 (N = 4) 10, 30, 50 [-100, 100] 2300 CF24(𝑥) = Composition Function 4 (N = 4) 10, 30, 50 [-100, 100] 2400 CF25(𝑥) = Composition Function 5 (N = 5) 10, 30, 50 [-100, 100] 2500 CF26(𝑥) = Composition Function 6 (N = 5) 10, 30, 50 [-100, 100] 2600 CF27(𝑥) = Composition Function 7 (N = 6) 10, 30, 50 [-100, 100] 2700 CF28(𝑥) = Composition Function 8 (N = 6) 10, 30, 50 [-100, 100] 2800 CF29(𝑥) = Composition Function 9 (N = 3) 10, 30, 50 [-100, 100] 2900 

5.2. Comparisons with variants of FPA and SMA 

To validate the effectiveness of GFPSMA, we performed numerical tests and compared it with 
variant algorithms of FPA and SMA proposed in recent years. Our testing encompassed 10 standard 
functions and 29 CEC2017 test functions. The standard functions comprise 5 unimodal functions 
(SF1–SF5) each with a single global optimal solution, and 5 multimodal functions (SF6–SF10) with 
multiple global optimal solutions. The CEC2017 test functions consist of 2 unimodal functions 
(CF1–CF3) with only one global optimal solution, 7 simple multimodal functions (CF4–CF10), and 20 
complex multimodal functions, including mixed functions (CF11–CF20) and composition functions 
(CF21–CF30), all of which have multiple global optimal solutions. The algorithms involved in the 
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comparison include 3 SMA variants and 3 FPA variants. SMA variants include MSMA [33], TLSMA [56], 
and ESMA [57], while FPA variants include WOFPA [46], MBFPA [38], and MFPA [58]. The test 
results for dimension 30 are listed in Table 6. If the Mean metric is the same, then the ranking is the same. 

Table 6. Results for variants of FPA and SMA in 30 Dim. 

Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

SF1 Mean 0.000E+00 0.000E+00 0.000E+00 9.368E-242 0.000E+00 2.589E-49 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 8.240E-254 0.000E+00 1.627E-63 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.324E-48 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF2 Mean 0.000E+00 9.424E-314 0.000E+00 7.622E-149 0.000E+00 3.808E-35 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 4.385E-155 0.000E+00 1.075E-43 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 3.662E-148 0.000E+00 1.400E-34 0.000E+00 

 Rank 1 5 1 6 1 7 1 

SF3 Mean 0.000E+00 0.000E+00 0.000E+00 3.581E-08 0.000E+00 2.646E-03 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 1.434E-18 0.000E+00 1.231E-04 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 1.204E-07 0.000E+00 3.745E-03 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF4 Mean 1.143E-66 3.426E-311 0.000E+00 4.952E-16 0.000E+00 2.702E+01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 2.045E-23 0.000E+00 1.560E+01 0.000E+00 

 Std 6.260E-66 0.000E+00 0.000E+00 2.510E-15 0.000E+00 5.413E+00 0.000E+00 

 Rank 5 4 1 6 1 7 1 

SF5 Mean 2.556E-04 8.261E-03 1.232E-03 2.356E+01 9.135E+00 4.364E+01 5.412E-06 

 Min 8.963E-09 4.876E-05 1.721E-05 2.208E+01 4.397E+00 1.487E-02 6.916E-08 

 Std 4.833E-04 7.316E-03 7.191E-04 1.379E+00 2.360E+00 6.146E+01 9.376E-06 

 Rank 2 4 3 6 5 7 1 

SF6 Mean -1.257E+04 -1.257E+04 -1.257E+04 -9.915E+03 -2.923E+04 -8.601E+03 -1.257E+04

 Min -1.257E+04 -1.257E+04 -1.257E+04 -1.235E+04 -7.145E+04 -9.943E+03 -1.257E+04

 Std 1.934E-04 1.356E-03 1.405E-04 1.023E+03 1.184E+04 6.761E+02 1.850E-12 

 Rank 2 2 2 6 1 7 2 

SF7 Mean 0.000E+00 0.000E+00 0.000E+00 4.556E+01 0.000E+00 5.937E+01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.184E+01 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 3.446E+01 0.000E+00 2.119E+01 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF8 Mean 8.882E-16 8.882E-16 8.882E-16 5.625E-15 8.882E-16 8.861E+00 8.882E-16 

 Min 8.882E-16 8.882E-16 8.882E-16 4.441E-15 8.882E-16 3.462E+00 8.882E-16 

 Std 0.000E+00 0.000E+00 0.000E+00 1.703E-15 0.000E+00 2.849E+00 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF9 Mean 0.000E+00 0.000E+00 0.000E+00 1.970E-03 0.000E+00 1.022E-01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 5.688E-03 0.000E+00 1.469E-01 0.000E+00 

 Rank 1 1 1 6 1 7 1 

Continued on next page 
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Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

SF10 Mean 1.529E-07 1.978E-05 1.107E-05 1.585E-01 3.456E-03 7.017E-01 5.929E-09 

 Min 2.478E-10 3.949E-08 6.115E-09 4.087E-08 1.675E-32 5.136E-32 3.368E-14 

 Std 2.260E-07 2.548E-05 1.103E-05 8.493E-01 1.893E-02 1.517E+00 9.229E-09 

 Rank 2 4 3 6 5 7 1 

CF1 Mean 2.048E+07 6.115E+03 8.641E+03 1.284E+07 2.682E+03 4.818E+03 5.982E+03 

 Min 6.034E+05 1.482E+02 1.008E+02 1.459E+06 1.187E+02 1.000E+02 4.653E+02 

 Std 7.058E+07 6.892E+03 7.794E+03 1.151E+07 3.106E+03 4.732E+03 4.795E+03 

 Rank 7 4 5 6 1 2 3 

CF3 Mean 8.792E+03 3.002E+02 3.002E+02 1.736E+04 3.008E+02 1.476E+03 3.030E+02 

 Min 4.773E+03 3.000E+02 3.000E+02 4.387E+03 3.000E+02 3.027E+02 3.005E+02 

 Std 2.353E+03 8.228E-02 2.827E-01 8.406E+03 2.726E+00 3.196E+03 2.452E+00 

 Rank 7 1 1 6 3 5 4 

CF4 Mean 5.046E+02 4.899E+02 4.890E+02 5.207E+02 5.228E+02 4.898E+02 4.872E+02

 Min 4.475E+02 4.586E+02 4.834E+02 4.769E+02 4.000E+02 4.103E+02 4.752E+02 

 Std 2.321E+01 9.206E+00 5.605E+00 2.548E+01 5.727E+01 2.674E+01 2.747E+00 

 Rank 5 2 3 6 7 4 1 

CF5 Mean 6.004E+02 5.980E+02 5.806E+02 6.988E+02 6.632E+02 6.594E+02 5.496E+02

 Min 5.507E+02 5.507E+02 5.418E+02 6.293E+02 5.677E+02 5.915E+02 5.212E+02 

 Std 2.898E+01 2.764E+01 1.777E+01 5.475E+01 3.552E+01 3.445E+01 1.515E+01 

 Rank 4 3 2 7 6 5 1 

CF6 Mean 6.065E+02 6.010E+02 6.005E+02 6.459E+02 6.310E+02 6.383E+02 6.016E+02 

 Min 6.036E+02 6.002E+02 6.003E+02 6.171E+02 6.155E+02 6.208E+02 6.008E+02 

 Std 2.055E+00 6.694E-01 1.980E-01 1.366E+01 8.890E+00 8.985E+00 5.004E-01 

 Rank 4 2 1 7 5 6 3 

CF7 Mean 8.309E+02 8.313E+02 8.228E+02 9.460E+02 1.008E+03 1.173E+03 7.870E+02

 Min 7.865E+02 7.878E+02 7.812E+02 8.523E+02 8.906E+02 9.685E+02 7.604E+02 

 Std 2.589E+01 3.786E+01 2.616E+01 3.993E+01 7.005E+01 1.612E+02 1.825E+01 

 Rank 3 4 2 5 6 7 1 

CF8 Mean 9.077E+02 8.856E+02 8.823E+02 9.715E+02 9.236E+02 9.296E+02 8.489E+02

 Min 8.568E+02 8.458E+02 8.527E+02 8.949E+02 8.706E+02 8.766E+02 8.273E+02 

 Std 3.103E+01 2.190E+01 2.009E+01 3.950E+01 2.309E+01 3.000E+01 1.356E+01 

 Rank 4 3 2 7 5 6 1 

CF9 Mean 3.490E+03 2.311E+03 1.672E+03 4.443E+03 3.069E+03 3.776E+03 9.022E+02

 Min 9.740E+02 9.270E+02 9.138E+02 2.475E+03 1.683E+03 2.181E+03 9.002E+02 

 Std 1.723E+03 1.474E+03 9.053E+02 1.643E+03 7.236E+02 1.383E+03 2.327E+00 

 Rank 5 3 2 7 4 6 1 

CF10 Mean 8.216E+03 4.060E+03 3.828E+03 5.656E+03 4.847E+03 5.309E+03 3.931E+03 

 Min 7.474E+03 2.884E+03 2.840E+03 4.418E+03 3.739E+03 3.866E+03 2.940E+03 

 Std 3.289E+02 4.701E+02 4.784E+02 6.783E+02 5.842E+02 7.625E+02 4.597E+02 

 Rank 7 3 1 6 4 5 2 

Continued on next page 



3893 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

CF11 Mean 1.211E+03 1.252E+03 1.204E+03 1.302E+03 1.355E+03 1.262E+03 1.138E+03

 Min 1.152E+03 1.151E+03 1.132E+03 1.230E+03 1.174E+03 1.170E+03 1.111E+03 

 Std 3.607E+01 5.927E+01 4.151E+01 4.857E+01 2.050E+02 6.904E+01 2.149E+01 

 Rank 3 4 2 6 7 5 1 

CF12 Mean 3.832E+06 9.388E+05 8.210E+05 1.206E+07 2.924E+07 3.337E+05 2.791E+03

 Min 4.301E+05 1.450E+05 1.660E+05 2.031E+06 4.620E+03 3.644E+04 1.864E+03 

 Std 2.670E+06 7.927E+05 7.353E+05 1.253E+07 7.142E+07 3.087E+05 8.841E+02 

 Rank 5 4 3 6 7 2 1 

CF13 Mean 6.200E+04 2.995E+04 2.632E+04 1.373E+05 2.811E+04 1.838E+04 1.860E+03

 Min 1.531E+04 3.732E+03 3.009E+03 2.457E+04 1.792E+03 2.301E+03 1.418E+03 

 Std 3.142E+04 2.681E+04 2.453E+04 8.548E+04 2.826E+04 1.915E+04 3.702E+02 

 Rank 6 5 3 7 4 2 1 

CF14 Mean 3.059E+04 4.232E+04 5.387E+04 6.261E+04 1.847E+04 2.207E+04 1.447E+03

 Min 3.958E+03 8.106E+03 9.140E+03 2.067E+03 1.525E+03 1.578E+03 1.433E+03 

 Std 1.791E+04 2.174E+04 2.602E+04 5.108E+04 5.654E+04 2.386E+04 9.958E+00 

 Rank 4 5 6 7 2 3 1 

CF15 Mean 1.806E+04 2.672E+04 2.362E+04 3.304E+04 1.648E+04 1.046E+04 1.616E+03

 Min 2.758E+03 1.886E+03 1.619E+03 7.670E+03 1.748E+03 1.683E+03 1.548E+03 

 Std 1.577E+04 1.596E+04 1.522E+04 2.083E+04 3.330E+04 1.059E+04 4.810E+01 

 Rank 4 6 5 7 3 2 1 

CF16 Mean 2.248E+03 2.508E+03 2.477E+03 3.000E+03 2.565E+03 2.748E+03 1.930E+03

 Min 1.776E+03 1.975E+03 2.098E+03 2.034E+03 2.123E+03 2.197E+03 1.621E+03 

 Std 2.088E+02 3.133E+02 2.797E+02 3.751E+02 3.189E+02 3.229E+02 1.949E+02 

 Rank 2 4 3 7 5 6 1 

CF17 Mean 2.114E+03 2.203E+03 2.266E+03 2.201E+03 2.128E+03 2.281E+03 1.794E+03

 Min 1.777E+03 1.828E+03 1.880E+03 1.793E+03 1.764E+03 1.897E+03 1.730E+03 

 Std 1.782E+02 1.962E+02 2.427E+02 2.518E+02 1.896E+02 1.931E+02 5.369E+01 

 Rank 2 5 6 4 3 7 1 

CF18 Mean 3.046E+05 3.070E+05 3.517E+05 8.212E+05 3.033E+05 2.587E+05 1.859E+03

 Min 3.198E+04 4.148E+04 4.554E+04 9.127E+04 2.474E+03 4.659E+04 1.838E+03 

 Std 2.381E+05 2.994E+05 3.385E+05 6.878E+05 5.825E+05 3.410E+05 1.791E+01 

 Rank 4 5 6 7 3 2 1 

CF19 Mean 1.978E+04 3.141E+04 3.066E+04 9.005E+04 1.829E+04 1.335E+04 1.928E+03

 Min 2.371E+03 2.998E+03 2.654E+03 6.774E+03 1.960E+03 2.088E+03 1.918E+03 

 Std 1.959E+04 1.953E+04 2.006E+04 9.721E+04 4.088E+04 1.179E+04 6.303E+00 

 Rank 4 6 5 7 3 2 1 

CF20 Mean 2.468E+03 2.473E+03 2.427E+03 2.556E+03 2.377E+03 2.686E+03 2.087E+03

 Min 2.181E+03 2.173E+03 2.223E+03 2.258E+03 2.205E+03 2.146E+03 2.031E+03 

 Std 1.259E+02 1.565E+02 1.487E+02 1.847E+02 1.158E+02 2.475E+02 6.817E+01 

 Rank 4 5 3 6 2 7 1 

Continued on next page 
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Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

CF21 Mean 2.369E+03 2.391E+03 2.396E+03 2.484E+03 2.431E+03 2.440E+03 2.346E+03
 Min 2.342E+03 2.355E+03 2.362E+03 2.396E+03 2.379E+03 2.372E+03 2.327E+03 

 Std 1.326E+01 2.157E+01 2.391E+01 5.148E+01 3.453E+01 3.146E+01 1.042E+01 

 Rank 2 3 4 7 5 6 1 

CF22 Mean 2.532E+03 5.859E+03 5.370E+03 5.802E+03 2.589E+03 5.543E+03 2.303E+03
 Min 2.319E+03 4.997E+03 2.300E+03 2.312E+03 2.300E+03 2.300E+03 2.301E+03 

 Std 5.589E+02 5.867E+02 1.149E+03 1.884E+03 1.094E+03 2.051E+03 2.167E+00 

 Rank 2 7 4 6 3 5 1 

CF23 Mean 2.706E+03 2.744E+03 2.741E+03 2.843E+03 2.884E+03 2.875E+03 2.707E+03 

 Min 2.675E+03 2.707E+03 2.707E+03 2.743E+03 2.783E+03 2.731E+03 2.680E+03 

 Std 1.410E+01 2.250E+01 1.553E+01 6.138E+01 7.243E+01 7.945E+01 1.343E+01 

 Rank 1 4 3 5 6 7 2 

CF24 Mean 2.872E+03 2.937E+03 2.931E+03 2.996E+03 3.056E+03 3.082E+03 2.894E+03 

 Min 2.841E+03 2.890E+03 2.871E+03 2.903E+03 2.936E+03 2.935E+03 2.855E+03 

 Std 1.537E+01 4.250E+01 2.836E+01 5.777E+01 6.189E+01 1.456E+02 2.912E+01 

 Rank 1 4 3 5 6 7 2 

CF25 Mean 2.897E+03 2.887E+03 2.887E+03 2.926E+03 2.958E+03 2.904E+03 2.887E+03
 Min 2.886E+03 2.884E+03 2.884E+03 2.890E+03 2.888E+03 2.884E+03 2.884E+03 

 Std 1.385E+01 1.561E+00 1.295E+00 2.451E+01 5.713E+01 2.010E+01 1.419E+00 

 Rank 4 1 1 5 7 6 1 

CF26 Mean 4.286E+03 4.619E+03 4.613E+03 5.802E+03 5.252E+03 6.160E+03 4.216E+03
 Min 4.047E+03 4.185E+03 4.174E+03 2.906E+03 2.800E+03 2.900E+03 2.902E+03 

 Std 1.444E+02 2.371E+02 2.024E+02 8.416E+02 1.648E+03 1.014E+03 2.999E+02 

 Rank 2 4 3 6 5 7 1 

CF27 Mean 3.218E+03 3.215E+03 3.212E+03 3.268E+03 3.231E+03 3.289E+03 3.207E+03
 Min 3.197E+03 3.196E+03 3.195E+03 3.211E+03 3.200E+03 3.228E+03 3.187E+03 

 Std 1.149E+01 1.387E+01 1.319E+01 3.669E+01 5.490E+01 5.355E+01 1.095E+01 

 Rank 4 3 2 6 5 7 1 

CF28 Mean 3.249E+03 3.231E+03 3.253E+03 3.277E+03 3.310E+03 3.213E+03 3.209E+03
 Min 3.204E+03 3.175E+03 3.127E+03 3.229E+03 3.100E+03 3.100E+03 3.124E+03 

