
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 32(6): 3843–3866.
DOI: 10.3934/era.2024174
Received: 29 February 2024
Revised: 23 April 2024
Accepted: 06 May 2024
Published: 12 June 2024

Research article

Uniformity of markov elements in deep reinforcement learning for traffic
signal control

Bao-Lin Ye1,2,*, Peng Wu1,2, Lingxi Li3 and Weimin Wu4

1 School of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
2 School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018,

China
3 Elmore Family School of Electrical and Computer Engineering, Purdue University, Indianapolis

46202, USA
4 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027,

China

* Correspondence: Email: yebaolin@zjxu.edu.cn.

Abstract: Traffic signal control (TSC) plays a crucial role in enhancing traffic capacity. In
recent years, researchers have demonstrated improved performance by utilizing deep reinforcement
learning (DRL) for optimizing TSC. However, existing DRL frameworks predominantly rely on
manually crafted states, actions, and reward designs, which limit direct information exchange between
the DRL agent and the environment. To overcome this challenge, we propose a novel design
method that maintains consistency among states, actions, and rewards, named uniformity state-action-
reward (USAR) method for TSC. The USAR method relies on: 1) Updating the action selection for
the next time step using a formula based on the state perceived by the agent at the current time step,
thereby encouraging rapid convergence to the optimal strategy from state perception to action; and 2)
integrating the state representation with the reward function design, allowing for precise assessment
of the efficacy of past action strategies based on the received feedback rewards. The consistency-
preserving design method jointly optimizes the TSC strategy through the updates and feedback among
the Markov elements. Furthermore, the method proposed in this paper employs a residual block into
the DRL model. It introduces an additional pathway between the input and output layers to transfer
feature information, thus promoting the flow of information across different network layers. To assess
the effectiveness of our approach, we conducted a series of simulation experiments using the simulation
of urban mobility. The USAR method, incorporating a residual block, outperformed other methods and
exhibited the best performance in several evaluation metrics.

Keywords: deep reinforcement learning; traffic signal control; Markov elements; residual block

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2024174

3844

1. Introduction

In recent years, the rapid expansion of urban areas has exacerbated the problem of traffic
congestion [1]. This predicament has resulted in significant economic drawbacks, including
heightened fuel consumption and prolonged travel times [2, 3]. Therefore, the development of
advanced traffic signal control (TSC) methods has emerged as a crucial solution to not only reduce
traffic congestion but also alleviate its costly consequences [4, 5]. Efficient TSC methods can
potentially boost the capacity of intersection traffic considering they directly influence vehicle
access [6, 7]. Hence, a multitude of scholars are engaged in enhancing the resolution to the
TSC problem.

The fixed-time control centered on the Webster’s formula has been widely applied at urban
intersections [7–9]. This formula calculates the duration of green lights for each phase according to
historical traffic flow and relevant data. However, this method encounters issues in regulating traffic
effectively in instances of drastic traffic flow fluctuations at intersections. In response to this,
Yu et al. [10] introduced a time-slot-based signal mechanism model encompassing a generalized cycle
structure, allowing the omission of certain phases in partial sub-cycles. Further studies aim at refining
the Webster method by developing novel formulas that factor in vehicle delay and queue length in
determining the optimal cycle length [11]. Simulation results have affirmed that the improved Webster
approach aptly resolves the predicament of overestimating the green cycle length.

Recently, the incorporation of reinforcement learning (RL) theory into the TSC problem has
facilitated noticeable advancements [12, 13]. Additionally, deep learning (DL) techniques, renowned
for their superior performance in problem-solving across various domains, have gained considerable
recognition. Research suggests that, as the fusion of RL and DL techniques, DRL can greatly enhance
traffic management in TSC [14]. Utilizing the Deep Q-Network (DQN) framework, the DRL-based
TSC solution has significantly outperformed traditional TSC methodologies [15]. This approach
affords a reduction in average vehicle delay and optimization of intersection capacity. In the domain
of DRL, the agent discerns the environment’s state and interacts with it through the execution of
actions, receiving instant rewards in the process. The precise formulation of these pivotal elements is
particularly fundamental, as they directly impact the agent’s decision-making strategy and overall
behavior within the DRL ecosystem. Particularly in TSC, a common hurdle is to appropriately craft
the states, rewards, and actions to facilitate the agent’s learning of an optimal action-selection policy.
Ambiguous definitions of elements such as states and actions can disrupt the agent’s optimal learning
trajectory, leading to less than optimal policies. Moreover, the construction of states and actions needs
to reflect practical traffic scenarios for relevant applicability. Unfortunately, many existing DRL
frameworks are limited by manually designed state and action, compromising the agent’s capacity for
optimal decision-making.

This paper proposes a DRL algorithm framework that defines the state and action spaces, aiming at
optimizing the process of action execution guided by states. This straightforward definition approach
allows agents to receive direct feedback from the environment and adjust their behavior accordingly.
This methodology is intended to facilitate a more efficient interaction between the agent and its
environment, streamlining the learning process in DRL algorithms. Moreover, we stress the
significance of maintaining simplicity when defining states and actions. Evading overly convoluted
state representations and identifying the essential information to capture intersection states is

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3845

paramount in tackling the TSC issue. This facet of consistency fosters practicality and efficiency
during the design process. This design methodology simplifies operations by directly linking current
state to the formation of actions. By embracing a straightforward state representation during training,
the agent can investigate a smaller space, leading to enhanced learning efficiency. Additionally, this
style of action design bolsters training stability, triggering quicker convergence to peak performance.
This fortifies the correlation between the environment state and the actions undertaken by the agent.
Consequently, the method predicated on direct convergence outlined in this paper, is expected to be
considered as the optimal solution strategy for the TSC challenge in intelligent transportation
systems. This paper’s major contributions can be summarized as follows:

1) We categorize the number of vehicles on a lane into inner states (queued vehicles) and outer states
(moving vehicles) and assign different priority weights to these states. To enhance training efficiency,
we have developed a effective reward function directly associated with the internal state. This enables
the agent to receive direct feedback in response to changes in environmental states.

2) We propose a design approach that utilizes a formula with weighted coefficients to update
actions related to state definitions in a unified manner. The design method aims to maintain
consistency between states and actions, allowing the agent to dynamically update its action selection
for the next step using the formula when perceiving changes in the environment’s state at the current
step. This method significantly enhances the direct interaction of information between the agent and
the environment.

3) To further enhance the feature extraction capability of the proposed method, we employ a
residual block into the Double Deep Q-Network (DDQN) framework. This residual connection
technique strengthens the feature representation between input and output information in the
convolutional neural network, increasing the convergence speed of the algorithm and the robustness
during model training.