 Std 3.657E+01 3.172E+01 5.089E+01 3.471E+01 1.653E+02 4.403E+01 3.212E+01 

 Rank 4 3 5 6 7 2 1 

CF29 Mean 3.723E+03 3.782E+03 3.857E+03 4.208E+03 4.067E+03 4.164E+03 3.451E+03
 Min 3.395E+03 3.445E+03 3.399E+03 3.681E+03 3.633E+03 3.479E+03 3.344E+03 

 Std 2.079E+02 1.615E+02 2.267E+02 3.102E+02 2.874E+02 2.880E+02 1.074E+02 

 Rank 2 3 4 7 5 6 1 

CF30 Mean 1.985E+05 1.616E+04 1.512E+04 1.299E+06 3.873E+06 3.199E+04 5.391E+03
 Min 4.556E+04 6.703E+03 5.779E+03 2.719E+05 1.031E+04 5.979E+03 5.068E+03 

 Std 1.192E+05 5.475E+03 5.968E+03 8.197E+05 1.724E+07 9.267E+04 2.211E+02 

 Rank 5 3 2 6 7 4 1 

Best count 8 7 11 0 9 0 32 

Ave rank 3.2821 3.4103 2.7436 6.1538 3.9487 5.4103 1.2821 

Final rank 3 4 2 7 5 6 1 

Time/s 2.5149e+04 6.3519e+03 5.4015e+03 3.7712e+03 9.2053e+03 5.9496e+03 1.328e+04 
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In the evaluation of standard test functions, GFPSMA has demonstrated its superiority in 
achieving theoretical best solutions, especially in the SF1–SF4, SF7, and SF18 functions. The 
algorithm has successfully identified the theoretical best solutions for these test functions, establishing 
itself as the optimal optimization algorithm for these functions. Furthermore, GFPSMA has exhibited 
outstanding optimization performance in other functions, such as SF5, earning it the top ranking in the 
algorithm evaluation. In contrast, among the other algorithms, MBFPA is only marginally inferior to 
GFPSMA, while ESMA trails behind. In the more complex CEC2017 function testing, GFPSMA not 
only outperforms in mean metric count, but also demonstrates a particularly noticeable advantage. 
Specifically, in functions such as CF7, CF9, CF12, and CF15, their optimization ability has been 
significantly improved. Compared with other algorithms, variants of SMA and FPA may achieve best 
results in a few functions, but their optimization performance is relatively poor in most CEC functions. 
According to the evaluation of the Average rank, GFPSMA has the highest ranking at 1.2821, 
indicating its best adaptability to complex problems. In summary, in the above test functions, GFPSMA 
is more able to find reasonable and high-quality results compared to other algorithms. It can generate 
feasible solutions with higher accuracy, thus verifying the effectiveness of GFPSMA. In the statistical 
results, GFPSMA ranked first among 32 functions, MSMA ranked 8, TLSMA ranked 7, and ESMA 
and MBFPA ranked 11 and 9, respectively. WOFPA and MFPA have not been identified as optimal 
algorithms in all functions. Overall, GFPSMA also ranks among the top in terms of ranking. 

Table 7 displays the test results of GFPSMA and its variant algorithms in a high-dimensional 
environment with a dimension of 50. The table reveals that the improvement strategy proposed in this 
paper remains highly effective in GFPSMA within this high-dimensional setting. The introduction of 
the improvement strategy significantly accelerates the convergence speed of the algorithm and swiftly 
narrows the search space range, establishing a robust foundation for local development to attain 
accurate solutions. Furthermore, the table demonstrates that GFPSMA displays superior stability and 
robustness compared to other comparative algorithms. The test results indicate that out of 39 test 
functions, GFPSMA achieved the best optimization values in 28 functions, with an average ranking 
of 1.4615. In contrast, the MSMA variant was optimal in 7 functions, while the optimal performance 
quantities for MBFPA, WOFPA, TLSMA, ESMA, and MFPA decreased successively to 6, 5, 4, 3, 
and 1, respectively. Furthermore, the results also indicate that GFPSMA exhibited excellent 
performance across types of functions, ensuring a good balance between exploration and exploitation 
stages, and demonstrating outstanding performance in handling complex functions with multiple local 
optima. This outcome illustrates that through the competitive mechanism of game theory, combined 
with improved global and random search, as well as the overlay of elite learning strategies, the 
optimization capability of GFPSMA has been significantly enhanced, enabling it to possess stronger 
abilities to prevent falling into local optima when solving complex problems. 
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Table 7. Results for variants of FPA and SMA in 50 Dim. 

Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

SF1 Mean 0.000E+00 0.000E+00 0.000E+00 1.454E-200 0.000E+00 2.514E-17 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 4.130E-210 0.000E+00 2.431E-24 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.262E-17 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF2 Mean 0.000E+00 2.564E-295 0.000E+00 2.594E-127 0.000E+00 1.781E-03 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 9.004E-132 0.000E+00 7.263E-18 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 1.117E-126 0.000E+00 9.754E-03 0.000E+00 

 Rank 1 5 1 6 1 7 1 

SF3 Mean 0.000E+00 0.000E+00 0.000E+00 4.083E+00 0.000E+00 4.881E+01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 2.222E-03 0.000E+00 1.591E+01 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 7.745E+00 0.000E+00 3.401E+01 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF4 Mean 1.035E-53 1.308E-268 0.000E+00 9.580E-03 0.000E+00 3.387E+01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 6.457E-12 0.000E+00 2.576E+01 0.000E+00 

 Std 4.405E-53 0.000E+00 0.000E+00 4.779E-02 0.000E+00 4.834E+00 0.000E+00 

 Rank 5 4 1 6 1 7 1 

SF5 Mean 7.707E-04 5.225E-02 1.548E-02 4.432E+01 3.416E+01 8.036E+01 3.650E-05 

 Min 2.096E-08 3.000E-06 1.040E-04 4.183E+01 2.837E+01 3.791E+00 1.564E-07 

 Std 1.766E-03 5.845E-02 1.127E-02 1.816E+00 2.750E+00 6.174E+01 7.599E-05 

 Rank 2 3 4 6 5 7 1 

SF6 Mean -2.095E+04 -2.095E+04 -2.095E+04 -1.653E+04 -

3.869E+04 

-1.458E+04 -2.095E+04

 Min -2.095E+04 -2.095E+04 -2.095E+04 -2.095E+04 -8.710E+04 -1.649E+04 -2.095E+04

 Std 1.526E-04 8.806E-03 2.703E-03 1.944E+03 1.633E+04 9.956E+02 1.480E-11 

 Rank 2 2 2 6 1 7 2 

SF7 Mean 0.000E+00 0.000E+00 0.000E+00 6.534E+01 0.000E+00 9.585E+01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5.273E+01 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 6.401E+01 0.000E+00 2.891E+01 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF8 Mean 8.882E-16 8.882E-16 8.882E-16 6.336E-15 8.882E-16 1.120E+01 8.882E-16 

 Min 8.882E-16 8.882E-16 8.882E-16 4.441E-15 8.882E-16 5.866E+00 8.882E-16 

 Std 0.000E+00 0.000E+00 0.000E+00 2.421E-15 0.000E+00 2.792E+00 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF9 Mean 0.000E+00 0.000E+00 0.000E+00 1.232E-03 0.000E+00 5.720E-01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.552E-15 0.000E+00 

 Std 0.000E+00 0.000E+00 0.000E+00 3.284E-03 0.000E+00 1.133E+00 0.000E+00 

 Rank 1 1 1 6 1 7 1 

SF10 Mean 1.024E-07 3.097E-05 5.953E-05 8.622E-01 6.523E-21 6.457E-01 7.566E-09 

 Min 9.799E-15 1.932E-08 3.591E-07 3.254E-07 1.198E-31 3.100E-22 2.919E-12 

 Std 2.125E-07 6.922E-05 6.671E-05 1.600E+00 3.570E-20 8.782E-01 2.010E-08 

 Rank 3 4 5 7 1 6 2 

Continued on next page 



3897 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

CF1 Mean 2.489E+08 9.971E+03 9.967E+03 9.204E+07 5.105E+03 5.783E+03 3.009E+04 

 Min 3.446E+07 5.274E+02 5.274E+02 2.112E+07 1.283E+02 1.000E+02 1.480E+03 

 Std 2.600E+08 7.780E+03 1.038E+04 4.524E+07 6.752E+03 7.460E+03 2.137E+04 

 Rank 7 4 3 6 1 2 5 

CF3 Mean 1.028E+05 3.844E+02 7.413E+02 5.111E+04 4.020E+03 2.271E+04 3.672E+02

 Min 7.566E+04 3.223E+02 3.223E+02 2.976E+04 8.442E+02 8.189E+03 3.354E+02 

 Std 2.736E+04 4.684E+01 4.341E+02 1.223E+04 3.209E+03 1.029E+04 2.659E+01 

 Rank 7 2 3 6 4 5 1 

CF4 Mean 5.645E+02 5.817E+02 5.461E+02 6.502E+02 6.120E+02 5.254E+02 5.689E+02 

 Min 4.784E+02 5.147E+02 5.147E+02 5.586E+02 4.656E+02 4.226E+02 4.967E+02 

 Std 5.025E+01 3.013E+01 5.079E+01 5.892E+01 1.387E+02 5.664E+01 4.078E+01 

 Rank 3 5 2 7 6 1 4 

CF5 Mean 7.754E+02 7.217E+02 6.984E+02 9.180E+02 8.028E+02 8.140E+02 6.184E+02

 Min 6.412E+02 6.423E+02 6.423E+02 8.286E+02 7.268E+02 6.313E+02 5.710E+02 

 Std 5.416E+01 4.943E+01 3.974E+01 7.436E+01 3.434E+01 5.690E+01 2.805E+01 

 Rank 4 3 2 7 5 6 1 

CF6 Mean 6.134E+02 6.134E+02 6.028E+02 6.616E+02 6.429E+02 6.485E+02 6.044E+02 

 Min 6.098E+02 6.035E+02 6.035E+02 6.375E+02 6.301E+02 6.358E+02 6.029E+02 

 Std 2.528E+00 1.171E+01 1.478E+00 1.004E+01 8.070E+00 6.835E+00 1.081E+00 

 Rank 3 3 1 7 5 6 2 

CF7 Mean 1.007E+03 9.718E+02 9.537E+02 1.273E+03 1.440E+03 1.610E+03 8.884E+02

 Min 9.326E+02 8.705E+02 8.705E+02 1.065E+03 1.178E+03 1.302E+03 8.410E+02 

 Std 6.079E+01 4.685E+01 4.564E+01 1.062E+02 1.124E+02 1.815E+02 3.037E+01 

 Rank 4 3 2 5 6 7 1 

CF8 Mean 9.976E+02 1.016E+03 9.925E+02 1.184E+03 1.113E+03 1.107E+03 9.348E+02

 Min 9.283E+02 9.554E+02 9.554E+02 1.010E+03 1.036E+03 9.851E+02 8.843E+02 

 Std 3.026E+01 4.219E+01 3.570E+01 8.852E+01 4.479E+01 5.389E+01 3.003E+01 

 Rank 3 4 2 7 6 5 1 

CF9 Mean 3.028E+03 1.066E+04 6.578E+03 1.392E+04 1.017E+04 1.021E+04 9.631E+02

 Min 1.080E+03 3.399E+03 3.399E+03 4.391E+03 7.050E+03 7.654E+03 9.101E+02 

 Std 1.313E+03 4.871E+03 2.742E+03 4.339E+03 2.078E+03 1.821E+03 4.745E+01 

 Rank 6 4 7 5 2 3 1 

CF10 Mean 1.445E+04 6.755E+03 6.496E+03 8.896E+03 7.545E+03 8.314E+03 6.788E+03 

 Min 1.292E+04 5.355E+03 5.355E+03 5.979E+03 5.811E+03 6.658E+03 4.719E+03 

 Std 4.971E+02 7.943E+02 8.205E+02 1.102E+03 8.680E+02 9.095E+02 9.696E+02 

 Rank 7 2 1 6 4 5 3 

CF11 Mean 5.986E+03 1.375E+03 1.327E+03 1.528E+03 1.594E+03 1.385E+03 1.274E+03

 Min 3.324E+03 1.279E+03 1.279E+03 1.339E+03 1.268E+03 1.226E+03 1.171E+03 

 Std 1.820E+03 6.794E+01 7.772E+01 9.362E+01 5.423E+02 8.211E+01 5.629E+01 

 Rank 7 3 2 5 6 4 1 

Continued on next page 
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CF12 Mean 2.875E+07 7.245E+06 5.855E+06 8.853E+07 7.764E+07 1.683E+06 1.387E+06

 Min 4.770E+06 9.615E+05 9.615E+05 2.394E+07 1.106E+05 2.752E+05 2.556E+05 

 Std 2.804E+07 4.366E+06 3.297E+06 5.707E+07 2.395E+08 1.005E+06 9.984E+05 

 Rank 5 4 3 7 6 2 1 

CF13 Mean 2.357E+05 3.894E+04 3.178E+04 6.097E+05 6.227E+06 1.063E+04 9.140E+03

 Min 7.209E+04 1.629E+04 1.629E+04 8.470E+04 3.820E+03 2.532E+03 4.305E+03 

 Std 2.119E+05 9.440E+03 9.704E+03 1.015E+06 3.346E+07 1.003E+04 4.168E+03 

 Rank 5 4 3 6 7 2 1 

CF14 Mean 2.178E+05 2.330E+05 1.918E+05 4.540E+05 7.973E+05 9.962E+04 1.541E+03

 Min 2.514E+04 4.526E+04 4.526E+04 2.621E+04 2.550E+03 3.495E+03 1.507E+03 

 Std 1.216E+05 1.214E+05 1.057E+05 4.295E+05 1.454E+06 7.525E+04 1.886E+01 

 Rank 4 5 3 6 7 2 1 

CF15 Mean 4.454E+04 3.005E+04 2.515E+04 1.232E+05 6.346E+05 1.153E+04 2.258E+03

 Min 2.102E+04 2.336E+03 2.336E+03 2.109E+04 1.692E+03 2.144E+03 1.848E+03 

 Std 2.474E+04 7.046E+03 1.010E+04 1.868E+05 2.787E+06 8.096E+03 2.493E+02 

 Rank 5 4 3 6 7 2 1 

CF16 Mean 2.967E+03 3.180E+03 3.377E+03 3.862E+03 3.782E+03 3.631E+03 2.555E+03

 Min 2.227E+03 2.222E+03 2.222E+03 3.182E+03 2.804E+03 2.718E+03 2.101E+03 

 Std 3.216E+02 4.119E+02 5.092E+02 4.128E+02 5.475E+02 3.876E+02 2.501E+02 

 Rank 2 3 4 7 6 5 1 

CF17 Mean 2.815E+03 3.107E+03 3.106E+03 3.463E+03 3.001E+03 3.464E+03 2.407E+03

 Min 2.149E+03 2.377E+03 2.377E+03 2.490E+03 2.465E+03 2.724E+03 2.041E+03 

 Std 3.164E+02 3.377E+02 4.058E+02 4.039E+02 3.011E+02 3.882E+02 1.830E+02 

 Rank 2 5 4 6 3 7 1 

CF18 Mean 2.657E+06 1.211E+06 1.204E+06 2.914E+06 6.102E+06 1.149E+06 2.222E+03

 Min 1.858E+05 3.619E+05 3.619E+05 3.569E+05 3.133E+04 1.383E+05 1.967E+03 

 Std 3.841E+06 6.765E+05 7.978E+05 2.755E+06 8.148E+06 1.637E+06 1.309E+02 

 Rank 5 4 3 6 7 2 1 

CF19 Mean 3.997E+04 1.650E+04 1.495E+04 2.492E+05 1.694E+04 1.553E+04 2.013E+03

 Min 5.464E+03 2.156E+03 2.156E+03 2.615E+04 2.023E+03 2.096E+03 1.957E+03 

 Std 2.851E+04 1.608E+04 1.683E+04 2.486E+05 1.032E+04 1.147E+04 3.250E+01 

 Rank 7 4 2 6 5 3 1 

CF20 Mean 3.578E+03 3.144E+03 2.993E+03 3.383E+03 2.877E+03 3.452E+03 2.517E+03

 Min 3.096E+03 2.696E+03 2.696E+03 2.837E+03 2.507E+03 2.778E+03 2.209E+03 

 Std 2.071E+02 2.431E+02 2.950E+02 2.231E+02 2.148E+02 3.978E+02 1.726E+02 

 Rank 7 4 3 5 2 6 1 

CF21 Mean 2.465E+03 2.499E+03 2.500E+03 2.710E+03 2.607E+03 2.642E+03 2.409E+03

 Min 2.419E+03 2.427E+03 2.427E+03 2.598E+03 2.496E+03 2.512E+03 2.375E+03 

 Std 3.361E+01 3.782E+01 3.365E+01 7.291E+01 7.064E+01 8.054E+01 2.797E+01 

 Rank 2 3 4 7 5 6 1 

Continued on next page 
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Functions Measures MSMA TLSMA ESMA WOFPA MBFPA MFPA GFPASMA

CF22 Mean 1.623E+04 8.616E+03 8.514E+03 1.058E+04 8.808E+03 1.003E+04 8.584E+03

 Min 1.500E+04 6.848E+03 6.848E+03 7.521E+03 2.300E+03 6.762E+03 2.318E+03 

 Std 3.726E+02 9.975E+02 8.086E+02 1.014E+03 2.516E+03 1.233E+03 1.365E+03 

 Rank 7 3 1 6 4 5 2 

CF23 Mean 2.860E+03 2.946E+03 2.946E+03 3.177E+03 3.261E+03 3.319E+03 2.870E+03 

 Min 2.804E+03 2.873E+03 2.873E+03 3.023E+03 3.007E+03 3.063E+03 2.817E+03 

 Std 2.881E+01 3.927E+01 4.387E+01 9.704E+01 1.468E+02 1.423E+02 3.079E+01 

 Rank 3 2 2 5 6 7 1 

CF24 Mean 3.055E+03 3.116E+03 3.126E+03 3.316E+03 3.590E+03 3.515E+03 3.046E+03

 Min 2.988E+03 3.052E+03 3.052E+03 3.122E+03 3.127E+03 3.247E+03 2.976E+03 

 Std 3.629E+01 3.314E+01 5.044E+01 9.240E+01 1.927E+02 2.154E+02 4.708E+01 

 Rank 2 3 4 5 7 6 1 

CF25 Mean 3.127E+03 3.032E+03 3.031E+03 3.141E+03 3.433E+03 3.062E+03 3.050E+03 

 Min 3.010E+03 2.968E+03 2.968E+03 3.048E+03 3.058E+03 2.966E+03 2.969E+03 

 Std 5.680E+01 3.048E+01 3.782E+01 4.204E+01 3.552E+02 3.353E+01 3.027E+01 

 Rank 5 2 1 6 7 4 3 

CF26 Mean 3.855E+03 5.117E+03 5.461E+03 8.590E+03 8.215E+03 9.805E+03 5.100E+03 

 Min 2.962E+03 2.900E+03 2.900E+03 3.661E+03 2.900E+03 6.633E+03 2.913E+03 

 Std 1.017E+03 1.514E+03 1.095E+03 1.547E+03 3.198E+03 1.704E+03 6.579E+02 

 Rank 1 3 4 6 5 7 2 

CF27 Mean 3.395E+03 3.374E+03 3.392E+03 3.689E+03 3.778E+03 3.825E+03 3.318E+03

 Min 3.290E+03 3.256E+03 3.256E+03 3.488E+03 3.200E+03 3.304E+03 3.200E+03 

 Std 7.417E+01 6.443E+01 1.015E+02 1.288E+02 5.595E+02 2.459E+02 9.256E+01 

 Rank 4 2 3 5 6 7 1 

CF28 Mean 3.382E+03 3.306E+03 3.303E+03 3.422E+03 3.563E+03 3.324E+03 3.305E+03 

 Min 3.282E+03 3.260E+03 3.260E+03 3.315E+03 3.300E+03 3.263E+03 3.265E+03 

 Std 5.890E+01 2.322E+01 2.409E+01 5.513E+01 6.721E+02 3.753E+01 2.374E+01 

 Rank 5 3 1 6 7 4 2 

CF29 Mean 4.239E+03 4.461E+03 4.343E+03 5.804E+03 6.417E+03 5.011E+03 3.814E+03

 Min 3.655E+03 3.993E+03 3.993E+03 4.977E+03 4.443E+03 4.103E+03 3.378E+03 

 Std 3.270E+02 2.938E+02 3.242E+02 5.302E+02 1.202E+03 5.330E+02 3.205E+02 

 Rank 2 4 3 6 7 5 1 

CF30 Mean 5.441E+06 1.642E+06 1.628E+06 3.956E+07 4.594E+07 1.489E+06 1.586E+06 

 Min 3.116E+06 9.106E+05 9.106E+05 1.879E+07 3.557E+06 9.090E+05 8.043E+05 

 Std 1.926E+06 4.465E+05 3.461E+05 1.620E+07 2.747E+07 6.895E+05 5.407E+05 

 Rank 7 4 3 5 6 1 2 

Best count 7 5 12 0 10 2 28 

Ave rank 3.8205 3.1282 2.4872 6.0000 4.3333 5.0256 1.4615 

Final rank 4 3 2 7 5 6 1 

Time/s 3.7056e+04 7.3472e+03 9.8308e+03 4.5974e+03 7.7073e+03 8.6293e+03 2.4661e+04
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Figure 7. Curves of variants of FPA and SMA in 30 Dim. 
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Figure 7 illustrates the convergence characteristics of the GFPSMA algorithm and its comparison 
with other algorithms in terms of convergence speed and convergence accuracy across 18 different 
types of functions. The compared algorithms include other variants of FPA and SMA. By showcasing 
the convergence curves of 18 typical functions in a 30-dimensional space, a direct comparison of these 
algorithms’ performance differences can be made. The convergence curves reflect the changes in the 
objective function values during the optimization process, thereby revealing the algorithm’s 
convergence speed and accuracy. Among these curves, for functions such as SF5, CF9, and CF12, 
GFPSMA shows a significantly faster decrease in the global optimum value from the early to mid-
iterations compared to other algorithms, demonstrating outstanding global search capability. 
Additionally, it also exhibits strong local exploitation advantages in the later iterations, showing the 
best convergence speed relative to other algorithms. For unimodal functions, GFPSMA shows fast 
convergence speed and high solution quality, indicating its ability to quickly find a single optimal 
solution. Importantly, even when dealing with complex multimodal, hybrid, and composite functions, 
GFPSMA’s performance does not degrade, suggesting its good robustness for complex problems. 

 

 

 

Figure 8. Box plot of variants of FPA and SMA in 30 Dim. 
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Figure 8 compares the performance of the GFPSMA algorithm with other benchmarked 
algorithms in terms of the optimal solutions for 9 CEC2017 functions across 30 independent runs. In 
the boxplot, the height of the boxes reflects the fluctuation of the algorithm’s optimal solutions, while 
the bottom of the boxes represents the algorithm’s optimal solution. By observing the boxplots for the 
listed functions, it can be seen that the box for GFPSMA is relatively narrow, indicating that its optimal 
solutions have smaller fluctuations, i.e., the algorithm exhibits strong stability, and thus, the differences 
between the optimal solutions at each generation are small. In contrast, the boxes for the other 
benchmarked algorithms are wider, implying larger variations in the solutions obtained from the 
beginning to the end of the iterations, indicating lower stability compared to GFPSMA. 

5.3. Comparisons with variants of other MAs 

This section presents the test results of GFPSMA and variants of other metaheuristic algorithms 
developed by scholars in recent years across 39 diverse functions. The algorithms compared include 
AGWO [59], HSCA [60], PSOsono [61], VPPSO [62], ESOA [63], and MsRwGWO [64], all of which 
have demonstrated their optimization capabilities in various domains. 

Table 8 shows the test results of GFPSMA and other MAs algorithms in 30 dimensions. From the 
data in the table, it can be observed that GFPSMA achieved the best results in 29 out of 39 functions, 
including single-modal and multi-modal types, and obtained the first place in the Final rank. In the 
standard test functions, GFPSMA was the optimal algorithm for 9 functions, followed by VPPSO. 
PSOsono showed no optimal performance in this function test set, while MsRwGWO’s optimal 
performance was 1, indicating the weak optimization capabilities of these two algorithms on the 
standard test set, with GFPSMA being the best. In the CEC2017 test set, GFPSMA achieved the highest 
number of best-performing algorithms in 20 functions, the most among all evaluated algorithms, 
demonstrating the overall improvement in the optimization performance of GFPSMA in various 
functions by combining the dual-competition mechanism based on game theory, the improved FPA 
and SMA, and the perturbation test on the optimal individuals. Its Ave rank is 1.3077, while the Ave 
ranks of other algorithms AGWO, HSCA, PSOsono, VVPSO, ESOA, MsRwGWO are 5.7179, 4.5385, 
2.9744, 3.4103, 4.5128, and 4.3846, with Final ranks of 7, 6, 2, 3, 5, and 4, respectively. This indicates 
that GFPSMA has significant theoretical and practical advantages over the aforementioned 6 
algorithms in low dimensions. 

In Table 9, it can be observed that GFPSMA also achieved the first place in the ranking in 29 
functions, indicating that GFPSMA outperforms the other tested algorithms in terms of optimization 
performance. In the entire function test experiment, GFPSMA’s Ave rank is 1.2821, with an overall 
ranking of first. This indicates that with the adoption of improvement measures, GFPSMA is able to 
improve the tendency of its FPA and SMA algorithms to fall into local optima. This suggests that as 
the optimization function dimension increases, the optimization capability of GFPSMA does not 
decrease and can achieve good optimization results. 
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Table 8. Results for variants of other MAs in 30 Dim. 

Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

SF1 Mean 0.000E+00 1.335E-34 1.253E-291 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Min 0.000E+00 5.612E-47 2.730E-302 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 7.294E-34 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Rank 1 7 6 1 1 1 1 

SF2 Mean 0.000E+00 1.563E-35 3.681E-146 0.000E+00 1.347E-290 4.993E-249 0.000E+00

 Min 0.000E+00 4.009E-41 2.775E-149 0.000E+00 0.000E+00 1.652E-253 0.000E+00

 Std 0.000E+00 5.565E-35 1.223E-145 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Rank 1 7 6 1 4 5 1 

SF3 Mean 0.000E+00 2.858E-02 2.721E-251 0.000E+00 0.000E+00 3.332E-68 0.000E+00

 Min 0.000E+00 1.180E-18 3.589E-260 0.000E+00 0.000E+00 6.635E-85 0.000E+00

 Std 0.000E+00 1.208E-01 0.000E+00 0.000E+00 0.000E+00 1.269E-67 0.000E+00

 Rank 1 7 5 1 1 6 1 

SF4 Mean 0.000E+00 8.840E-04 1.387E-136 0.000E+00 4.550E-239 4.400E-84 0.000E+00

 Min 0.000E+00 8.943E-17 5.792E-142 0.000E+00 0.000E+00 3.347E-89 0.000E+00

 Std 0.000E+00 4.836E-03 6.362E-136 0.000E+00 0.000E+00 1.153E-83 0.000E+00

 Rank 1 7 5 1 4 6 1 

SF5 Mean 2.868E+01 2.579E+01 1.542E+01 3.617E-05 2.603E+01 2.510E+01 5.412E-06 

 Min 2.810E+01 2.518E+01 1.097E+01 6.404E-06 2.472E+01 2.416E+01 6.916E-08 

 Std 3.059E-01 3.014E-01 2.434E+00 3.878E-05 1.061E+00 5.882E-01 9.376E-06 

 Rank 7 5 3 2 6 4 1 

SF6 Mean -2.910E+03 -6.798E+03 -1.018E+04 -1.257E+04 -6.646E+03 -7.604E+03 -1.257E+04 

 Min -4.252E+03 -7.597E+03 -1.156E+04 -1.257E+04 -8.497E+03 -8.991E+03 -1.257E+04 

 Std 4.094E+02 3.992E+02 7.402E+02 1.332E-04 9.021E+02 7.657E+02 1.850E-12 

 Rank 7 5 3 1 6 4 1 

SF7 Mean 0.000E+00 0.000E+00 2.344E-12 0.000E+00 0.000E+00 4.663E-01 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 0.000E+00 1.284E-11 0.000E+00 0.000E+00 1.266E+00 0.000E+00

 Rank 1 1 6 1 1 7 1 

SF8 Mean 8.882E-16 1.215E+01 4.441E-15 7.046E-15 1.362E-15 7.757E-15 8.882E-16 

 Min 8.882E-16 4.441E-15 4.441E-15 4.441E-15 8.882E-16 4.441E-15 8.882E-16 

 Std 0.000E+00 1.009E+01 0.000E+00 1.598E-15 1.228E-15 9.014E-16 0.000E+00

 Rank 1 7 4 5 3 6 1 

SF9 Mean 0.000E+00 0.000E+00 1.110E-16 0.000E+00 0.000E+00 1.016E-03 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 0.000E+00 6.081E-16 0.000E+00 0.000E+00 3.167E-03 0.000E+00

 Rank 1 1 6 1 1 7 1 

SF10 Mean 8.301E-01 6.218E-04 2.073E-02 4.071E-10 1.512E-02 2.659E-03 5.929E-09 

 Min 6.810E-01 1.161E-04 6.619E-24 2.729E-10 7.144E-05 4.219E-08 3.368E-14 

 Std 9.987E-02 1.981E-03 7.889E-02 7.006E-11 1.157E-02 4.118E-03 9.229E-09 

 Rank 7 3 6 1 5 4 2 

Continued on next page 



3904 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF1 Mean 3.132E+10 9.091E+07 2.830E+03 5.804E+03 3.101E+08 1.329E+08 5.982E+03

 Min 2.602E+10 2.541E+07 1.007E+02 1.047E+02 2.429E+07 8.441E+05 4.653E+02

 Std 3.379E+09 2.844E+07 3.293E+03 6.345E+03 5.352E+08 1.588E+08 4.795E+03

 Rank 7 4 1 2 6 5 3 

CF3 Mean 8.053E+04 4.819E+04 3.026E+02 2.361E+03 2.196E+04 4.418E+03 3.030E+02

 Min 6.827E+04 2.728E+04 3.000E+02 3.008E+02 1.158E+04 1.082E+03 3.005E+02

 Std 5.469E+03 9.549E+03 6.654E+00 1.537E+03 5.809E+03 2.245E+03 2.452E+00

 Rank 7 6 1 3 5 4 2 

CF4 Mean 6.678E+03 5.328E+02 5.299E+02 4.833E+02 6.140E+02 5.242E+02 4.872E+02

 Min 4.005E+03 4.992E+02 4.004E+02 4.040E+02 4.978E+02 4.730E+02 4.752E+02

 Std 1.599E+03 1.295E+01 4.827E+01 2.518E+01 1.617E+02 2.857E+01 2.747E+00

 Rank 7 5 4 1 6 3 2 

CF5 Mean 8.800E+02 5.986E+02 5.517E+02 6.296E+02 5.910E+02 6.049E+02 5.496E+02

 Min 8.279E+02 5.697E+02 5.259E+02 5.567E+02 5.268E+02 5.489E+02 5.212E+02

 Std 2.561E+01 1.371E+01 1.334E+01 3.202E+01 2.093E+01 5.706E+01 1.515E+01

 Rank 7 4 2 6 3 5 1 

CF6 Mean 6.875E+02 6.093E+02 6.014E+02 6.256E+02 6.187E+02 6.020E+02 6.016E+02

 Min 6.798E+02 6.059E+02 6.000E+02 6.128E+02 6.098E+02 6.003E+02 6.008E+02

 Std 4.675E+00 1.325E+00 1.465E+00 8.474E+00 5.569E+00 1.127E+00 5.004E-01 

 Rank 7 4 1 6 5 3 2 

CF7 Mean 1.305E+03 8.775E+02 7.891E+02 8.552E+02 9.189E+02 8.487E+02 7.870E+02

 Min 1.218E+03 8.446E+02 7.518E+02 8.039E+02 8.834E+02 7.718E+02 7.604E+02

 Std 4.808E+01 1.512E+01 2.070E+01 3.284E+01 4.287E+01 5.941E+01 1.825E+01

 Rank 7 5 2 4 6 3 1 

CF8 Mean 1.101E+03 9.016E+02 8.391E+02 9.124E+02 8.882E+02 9.005E+02 8.489E+02

 Min 1.064E+03 8.733E+02 8.189E+02 8.577E+02 8.429E+02 8.433E+02 8.273E+02

 Std 1.653E+01 1.263E+01 1.137E+01 2.674E+01 2.477E+01 5.959E+01 1.356E+01

 Rank 7 5 1 6 3 4 2 

CF9 Mean 9.951E+03 1.379E+03 9.504E+02 2.605E+03 1.841E+03 1.115E+03 9.022E+02

 Min 7.435E+03 1.056E+03 9.016E+02 1.089E+03 1.265E+03 9.353E+02 9.002E+02

 Std 1.307E+03 2.241E+02 9.539E+01 8.596E+02 3.382E+02 2.432E+02 2.327E+00

 Rank 3 5 2 7 6 4 1 

CF10 Mean 7.902E+03 5.334E+03 4.070E+03 4.576E+03 5.103E+03 5.178E+03 3.931E+03

 Min 7.074E+03 4.471E+03 2.830E+03 3.426E+03 3.472E+03 2.427E+03 2.940E+03

 Std 5.049E+02 3.962E+02 6.359E+02 5.073E+02 6.954E+02 2.255E+03 4.597E+02

 Rank 7 6 2 3 4 5 1 

CF11 Mean 6.580E+03 1.284E+03 1.249E+03 1.227E+03 1.632E+03 1.249E+03 1.138E+03

 Min 3.407E+03 1.241E+03 1.158E+03 1.166E+03 1.268E+03 1.176E+03 1.111E+03 

 Std 2.077E+03 2.300E+01 5.380E+01 3.236E+01 4.675E+02 3.397E+01 2.149E+01

 Rank 7 5 3 2 6 3 1 

Continued on next page 
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Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF12 Mean 7.535E+09 9.001E+06 4.678E+05 2.506E+06 1.987E+07 1.512E+07 2.791E+03