The remaining sections of this paper are organized as follows. Section 2 reviews the relevant
literature and discusses related works. Section 3 provides a brief introduction to the background
knowledge and necessary preliminary work for the proposed method. Section 4 presents the problem
formulation for the TSC model, along with the optimization objectives. Section 5 details the design of
the proposed DDQN framework and residual block structure. In Section 6, we conduct traffic
simulation experiments and ablation studies. We analyze and discuss the experimental results.
Section 7 concludes the paper and provides a discussion of potential future work.

2. Related work

The exceptional performance of RL methods in recent years has ignited a considerable surge of
research interest across multiple disciplines. Notably, it has made impressive strides in areas like
energy costs and autonomous driving [16], especially in the aftermath of the rise of DL. Recently,
researchers have gravitated toward DRL as a solution to address the challenges inherent to the TSC
domain. The aim is to transition from traditional control systems to intelligent TSC systems [17–19].
A widely adopted method, first implemented by Gregurić et al. [20], comprises a unique traffic state
representation that utilizes a series of matrices. This representation divides each lane into
homogeneously distributed cells that carry information on the vehicles’ presence or absence, their
velocity or acceleration, and the current phase or duration of the green light. These vectors are

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3846

arranged to construct an image-like matrix, which is subsequently processed using convolutional
neural networks (CNN) [21]. Haddad et al. [22] proposed a method to efficiently use information
from the intersection road network by selecting agent behavior based on local lane state information.
In parallel, a few research groups have experimented with simplified state spaces to illustrate vehicle
data using metrics like the number of vehicles and queue length [23, 24]. In the latter approach, the
state is depicted by the number of vehicles facilitated, with the reward corresponding to the length of
the vehicle queue [25].

Indeed, future work should focus on developing the connections between state and action, as well
as between state and reward, to facilitate the flow of information among the elements in these Markov
processes. The TSC methods based on a hybrid action space generally implement each phase for a
fixed length of time [26, 27]. The agent considers whether it should transition to the next stage or
extend the existing stage by a certain amount of time. Although expanding the action space in this
way can improve the response speed, it will significantly enlarge the action gap, which will affect the
convergence accuracy of the model. To achieve a balance among the factors in these conflicting action
spaces, the proposed method leverages queue length within state definition to design actions, thus
ensuring a direct correlation between action execution and state changes. This is the issue addressed
in this paper.

In a TSC system, reward as the feedback of the environment after the agent performs an action, is
the key to the evaluation of action value. Many definitions of rewards have been deployed in the TSC
system, including changes in total waiting time, queue length, and accumulation of vehicle
delays [28]. Bouktif et al. [25] found that the queue length of the reward vehicle has higher
performance. Building on this finding, our study further refines the state and reward design by
targeting the unified method [29]. The selected reward combined with the number of vehicles in the
queue is used to accelerate convergence. This design philosophy emphasizes the direct
implementation of reduced queue vehicles as a reward, which helps to improve the convergence
speed. This is another issue addressed in this paper. In summary, the current work faces two main
issues. 1) In the reinforcement learning-based Markov processes, there is an over-reliance on
manually crafted components, failing to establish a consistent flow of information during the agent’s
learning process. 2) In the current TSC methods, the design of the action space does not closely
correlate with changes in the environmental states, preventing agents from efficiently converging to
the optimal signaling strategy.

The proposed method is inspired by the work of Bouktif et al. [25], which aims to streamline the
constitution of state, action, and reward by incorporating the state into the formulation of the action
space and reward function. This integration allows the TSC model to enable the agent to execute actions
pertinent to queue length while perceiving the environmental state during training. Concurrently, the
feedback in the form of rewards assesses the value of the actions, thus facilitating direct information
exchange between the agent and the environment.

3. Theoretical background and preliminaries

In this section, we will briefly introduce the concept and theoretical basis of DRL algorithm used in
this paper.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3847

3.1. Reinforcement learning

The RL is an algorithm that focuses on learning how to maximize rewards by interacting with
the environment. In RL, an agent continuously receives feedback from the environment to learn an
optimal policy. The RL algorithm is commonly described using Markov decision processes (MDP)
and characterized by a set of terms (S , A, R, P). S is the set of all states, which consists of a finite set
of Markov states that the agent can utilize to assess the relative quality of the current environment. The
agent typically relies on the current state representation to make decisions for the subsequent state. A is
the set of all actions. At each time step t, the agent selects the current optimal action at from the action
space A following a policy π to maximize the long-term reward. The agent chooses actions at according
to the policy π within a time step t and receives a feedback reward rt from the environment. The agent
can adjust the decision of the next time step through the reward feedback of the environment, so that
the whole has a better decision-making trend. For each state st , the transition probability P(st+1|st)
gives the probability of moving to state st+1 by taking an action at.

To maximize the cumulative reward value, the agent engages in ongoing information interaction
with the environment by following policies which determine the actions to be taken based on the
current state. In this study, we employ the Q-learning algorithm, a model-free, value-based, and off-
policy form of reinforcement learning. The Q-learning algorithm utilizes the Q-function to estimate
the expected discounted reward for an action in a given state. The expression for the Q-function is
as follows:

Q(S t, At)← Q(S t, At) + α[Rt + γmax
At+1

Q(S t+1, At+1) − Q(S t, At)] (3.1)

where α is learning rate that denotes the magnitude of the Q value update. The γ is discount factor that
is used to balance current reward and future reward.

3.2. Deep reinforcement learning

The traditional Q-learning algorithm uses tables to store state-action pairs of Q-values, which
becomes inefficient and expensive for high-dimensional or continuous spaces. To address this, a deep
neural network (DNN) method is proposed for nonlinear function approximation. It captures complex
state features to better approximate Q-values. DQN is a common DRL algorithm, with an input layer
representing the state (image or vector). Hidden layers learn features, and the output layer provides
the Q-value for a state-action pair. The DQN uses a nonlinear neural network function approximator

with weight
∧

θ and an experience replay memory by storing quadruples (S , A, R, S
′

) into the memory
as historical experiences at each time step. In the process of learning and training, the DQN is
updated by randomly sampling a small batch of tuples in the memory bank at intervals, and the target
value yDQN

t is shown in formula (3.2):

yDQN
t = Rt + γ

∧

Q(S t+1, arg max
a

∧

Q(S t+1, a;
∧

θ);
∧

θ), (3.2)

where
∧

Q represents the q-value of the state-action pair. The
∧

θ is used both to estimate Q and to select
the next action a. The goal of the training and learning process of the DQN algorithm is to build a
Q-network that can accurately predict the target value in Eq (3.3). Therefore, the learning objective of

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3848

the agent is to minimize the loss function Lt(θ),

Lt(θ) = E[(yDDQN
t − Q(st, at; θt))2], (3.3)

where θt represents the network parameters at time step t taking action at and state st. The DDQN
algorithm was introduced to mitigate the problem of overestimation in Q-value calculation with a
single target network. It involves using a main network to determine the optimal action and estimating
the action value using an additional pair of target networks. At the same time, it will be updated
after some time steps by cloning the weight value θ of the main network. Formally, yDDQN

t is defined
as follows:

yDDQN
t = Rt + γ

∧

Q(st+1, arg max
a

Q(S t+1, a; θ);
∧

θ), (3.4)

where γ represents the discount factor for the Q value.