 Min 4.594E+09 3.028E+06 4.392E+03 4.038E+05 8.462E+05 6.066E+05 1.864E+03

 Std 1.298E+09 4.669E+06 8.396E+05 1.216E+06 3.267E+07 1.369E+07 8.841E+02

 Rank 7 4 2 3 6 5 1 

CF13 Mean 4.342E+09 4.231E+05 1.316E+04 1.066E+05 4.756E+04 7.265E+04 1.860E+03

 Min 1.236E+09 1.318E+05 1.363E+03 3.588E+04 4.173E+03 2.193E+04 1.418E+03

 Std 1.863E+09 2.720E+05 1.234E+04 5.264E+04 5.243E+04 4.326E+04 3.702E+02

 Rank 7 6 2 5 3 4 1 

CF14 Mean 2.315E+06 2.530E+04 4.692E+03 2.314E+04 1.185E+05 4.086E+04 1.447E+03

 Min 2.633E+05 3.328E+03 1.496E+03 4.585E+03 1.954E+04 5.199E+03 1.433E+03

 Std 1.759E+06 2.219E+04 8.516E+03 1.656E+04 8.961E+04 2.620E+04 9.958E+00

 Rank 3 4 6 2 7 5 1 

CF15 Mean 7.214E+07 4.931E+04 7.788E+03 4.015E+04 1.427E+04 4.365E+04 1.616E+03

 Min 2.314E+06 1.888E+04 1.756E+03 9.437E+03 2.025E+03 9.232E+03 1.548E+03

 Std 1.371E+08 2.210E+04 8.465E+03 2.727E+04 1.216E+04 2.116E+04 4.810E+01

 Rank 7 6 2 4 3 5 1 

CF16 Mean 4.455E+03 2.309E+03 2.361E+03 2.608E+03 2.718E+03 2.281E+03 1.930E+03

 Min 3.902E+03 1.968E+03 1.872E+03 2.260E+03 2.128E+03 1.885E+03 1.621E+03

 Std 3.559E+02 1.757E+02 2.606E+02 2.004E+02 3.183E+02 3.142E+02 1.949E+02

 Rank 7 3 4 5 6 2 1 

CF17 Mean 3.166E+03 1.870E+03 1.943E+03 2.079E+03 2.174E+03 1.884E+03 1.794E+03

 Min 2.705E+03 1.791E+03 1.756E+03 1.775E+03 1.801E+03 1.761E+03 1.730E+03

 Std 2.365E+02 5.505E+01 1.099E+02 1.439E+02 2.277E+02 8.808E+01 5.369E+01

 Rank 7 2 4 5 6 3 1 

CF18 Mean 1.710E+07 3.805E+05 6.823E+04 1.481E+05 1.522E+06 4.461E+05 1.859E+03

 Min 1.182E+06 2.134E+04 8.661E+03 3.146E+04 8.025E+04 4.982E+04 1.838E+03

 Std 1.932E+07 3.435E+05 1.148E+05 8.699E+04 1.745E+06 6.222E+05 1.791E+01

 Rank 7 4 2 3 6 5 1 

CF19 Mean 1.876E+08 7.120E+04 8.265E+03 2.883E+05 1.532E+04 1.980E+05 1.928E+03

 Min 6.952E+06 7.308E+03 1.992E+03 4.470E+04 2.209E+03 4.375E+03 1.918E+03

 Std 1.713E+08 7.201E+04 8.751E+03 1.769E+05 1.708E+04 2.129E+05 6.303E+00

 Rank 7 4 2 6 3 5 1 

CF20 Mean 2.892E+03 2.257E+03 2.244E+03 2.378E+03 2.472E+03 2.316E+03 2.087E+03

 Min 2.523E+03 2.146E+03 2.091E+03 2.136E+03 2.216E+03 2.124E+03 2.031E+03

 Std 1.563E+02 5.157E+01 1.041E+02 1.203E+02 1.925E+02 1.087E+02 6.817E+01

 Rank 7 3 2 5 6 4 1 

CF21 Mean 2.661E+03 2.391E+03 2.342E+03 2.405E+03 2.383E+03 2.403E+03 2.346E+03

 Min 2.608E+03 2.368E+03 2.316E+03 2.358E+03 2.349E+03 2.347E+03 2.327E+03

 Std 2.483E+01 9.205E+00 1.578E+01 2.589E+01 2.364E+01 5.410E+01 1.042E+01

 Rank 7 4 1 6 3 5 2 

Continued on next page 
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Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF22 Mean 7.045E+03 4.768E+03 2.413E+03 3.193E+03 3.198E+03 3.573E+03 2.303E+03

 Min 5.568E+03 2.344E+03 2.300E+03 2.300E+03 2.379E+03 2.317E+03 2.301E+03

 Std 1.046E+03 2.277E+03 6.104E+02 1.685E+03 9.752E+02 2.129E+03 2.167E+00

 Rank 7 6 2 3 4 5 1 

CF23 Mean 3.373E+03 2.756E+03 2.702E+03 2.771E+03 2.805E+03 2.735E+03 2.707E+03

 Min 3.223E+03 2.728E+03 2.672E+03 2.666E+03 2.750E+03 2.671E+03 2.680E+03

 Std 6.440E+01 1.214E+01 1.588E+01 4.225E+01 3.285E+01 4.947E+01 1.343E+01

 Rank 7 5 1 6 3 4 2 

CF24 Mean 3.701E+03 2.915E+03 2.859E+03 2.925E+03 2.943E+03 2.931E+03 2.894E+03

 Min 3.542E+03 2.892E+03 2.839E+03 2.876E+03 2.898E+03 2.856E+03 2.855E+03

 Std 1.072E+02 1.255E+01 1.286E+01 2.484E+01 2.450E+01 7.331E+01 2.912E+01

 Rank 7 3 1 4 6 5 2 

CF25 Mean 3.858E+03 2.920E+03 2.907E+03 2.902E+03 2.954E+03 2.929E+03 2.887E+03

 Min 3.476E+03 2.898E+03 2.889E+03 2.883E+03 2.900E+03 2.891E+03 2.884E+03

 Std 2.073E+02 1.057E+01 1.664E+01 2.452E+01 2.962E+01 1.856E+01 1.419E+00

 Rank 7 4 3 2 5 6 1 

CF26 Mean 9.321E+03 4.615E+03 4.029E+03 4.211E+03 5.121E+03 4.259E+03 4.216E+03

 Min 7.995E+03 4.383E+03 2.800E+03 2.800E+03 4.035E+03 3.007E+03 2.902E+03

 Std 5.739E+02 1.163E+02 2.770E+02 1.119E+03 4.825E+02 7.169E+02 2.999E+02

 Rank 7 5 1 2 6 4 3 

CF27 Mean 4.133E+03 3.237E+03 3.229E+03 3.275E+03 3.313E+03 3.224E+03 3.207E+03

 Min 3.837E+03 3.219E+03 3.193E+03 3.227E+03 3.234E+03 3.199E+03 3.187E+03

 Std 1.780E+02 1.298E+01 2.914E+01 3.308E+01 4.733E+01 1.189E+01 1.095E+01

 Rank 7 4 3 5 6 2 1 

CF28 Mean 5.286E+03 3.283E+03 3.235E+03 3.220E+03 3.424E+03 3.292E+03 3.209E+03

 Min 4.477E+03 3.258E+03 3.100E+03 3.145E+03 3.285E+03 3.225E+03 3.124E+03

 Std 3.605E+02 1.749E+01 4.674E+01 2.474E+01 1.203E+02 3.864E+01 3.212E+01

 Rank 7 4 3 2 6 5 1 

CF29 Mean 6.016E+03 3.664E+03 3.726E+03 3.992E+03 4.002E+03 3.609E+03 3.451E+03

 Min 5.293E+03 3.537E+03 3.282E+03 3.594E+03 3.524E+03 3.463E+03 3.344E+03

 Std 3.750E+02 9.521E+01 1.954E+02 2.354E+02 2.513E+02 1.070E+02 1.074E+02

 Rank 7 3 4 5 6 2 1 

CF30 Mean 2.356E+08 1.186E+06 2.048E+04 1.614E+06 4.721E+04 2.702E+06 5.391E+03

 Min 9.986E+07 3.000E+05 7.410E+03 9.802E+04 9.282E+03 5.467E+05 5.068E+03

 Std 8.046E+07 8.824E+05 1.656E+04 8.337E+05 6.740E+04 1.919E+06 2.211E+02

 Rank 7 4 2 5 3 6 1 

Best count 7 2 8 9 4 1 29 

Ave rank 5.7179 4.5385 2.9744 3.4103 4.5128 4.3846 1.3077 

Final rank 7 6 2 3 5 4 1 

Time/s 3.2397e+04 5.2830e+03 2.3724e+03 1.9286e+03 1.6211e+04 6.3126e+03 1.328e+04 
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Table 9. Results for variants of other MAs in 50 Dim. 

Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

SF1 Mean 0.000E+00 2.035E-20 1.926E-286 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Min 0.000E+00 2.990E-26 1.597E-295 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 6.751E-20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Rank 1 7 6 1 1 1 1 

SF2 Mean 0.000E+00 9.425E-24 3.720E-143 0.000E+00 1.241E-277 1.513E-185 0.000E+00

 Min 0.000E+00 5.465E-30 4.891E-147 0.000E+00 0.000E+00 5.095E-188 0.000E+00

 Std 0.000E+00 3.069E-23 8.813E-143 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Rank 1 7 6 1 4 5 1 

SF3 Mean 0.000E+00 4.558E+02 1.377E-245 0.000E+00 0.000E+00 1.272E-21 0.000E+00

 Min 0.000E+00 7.219E-15 2.751E-252 0.000E+00 0.000E+00 6.033E-31 0.000E+00

 Std 0.000E+00 6.280E+02 0.000E+00 0.000E+00 0.000E+00 4.882E-21 0.000E+00

 Rank 1 7 5 1 1 6 1 

SF4 Mean 0.000E+00 7.001E+00 6.843E-135 0.000E+00 2.746E-223 1.477E-42 0.000E+00

 Min 0.000E+00 3.459E-17 3.287E-139 0.000E+00 4.344E-226 1.408E-46 0.000E+00

 Std 0.000E+00 7.200E+00 2.294E-134 0.000E+00 0.000E+00 5.882E-42 0.000E+00

 Rank 1 7 5 1 4 6 1 

SF5 Mean 4.873E+01 4.599E+01 4.092E+01 7.040E-05 4.608E+01 4.539E+01 3.650E-05 

 Min 4.810E+01 4.579E+01 3.600E+01 9.043E-08 4.497E+01 4.431E+01 1.564E-07 

 Std 2.995E-01 1.307E-01 2.027E+00 6.459E-05 1.052E+00 5.974E-01 7.599E-05 

 Rank 7 5 3 2 6 4 1 

SF6 Mean -3.802E+03 -9.452E+03 -1.601E+04 -2.093E+04 -1.080E+04 -1.001E+04 -2.095E+04 

 Min -5.201E+03 -1.116E+04 -1.807E+04 -2.095E+04 -1.297E+04 -1.244E+04 -2.095E+04 

 Std 5.994E+02 6.246E+02 9.480E+02 1.297E+02 1.069E+03 2.309E+03 1.480E-11 

 Rank 7 6 3 2 4 5 1 

SF7 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.299E+00 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5.664E+00 0.000E+00

 Rank 1 1 1 1 1 7 1 

SF8 Mean 8.882E-16 1.701E+01 4.441E-15 7.994E-15 3.257E-15 1.155E-14 8.882E-16 

 Min 8.882E-16 7.994E-15 4.441E-15 7.994E-15 8.882E-16 7.994E-15 8.882E-16 

 Std 0.000E+00 7.735E+00 0.000E+00 0.000E+00 1.703E-15 3.364E-15 0.000E+00

 Rank 1 7 4 5 3 6 1 

SF9 Mean 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.280E-04 0.000E+00

 Min 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

 Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.344E-03 0.000E+00

 Rank 1 1 1 1 1 7 1 

SF10 Mean 9.781E-01 2.428E-03 1.037E-02 8.455E-10 5.191E-02 1.244E-02 7.566E-09 

 Min 8.613E-01 7.509E-04 4.960E-10 5.983E-10 3.245E-02 2.435E-07 2.919E-12 

 Std 9.572E-02 1.975E-03 2.358E-02 1.250E-10 1.995E-02 6.386E-03 2.010E-08 

 Rank 7 3 4 1 6 5 2 

Continued on next page 



3908 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF1 Mean 8.336E+10 7.031E+08 2.825E+03 3.627E+03 3.002E+09 6.485E+08 3.009E+04

 Min 7.694E+10 4.115E+08 1.004E+02 1.001E+02 7.967E+08 3.852E+07 1.480E+03

 Std 3.777E+09 2.256E+08 3.143E+03 4.817E+03 2.081E+09 5.207E+08 2.137E+04

 Rank 7 6 1 4 2 5 3 

CF3 Mean 1.725E+05 1.541E+05 6.654E+03 2.992E+04 8.451E+04 1.899E+04 3.672E+02

 Min 1.384E+05 1.197E+05 1.409E+03 1.663E+04 5.857E+04 7.769E+03 3.354E+02

 Std 1.522E+04 2.114E+04 3.684E+03 9.290E+03 1.879E+04 8.289E+03 2.659E+01

 Rank 7 6 2 4 5 3 1 

CF4 Mean 1.879E+04 6.878E+02 6.743E+02 5.716E+02 8.667E+02 6.743E+02 5.689E+02

 Min 1.470E+04 6.173E+02 5.264E+02 4.884E+02 6.798E+02 5.551E+02 4.967E+02

 Std 2.088E+03 4.834E+01 8.395E+01 4.501E+01 1.310E+02 6.784E+01 4.078E+01

 Rank 7 5 3 2 6 3 1 

CF5 Mean 1.153E+03 7.732E+02 5.866E+02 7.546E+02 7.479E+02 7.036E+02 6.184E+02

 Min 1.090E+03 7.154E+02 5.517E+02 6.632E+02 6.514E+02 6.001E+02 5.710E+02

 Std 2.683E+01 2.771E+01 1.953E+01 3.723E+01 4.917E+01 1.030E+02 2.805E+01

 Rank 7 4 1 6 5 3 2 

CF6 Mean 7.026E+02 6.211E+02 6.023E+02 6.405E+02 6.322E+02 6.056E+02 6.034E+02

 Min 6.900E+02 6.173E+02 6.002E+02 6.241E+02 6.248E+02 6.020E+02 6.029E+02

 Std 4.905E+00 2.694E+00 3.172E+00 9.868E+00 5.129E+00 2.595E+00 1.081E+00

 Rank 7 4 1 6 5 3 2 

CF7 Mean 1.843E+03 1.127E+03 8.653E+02 1.069E+03 1.229E+03 9.985E+02 8.884E+02

 Min 1.728E+03 1.041E+03 7.774E+02 9.498E+02 1.098E+03 8.909E+02 8.410E+02

 Std 5.643E+01 3.752E+01 8.234E+01 8.409E+01 8.383E+01 1.004E+02 3.037E+01

 Rank 7 5 1 4 6 3 2 

CF8 Mean 1.486E+03 1.084E+03 8.885E+02 1.073E+03 1.044E+03 1.034E+03 9.348E+02

 Min 1.443E+03 1.046E+03 8.578E+02 1.010E+03 9.532E+02 9.231E+02 8.843E+02

 Std 2.080E+01 2.123E+01 1.719E+01 4.291E+01 4.593E+01 1.199E+02 3.003E+01

 Rank 7 6 1 5 4 3 2 

CF9 Mean 3.672E+04 5.507E+03 1.177E+03 8.744E+03 5.429E+03 4.825E+03 9.631E+02

 Min 3.183E+04 3.421E+03 9.230E+02 4.410E+03 3.291E+03 1.436E+03 9.101E+02

 Std 2.720E+03 1.583E+03 2.580E+02 4.204E+03 1.340E+03 2.801E+03 4.745E+01

 Rank 7 5 2 6 4 3 1 

CF10 Mean 1.498E+04 1.034E+04 7.194E+03 7.306E+03 8.694E+03 8.719E+03 6.788E+03

 Min 1.344E+04 9.421E+03 6.273E+03 5.290E+03 6.913E+03 4.800E+03 4.719E+03

 Std 7.786E+02 5.810E+02 5.568E+02 6.589E+02 8.332E+02 3.808E+03 9.696E+02

 Rank 7 6 2 3 5 4 1 

CF11 Mean 1.868E+04 1.881E+03 1.404E+03 1.323E+03 3.137E+03 1.534E+03 1.274E+03

 Min 1.166E+04 1.704E+03 1.228E+03 1.230E+03 1.793E+03 1.300E+03 1.171E+03

 Std 2.625E+03 1.265E+02 1.229E+02 5.077E+01 1.094E+03 3.166E+02 5.629E+01

 Rank 6 5 3 2 7 4 1 

Continued on next page 
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Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF12 Mean 4.689E+10 1.389E+08 4.458E+06 1.430E+07 6.340E+08 1.232E+08 1.387E+06

 Min 3.245E+10 4.784E+07 1.551E+05 2.761E+06 1.958E+08 1.716E+07 2.556E+05

 Std 7.003E+09 7.132E+07 1.145E+07 7.878E+06 3.932E+08 1.098E+08 9.984E+05

 Rank 7 5 2 3 6 4 1 

CF13 Mean 2.103E+10 1.372E+07 7.233E+03 1.156E+05 5.812E+06 5.010E+07 9.140E+03

 Min 1.008E+10 2.209E+06 2.019E+03 3.496E+04 9.014E+04 3.855E+05 4.305E+03

 Std 6.440E+09 1.799E+07 3.528E+03 7.906E+04 1.180E+07 6.962E+07 4.168E+03

 Rank 7 5 1 3 4 6 2 

CF14 Mean 2.130E+07 1.982E+05 5.684E+04 1.099E+05 1.311E+06 2.689E+05 1.541E+03

 Min 5.686E+06 3.536E+04 1.963E+03 1.674E+04 5.809E+04 2.082E+04 1.507E+03

 Std 1.276E+07 1.230E+05 7.644E+04 7.171E+04 1.159E+06 3.523E+05 1.886E+01

 Rank 7 4 2 3 6 5 1 

CF15 Mean 2.707E+09 9.603E+05 6.557E+03 3.381E+04 2.666E+04 4.797E+06 2.258E+03

 Min 1.583E+09 2.047E+05 1.776E+03 1.123E+04 9.625E+03 1.856E+04 1.848E+03

 Std 8.685E+08 9.225E+05 4.589E+03 1.187E+04 1.183E+04 1.045E+07 2.493E+02

 Rank 7 6 2 4 3 5 1 

CF16 Mean 6.754E+03 3.126E+03 2.995E+03 3.255E+03 3.867E+03 2.784E+03 2.555E+03

 Min 5.332E+03 2.525E+03 2.284E+03 2.490E+03 2.669E+03 2.209E+03 2.101E+03

 Std 8.063E+02 2.747E+02 3.899E+02 4.993E+02 6.187E+02 4.644E+02 2.501E+02

 Rank 7 4 3 5 6 2 1 

CF17 Mean 6.188E+03 2.732E+03 2.849E+03 3.081E+03 3.306E+03 2.744E+03 2.407E+03

 Min 4.472E+03 2.339E+03 2.350E+03 2.450E+03 2.679E+03 2.175E+03 2.041E+03

 Std 1.385E+03 1.728E+02 2.936E+02 3.056E+02 3.921E+02 4.115E+02 1.830E+02

 Rank 7 2 4 5 6 3 1 

CF18 Mean 6.631E+07 1.866E+06 1.061E+06 7.310E+05 1.014E+07 1.631E+06 2.222E+03

 Min 1.557E+07 3.722E+05 2.886E+04 2.029E+05 1.880E+06 4.377E+05 1.967E+03

 Std 3.925E+07 1.134E+06 2.127E+06 5.425E+05 8.055E+06 1.040E+06 1.309E+02

 Rank 7 5 3 2 6 4 1 

CF19 Mean 1.710E+09 6.198E+05 1.986E+04 4.842E+05 1.555E+05 1.367E+06 2.013E+03

 Min 3.356E+08 1.619E+05 2.052E+03 3.255E+04 4.916E+03 1.358E+05 1.957E+03

 Std 8.497E+08 3.432E+05 9.841E+03 3.976E+05 3.929E+05 1.151E+06 3.250E+01

 Rank 7 5 2 4 3 6 1 

CF20 Mean 4.127E+03 2.883E+03 2.807E+03 2.979E+03 3.000E+03 2.856E+03 2.517E+03

 Min 3.724E+03 2.597E+03 2.382E+03 2.486E+03 2.466E+03 2.287E+03 2.209E+03

 Std 2.195E+02 1.720E+02 1.967E+02 2.812E+02 2.933E+02 5.077E+02 1.726E+02

 Rank 7 4 2 5 6 3 1 

CF21 Mean 3.064E+03 2.560E+03 2.385E+03 2.528E+03 2.521E+03 2.486E+03 2.409E+03

 Min 3.007E+03 2.523E+03 2.352E+03 2.430E+03 2.410E+03 2.387E+03 2.375E+03

 Std 3.367E+01 1.918E+01 1.711E+01 4.696E+01 4.011E+01 1.082E+02 2.797E+01

 Rank 7 6 1 5 4 3 2 

Continued on next page 
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Functions Measures AGWO HSCA PSOsono VPPSO ESOA MsRwGWO GFPSMA 

CF22 Mean 1.709E+04 1.183E+04 7.235E+03 8.993E+03 1.095E+04 1.029E+04 8.584E+03

 Min 1.491E+04 9.877E+03 2.300E+03 7.571E+03 3.501E+03 6.544E+03 2.318E+03

 Std 6.322E+02 7.786E+02 2.658E+03 7.287E+02 1.873E+03 3.369E+03 1.365E+03

 Rank 6 5 1 3 4 3 2 

CF23 Mean 4.467E+03 3.008E+03 2.897E+03 3.006E+03 3.131E+03 2.957E+03 2.870E+03

 Min 4.213E+03 2.937E+03 2.803E+03 2.912E+03 3.000E+03 2.817E+03 2.817E+03

 Std 1.649E+02 2.352E+01 2.542E+01 6.990E+01 7.192E+01 1.282E+02 3.079E+01

 Rank 7 5 2 4 6 3 1 

CF24 Mean 5.035E+03 3.150E+03 3.005E+03 3.137E+03 3.184E+03 3.115E+03 3.046E+03

 Min 4.712E+03 3.117E+03 2.949E+03 3.047E+03 3.095E+03 2.981E+03 2.976E+03

 Std 1.821E+02 1.956E+01 4.557E+01 5.800E+01 4.422E+01 1.297E+02 4.708E+01

 Rank 7 5 1 4 6 3 2 

CF25 Mean 1.073E+04 3.220E+03 3.178E+03 3.065E+03 3.337E+03 3.187E+03 3.050E+03

 Min 9.244E+03 3.127E+03 3.100E+03 2.955E+03 3.148E+03 3.068E+03 2.969E+03

 Std 7.656E+02 4.695E+01 4.594E+01 4.506E+01 1.227E+02 7.628E+01 3.027E+01

 Rank 7 5 3 2 6 4 1 

CF26 Mean 1.467E+04 6.536E+03 5.315E+03 5.550E+03 7.462E+03 5.905E+03 5.100E+03

 Min 1.354E+04 6.102E+03 4.431E+03 2.900E+03 5.865E+03 5.090E+03 2.913E+03

 Std 5.110E+02 2.148E+02 1.039E+03 2.486E+03 9.212E+02 6.557E+02 6.579E+02

 Rank 7 5 2 3 6 4 1 

CF27 Mean 7.032E+03 3.493E+03 3.608E+03 3.540E+03 4.072E+03 3.401E+03 3.318E+03

 Min 6.361E+03 3.440E+03 3.200E+03 3.391E+03 3.774E+03 3.323E+03 3.200E+03

 Std 4.220E+02 4.159E+01 1.495E+02 9.752E+01 1.810E+02 5.318E+01 9.256E+01

 Rank 7 3 5 4 6 2 1 

CF28 Mean 9.854E+03 3.719E+03 3.495E+03 3.319E+03 4.627E+03 3.490E+03 3.305E+03

 Min 8.660E+03 3.474E+03 3.300E+03 3.264E+03 4.015E+03 3.303E+03 3.265E+03

 Std 6.014E+02 2.209E+02 8.659E+01 4.109E+01 3.667E+02 1.220E+02 2.374E+01

 Rank 7 5 4 2 6 3 1 

CF29 Mean 1.703E+04 4.408E+03 4.163E+03 4.858E+03 5.291E+03 4.061E+03 3.814E+03

 Min 1.180E+04 4.189E+03 3.601E+03 4.223E+03 4.219E+03 3.651E+03 3.378E+03

 Std 3.846E+03 1.284E+02 3.481E+02 3.958E+02 4.253E+02 3.058E+02 3.205E+02

 Rank 7 4 3 5 6 2 1 

CF30 Mean 2.182E+09 5.014E+07 6.307E+06 2.905E+07 1.231E+07 5.173E+07 1.586E+06

 Min 7.678E+08 3.572E+07 4.430E+05 1.666E+07 2.324E+06 2.416E+07 8.043E+05

 Std 1.371E+09 1.158E+07 8.445E+06 7.524E+06 7.742E+06 1.684E+07 5.407E+05

 Rank 7 5 2 4 3 6 1 

Best count 8 2 11 7 4 1 29 

Ave rank 5.8718 4.8974 2.5641 3.2821 4.5897 4.0256 1.2821 

Final rank 7 6 2 3 5 4 1 

Time/s 4.7892e+04 7.6488e+03 4.0877e+03 2.9723e+03 2.4937e+04 8.9628e+03 2.2661e+04
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Figure 9. Curves of variants of other MAs in 50 Dim. 
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Figure 10. Box plot of variants of other MAs in 50 Dim. 

Figure 9 presents the convergence curves of each algorithm in the 50-dimensional scenario. The 
purpose is to observe the convergence of GFPSMA in high-dimensional scenarios. From the figure, it 
can be observed that GFPSMA has the fastest convergence speed and higher convergence accuracy in 
various functions such as SF2, SF4, CF3, CF9, CF18, and CF30. In the other test functions, GFPSMA 
demonstrates convergence capabilities greater than or equal to those of other improved algorithms, 
consistently showing the effectiveness of GFPSMA’s improvement strategies and maintaining 
algorithm diversity, while other algorithms are prone to falling into local optima. 

The box plots presented in Figure 10 show a consistent trend in the thirty optimal solutions found 
by GFPSMA in the CF4, CF9, and CF28 functions, forming approximately a straight line and 
highlighting its outstanding and stable performance during the search process. Concurrently, the test 
results for other functions also demonstrate relatively lower bottom positions. Overall, GFPSMA not 
only can find theoretically optimal results in specific test functions but also performs well in other 
functions, demonstrating its universality and efficiency. 



3913 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

5.4. Comparisons with CEC algorithm 

Table 10. Results of CEC algorithm in 10 Dim. 

Functions Measures SHADE LSHADE_SPACMA RPBSO GFPSMA 

CF1 Mean 1.000E+02 1.000E+02 1.295E+03 1.000E+02 
 Min 1.000E+02 1.000E+02 1.002E+02 1.000E+02 
 Std 0.000E+00 0.000E+00 1.477E+03 0.000E+00 
 Rank 1 1 4 1 
CF3 Mean 3.000E+02 3.000E+02 3.000E+02 3.000E+02 
 Min 3.000E+02 3.000E+02 3.000E+02 3.000E+02 
 Std 0.000E+00 0.000E+00 1.056E-14 0.000E+00 
 Rank 1 1 1 1 
CF4 Mean 4.000E+02 4.000E+02 4.029E+02 4.000E+02 
 Min 4.000E+02 4.000E+02 4.006E+02 4.000E+02 
 Std 0.000E+00 0.000E+00 1.370E+00 0.000E+00 
 Rank 1 1 4 1 
CF5 Mean 5.039E+02 5.031E+02 5.083E+02 5.039E+02 
 Min 5.020E+02 5.010E+02 5.020E+02 5.020E+02 
 Std 1.224E+00 1.235E+00 3.388E+00 1.801E+00 
 Rank 2 1 4 3 
CF6 Mean 6.000E+02 6.000E+02 6.000E+02 6.000E+02 
 Min 6.000E+02 6.000E+02 6.000E+02 6.000E+02 
 Std 4.350E-07 1.189E-05 5.173E-07 9.597E-03 
 Rank 1 1 1 1 
CF7 Mean 7.167E+01 7.121E+02 7.198E+02 7.139E+02 
 Min 7.116E+02 7.110E+02 7.127E+02 7.120E+02 
 Std 9.864E-01 1.017E+00 4.174E+00 1.698E+00 
 Rank 3 1 4 2 
CF8 Mean 8.038E+02 8.025E+02 8.090E+02 8.029E+02 
 Min 8.020E+02 8.010E+02 8.030E+02 8.010E+02 
 Std 1.309E+00 8.561E-01 3.764E+00 1.167E+00 
 Rank 3 1 4 2 
CF9 Mean 9.000E+02 9.000E+02 9.000E+02 9.000E+02 
 Min 9.000E+02 9.000E+02 9.000E+02 9.000E+02 
 Std 0.000E+00 8.295E-02 0.000E+00 0.000E+00 
 Rank 1 1 1 1 
CF10 Mean 1.167E+03 1.255E+03 1.583E+03 1.231E+03 
 Min 1.007E+03 1.007E+03 1.023E+03 1.004E+03 
 Std 9.032E+01 1.743E+02 2.790E+02 1.381E+02 
 Rank 1 3 4 2 
CF11 Mean 1.101E+03 1.100E+03 1.103E+03 1.100E+03 
 Min 1.100E+03 1.100E+03 1.100E+03 1.100E+03 
 Std 1.110E+00 1.194E+00 1.720E+00 1.816E-01 
 Rank 3 1 4 1 

Continued on next page 
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Functions Measures SHADE LSHADE_SPACMA RPBSO GFPSMA 
CF12 Mean 1.428E+03 1.573E+03 9.374E+03 1.203E+03 

 Min 1.200E+03 1.200E+03 1.611E+03 1.200E+03 

 Std 1.755E+02 1.714E+02 6.508E+03 2.674E+00 

 Rank 2 3 4 1 

CF13 Mean 1.304E+03 1.303E+03 3.089E+03 1.305E+03 

 Min 1.300E+03 1.300E+03 1.325E+03 1.301E+03 

 Std 2.712E+00 7.439E+00 2.086E+03 2.069E+00 

 Rank 2 1 4 3 

CF14 Mean 1.402E+03 1.408E+03 1.531E+03 1.401E+03 

 Min 1.400E+03 1.400E+03 1.402E+03 1.400E+03 

 Std 4.922E+00 9.954E+00 6.267E+02 1.069E+00 

 Rank 2 3 4 1 

CF15 Mean 1.500E+03 1.500E+03 1.647E+03 1.500E+03 

 Min 1.500E+03 1.500E+03 1.502E+03 1.500E+03 

 Std 1.965E-01 1.361E+00 3.717E+02 1.180E-01 

 Rank 1 1 4 1 

CF16 Mean 1.601E+03 1.601E+03 1.609E+03 1.601E+03 

 Min 1.600E+03 1.600E+03 1.600E+03 1.600E+03 

 Std 3.442E-01 7.156E-01 3.006E+01 3.320E-01 

 Rank 1 1 4 1 

CF17 Mean 1.701E+03 1.703E+03 1.709E+03 1.702E+03 

 Min 1.700E+03 1.700E+03 1.700E+03 1.700E+03 

 Std 3.721E+00 6.981E+00 1.010E+01 3.750E+00 

 Rank 1 3 4 2 

CF18 Mean 1.810E+03 1.829E+03 3.725E+03 1.800E+03 

 Min 1.800E+03 1.800E+03 1.854E+03 1.800E+03 

 Std 1.007E+01 1.511E+01 2.628E+03 1.230E-01 

 Rank 2 3 4 1 

CF19 Mean 1.900E+03 1.900E+03 2.077E+03 1.901E+03 

 Min 1.900E+03 1.900E+03 1.902E+03 1.900E+03 

 Std 4.444E-01 1.158E+00 4.904E+02 2.841E-01 

 Rank 1 1 4 3 

CF20 Mean 2.000E+03 2.005E+03 2.002E+03 2.000E+03 

 Min 2.000E+03 2.000E+03 2.000E+03 2.000E+03 

 Std 7.269E-01 8.957E+00 5.368E+00 3.585E-01 

 Rank 1 4 3 1 

CF21 Mean 2.281E+03 2.241E+03 2.201E+03 2.214E+03 

 Min 2.200E+03 2.200E+03 2.200E+03 2.200E+03 

 Std 4.395E+01 4.975E+01 1.305E+00 3.625E+01 

 Rank 3 4 1 2 

Continued on next page 
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Functions Measures SHADE LSHADE_SPACMA RPBSO GFPSMA 
CF22 Mean 2.297E+03 2.300E+03 2.297E+03 2.277E+03 

 Min 2.200E+03 2.300E+03 2.200E+03 2.200E+03 

 Std 1.829E+01 2.400E-01 1.834E+01 4.243E+01 

 Rank 2 4 2 1 

CF23 Mean 2.607E+03 2.606E+03 2.608E+03 2.606E+03 

 Min 2.604E+03 2.603E+03 2.603E+03 2.600E+03 

 Std 1.963E+00 1.413E+00 3.435E+00 3.303E+00 

CF24 Mean 2.728E+03 2.718E+03 2.583E+03 2.672E+03 

 Min 2.500E+03 2.500E+03 2.500E+03 2.500E+03 

 Std 4.302E+01 5.937E+01 1.105E+02 1.054E+02 

 Rank 4 3 1 2 

CF25 Mean 2.926E+03 2.927E+03 2.923E+03 2.898E+03 

 Min 2.898E+03 2.898E+03 2.898E+03 2.898E+03 

 Std 2.302E+01 2.263E+01 2.270E+01 1.477E-01 

 Rank 3 4 2 1 

CF26 Mean 2.905E+03 2.918E+03 2.900E+03 2.900E+03 

 Min 2.800E+03 2.900E+03 2.900E+03 2.900E+03 

 Std 3.009E+01 3.198E+01 8.444E-14 1.369E-12 

 Rank 3 4 1 1 

CF27 Mean 3.090E+03 3.091E+03 3.095E+03 3.097E+03 

 Min 3.089E+03 3.089E+03 3.090E+03 3.081E+03 

 Std 1.035E+00 2.351E+00 2.506E+00 2.253E+00 

 Rank 1 2 3 4 

CF28 Mean 3.276E+03 3.258E+03 3.109E+03 3.147E+03 

 Min 3.100E+03 3.100E+03 3.100E+03 3.100E+03 

 Std 1.503E+02 1.469E+02 5.180E+01 9.049E+01 

 Rank 4 3 1 2 

CF29 Mean 3.140E+03 3.138E+03 3.155E+03 3.130E+03 

 Min 3.128E+03 3.129E+03 3.138E+03 3.129E+03 

 Std 7.400E+00 5.817E+00 1.211E+01 2.078E+00 

 Rank 3 2 4 1 

CF30 Mean 4.342E+05 1.124E+05 4.537E+03 2.093E+05 

 Min 3.395E+03 3.303E+03 3.646E+03 3.395E+03 

 Std 5.396E+05 2.825E+05 9.010E+02 3.796E+05 

 Rank 4 3 2 1 

Best count  12 14 7 18 

Ave rank  2.0690 2.1379 3.0000 1.5517 

Final rank  2 3 4 1 

Time/s  1.205E+03 1.220E+03 6.536E+03 7.839E+03 

To highlight the superior optimization capability of GFPSMA, we compared it with the 
competition algorithms proposed by CEC in recent years, including SHADE [65], 
LSHADE_SPACMA [66], and RPBSO [67]. SHADE and LSHADE_SPACMA were the winners of 



3916 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

the CEC2013 and CEC2017 competitions, respectively, while RPBSO was the competition algorithm 
for CEC2019. Table 10 clearly shows that, at a 10-dimensional state, GFPSMA not only competes well 
with these CEC competition algorithms but also ranks lower overall. For 9 functions such as CF1, CF2, 
and CF4, GFPSMA can approach the theoretical optimal solution. In the case of other functions, the 
differences in performance metrics compared to other algorithms are not significant. Additionally, 
from the table, it can be observed that in terms of comprehensive search capability, in low dimensions, 
GFPSMA exhibits excellent search performance compared to the CEC competition algorithms. This 
further confirms the superiority of GFPSMA in optimization problems. 