4. Problem definition

In this section, we provide an illustration of the TSC problem definition for our DRL formulation.

4.1. Environment

The environment is defined as four directions (i.e., North ‘N’, South ‘S’, West ’W’, East ’E’).
Among them, the north-south (NS) direction is three lanes, and the east-west (EW) direction is a single
lane. In order to ensure the safety of road traffic, the traffic of vehicles does not interfere with each other.
The vehicle traffic directions include: north-south direction straight (NS-S), north-south direction left
turn (NS-L), north-south direction right turn and straight (NS-RS), east-west direction right turn and
straight (WE-LSR). Figure 1 shows the environment structure, and the intersection entrance in the
figure represents the traffic flow input point of each lane.

Figure 1. Schematic diagram of a single intersection.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3849

4.2. Phase sequence of the signal

The phase Pn of a signal is defined as a certain set of signals (G for green light, R for red light) at
an intersection. For instance, P1 indicates that the NS-SR and NS-R lanes as shown in Figure 1 are
executed with green light action, P2 indicates that the NS-L lanes are executed with green light action,
and P3 indicates that the WE-LSR lanes are executed with green light action. In the definition of phase
sequence, each phase will be executed in turn when it is green and the other phase is red within the
same signal cycle. The execution order of phases is shown in the below panel of Figure 1.

4.3. Agent

In the DRL framework, the agent plays a vital role. It senses the current state of the environment,
and based on the policy, selects the optimal action during a phase Pn. At each time step, the agent
receives immediate feedback in the form of a reward. Figure 2 illustrates the flow of interaction
between the agent and the environment in the TSC problem.

Figure 2. The process of the agent interacting with the environment.

4.4. Queue of vehicles

In this paper, we define “queuing vehicles” as a series of vehicles that have approached an
intersection and are arranged in a specific order. Within our intersection scenario, vehicles fall into
two distinct categories: the queue of vehicles stationed consecutively at the stop line, and the string of
vehicles in active transit on the road. When the agent selects actions based on the given state, vehicles
positioned before the stop line will be prioritized for passage. The transit vehicles, consequently,
assume a lower priority in comparison to the immobile queuing vehicles. Within the framework of
our TSC research, the queuing vehicles stationed before the stop line are allocated a higher weightage
than their transit counterparts. To clarify the terminologies used throughout this paper, we have
provided a summary in Table 1.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3850

Table 1. Definition of intersection-related parameters.

Notation Description
s State
a Action
r Reward
P Phase of signals
L Number of lanes
V in

l The vehicle in the inner state area lane l
Vout

l The vehicle in the outer state area lane l
t Time step

5. Proposed method

In this section, our objective is to shed some light on the methods of applying the DRL framework
to manage TSC at standalone intersections. In this study, based on the latest research methodologies
in consistent state and reward design [25], we propose a novel design method that maintains
consistency among states, actions, and rewards, named the uniformity state-action-reward (USAR)
method for TSC. Compared to existing techniques, our method significantly accelerates convergence
while maintaining cutting-edge accuracy. The main innovation of the USAR method lies in our
pioneering fusion of state representation in the action definition formula (as given in Eq (5.3)) and the
introduction of a weight coefficient wout to enhance the coordination between actions and states. To
optimize the convergence properties of the network model during training, we incorporate residual
blocks into the traditional DDQN algorithm, which not only aids in network training but also further
improves model performance.

Figure 3 delineates the employment of the DRL framework for proposed USAR method. For each
time interval, the agent evaluates its environment and encapsulates the current state in the context of
a vector. Owing to its underlying policy and the current state, the agent opts for the most appropriate
action. The chosen action comprises of the phase sequence for the agent to observe and the duration
of the green signal associated with it. To cater to the varying right-of-way circumstances of vehicles
situated at different spots, the definition of our state relies on the queued vehicles waiting at the stop
line, hence called inner state. As a contrast, any vehicle heading towards the stop line within the
lane attributes it as an outer state. To ensure the TSC system efficiently restricts traffic congestion,
vehicles within the inner state are given priority over others with a longer signal duration to speed up
their passage through the intersection. Figure 4 elaborates the definition of the state more precisely.
Thereafter, as a result of the action implantation, the agent attains the consequent state st+1 and the
subsequent reward rt. To summarize, the tuple consisting of (st, at, rt, st+1) is preserved in the memory,
thus allowing the agent to practice mini-batch sampling at periodic intervals; this in turn enhances the
agent’s learning efficiency.

Bearing the larger picture in mind, the DRL framework involves several major components: the
state representation, reward function, action space, and the agent architecture. The next subtopics will
delve into these components in detail.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3851

Figure 3. Double deep Q-network with residual block architecture.

5.1. State representation

The complexity of state representation directly influences the computational difficulty involved with
DRL-based algorithms. Therefore, simplifying the state representation is crucial within a TSC system
framed by DRL algorithms. In pursuit of a simple and consistent representation method, this paper will
utilize the spatial distribution quantity of vehicles on the lanes within intersections as the components
of the state representation, with specific configurations as follows:

1) At time step t, we define the sequence of vehicles queuing in front of the stop line as the inner
state, while the vehicles currently driving on the road represent the outer state. The specific
differentiation interval is illustrated in Figure 4.

2) The agent performs actions to correct the performance of the next state to achieve the purpose
of channelling traffic. We divide the observed states of the intersection into inner states (vehicles that
stop before the stop line) and outer states (vehicles on the road that are heading toward the stop line).
Therefore, the state vector of the intersection point can be expressed as follows.

st = win ·
[
V in

1 (t),V in
2 (t), . . . ,V in

l (t)
]
+ wout ·

[
Vout

1 (t),Vout
2 (t), . . . ,Vout

l (t)
]

(5.1)

where win and wout denote the weight coefficients of the inner state and outer state, respectively. This
approach is designed to ensure that agents prioritize inner states due to their higher weight, relegating
the lower-priority outer states to a secondary consideration. Taking the environment state in Figure 4
as an example, the state is represented as a set of vectors of the number of vehicles in each lane within

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3852

the intersection. The objective of this paper is to demonstrate that a simple representation of the state
and uniform approach for information interaction among the elements can be effective.

Inner

state

Outer

state

Environment

2 2 1 2 2 2 2 1

4 2 2 1 4 3 1 2

State Vector

State Vector

Figure 4. An example of the vector extracted from the intersection.