5.5. Comparisons with strategy algorithms 

In order to compare the impact of each strategy on the GFPSMA algorithm, this paper will test 
the improved global strategy GFPSMA1, which uses the golden section idea for information exchange 
in the FPA, the improved random search strategy GFPSMA2, which incorporates the exponential 
function’s differential mechanism into SMA, and the conditional elite learning strategy GFPSMA3, 
against the standard FPA and SMA. The benchmark test functions will be based on CEC2017, with a 
dimension of 30, and the test results are presented in Table 11. 

Based on the data in Table 11, GFPSMA demonstrates the most outstanding optimization 
performance in 20 test functions, including CF3 and CF4. Specifically, in terms of the mean optimization 
accuracy, GFPSMA1, GFPSMA2, and GFPSMA3 outperform the standard SMA and FPA in all 
functions except for CF25. It is worth noting that in 5 test functions, such as CF12 and CF13, each 
strategy has improved the optimization accuracy by one or more orders of magnitude compared to the 
standard FPA and SMA, while showing varying degrees of improvement in other functions. This indicates 
that the application of various strategies in the GFPSMA algorithm has enhanced its stability. When 
comparing the improvement strategies, the average ranks for the three strategies are 4.0690, 2.2414, 
and 2.3793, and the overall ranks are 1st, 3rd, and 2nd, respectively. This indicates that the contribution 
of GFPSMA2 is the most significant in enhancing the optimization performance of GFPSMA, 
followed by GFPSMA3, and GFPSMA1 ranks third overall. Therefore, considering the combined 
effect of these strategies, it can be concluded that GFPSMA can achieve the best optimization results 
through the comprehensive application of these improvement strategies. 

Comparative analysis between GFPSMA and widely recognized state-of-the-art random search 
algorithms is performed. This serves two purposes: first, to demonstrate the degree of performance 
improvement of GFPSMA over SMA; second, to showcase the optimization capability of GFPSMA 
in a wider array of heuristic algorithms. Table 12 summarizes the comparison results of GFPSMA with 
seven other art of state algorithms, including AO [4], PSO [2], HHO [68], GWO [3], DE [1], AOA [69], 
and SCA [70], for problem dimensions of 30. Based on the primary metric Mean value, GFPSMA 
achieved the best performance across all functions, with an Ave rank of 1.3793, positioning it as the 
top-performing algorithm. Among the other algorithms, AOA demonstrated the best performance, 
being the optimal algorithm for seven functions and ranking second overall with an Ave rank of 2.9655. 
The Ave ranks for the other algorithms were 3.6206, 6.2068, 4.6207, 3.3793, 7.8965, and 6.2758. In 
terms of the Best metric, GFPSMA also outperformed most functions, showcasing its exceptional 
optimization performance. Furthermore, the Std metric reveals that GFPSMA exhibits robustness 
compared to the other seven algorithms. In conclusion, the proposed strategy in this study yielded 
promising results. 
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Table 11. Results of strategy algorithms in 30 Dim. 

Functions Measures GFPSMA1 GFPSMA2 GFPSMA3 SMA FPA GFPSMA 

CF1 Mean 3.607E+04 4.325E+03 4.330E+03 6.554E+03 1.915E+08 5.982E+03 

 Min 8.397E+03 1.397E+02 1.232E+02 1.469E+02 3.277E+07 4.653E+02 

 Std 2.003E+04 4.145E+03 4.005E+03 6.763E+03 2.199E+08 4.795E+03 

 Rank 5 1 2 4 6 3 

CF3 Mean 3.138E+02 3.033E+02 3.037E+02 3.090E+02 5.012E+04 3.030E+02 

 Min 3.040E+02 3.007E+02 3.013E+02 3.019E+02 3.102E+04 3.005E+02 

 Std 1.031E+01 1.214E+00 1.656E+00 1.056E+01 1.427E+04 2.452E+00 

 Rank 5 2 3 4 6 1 

CF4 Mean 5.000E+02 4.879E+02 4.942E+02 4.928E+02 5.365E+02 4.872E+02 

 Min 4.743E+02 4.645E+02 4.722E+02 4.698E+02 4.920E+02 4.752E+02 

 Std 1.614E+01 1.201E+01 1.344E+01 1.175E+01 6.458E+01 2.747E+00 

 Rank 5 2 4 3 6 1 

CF5 Mean 5.587E+02 5.482E+02 5.505E+02 6.001E+02 7.321E+02 5.496E+02 

 Min 5.350E+02 5.249E+02 5.249E+02 5.617E+02 6.119E+02 5.212E+02 

 Std 1.581E+01 1.622E+01 1.789E+01 2.969E+01 3.572E+01 1.515E+01 

 Rank 4 1 3 5 6 2 

CF6 Mean 6.031E+02 6.003E+02 6.003E+02 6.036E+02 6.107E+02 6.016E+02 

 Min 6.017E+02 6.001E+02 6.001E+02 6.011E+02 6.061E+02 6.008E+02 

 Std 9.164E-01 1.125E-01 1.182E-01 1.732E+00 3.210E+00 5.004E-01 

 Rank 4 1 1 5 6 3 

CF7 Mean 7.925E+02 7.914E+02 7.934E+02 8.421E+02 1.020E+03 7.870E+02 

 Min 7.625E+02 7.592E+02 7.681E+02 7.708E+02 9.357E+02 7.604E+02 

 Std 1.801E+01 1.641E+01 1.804E+01 2.877E+01 3.832E+01 1.825E+01 

 Rank 3 2 4 5 6 1 

CF8 Mean 8.613E+02 8.544E+02 8.576E+02 9.089E+02 1.033E+03 8.489E+02 

 Min 8.294E+02 8.378E+02 8.289E+02 8.796E+02 9.106E+02 8.273E+02 

 Std 1.996E+01 8.956E+00 1.628E+01 2.186E+01 4.387E+01 1.356E+01 

 Rank 4 2 3 5 6 1 

CF9 Mean 9.121E+02 9.049E+02 9.027E+02 2.973E+03 4.607E+03 9.022E+02 

 Min 9.022E+02 9.000E+02 9.000E+02 1.012E+03 2.145E+03 9.002E+02 

 Std 7.788E+00 7.763E+00 4.742E+00 1.877E+03 1.853E+03 2.327E+00 

 Rank 4 3 2 5 6 1 

CF10 Mean 4.133E+03 4.096E+03 4.034E+03 4.443E+03 6.793E+03 3.931E+03 

 Min 3.234E+03 2.767E+03 2.707E+03 3.219E+03 4.270E+03 2.940E+03 

 Std 5.576E+02 7.115E+02 5.829E+02 6.886E+02 1.193E+03 4.597E+02 

 Rank 4 3 2 5 6 1 

CF11 Mean 1.181E+03 1.146E+03 1.137E+03 1.258E+03 1.346E+03 1.138E+03 

 Min 1.127E+03 1.115E+03 1.107E+03 1.151E+03 1.258E+03 1.111E+03 

 Std 3.522E+01 2.670E+01 2.439E+01 5.752E+01 3.702E+01 2.149E+01 

 Rank 4 3 1 5 6 2 

Continued on next page 
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Functions Measures GFPSMA1 GFPSMA2 GFPSMA3 SMA FPA GFPSMA 

CF12 Mean 8.084E+04 3.795E+04 4.432E+04 2.224E+06 4.806E+06 2.791E+03 

 Min 1.543E+04 5.688E+03 9.219E+03 2.357E+05 1.477E+06 1.864E+03 

 Std 5.168E+04 2.508E+04 2.634E+04 1.845E+06 3.321E+06 8.841E+02 

 Rank 4 3 2 5 6 1 

CF13 Mean 5.463E+03 2.148E+03 2.180E+03 2.831E+04 5.693E+05 1.860E+03 

 Min 2.224E+03 1.550E+03 1.747E+03 4.602E+03 7.305E+03 1.418E+03 

 Std 2.136E+03 5.045E+02 4.696E+02 2.363E+04 1.462E+06 3.702E+02 

 Rank 4 2 3 5 6 1 

CF14 Mean 1.472E+03 1.470E+03 1.466E+03 7.408E+04 1.181E+04 1.447E+03 

 Min 1.447E+03 1.446E+03 1.441E+03 8.312E+03 2.289E+03 1.433E+03 

 Std 1.235E+01 1.680E+01 1.456E+01 4.148E+04 8.547E+03 9.958E+00 

 Rank 5 3 2 6 5 1 

CF15 Mean 1.874E+03 1.706E+03 1.731E+03 2.556E+04 2.594E+04 1.616E+03 

 Min 1.634E+03 1.620E+03 1.590E+03 2.050E+03 3.161E+03 1.548E+03 

 Std 1.575E+02 4.490E+01 6.943E+01 1.497E+04 1.956E+04 4.810E+01 

 Rank 4 2 3 5 6 1 

CF16 Mean 2.065E+03 2.062E+03 2.064E+03 2.508E+03 2.796E+03 1.930E+03 

 Min 1.623E+03 1.639E+03 1.623E+03 1.978E+03 1.978E+03 1.621E+03 

 Std 2.038E+02 1.906E+02 2.191E+02 3.214E+02 4.497E+02 1.949E+02 

 Rank 4 2 3 5 6 1 

CF17 Mean 1.837E+03 1.866E+03 1.812E+03 2.281E+03 2.160E+03 1.794E+03 

 Min 1.739E+03 1.746E+03 1.733E+03 1.933E+03 1.854E+03 1.730E+03 

 Std 7.378E+01 8.307E+01 5.857E+01 2.083E+02 1.755E+02 5.369E+01 

 Rank 3 4 2 6 5 1 

CF18 Mean 2.035E+03 2.018E+03 2.037E+03 4.902E+05 6.094E+05 1.859E+03 

 Min 1.898E+03 1.921E+03 1.911E+03 1.550E+05 1.050E+05 1.838E+03 

 Std 7.534E+01 9.634E+01 8.221E+01 3.947E+05 4.961E+05 1.791E+01 

 Rank 3 2 4 5 6 1 

CF19 Mean 1.974E+03 1.957E+03 1.958E+03 2.707E+04 3.018E+04 1.928E+03 

 Min 1.928E+03 1.926E+03 1.921E+03 2.104E+03 2.122E+03 1.918E+03 

 Std 2.955E+01 1.737E+01 2.811E+01 2.244E+04 3.729E+04 6.303E+00 

 Rank 4 2 3 5 6 1 

CF20 Mean 2.173E+03 2.167E+03 2.107E+03 2.502E+03 2.509E+03 2.087E+03 

 Min 2.042E+03 2.032E+03 2.016E+03 2.228E+03 2.240E+03 2.031E+03 

 Std 9.240E+01 8.393E+01 9.080E+01 1.778E+02 1.881E+02 6.817E+01 

 Rank 4 3 2 5 6 1 

CF21 Mean 2.356E+03 2.347E+03 2.345E+03 2.404E+03 2.526E+03 2.346E+03 

 Min 2.338E+03 2.326E+03 2.323E+03 2.358E+03 2.496E+03 2.327E+03 

 Std 1.183E+01 1.189E+01 1.078E+01 2.623E+01 1.930E+01 1.042E+01 

 Rank 3 4 1 5 6 2 

Continued on next page 
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Functions Measures GFPSMA1 GFPSMA2 GFPSMA3 SMA FPA GFPSMA 

CF22 Mean 2.317E+03 2.300E+03 2.300E+03 5.534E+03 7.361E+03 2.303E+03 

 Min 2.311E+03 2.300E+03 2.300E+03 2.300E+03 2.335E+03 2.301E+03 

 Std 3.123E+00 6.531E-02 6.763E-01 1.174E+03 2.689E+03 2.167E+00 

 Rank 4 1 1 5 6 3 

CF23 Mean 2.722E+03 2.705E+03 2.698E+03 2.753E+03 2.834E+03 2.707E+03 

 Min 2.682E+03 2.678E+03 2.676E+03 2.711E+03 2.736E+03 2.680E+03 

 Std 2.001E+01 1.415E+01 1.517E+01 2.775E+01 4.441E+01 1.343E+01 

 Rank 4 1 3 5 6 2 

CF24 Mean 2.928E+03 2.879E+03 2.877E+03 2.922E+03 3.008E+03 2.894E+03 

 Min 2.856E+03 2.851E+03 2.848E+03 2.878E+03 2.921E+03 2.855E+03 

 Std 8.033E+01 1.724E+01 2.036E+01 2.390E+01 3.801E+01 2.912E+01 

 Rank 5 2 1 4 6 3 

CF25 Mean 2.891E+03 2.887E+03 2.888E+03 2.887E+03 2.932E+03 2.887E+03 

 Min 2.885E+03 2.883E+03 2.883E+03 2.884E+03 2.899E+03 2.884E+03 

 Std 5.048E+00 1.568E+00 7.672E+00 1.431E+00 2.958E+01 1.419E+00 

 Rank 5 1 4 1 6 1 

CF26 Mean 4.241E+03 4.177E+03 4.118E+03 4.817E+03 5.779E+03 4.216E+03 

 Min 2.912E+03 4.003E+03 3.715E+03 4.451E+03 5.146E+03 2.902E+03 

 Std 3.295E+02 1.139E+02 1.690E+02 2.673E+02 2.578E+02 2.999E+02 

 Rank 4 2 1 5 6 3 

CF27 Mean 3.215E+03 3.212E+03 3.211E+03 3.224E+03 3.215E+03 3.207E+03 

 Min 3.196E+03 3.194E+03 3.190E+03 3.187E+03 3.198E+03 3.187E+03 

 Std 1.403E+01 1.266E+01 1.137E+01 1.512E+01 9.739E+00 1.095E+01 

 Rank 4 3 2 6 4 1 

CF28 Mean 3.236E+03 3.213E+03 3.220E+03 3.245E+03 3.515E+03 3.209E+03 

 Min 3.199E+03 3.103E+03 3.182E+03 3.204E+03 3.292E+03 3.124E+03 

 Std 2.605E+01 2.850E+01 2.298E+01 4.424E+01 6.051E+02 3.212E+01 

 Rank 4 2 3 5 6 1 

CF29 Mean 3.548E+03 3.467E+03 3.464E+03 3.871E+03 3.853E+03 3.451E+03 

 Min 3.365E+03 3.285E+03 3.308E+03 3.491E+03 3.452E+03 3.344E+03 

 Std 1.480E+02 1.420E+02 1.239E+02 2.188E+02 2.060E+02 1.074E+02 

 Rank 4 3 2 6 5 1 

CF30 Mean 1.168E+04 1.045E+04 9.908E+03 2.835E+04 4.448E+04 5.391E+03 

 Min 6.168E+03 6.253E+03 6.484E+03 1.087E+04 1.031E+04 5.068E+03 

 Std 4.174E+03 4.119E+03 2.613E+03 3.362E+04 6.932E+04 2.211E+02 

 Rank 4 3 2 5 6 1 

Best count 0 6 6 1 0 20 

Ave rank 4.0690 2.2414 2.3793 4.8276 5.8276 1.4828 

Final rank 4 2 3 5 6 1 

Time/s 1.113e+04 1.201e+04 1.197e+04 3.2015e+03 2.5317e+03 1.328e+04 
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Table 12. Results of other art of state algorithms in 30 Dim. 