5.2. Reward function

To maintain uniformity between the state and the reward, ensuring that the agent can accurately
assess the quality of its action choices through the feedback provided by the rewards, this paper
constructs the reward function using the negative sum of queue lengths in the state representation. We
propose reward functions obtained from the inner state at time step t + 1. The vehicle cumulative at
time step reward function for lane l at time step t is defined as,

r(t) = −
L∑

l=1

V In
l (t + 1) (5.2)

where V In
l represents the number of vehicles queued in front of the stop line. In the above formula, the

negative sign of the reward means that the objective of the agent is to minimize the vehicles queuing at
intersections. This enables agents to better specify the optimal strategy using rewards.

5.3. Action space

In this paper, we have reported a design methodology that employs a weighted-formula approach
for the cohesive update of states and actions. This method ensures consistency between states and
actions, enabling an agent to dynamically adjust future action choices using the formula when
perceiving real-time changes in environmental states. This approach significantly enhances the direct
interaction between the agent and its environment. This means that the duration of signal phases will
be determined according to the positions and movements of vehicles within the intersection. The
action space A of the method proposed in this paper is defined as A = {aP1 ,aP2 · · · ,aPN}, where PN is the

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3853

number of phases belonging to the intersection. Meanwhile, for each n ∈ {1, 2, · · · ,N},
aPn ∈ {0, 0.25, 0.5, · · · , 1.0} represents the proportion of the optimal cycle time allocated to the green
light duration of the different phases (P1: provide the right of way for northbound and southbound
straight, and right-turning vehicles; P2: provide the right of way for eastbound and westbound
vehicles; P3: provide the right of way for northbound and southbound left-turning vehicles). Thus, the
formula for calculating the specific content of the action space is defined as follows,

GTPn = (apn ·GT Pn
max) · (

∑
l∈Pn

V In
l + wout ·

∑
l∈Pn

Vout
l∑

l∈Pn

V In
l +

∑
l∈Pn

Vout
l

) (5.3)

where GT Pn
max represents the maximum green light duration of phase Pn. In order to efficiently alleviate

traffic congestion at the intersection, agents will give higher attention to the inner state. Therefore, the
0 < wout < 1 will be a reasonable configuration.

5.4. Agent architecture

In our approach, we utilize the DDQN architecture as the network structure for our agent. The
neural network architecture consists of three convolution layers with the activation function applied.
Afterward, the output is flattened and passed through two multi-layer perceptrons to generate action
neurons. Within the constructed double Q-network, we have two networks. The prediction network
is responsible for predicting Q-values of actions, while the target network is utilized in updating the
prediction network, as indicated in Eq (3.4) of the paper. Both networks include an input layer to
receive the tensor of state of size L, where L is the number of lanes at the intersection, holding L
information for L lanes (e.g., number of vehicles in queue). The output layer is the number of neurons
for the action. In the learning phase, the agent receives the state st feedback from the environment
at each time step t and action at is executed according to adaptive ε − greedy action selection policy
as follows,

at =

 random action, otherwise
arg max

at∈A
Q(st, at; θ), i f ζ > εn (5.4)

where ζ is a random number between (0,1), εn (ε to the n) is a value that is dynamically updated
according to the number of iterations. In this paper, the agent uses tuple (st, at, rt, st+1) to update the
model weight θ of the main network. Target network is updated once each η of the predict network by
copying the weights of the predict network.

In conventional DDQN, the number of layers in the network can hinder information transmission,
leading to information attenuation. To address this issue, we propose a residual connections structure.
This approach introduces cross-layer connections in the network, where the input is added to the output.
By utilizing this method of information transfer, we can effectively address the over-estimation problem
commonly encountered in traditional DDQN algorithms. Furthermore, this approach improves the
convergence and stability of the algorithm.

Finally, the pseudo-code of our proposed DDQN-based USAR method is summarized in
Algorithm 1.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3854

Algorithm 1: DDQN-based USAR method
Input : Initialize θ and θ−, ER Memory M, action space A, Greedy coefficient ε, network

update rate χ and traffic flow data;
Output: The optimal plan for the duration of green traffic light phase;

1: Use residual block structure between input and output.;
2: for n = 1 to N do
3: Observe initial state s0 and take initial action a0;
4: for t = 1 to T do
5: Observe state st, select action at according to ε-greedy policy;
6: Feedback next state st+1 and get rt from st+1;
7: Store experience (st, at, rt, st+1) in M;
8: if experience fills M then
9: Sample random experiences from M;

10: Replace the oldest experience with the current one;
11: Calculate yDDQN

t ;
12: Update the agent weights θ;
13: if step%χ = 0 then
14: Copy θ weights to θ− weights;
15: end
16: end
17: Agent chooses at+1 based on st+1;
18: Start a new time step(step = step + 1);
19: end
20: end
21: if Model training finished then
22: Validating with the validation dataset;
23: end

6. Simulation experiment and discussion

In this segment, we commence by delving into the TSC challenge under investigation, and the
conjectures that were assessed through experimental methodology. Details on the proposed
USAR-based method will then be elucidated, along with the configuration of our simulation tests that
were utilized to corroborate the postulated assumptions. The parameters included in these
configurations span across the structure of the intersection environment, the traffic volume data, and
the hyper-parameters manipulated during the training phase. Consequently, we will present a
comprehensive analysis of the performance metrics derived from diverse methodologies, using data
harvested from experimental trials. These metrics will be juxtaposed with other reference methods
which encompass both conventional techniques and DRL strategies. The intention of this comparative
analysis is to showcase the robustness and proficiency of our proposed USAR-based method.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3855

6.1. Simulation settings

Within this section, our first course of action involves an introduction to the TSC issue and the
hypotheses that have been put to the test through experimental means. Following this, we will furnish
details concerning our proposed USAR-based method, as well as the blueprint of our simulation
experiments that have been deployed for hypothesis validation purposes. Aspects encompassed by
these configurations range from the infrastructural design of the intersection environment to the data
regarding traffic influx, as well as the variety of hyper-parameters that underwent fine-tuning
throughout the training stage. Subsequently, we will expound upon and scrutinize the results derived
from a range of methodologies using empirical data. We will place these findings in comparison with
other benchmark techniques, encompassing both traditional methods and those leveraging DRL. The
objective of this juxtaposition is to affirm the superior efficacy of our proposed USAR-based method.

6.1.1. Intersection environment structure

Our study delves into the analysis of a quadrilateral intersection layout comprising North, South,
East, and West directions. Each road at this crossroad has three lanes, with the EW lane occurring
uniformly in all cardinal directions. Each lane stretches 320 meters in length and possesses identical
priority and width criteria. The leftmost lane is strictly reserved for left-turn traffic, whereas the middle
lane accommodates both straight and right turns. The rightmost lane is exclusively dedicated to right
turns. For a graphic elucidation of the intersection’s intricate structure, kindly refer to Figure 1.

6.1.2. Traffic flow input

In the quest to simulate intersection traffic conditions with accuracy, it is vital to emulate the
realistic traffic environment. The traffic flow in this paper begins with minimal vehicular density,
which gradually escalates to reach the crest, prior to its decline marking the completion of the traffic
simulation. Commonly used probabilistic distributions for traffic flow encompass the burr distribution,
poisson distribution, and normal distribution [30, 31]. Choosing the normal distribution in this
experiment effectively depicts the cyclical behavior of the traffic flow. In order to simulate the inflow
of vehicles under different traffic demands, three scenarios were designed to represent low, medium,
and high traffic conditions, respectively. In each phase, the traffic flow of each lane follows a normal
distribution with varying means and variances, as detailed in Table 2.

Table 2. Three different input traffic flows obeying normal distributions.

Low traffic flow Medium traffic flow High traffic flow

Mean value Variance Mean value Variance Mean value Variance
Phase 1 550 150 850 150 1150 150
Phase 2 450 100 750 100 1050 100
Phase 3 350 50 650 50 950 50

6.1.3. Parametric and training settings

After conducting multiple runs of the experiment and fine-tuning the algorithm parameters, we
have established the following parameters for the experiment: the number of training episodes N is

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3856

set to 500. When the memory bank is full, the primary network parameters are updated every 65
iterations, where each experience is represented as a tuple (st, at, rt, st+1). For the two networks in
the DDQN algorithm, the learning rate is set to 0.0001. In ε− greedy action selection policy, we
set the action selection probability ε=0.99. Table 3 summarizes various parameters used with their
associated values.

Table 3. Values used for training parameters.

Parameter Description Value
N Number of training iterations 500
t Simulation time step 2500
max size ER Memory maximum size 50
χ Neural network weight update frequency 65
LR Learning rate 0.0001
γ Discount factor 0.9
ε Action selection probability 0.99
wout Outer state weight value 0.9
win Inner state weight value 1.0
GT P1

max Maximum green duration of the phase P1 60
GT P2

max Maximum green duration of the phase P2 50
GT P3

max Maximum green duration of the phase P3 40
GTmin Minimum green duration of all the phases 10

6.2. Comparison approach

The setting of the signal period length plays a crucial role in TSC methods. We compared our
proposed method with the following four methods to verify its effectiveness.

FTSC (Signal control based on fixed-timing): [8] The fixed-time approach is one of the most
commonly used traditional TSC methods. This method involves setting a fixed duration for each phase,
fixed cycle length, and a fixed order of phases. In this paper, the phase sequence of FTSC is arranged
from phase 1 to 3, with durations of 40, 30, and 20 seconds for each phase.

HAS (Hybrid action space): [26] In this document, the first subspace is defined as the collection
of three phases, while the second subspace is defined by the duration of the green-light phase.
Consequently, the action space is described as {{1 2 3} ∪ {[GTmin,GTmax]}}.

ATSC (Adaptive traffic signal control): [32] This method utilizes vehicle perception of the
environmental state to dynamically adjust or ensure reasonable signal coordination control
parameters. Specifically, it involves setting the duration of the signals for each phase based on the
inflow of traffic volume.

CSR (Consistant states and rewards): [25] This approach defines states and rewards in a
consistent and straightforward manner. Meanwhile, the agent executes the action by following the
sequence of phases P1, P2, and P3, adhering to the green light duration for each phase.

To validate the effectiveness of the USAR algorithm on evacuation traffic flow, this paper evaluates
the performance of the proposed method by comparing it with several typical and state-of-the-art
experimental results. The previously mentioned HAS algorithm is a design method with the highest
convergence speed during training, CSR is a method that unifies state and reward consistently in a

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3857

formulaic approach, while FTSC and ATSC represent the most classic design methods in the field of
TSC. By selecting these four algorithms as benchmarks for comparison, the fast convergence and
training stability of the proposed USAR are verified from multiple perspectives.

6.3. Results and discussion

To ensure the comparability of the training outcomes, all intelligent TSC algorithms utilized a
consistent reward function design. Noteworthy is the fact that the USAR algorithm employs an action
space design based on Markov elements, whereas the HAS and CSR algorithms use different action
space design schemes. The objective of this comparative experimental setup is to validate the
effectiveness of the innovative action space design method proposed in this paper. The total training
consisted of 500 iterations for all algorithms, with each iteration spanning a simulation duration
of 2500 seconds. The value of the reward function is the negative sum of queue vehicles across lanes.

6.3.1. Comparison of training results

Figure 5 displays the training curves for the three intelligent TSC algorithms. The solid lines
represent the average reward value from multiple experiments, while the shaded areas indicate the
standard deviation of the results. It is observed that once the USAR algorithm stabilizes, its
performance is significantly superior to the other algorithms, achieving higher reward values. The
USAR algorithm’s maximum reward value is approximately −40 with a standard deviation of
about 10, while the peak values for other algorithms all fall below −70 with a comparable standard
deviation. Despite some fluctuation in reward values, there is a steady growth trend that eventually
stabilizes within a small standard deviation range, indicating that USAR has better convergence speed
and stability compared to the alternative algorithms. Additionally, while the reward values for all
algorithms are similar in the early stages of training, the USAR algorithm demonstrates better
performance in the later stages. Both CSR and HAS exhibit larger fluctuations throughout the training
period, sometimes exceeding USAR in initial rewards, but ultimately underperforming relative to
USAR. This suggests that the action space designs of HAS and CSR are prone to instability and
perform less effectively in managing congestion at intersections.

Figure 5. The reward convergence curves of different methods under medium traffic flow.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3858

6.3.2. Comparison of evaluation results

The simulation experiment results displayed in Figure 6 through 9, encompassing four different
metrics, indicate that the USAR algorithm is more effective at adapting to dynamically changing traffic
flow conditions that follow a normal distribution compared to other TSC algorithms. What follows is
a detailed analysis of the test outcomes:

Figure 6. Experimental results of average queue length under medium traffic flow.

Average queue: It is clear from Figure 6 that the USAR algorithm outperforms the other methods.
At the fourth phase sequence, its maximum value is 60 m. In contrast, the HAS algorithm has a
maximum value of about 90 m at 16 phase sequences and the CSR algorithm has a maximum value of
about 90 m at the seventh phase sequence. It can be observed that the result curves of each algorithm
gradually increase in the early stage (the first 12 phase sequences), and then reach the peak and
gradually decrease in different time periods. These convergence trends indicate that the signal control
strategy of each algorithm is different; the USAR algorithm can effectively reduce the average queue
length, while other algorithms can reduce the effective queue length to different degrees in the later
stage. This shows that the USAR algorithm converges faster and has higher stability than other
algorithms. This is because the USAR algorithm adopts a design method based on unity, which
combines the state, action, and reward as Markov elements, so as to achieve fast convergence of the
model. In addition, in the process of convolutional neural network capturing input features and output
Q values, USAR algorithm uses the design of residual connection, which effectively improves the
stability of the algorithm.