Functions Measures AO PSO HHO GWO DE AOA SCA GFPSMA 

CF1 Mean 5.392E+06 4.183E+09 9.158E+06 1.793E+09 1.042E+11 2.575E+08 1.374E+10 5.982E+03

 Min 2.399E+06 1.538E+09 4.986E+06 1.511E+08 7.638E+10 2.426E+05 1.024E+10 4.653E+02

 Std 1.847E+06 2.845E+09 1.934E+06 1.660E+09 1.345E+10 8.406E+08 2.155E+09 4.795E+03

 Rank 2 6 3 5 8 4 7 1 

CF3 Mean 1.440E+04 1.242E+05 2.438E+03 3.567E+04 3.009E+05 1.685E+03 4.090E+04 3.030E+02

 Min 8.955E+03 2.937E+04 8.180E+02 1.637E+04 1.756E+05 3.050E+02 2.920E+04 3.005E+02

 Std 2.792E+03 9.741E+04 1.030E+03 1.002E+04 4.924E+04 1.760E+03 6.964E+03 2.452E+00

 Rank 4 7 3 5 8 2 6 1 

CF4 Mean 5.217E+02 1.697E+03 5.185E+02 5.791E+02 2.693E+04 5.196E+02 1.508E+03 4.872E+02

 Min 4.876E+02 6.238E+02 4.716E+02 4.929E+02 1.484E+04 4.559E+02 1.139E+03 4.752E+02

 Std 1.761E+01 1.481E+03 2.974E+01 6.499E+01 6.593E+03 4.612E+01 2.089E+02 2.747E+00

 Rank 4 7 2 5 8 3 6 1 

CF5 Mean 6.608E+02 7.445E+02 7.247E+02 6.004E+02 1.104E+03 6.648E+02 7.815E+02 5.496E+02

 Min 6.032E+02 6.960E+02 6.780E+02 5.635E+02 1.002E+03 6.254E+02 7.511E+02 5.212E+02

 Std 3.200E+01 2.670E+01 2.412E+01 3.750E+01 4.711E+01 2.249E+01 1.815E+01 1.515E+01

 Rank 3 6 5 2 8 4 7 1 

CF6 Mean 6.406E+02 6.386E+02 6.596E+02 6.068E+02 7.186E+02 6.322E+02 6.511E+02 6.016E+02

 Min 6.268E+02 6.190E+02 6.470E+02 6.024E+02 6.883E+02 6.041E+02 6.395E+02 6.008E+02

 Std 7.573E+00 9.298E+00 7.142E+00 4.264E+00 9.575E+00 1.308E+01 6.823E+00 5.004E-01 

 Rank 5 4 7 2 8 3 6 1 

CF7 Mean 9.792E+02 1.091E+03 1.198E+03 8.412E+02 3.315E+03 1.047E+03 1.136E+03 7.870E+02

 Min 8.720E+02 9.917E+02 1.059E+03 8.006E+02 2.671E+03 8.168E+02 1.056E+03 7.604E+02

 Std 5.344E+01 4.155E+01 7.949E+01 3.147E+01 3.147E+02 1.100E+02 4.694E+01 1.825E+01

 Rank 3 5 6 2 8 4 7 1 

CF8 Mean 9.330E+02 1.053E+03 9.563E+02 8.826E+02 1.369E+03 9.169E+02 1.052E+03 8.489E+02

 Min 8.758E+02 1.010E+03 9.193E+02 8.561E+02 1.315E+03 8.729E+02 1.024E+03 8.273E+02

 Std 2.489E+01 2.308E+01 2.400E+01 1.719E+01 2.416E+01 2.189E+01 1.734E+01 1.356E+01

 Rank 4 7 5 2 8 3 6 1 

CF9 Mean 4.762E+03 4.554E+03 6.322E+03 1.634E+03 3.297E+04 3.235E+03 5.540E+03 9.022E+02

 Min 1.747E+03 2.118E+03 5.478E+03 9.892E+02 2.279E+04 1.707E+03 4.091E+03 9.002E+02

 Std 1.566E+03 2.115E+03 6.338E+02 5.596E+02 4.104E+03 8.120E+02 1.079E+03 2.327E+00

 Rank 5 4 7 2 8 3 6 1 

CF10 Mean 4.872E+03 7.022E+03 5.499E+03 4.233E+03 9.216E+03 4.417E+03 8.237E+03 3.931E+03

 Min 3.735E+03 5.687E+03 4.074E+03 3.136E+03 7.586E+03 3.408E+03 7.176E+03 2.940E+03

 Std 5.955E+02 6.499E+02 6.509E+02 1.081E+03 5.175E+02 5.668E+02 3.243E+02 4.597E+02

 Rank 4 6 5 2 8 3 7 1 

CF11 Mean 1.331E+03 3.825E+03 1.257E+03 1.665E+03 2.490E+04 1.248E+03 2.180E+03 1.138E+03

 Min 1.210E+03 1.677E+03 1.182E+03 1.209E+03 1.321E+04 1.146E+03 1.730E+03 1.111E+03

 Std 7.118E+01 5.485E+03 4.423E+01 7.434E+02 5.051E+03 5.171E+01 4.962E+02 2.149E+01

 Rank 4 8 3 5 7 2 6 1 

Continued on next page 
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Functions Measures AO PSO HHO GWO DE AOA SCA GFPSMA 

CF12 Mean 9.959E+06 1.046E+09 1.011E+07 6.206E+07 1.414E+10 3.797E+06 1.234E+09 2.791E+03

 Min 1.889E+06 9.410E+07 1.856E+06 1.626E+06 8.048E+09 9.629E+04 5.220E+08 1.864E+03

 Std 6.786E+06 1.142E+09 5.680E+06 1.228E+08 3.242E+09 4.031E+06 2.899E+08 8.841E+02

 Rank 3 5 4 6 8 2 7 1 

CF13 Mean 1.725E+05 2.056E+08 3.205E+05 9.596E+06 8.060E+09 3.059E+05 4.457E+08 1.860E+03

 Min 7.084E+04 5.714E+06 4.306E+04 2.521E+04 2.335E+09 8.794E+03 1.995E+08 1.418E+03

 Std 8.463E+04 6.750E+08 1.473E+05 3.356E+07 2.790E+09 1.455E+06 1.630E+08 3.702E+02

 Rank 2 6 4 5 8 3 7 1 

CF14 Mean 2.015E+05 6.060E+05 3.920E+04 1.341E+05 5.351E+06 9.254E+03 1.645E+05 1.447E+03

 Min 8.979E+03 4.006E+04 4.943E+03 3.174E+03 1.458E+06 1.996E+03 5.571E+04 1.433E+03

 Std 1.483E+05 1.315E+06 3.185E+04 1.879E+05 2.924E+06 8.207E+03 1.062E+05 9.958E+00

 Rank 6 7 3 4 8 2 5 1 

CF15 Mean 7.220E+04 9.915E+06 5.233E+04 1.451E+06 1.159E+09 7.481E+03 1.573E+07 1.616E+03

 Min 1.237E+04 8.833E+05 1.720E+04 1.128E+04 1.267E+08 2.237E+03 2.037E+06 1.548E+03

 Std 7.208E+04 5.815E+06 3.345E+04 6.260E+06 5.983E+08 4.381E+03 1.402E+07 4.810E+01

 Rank 4 6 3 5 8 2 7 1 

CF16 Mean 3.066E+03 3.554E+03 3.171E+03 2.314E+03 5.507E+03 2.693E+03 3.638E+03 1.930E+03

 Min 2.572E+03 2.905E+03 2.373E+03 1.767E+03 4.632E+03 2.328E+03 2.962E+03 1.621E+03

 Std 3.002E+02 5.354E+02 3.317E+02 2.552E+02 5.013E+02 2.534E+02 2.294E+02 1.949E+02

 Rank 4 6 5 2 8 3 7 1 

CF17 Mean 2.220E+03 2.559E+03 2.561E+03 1.985E+03 3.746E+03 2.220E+03 2.446E+03 1.794E+03

 Min 1.821E+03 2.055E+03 1.879E+03 1.805E+03 3.124E+03 1.790E+03 2.180E+03 1.730E+03

 Std 2.235E+02 2.618E+02 3.232E+02 1.031E+02 3.101E+02 2.627E+02 1.453E+02 5.369E+01

 Rank 3 6 7 2 8 3 5 1 

CF18 Mean 1.633E+06 1.741E+07 9.678E+05 1.158E+06 9.191E+07 1.620E+05 3.406E+06 1.859E+03

 Min 6.936E+04 4.611E+05 2.587E+04 4.977E+04 1.946E+07 2.400E+04 1.001E+06 1.838E+03

 Std 1.568E+06 3.221E+07 1.267E+06 1.625E+06 4.159E+07 1.741E+05 1.982E+06 1.791E+01

 Rank 5 7 3 4 8 2 6 1 

CF19 Mean 4.484E+05 3.918E+07 2.410E+05 4.224E+05 1.726E+09 8.869E+03 2.673E+07 1.928E+03

 Min 4.088E+04 6.227E+06 3.142E+04 3.518E+04 4.840E+08 2.315E+03 7.290E+06 1.918E+03

 Std 3.013E+05 4.890E+07 1.347E+05 5.009E+05 8.227E+08 1.237E+04 1.318E+07 6.303E+00

 Rank 5 7 4 3 8 2 6 1 

CF20 Mean 2.421E+03 2.696E+03 2.711E+03 2.344E+03 3.290E+03 2.284E+03 2.623E+03 2.087E+03

 Min 2.235E+03 2.341E+03 2.327E+03 2.134E+03 2.910E+03 2.131E+03 2.364E+03 2.031E+03

 Std 1.382E+02 1.985E+02 1.984E+02 1.142E+02 1.695E+02 9.648E+01 1.449E+02 6.817E+01

 Rank 4 7 6 3 8 2 5 1 

CF21 Mean 2.440E+03 2.565E+03 2.524E+03 2.387E+03 2.838E+03 2.443E+03 2.564E+03 2.346E+03

 Min 2.376E+03 2.516E+03 2.423E+03 2.345E+03 2.723E+03 2.372E+03 2.524E+03 2.327E+03

 Std 3.270E+01 3.506E+01 4.623E+01 3.569E+01 4.099E+01 3.180E+01 2.104E+01 1.042E+01

 Rank 3 7 5 2 8 4 6 1 

Continued on next page 



3922 

Electronic Research Archive  Volume 32, Issue 6, 3867–3936. 

Functions Measures AO PSO HHO GWO DE AOA SCA GFPSMA 

CF22 Mean 2.754E+03 7.350E+03 6.116E+03 4.402E+03 1.075E+04 2.874E+03 8.690E+03 2.303E+03

 Min 2.314E+03 2.807E+03 2.316E+03 2.386E+03 9.603E+03 2.303E+03 3.456E+03 2.301E+03

 Std 1.337E+03 2.346E+03 1.992E+03 1.552E+03 4.130E+02 1.413E+03 2.157E+03 2.167E+00

 Rank 2 7 5 4 8 3 6 1 

CF23 Mean 2.882E+03 3.265E+03 3.050E+03 2.746E+03 3.284E+03 2.908E+03 2.996E+03 2.707E+03

 Min 2.784E+03 2.979E+03 2.871E+03 2.694E+03 3.185E+03 2.734E+03 2.961E+03 2.680E+03

 Std 5.567E+01 1.691E+02 9.902E+01 3.492E+01 5.368E+01 1.097E+02 2.245E+01 1.343E+01

 Rank 3 7 6 2 8 4 5 1 

CF24 Mean 3.024E+03 3.608E+03 3.355E+03 2.910E+03 3.417E+03 2.929E+03 3.176E+03 2.894E+03

 Min 2.929E+03 3.294E+03 3.107E+03 2.857E+03 3.289E+03 2.887E+03 3.114E+03 2.855E+03

 Std 6.393E+01 1.832E+02 1.263E+02 4.668E+01 6.665E+01 2.516E+01 3.135E+01 2.912E+01

 Rank 4 8 7 2 6 3 5 1 

CF25 Mean 2.904E+03 3.132E+03 2.910E+03 2.974E+03 1.580E+04 2.922E+03 3.221E+03 2.887E+03

 Min 2.884E+03 3.026E+03 2.884E+03 2.926E+03 9.933E+03 2.885E+03 3.124E+03 2.884E+03

 Std 1.644E+01 7.540E+01 1.889E+01 4.101E+01 2.944E+03 2.594E+01 6.929E+01 1.419E+00

 Rank 2 6 3 5 8 4 7 1 

CF26 Mean 4.858E+03 6.065E+03 6.643E+03 4.576E+03 1.140E+04 6.079E+03 6.911E+03 4.216E+03

 Min 2.842E+03 3.797E+03 2.880E+03 3.660E+03 1.027E+04 2.852E+03 6.377E+03 2.902E+03

 Std 1.773E+03 1.690E+03 1.395E+03 3.484E+02 6.349E+02 1.399E+03 2.636E+02 2.999E+02

 Rank 3 4 6 2 8 5 7 1 

CF27 Mean 3.288E+03 3.585E+03 3.333E+03 3.237E+03 3.813E+03 3.238E+03 3.427E+03 3.207E+03

 Min 3.245E+03 3.340E+03 3.227E+03 3.211E+03 3.597E+03 3.186E+03 3.338E+03 3.187E+03

 Std 2.629E+01 2.210E+02 8.619E+01 1.529E+01 1.478E+02 7.667E+01 4.884E+01 1.095E+01

 Rank 4 7 5 2 8 3 6 1 

CF28 Mean 3.261E+03 3.567E+03 3.252E+03 3.372E+03 9.733E+03 3.268E+03 3.871E+03 3.209E+03

 Min 3.218E+03 3.349E+03 3.203E+03 3.275E+03 7.720E+03 3.207E+03 3.624E+03 3.124E+03

 Std 2.144E+01 2.122E+02 3.119E+01 5.657E+01 9.258E+02 5.344E+01 1.627E+02 3.212E+01

 Rank 2 5 4 6 8 3 7 1 

CF29 Mean 4.239E+03 4.671E+03 4.285E+03 3.723E+03 7.026E+03 4.040E+03 4.789E+03 3.451E+03

 Min 3.624E+03 3.938E+03 3.740E+03 3.483E+03 5.801E+03 3.643E+03 4.273E+03 3.344E+03

 Std 3.005E+02 5.665E+02 3.102E+02 1.650E+02 8.360E+02 2.303E+02 2.582E+02 1.074E+02

 Rank 4 6 5 2 8 3 7 1 

CF30 Mean 3.874E+06 2.962E+07 1.400E+06 5.152E+06 8.668E+08 3.215E+05 8.876E+07 5.391E+03

 Min 1.069E+06 1.461E+06 3.803E+05 6.008E+05 3.462E+08 2.448E+04 2.711E+07 5.068E+03

 Std 2.213E+06 5.530E+07 9.087E+05 3.433E+06 3.757E+08 4.175E+05 4.696E+07 2.211E+02

 Rank 4 6 3 5 8 2 7 1 

Best count 0 0 0 0 0 0 0 29 

Ave rank 3.6206 6.2068 4.6207 3.3793 7.8965 2.9655 6.2758 1.0000 

Final rank 4 6 5 3 8 2 7 1 

Time/s 3.7543e+03 1.8576e+03 4.3341e+03 2.1551e+03 3.7657e+03 1.7822e+03 2.0428e+03 9.828e+03 
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5.6. Data statistics 

Friedman test is a statistical method used to assess whether there are significant differences among 
multiple samples from different populations, as shown in Eq (26). This method is used in this paper to 
determine whether the performance of GFPSMA on the CEC2017 function test set differs significantly 
from other algorithms in a statistical. 

 𝐹௙ = ଵଶ௡௞(௞ାଵ) ൤∑ ோೕమି௞(௞ିଵ)మೕ ସ ൨, (26) 

where 𝐹௙ is the Friedman test statistic and 𝑘 is the degrees of freedom. 
In Table 13, the p-value is an important indicator for this test method. Typically, a p-value less 

than 0.05 indicates a significant difference in the optimization results of the algorithms being evaluated. 
From the table, it can be observed that the p-value for GFPSMA is consistently less than 0.05 across 
different dimensions and algorithm groups, indicating that its performance differs significantly from 
other algorithms in a statistical sense. This significant difference may be attributed to the mixed 
strategy proposed in this paper. 

Table 13. Result of Friedman test. 