Maximum queue: Figure 7 clearly demonstrates that the USAR algorithm outperforms other
algorithms in terms of average maximum queue length, achieving an average maximum of just 80 m
at the 10th phase. In contrast, the HAS algorithm reaches a maximum of approximately 120 m at the
seventh phase, the CSR algorithm peaks at about 125 m at the fourth phase, while the ATSC and
FTSC algorithms reach maximum values near 200 and 225 m, respectively. The better performance of
the ATSC and FTSC algorithms can be attributed to the lower mean input traffic flow used in the
experiment, which allowed more room for optimization with traditional methods. During the initial
stages of the experiment, we can observe a gradual increase in average queue lengths for all
algorithms, followed by peaks and a steady decline at different points in time. These trends reflect the

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3859

diverse signal control strategies adopted by the different algorithms. The USAR algorithm proves
effective in reducing average queue lengths, while other algorithms reduce queuing to varying extents
later in the experiment. This indicates that the USAR algorithm achieves convergence more rapidly
and with greater stability compared to others. The superiority of the USAR algorithm is attributed to
its unified design approach that combines state, action, and rewards as elements of a Markov decision
process, resulting in swift convergence of the model. Furthermore, the USAR algorithm employs a
convolutional neural network with residual connections in capturing input features and outputting
predicted values, significantly enhancing the algorithm’s stability.

Average speed: As illustrated in Figure 8, the average driving speed of all vehicles on the lane
achieved by the USAR algorithm surpasses that of the comparative algorithms, with its results’
convergence curve clearly indicating superior performance. In the early stages of the experiment, the
USAR algorithm performs similarly to others, reaching the highest driving speed before significant
traffic congestion sets in. However, in later stages, as congested vehicles become more difficult to
clear, the average driving speeds for all algorithms decline. The graph shows a continuous drop in
speed for the HAS algorithm post-peak, struggling to recover. The FTSC and ATSC algorithms face
challenges in promptly restoring smooth traffic flow during severe congestion on certain lanes,
resulting in an overall reduction of driving speed. While both the USAR and CSR algorithms manage
to enhance the overall driving speed in the latter part of the experiment, USAR achieves a quicker
return to high-speed driving.

Figure 7. Evaluation results of average maximum queue length under medium traffic flow.

Average occupancy: As depicted in Figure 9, the simulation experiment showcases the capability
of various algorithms in managing lane occupancy. Among the algorithms compared, the FTSC
algorithm exhibited the highest lane occupancy rate, peaking at approximately 42%, and later
decreased to around 37%. In contrast, the USAR algorithm proposed in this study demonstrated a
significant improvement; starting from the seventh traffic signal cycle, the peak occupancy rate
consistently declined to 22%. This suggests the USAR algorithm effectively ensures that no more
than a quarter of the lanes within an intersection are occupied, thereby improving vehicular
throughput. The area represented by the shaded region indicates that the USAR algorithm has the best
stability, especially in the latter stages of the experiment, where fluctuations are minimal. Although

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3860

the HAS and CSR algorithms adopted the same reward function design as the USAR algorithm, their
reliance on a traditional action space unrelated to states might have prevented optimal outcomes.
Meanwhile, despite sustaining a relatively stable lane occupancy rate provided by the HAS, CSR, and
FTSC algorithms, the overall level of congestion persisted at a high degree without any noticeable
hints of abatement.

Figure 8. Evaluation results of average travel speed under medium traffic flow.

Figure 9. Evaluation results of average lane occupancy under medium traffic flow.

6.3.3. Traffic demand study

To evaluate the adaptability of the proposed method under various traffic demand scenarios, this
study designed experiments using multiple types of traffic flows that conform to a normal distribution.
Among low, medium, and high traffic flow conditions, three optimization algorithms were compared.
As illustrated in Table 4, the experimental results show that the proposed method is superior to the other
two methods in each evaluation index. Particularly under high traffic flow conditions, the proposed
method USAR significantly improves the adaptability and effectively reduces key indicators such as
queue length and lane occupancy rates.

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3861

Table 4. Performance comparison of different methods under different input traffic flows.

Evaluation index
HAS CSR USAR

Low Medium High Low Medium High Low Medium High
Ave. Queue 54.30 68.14 79.44 41.33 55.10 63.47 35.30 39.53 51.20
Max. Queue 72.83 100.16 100.19 69.15 92.14 97.42 50.71 77.93 90.33
Ave. Occupancy 20.72 21.53 22.27 17.49 19.98 21.42 15.10 18.27 19.31
Ave. Speed 4.35 3.58 3.19 4.98 3.54 3.05 5.96 4.27 4.10

6.3.4. State representation study

Our work employs a 1-D array model to enhance the efficiency of training the TSC model. In
addition, we compared the effects of using 1-D array versus 2-D matrix for state representation. As
shown in Table 5, compared with the 1-D array approach, the performance of the 2-D matrix method
was improved by 5.93–11.3% in terms of the four metrics (e.g., average queue length, maximum queue
length, average occupancy, and speed), but the average training time of the 2-D matrix method was also
increased by 10.96%.

Table 5. Comparison of experimental results of different state representation methods.

Ave. Queue Max. Queue Ave. Speed Ave. Occupancy Ave. Training time(s)
1-D array 58.86 102.65 3.54 22.44 26321
2-D matrix 52.21 92.93 3.75 20.77 29206
Improvement(%) 11.30 9.47 5.93 7.44 −10.96

6.3.5. State composition study

In the proposed method, queuing vehicles (inner state) and moving vehicles (outer state) are
integrated into a comprehensive state representation framework, with a clear distinction made
between the priority weights of internal and external states on agent behavior. Table 6 demonstrates
the significant advantages of considering both queuing vehicles and moving vehicles as a unified state
over the traditional approach of only using queuing vehicles as the state representation. The results
indicate that, compared to conventional state design methods, our approach exhibits exceptional
performance across a wide array of evaluation metrics.

Table 6. Comparison of experimental results of different methods with different
states composition.

Evaluation index
Queue length-based method Proposed method

Low Medium High Low Medium High
Ave. Queue length 42.11 53.45 56.35 35.30 39.53 51.20
Max. Queue length 58.09 87.36 92.88 50.71 77.93 90.33
Ave. Lane occupancy 15.20 18.32 19.83 15.10 18.27 19.31
Ave. Speed 5.55 4.18 4.05 5.96 4.27 4.10

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3862

6.3.6. Ablation study

As shown in Table 7, ablation experiments were conducted on the USAR design approach and
compared with the traditional DDQN algorithm. The results from the table indicate that incorporating
the USAR design into the DDQN algorithm can effectively reduce queue lengths at intersections,
while also having a positive impact on driving speed and lane occupancy rates. Notably, when using
the negative sum of queue lengths as the reward function, the average queue length across multiple
experiments is consistent with the negative value of the reward. This demonstrates that the USAR-
based design methodology significantly enhances algorithm performance. As depicted in Figure 10,
incorporating residual connections into the DDQN algorithm greatly accelerates the convergence speed
and stability, whereas the traditional DDQN algorithm shows much greater volatility and only exhibits
signs of full convergence in the later stages.

Table 7. Average evaluation results across different algorithms.

Evaluation index DDQN DDQN+USAR Improvement(%) Proposed Improvement(%)
Ave. Queue 79.21 65.39 17.44 57.43 27.50
Max. Queue 116.88 109.76 6.09 105.45 9.78
Ave. Speed 3.67 3.77 2.72 4.01 9.26
Max. Speed 4.10 4.30 4.88 4.48 9.27
Ave. Occupancy 25.38 24.29 4.29 23.68 6.70
Ave. Reward −81.97 −66.08 19.39 −55.63 32.13
Max. Reward −69.5 −54.89 21.02 −46.78 32.69

Figure 10. The ablation experiment results for the two structures of the proposed method.

7. Conclusions and future work

For the intelligent TSC problem, a USAR design method based on the DDQN algorithm
framework is proposed. The proposed USAR algorithm defines the spatial distribution of vehicles at

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

3863

intersections as the state and uses a formula with weighted coefficients to unify the state and action,
enabling the agent to synchronize action selection with the perceived state from the environment.
Meanwhile, the vehicle spatial distributions used in the state representation are used as the reward
function, allowing the agent to adjust action selection strategies based on the reward values provided
by the environment. The goal is to maintain the consistency between the action, state, and reward
elements in the Markov process, significantly enhancing the interaction between the agent and the
environment. Within the framework of DDQN, a residual connection is used to strengthen the feature
correlation between input and output data, and the USAR design method mentioned earlier is jointly
trained with the entire algorithm. The simulation experiments conducted on single intersections under
different traffic flow show that the USAR algorithm outperforms existing single-intersection
algorithms in multiple indicators.

In future work, we will focus on the following improvements: 1) Introducing additional
elements (such as travel speed, lane occupancy, etc.) to define the representation of state and reward
functions, further enhancing the performance of the TSC algorithm in feature representation and
information interaction for signal control strategies. 2) Subsequent research will delve into
multi-agent signal control in multi-intersection networks, which will examine the cooperative
capabilities between multiple agents within multiple intersections, making the research more
practically relevant.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported in part by Zhejiang Provincial Natural Science Foundation of China under
Grant No. LTGS23F030002; by the Jiaxing Public Welfare Research Program No.2023AY11034;
by the National Natural Science Foundation of China under Grant No. 61603154; and by the Open
Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University,
China (No. ICT2022B52).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. B. Ye, S. Zhu, L. Li, W. Wu, Short-term traffic flow prediction at isolated intersections
based on parallel multi-task learning, Syst. Sci. Control Eng., 12 (2024), 1–17.
https://doi.org/10.1080/21642583.2024.2316160

2. M. J. Smith, T. Iryo, R. Mounce, K. Satsukawa, D. Watling, Zero-queue traffic control, using
green-times and prices together, Transp. Res. Part C: Emerging Technol., 138 (2022), 103630.
https://doi.org/10.1016/j.trc.2022.103630

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

http://dx.doi.org/https://doi.org/10.1080/21642583.2024.2316160
http://dx.doi.org/https://doi.org/10.1016/j.trc.2022.103630

3864

3. B. Ye, W. Wu, L. Li, W. Mao, A hierarchical model predictive control approach for signal splits
optimization in large-scale urban road networks, IEEE Trans. Intell. Transp. Syst., 17 (2016),
2182–2192. https://doi.org/10.1109/TITS.2016.2517079

4. H. Wang, J. Zhu, B. Gu, Model-based deep reinforcement learning with traffic inference for traffic
signal control, Appl. Sci., 13 (2023), 4010. https://doi.org/10.3390/app13064010

5. B. Ye, W. Wu, K. Ruan, L. Li, T. Chen, H. Gao, et al., A survey of model predictive
control methods for traffic signal control, IEEE/CAA J. Autom. Sin., 6 (2019), 623–640.
https://doi.org/10.1109/JAS.2019.1911471

6. B. B. Elallid, N. Benamar, A. S. Hafid, T. Rachidi, N. Mrani, A comprehensive survey on the
application of deep and reinforcement learning approaches in autonomous driving, J. King Saud
Univ.-Comput. Inf. Sci., 34 (2022), 7366–7390. https://doi.org/10.1016/j.jksuci.2022.03.013

7. B. Ye, W. Wu, W. Mao, A two-way arterial signal coordination method with
queueing process considered, IEEE Trans. Intell. Transp. Syst., 16 (2015), 3440–3452.
https://doi.org/10.1109/TITS.2015.2461493

8. X. Li, Webster sequences, apportionment problems, and just-in-time sequencing, Discrete Appl.
Math., 306 (2022), 52–69. https://doi.org/10.1016/j.dam.2021.09.020

9. T. Thunig, R. Scheffler, M. Strehler, K. Nagel, Optimization and simulation of fixed-time
traffic signal control in real-world applications, Proc. Comput. Sci., 151 (2019), 826–833.
https://doi.org/10.1016/j.procs.2019.04.113

10. C. Yu, W. Ma, X. Yang, A time-slot based signal scheme model for fixed-time
control at isolated intersections, Transp. Res. Part B: Methodol., 140 (2020), 176–192.
https://doi.org/10.1016/j.trb.2020.08.004

11. A. J. Calle-Laguna, J. Du, H. A. Rakha, Computing optimum traffic signal cycle length considering
vehicle delay and fuel consumption, Transp. Res. Interdiscip. Perspect., 3 (2019), 100021.
http://doi.org/10.1016/j.trip.2019.100021

12. M. Noaeen, A. Naik, L. Goodman, J. Crebo, T. Abrar, Z. S. H. Abad, et al., Reinforcement learning
in urban network traffic signal control: A systematic literature review, Expert Syst. Appl., 199
(2022), 116830. https://doi.org/10.1016/j.eswa.2022.116830

13. R. Bokade, X. Jin, C. Amato, Multi-agent reinforcement learning based on representational
communication for large-scale traffic signal control, IEEE Access, 11 (2023), 47646–47658.
https://doi.org/10.1109/ACCESS.2023.3275883

14. A. A. A. Alkhatib, K. A. Maria, S. AlZu’bi, E. A. Maria, Smart traffic scheduling for crowded
cities road networks, Egypt. Inf. J., 23 (2022), 163–176. https://doi.org/10.1016/j.eij.2022.10.002

15. M. R. T. Fuad, E. O. Fernandez, F. Mukhlish, A. Putri, H. Y. Sutarto, Y. A. Hidayat, et al., Adaptive
deep Q-network algorithm with exponential reward mechanism for traffic control in urban
intersection networks, Sustainability, 14 (2022), 14590. https://doi.org/10.3390/su142114590