Algorithm Significance level Freedom degree Dimension 𝜒ଶ P-value 
Variants of FPA and SMA 0.05 6 30 Dim 84.724 3.765E-16 

0.05 6 50 Dim 91.034 1.847E-17 
Variants of other MAs 0.05 6 30 Dim 126.030 8.803E-25 

0.05 6 50 Dim 134.276 1.615E-26 
CEC algorithm 0.05 3 10 Dim 17.112 6.700E-04 
Strategy algorithm 0.05 5 30 Dim 119.049 4.989E-24 

5.7. Analysis of diversity, exploration, and exploitation about GFPSMA 

5.7.1. Analysis of diversity 

Hussain et al. [71] suggest that the dispersion or aggregation of a population in a given space can 
be inferred from the differences in individual dimensions. A large difference between individuals 
indicates a phase of global exploration or diversification, whereas a small difference leads to the 
population converging to a small range, indicating a phase of local exploitation or intensification. Mean, 
variance, and other indicators of solutions cannot help in understanding the algorithm’s search behavior. 
Therefore, Hussain proposes a method for measuring the diversity of an algorithm, as shown in Eq (28): 

 𝐷𝑖𝑣௝ = ଵே ∑ 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑋௝൯ − 𝑋௜௝ே௜ୀଵ , (27) 

 𝐷𝑖𝑣 = ଵ஽௜௠ ∑ 𝐷𝑖𝑣௝஽௜௠௝ୀଵ , (28) 

where, 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑋௝൯ represents the median of dimension 𝑗, 𝑋௜௝ is the j-dimensional vector of the 
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𝑖𝑡ℎ fungus, and 𝑁 is the population size. 
Figure 11 depicts the diversity curves of the GFPSMA algorithm for 6 complex CEC2017 

functions of dimension 30, achieved through the introduction of multiple improvement strategies. 
From the figure, it can be observed that the multimodal functions CF14, hybrid function CF20, and 
composition function CF29 maintain good population diversity throughout the entire iteration process 
until the diversity weakens during local search. This is attributed to the combination of the strengths 
of the FPA and SMA algorithms, along with the improvements proposed in this paper. For other 
complex functions, the decrease in diversity in the middle stage may be due to the rapid localization 
of the precise solution range in the early stage, thus accelerating the local exploitation. 

 

 

Figure 11. Curves of diversity. 

5.7.2. Analysis of exploration and exploitation 

The previous section discussed the issue of algorithm diversity. This section is a continuation of 
the previous one, focusing on the balance between global exploration and local exploitation of 
algorithms. To address this, scholar Hussain also devised corresponding mathematical methods as 
shown in Eqs (29) and (30) in reference [71]: 

 𝑋𝑝𝑙% = ஽௜௩஽௜௩೘ೌೣ × 10, (29) 

 𝑋𝑝𝑡% = |஽௜௩ି஽௜௩೘ೌೣ|஽௜௩೘ೌೣ × 100, (30) 

where, 𝑋𝑝𝑙% and 𝑋𝑝𝑡% represent the ratios of exploration to exploitation, with 𝐷𝑖𝑣௠௔௫ being the 
maximum diversity of population individuals. 

Figure 12 illustrates the calculation results of the exploration and exploitation percentages of 
GFPSMA on 6 functions in CEC2017 with a dimension of 30. From the figure, it can be observed that 
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the algorithm exhibits different exploration and exploitation ratios in different complex functions. In 
CF9, CF11, and CF27, the exploitation percentage is higher, indicating that the algorithm can quickly 
complete the global exploration process in similar problems, focusing on local search. In contrast, 
CF14, CF20, and CF29 show a relatively higher ratio of global exploration, indicating that these 
problems possess a strong complexity and require more computational effort to locate precise solutions. 
In summary, GFPSMA is capable of obtaining appropriate exploration and exploitation ratios when 
dealing with complex problems, demonstrating its strong adaptability and ability to achieve a good 
balance between global and local exploration. 

 

 

Figure 12. Curves of exploration and exploitation 

6. Practical engineering optimization problems 

Researchers generally consider solving actual engineering problems as an effective means to 
validate the practicality and rationality of metaheuristic algorithms compared to test functions. In this 
section, we selected four real-world engineering application problems, namely the pressure vessel 
design problem (PVD) [72], three-bar truss design problem (TBTD) [4], welded beam design problem 
(WBD) [4], and robot gripper problem [63]. The evaluated algorithms include HHO [68], MSMA [33], 
GWO [3], AO [4], HSCA [60], SMA [12], and AOA [69] to verify the practicality of the GFPSMA 
algorithm. The algorithm proposed in this paper follows a similar approach to the studies cited in 
references [53–55], utilizing engineering problems to validate the algorithm’s performance in 
optimizing real-world problems. 

6.1. Pressure vessel design problem 

The objective of the pressure vessel design problem (PVD) is to minimize the total cost of the 
pressure vessel while meeting the specified requirements. This problem involves four variables: The 
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length of the cylindrical section (𝐿 ), the radius of the cylindrical section (𝑅 ), the thickness of the 
cylindrical section (𝑇), and the thickness of the head section (𝐻). The design is illustrated in Figure 13. 
The objective function and four optimization constraints of the problem are presented in Appendix A1. 

From Table 14, it can be observed that GFPSMA exhibits the lowest Mean value among the 
evaluated algorithms, with a value of 6363.310, ranking first and achieving the minimum cost. 

 

Figure 13. Pressure vessel design problem. 

Table 14. Results of PVD. 

Algorithms Best values for variables Mean Rank 𝑇𝑠 𝑇ℎ 𝑅 𝐿 
HHO 1.020 0.489 51.212 89.005 6386.067 4 
MSMA 1.235 0.615 63.774 16.544 6423.393 7 
AO 0.847 0.462 43.836 156.893 6369.288 3 
HSCA 0.847 0.417 43.010 166.290 6366.513 2 
SMA 1.112 0.549 57.650 47.254 6396.686 5 
AOA 1.152 0.569 59.739 35.938 6403.991 6 
GFPSMA 0.822 0.415 42.179 176.493 6363.310 1 

6.2. Three-bar truss design problem 

The optimization of the three-bar truss problem is a complex issue in civil engineering, involving 
two parameters, the problem’s objective function, and four optimization constraints, as indicated in 
Appendix A2. The design is illustrated in Figure 14. 

Table 15 presents the optimization results of each algorithm. GFPSMA demonstrates the lowest 
Mean value among the evaluated algorithms, with a value of 250.690, ranking first and achieving the 
most effective optimization. 
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Figure 14. Three-bar truss design problem. 

Table 15. Caption of the table. 

Algorithms Best values for variables Mean Rank 𝑥ଵ 𝑥ଶ 
HHO 0.792 0.396 263.897 5 
GWO 0.787 0.410 263.896 4 
AO 0.797 0.386 263.911 6 
HSCA 0.788 0.407 263.897 3 
SMA 0.767 0.516 264.136 7 
AOA 0.788 0.407 263.896 2 
GFPASMA 0.761 0.503 250.690 1 

6.3. Welded beam design problem 

The objective of the welded beam design problem is to minimize the cost, involving the 
optimization of four variables: Weld thickness (ℎ), steel thickness (𝑏), length of the connection (𝑙), and 
the objective function and four optimization constraints are presented in Appendix A3. The design is 
illustrated in Figure 15. 

From Table 16, it can be observed that GFPSMA exhibits the lowest Mean value among the 
evaluated algorithms, with a value of 6363.310, ranking first and achieving the best optimization result. 

 

Figure 15. Welded beam design problem. 
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Table 16. Results of WBD. 

Algorithms Best values for variables Mean Rank ℎ 𝑙 𝑡 𝑏 
HHO 0.173 4.210 9.141 0.205 1.707 6 
GWO 0.205 3.248 9.040 0.206 1.703 1 
AO 0.172 4.404 9.098 0.207 1.709 7 
HSCA 0.203 3.237 9.115 0.205 1.703 1 
SMA 0.205 3.242 9.036 0.205 1.703 1 
FPA 0.428 2.282 9.101 0.209 1.841 8 
AOA 0.205 3.234 9.036 0.205 1.703 1 
GFPSMA 0.204 3.244 9.063 0.205 1.703 1 

6.4. Robot gripper problem 

The optimization problem for the robot gripper involves minimizing the force difference applied 
to the gripper. It consists of seven main parameters: a, b, and c represent the lengths of the linkages, 
while e denotes the displacement, f the vertical length, l the horizontal length, and δ the angle, as shown 
in Figure 16. The objective function and four optimization constraints are presented in Appendix A4. 

From Table 17, it can be observed that, in comparison to HHO and GWO, GFPSMA achieves the 
same lowest force difference as MSMA, HSCA, and SMA, with a difference of 3.046. 

 

Figure 16. Robot gripper problem. 

Table 17. Results of RG. 

Algorithms Best values for variables Mean Rank 𝑎 𝑏 𝑐 𝑒 𝑓 𝑙 𝛿 
HHO 148.434 105.482 123.980 32.122 70.827 176.275 2.578 3.416 7 
GWO 149.764 146.199 181.415 0.148 11.098 159.718 1.770 3.237 5 
MSMA 98.935 36.993 196.411 0 10.706 100 1.562 3.046 1 
AO 99.850 94.681 112.349 0.087 11.606 143.748 1.786 3.684 8 
HSCA 126.814 10 155.151 0 59.138 110.718 3.137 3.046 1 
SMA 99.985 38.196 191.861 0 75.756 100 1.787 3.046 1 
AOA 135.290 84.706 150.877 50 86.226 109.055 2.635 3.293 6 
GFPSMA 96.494 30.895 120.716 0 132.276 100 2.340 3.046 1 
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7. Conclusions and future 

In order to address the limitation of a single algorithm in solving large-scale global optimization 
problems due to its own principles and mechanisms, a hybrid algorithm based on FPA and SMA is 
proposed in this paper, referred to as GFPSMA. The algorithm incorporates three improvement methods 
and a fusion strategy, namely utilizing the golden section’s information exchange concept to address 
the global exploration issue of FPA; employing an adaptive step size with exponential properties to 
resolve the random exploration problem of SMA; introducing a conditional elite learning strategy to 
enhance the optimal individuals in the population; and adopting a competitive mechanism based on 
game inspiration to address the integration of the two algorithms. We also employed 39 functions from 
the CEC2017 test suite and standard functions to evaluate the numerical optimization performance of 
GFPSMA. The experimental results demonstrate that GFPSMA exhibits good search performance. 
Additionally, its feasibility is illustrated in four real-world engineering problems. 

With the development of the economy, people’s demands for their own health continue to increase, 
and the medical field is an important research direction. One algorithm cannot simultaneously meet all 
application scenarios. In future research, different hybrid strategies will be explored to enhance the 
algorithm’s optimization capabilities, and the application of GFPSMA in specific medical fields, such 
as medical image segmentation, will be investigated to expand the scope of GFPSMA’s feasibility. 
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Appendix  

A1. Pressure vessel design problem 

Consider: 𝑥 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ] = [𝑇௦, 𝑇௛, 𝑅, 𝐿], 
Minimize: 𝑓(𝑥) = 0.6224𝑥ଵ𝑥ଶ, 𝑥ସ + 1.7781𝑥ଶ𝑥ଷଶ + 3.1661𝑥ଵଶ𝑥ସ + 19.84𝑥ଵଶ𝑥ଷ, 
Subject to: 𝑔ଵ(𝑥) = −𝑥ଵ + 0.0193𝑥ଷ ≤ 0, 𝑔ଶ(𝑥) = −𝑥ଷ + 0.00954𝑥ଷ ≤ 0, 𝑔ଷ = −𝜋𝑥ଷଶ𝑥ସ − ସଷ 𝜋𝑥ଷଷ + 1296000 ≤ 0, 𝑔ସ(𝑥) = 𝑥ସ − 240 ≤ 0, 
Parameters range: 0 ≤ 𝑥ଵ, 𝑥ଶ ≤ 99, 10 ≤ 𝑥ଷ, 𝑥ସ ≤ 200. 
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A2. Three-bar truss design problem 

Consider: 𝑥 = [𝑥ଵ, 𝑥ଶ] = [𝐴ଵ, 𝐴ଶ], 
Minimize: 𝑓(𝑥) = (2√2𝑥ଵ + 𝑥ଶ) × 𝑙, 
Subject to: 𝑔ଵ(𝑥) = √ଶ௫భା௫మ√ଶ௫భమାଶ௫భ௫మ 𝑃 − 𝜎 ≤ 0; 𝑔ଶ(𝑥) = ௫మ√ଶ௫భమାଶ௫భ௫మ 𝑃 − 𝜎 ≤ 0; 𝑔ଷ(𝑥) = ௫మ√ଶ௫మା௫భ 𝑃 − 𝜎 ≤ 0; 

Parameters range: 0 ≤ 𝑥௜ ≤ 1, 𝑖 = 1, 2, 𝑙 = 100 𝑐𝑚. 

A3. Welded beam design problem 

Consider: 𝑥 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ] = [ℎ, 𝑙, 𝑡, 𝑏], 
Minimize: 𝑓(𝑥) = 1.10471𝑥ଵଶ𝑥ଶ + 0.04811𝑥ଷ𝑥ସ(14 + 𝑥ଶ), 
Subject to: 𝑔ଵ(𝑥) = 𝜏(𝑥) − 𝜏௠௔௫ ≤ 0, 𝑔ଶ(𝑥) = 𝜎(𝑥) − 𝜎௠௔௫ ≤ 0, 𝑔ଷ(𝑥) = 𝛿(𝑥) − 𝛿௠௔௫ ≤ 0, 𝑔ସ(𝑥) = 𝑥ଵ − 𝑥ସ ≤ 0, 𝑔ହ(𝑥) = 𝑃 − 𝑃௖(𝑥) ≤ 0, 𝑔଺(𝑥) = 0.125 − 𝑥ଵ ≤ 0, 𝑔଻(𝑥) = 1.10471𝑥ଵଶ + 0.04811𝑥ଷ𝑥ସ(14 + 𝑥ଶ) − 5 ≤ 0, 
Parameters range: 0.1 ≤ 𝑥ଵ, 𝑥ସ ≤ 2, 0.1 ≤ 𝑥ଵ, 𝑥ସ ≤ 10, 
where, 𝜏(𝑥) = ට(𝜏′)ଶ + 2𝜏ᇱ𝜏ᇱᇱೣమమೃ + (𝜏′)ଶ, 𝜏ᇱ = ௣ඥଶ௫భ௫మ , 𝜏ᇱᇱ = ெோ௃ , 

𝑅 = ට௫మమସ + (௫భା௫యଶ )ଶ, 𝐽 = 2(√2𝑥ଵ𝑥ଶ(௫మమଵଶ + (௫భା௫యଶ )ଶ)), 𝜎(𝑋) = ଺௉௅௫ర௫యమ , 𝛿(𝑥) = ସ௉௅యா௫యయ௫ర, 
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𝑃௖(𝑥) = ସ.଴ଵଷாටೣయమೣరలయల௅మ (1 − ௫యଶ௅ ට ாସீ), 𝑃 = 6000 𝑙𝑏, 𝐿 = 14 𝑖𝑛, 𝛿௠௔௫ = 0.25 𝑖𝑛, 𝐸 = 30 × 𝑙଺ 𝑝𝑠𝑖, 𝐺 = 12 × 10଺ 𝑝𝑠𝑖, 𝜏௠௔௫ =13600 𝑝𝑠𝑖, 𝜎௠௔௫ = 30000 𝑝𝑠𝑖. 
A4. Robot gripper problem 

Consider: 𝑥 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ, 𝑥଺, 𝑥଻] = [𝑎, 𝑏, 𝑐, 𝑒, 𝑓, 𝑙, 𝛿], 
Minimize: 𝑓(𝑥) = −𝑚𝑖𝑛௭𝐹௞(𝑥, 𝑧) + 𝑚𝑎𝑥௭𝐹௞(𝑥, 𝑧), 
Subject to: 𝑔ଵ(𝑥) = −𝑌௠௜௡ + 𝑦((𝑥), 𝑍௠௔௫) ≤ 0, 𝑔ଶ(𝑥) = 𝑦((𝑥), 𝑍௠௔௫) ≤ 0, 𝑔ଷ(𝑥) = 𝑌௠௔௫ − 𝑦((𝑥), 0) ≤ 0, 𝑔ସ(𝑥) = 𝑦൫(𝑥), 0൯ − 𝑌 ≤ 0, 𝑔ହ(𝑥) = 𝑙ଶ + 𝑒ଶ − (𝑎 + 𝑏)ଶ ≤ 0, 𝑔଺(𝑥) = 𝑏ଶ + (𝑎 − 𝑒)ଶ − (𝑙 + 𝑍௠௔௫)ଶ ≤ 0, 𝑔଻(𝑥) = 𝑍௠௔௫ − 𝑙 ≤ 0, 
Parameters range: 0 ≤ 𝑒 ≤ 50, 100 ≤ 𝑐 ≤ 200, 10 ≤ 𝑓, 𝑎, 𝑏 ≤ 150, 1 ≤ 𝛿 ≤ 3.14, 100 ≤ 𝑙 ≤ 300, 𝛼 = 𝑐𝑜𝑠ିଵ ௔మା௚మି௕మଶ௔௚ + ∅, 𝑔 = ඥ𝑒ଶ + (𝑧 − 𝑙)ଶ, 𝛽 = 𝑐𝑜𝑠ିଵ ௔మା௚మି௕మଶ௔௚ − ∅, ∅ = 𝑡𝑎𝑛ିଵ ௘௟ି௭ ,𝑦(𝑥, 𝑧) = 2൫𝑓 + 𝑒 + 𝑐𝑠𝑖𝑛(𝛽 + 𝛿)൯, 𝐹௞ = ௉௕௦௜௡(ఈାఉ)ଶ௖௖௢௦(ఈ) , 𝑌௠௜௡ = 50, 𝑌௠௔௫ = 100, 𝑌 = 150,𝑍௠௔௫ = 100, 𝑃 = 100. 
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