16. S. Choi, D. Lee, S. Kim, S. Tak, Framework for connected and automated bus rapid
transit with sectionalized speed guidance based on deep reinforcement learning: Field
test in sejong city, Transp. Res. Part C: Emerging Technol., 148 (2023), 104049.
https://doi.org/10.1016/j.trc.2023.104049

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

http://dx.doi.org/https://doi.org/10.1109/TITS.2016.2517079
http://dx.doi.org/https://doi.org/10.3390/app13064010
http://dx.doi.org/https://doi.org/10.1109/JAS.2019.1911471
http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2022.03.013
http://dx.doi.org/https://doi.org/10.1109/TITS.2015.2461493
http://dx.doi.org/https://doi.org/10.1016/j.dam.2021.09.020
http://dx.doi.org/https://doi.org/10.1016/j.procs.2019.04.113
http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.08.004
http://dx.doi.org/http://doi.org/10.1016/j.trip.2019.100021
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.116830
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2023.3275883
http://dx.doi.org/https://doi.org/10.1016/j.eij.2022.10.002
http://dx.doi.org/https://doi.org/10.3390/su142114590
http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104049

3865

17. D. He, J. Kim, H. Shi, B. Ruan, Autonomous anomaly detection on traffic flow time series
with reinforcement learning, Transp. Res. Part C: Emerging Technol., 150 (2023), 104089.
https://doi.org/10.1016/j.trc.2023.104089

18. D. Li, F. Zhu, T. Chen, Y. D. Wong, C. Zhu, J. Wu, COOR-PLT: A hierarchical control model for
coordinating adaptive platoons of connected and autonomous vehicles at signal-free intersections
based on deep reinforcement learning, Transp. Res. Part C: Emerging Technol., 146 (2023),
103933, https://doi.org/10.1016/j.trc.2022.103933

19. I. Tunc, M. T. Soylemez, Fuzzy logic and deep Q learning based control for traffic lights,
Alexandria Eng. J., 67 (2023), 343–359. https://doi.org/10.1016/j.aej.2022.12.028

20. M. Gregurić, K. Kušić, E. Ivanjko, Impact of Deep Reinforcement Learning on Variable Speed
Limit strategies in connected vehicles environments, Eng. Appl. Artif. Intell., 112 (2022), 104850.
https://doi.org/10.1016/j.engappai.2022.104850

21. B. Liu, Z. Ding, A distributed deep reinforcement learning method for traffic light control,
Neurocomputing, 490 (2022), 390–399. https://doi.org/10.1016/j.neucom.2021.11.106

22. T. A. Haddad, D. Hedjazi, S. Aouag, A deep reinforcement learning-based cooperative approach
for multi-intersection traffic signal control, Eng. Appl. Artif. Intell., 114 (2022), 105019.
https://doi.org/10.1016/j.engappai.2022.105019

23. S. M. A. B. A. Islam, A. Hajbabaie, H. A. A. Aziz, A real-time network-level traffic signal control
methodology with partial connected vehicle information, Transp. Res. Part C: Emerging Technol.,
121 (2020), 102830. https://doi.org/10.1016/j.trc.2020.102830

24. A. Jaleel, M. A. Hassan, T. Mahmood, M. U. Ghani, A. U. Rehman, Reducing congestion in an
intelligent traffic system with collaborative and adaptive signaling on the edge, IEEE Access, 8
(2020), 205396–205410. https://doi.org/10.1109/ACCESS.2020.3037348

25. S. Bouktif, A. Cheniki, A. Ouni, H. El-Sayed, Deep reinforcement learning for traffic signal
control with consistent state and reward design approach, Knowl.-Based Syst., 267 (2023), 110440,
https://doi.org/10.1016/j.knosys.2023.110440

26. S. Bouktif, A. Cheniki, A. Ouni, Traffic signal control using hybrid action space deep
reinforcement learning, Sensors, 21 (2021), 2302. https://doi.org/10.3390/s21072302

27. B. Ye, P. Wu, W. Wu, L. Li, Y. Zhu, B. Chen, Q-learning based traffic signal control method
for an isolated intersection, in 2022 China Automation Congress (CAC), (2022), 6063–6068,
https://doi.org/10.1109/CAC57257.2022.10054839

28. Y. Gong, M. Abdel-Aty, Q. Cai, M. S. Rahman, Decentralized network level adaptive signal
control by multi-agent deep reinforcement learning, Transp. Res. Interdiscip. Perspect., 1 (2019),
100020. https://doi.org/10.1016/j.trip.2019.100020

29. J. Gu, Y. Fang, Z. Sheng, P. Wen, Double deep Q-network with a dual-agent for traffic signal
control, Appl. Sci., 10 (2020), 1622. https://doi.org/10.3390/app10051622

30. W. Ma, L. Wan, C. Yu, L. Zou, J. Zheng, Multi-objective optimization of traffic signals based
on vehicle trajectory data at isolated intersections, Transp. Res. Part C: Emerging Technol., 120
(2020), 102821. https://doi.org/10.1016/j.trc.2020.102821

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

http://dx.doi.org/https://doi.org/10.1016/j.trc.2023.104089
http://dx.doi.org/https://doi.org/10.1016/j.trc.2022.103933
http://dx.doi.org/https://doi.org/10.1016/j.aej.2022.12.028
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2022.104850
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.11.106
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2022.105019
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.102830
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3037348
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110440
http://dx.doi.org/https://doi.org/10.3390/s21072302
http://dx.doi.org/https://doi.org/10.1109/CAC57257.2022.10054839
http://dx.doi.org/https://doi.org/10.1016/j.trip.2019.100020
http://dx.doi.org/https://doi.org/10.3390/app10051622
http://dx.doi.org/https://doi.org/10.1016/j.trc.2020.102821

3866

31. A. Lopez, W. Jin, M. A. Al Faruque, Security analysis for fixed-time traffic control systems,
Transp. Res. Part B: Methodol., 139 (2020), 473–495. https://doi.org/10.1016/j.trb.2020.07.002

32. W. Lin, H. Wei, Cyber-physical models for distributed CAV data intelligence in support of self-
organized adaptive traffic signal coordination control, Expert Syst. Appl., 224 (2023), 120035.
https://doi.org/10.1016/j.eswa.2023.120035

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 6, 3843–3866.

http://dx.doi.org/https://doi.org/10.1016/j.trb.2020.07.002
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.120035
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Theoretical background and preliminaries
	Reinforcement learning
	Deep reinforcement learning

	Problem definition
	Environment
	Phase sequence of the signal
	Agent
	Queue of vehicles

	Proposed method
	State representation
	Reward function
	Action space
	Agent architecture

	Simulation experiment and discussion
	Simulation settings
	Intersection environment structure
	Traffic flow input
	Parametric and training settings

	Comparison approach
	Results and discussion
	Comparison of training results
	Comparison of evaluation results
	Traffic demand study
	State representation study
	State composition study
	Ablation study

	Conclusions and future work

