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Abstract: In this paper, we proposed a generalized mosquito-borne epidemic model with a general
nonlinear incidence rate, which was studied from both deterministic and stochastic insights. In the
deterministic model, we proved that the endemic equilibrium was globally asymptotically stable when
the basic reproduction number R0 was greater than unity and the disease free equilibrium was globally
asymptotically stable when R0 was lower than unity. In addition, considering the effect of environmental
noise on the spread of infectious diseases, we developed a stochastic model in which the infection rates
were assumed to satisfy the mean-reverting log-normal Ornstein-Uhlenbeck process. For this stochastic
model, two critical values, known as Rs

0 and RE
0 , were introduced to determine whether the disease will

persist or die out. Additionally, the exact probability density function of the stationary distribution near
the quasi-equilibrium point was obtained. Numerical simulations were conducted to validate the results
obtained and to examine the impact of stochastic perturbations on the model.

Keywords: mosquito-borne epidemic model; log-normal Ornstein-Uhlenbeck process; stationary
distribution; extinction; density function

1. Introduction

Mosquito-borne infectious diseases, a common type of vector-borne infections diseases, are primarily
caused by pathogens, which are transmitted from mosquitoes to humans or other animals [1]. Mosquitoes
are one of the most widely distributed vectors in the world, transmitting a variety of parasites and viruses.
While the vector organisms may not develop the disease themselves, they serve as a means for the
pathogen to spread among hosts. With mosquitoes found in various locations from tropical to temperate
zones, mosquito-borne infections have a wide and diverse geographic distribution [2]. Diseases such as
malaria, lymphatic filariasis, West Nile Virus, Zika virus, and dengue fever are commonly transmitted
by mosquitoes, with no specific vaccine or medication available for treatment. These diseases pose a
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significant threat to human health and socio-economic development worldwide.
Malaria is an infectious disease caused by a protozoan parasite that is mainly transmitted to humans

through the bite of a mosquito [3]. The disease is widespread in tropical and subtropical regions,
particularly in poorer areas of Africa, Asia, and Latin America. Globally, malaria remains a major public
health problem, resulting in millions of infections and hundreds of thousands of deaths annually. Apart
from malaria, as the classic mosquito-borne infectious disease, dengue fever also attracts considerable
attention. Dengue fever is a serious infectious disease caused by the dengue virus, primarily transmitted
to humans by the Aedes aegypti mosquito, but also through blood transfusion, organ transplantation,
and vertical transmission [4]. In addition, both yellow fever and West Nile disease are also caused by
mosquitoes carrying the corresponding viral infections [5, 6]. Yellow fever is a rare disease among U.S.
travelers. Conversely, West Nile virus is the primary mosquito-borne disease in the continental U.S.,
commonly transmitted through the bite of an infected mosquito.

Research on mosquito-borne diseases has proliferated [7–10]. Mathematical models have been
increasingly used for experimental and observational studies of different biological phenomena, and a
wide range of techniques and applications have been developed to study epidemic diseases. For example,
Newton and Reiter [8] developed a deterministic Susceptibility, Exposure, Infection, Resistance, and
Removal (SEIR) model of dengue transmission to explore the behavior of epidemics and realistically
reproduce epidemic transmission in immunologically unmade populations. Moreover, Pandey et al. [9]
proposed a Caputo fractional order derivative mathematical model of dengue disease to study the
transmission dynamics of the disease and to make reliable conclusions about the behavior of dengue
epidemics. In addition, in order to investigate the effect of the vector on the dynamics of the disease,
Shi and Zhao et al. [10] proposed a differential system with saturated incidence to model a vector-borne
disease 

˙S H = µK + dIH − µS H − ( β̄1IV
1+η1IV

+
β̄2IH

1+η2IH
)S H,

İH = ( β̄1IV
1+η1IV

+
β̄2IH

1+η2IH
)S H − (d + µ + γ)IH,

ṘH = γIH − µRH,

Ṡ V = Λ −
β3IHS V
1+η3IH

− mS V ,

İV =
β3IHS V
1+η3IH

− mIV ,

(1.1)

the biological significance of the model (1.1) parameters are shown in Table 1. In this model, there are
two populations, namely mosquito vector population and human host population. The mosquito vector
population is divided into two categories, S V and IV , and N = S V + IV , while human host population is
divided into three categories, S H, IH and RH. According to [10], it is reasonable to assume that the total
number of human K = S H + IH + RH is a positive constant.

Obviously, we can get that there always exists a compact positively invariant set for model (1.1) as
follows

Γ0 =

{
(S H, IH,RH, S V , IV) ∈ R5

+ : S H + IH + RH ≤ K, S V + IV ≤
Λ

m

}
. (1.2)

The incidence rate has various forms and plays an important role in the study of epidemic dynamics.
In addition to the saturated incidence used in model (1.1) of this paper, other forms of the incidence rate
have been widely used. For example, Chong, Tchuenche, and Smith [11] studied a mathematical model
of avian influenza with half-saturated incidence rate S bIb

Hb+Ib
, S H Ia

Ha+Ia
and S hIm

Hm+Im
. In addition, Li et al. [12]

also carried out numerical analysis of friteral order pine wilt disease model with bilinear incidence rate
S hIv and IhS v. In order to make the model (1.1) have wider research significance and apply to more
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infectious diseases, we consider replacing the saturated incidence rate with the general incidence rate
ϕ1(IV), ϕ2(IH) and ϕ3(IH), and then give the epidemic model with the general incidence as follows

˙S H = µ(K − S H) − β̄1ϕ1(IV)S H − β̄2ϕ2(IH)S H + dIH,

İH = β̄1ϕ1(IV)S H + β̄2ϕ2(IH)S H − ωIH,

ṘH = γIH − µRH,

Ṡ V = Λ − β3Φ3(IH)S V − mS V

İV = β3ϕ3(IH)S V − mIV .

(1.3)

Furthermore, the incidence rate in model (1.3) are assumed to meet the following conditions
(A1) ϕ1(0) = ϕ2(0) = ϕ3(0) = 0,
(A2) ϕ

′

1(IV) ≥ 0, ϕ
′

2(IH) ≥ 0, ϕ
′

3(IH) ≥ 0,∀ IV , IH ≥ 0,
(A3) 0 ≤ ( IV

ϕ1(IV ) )
′

≤ m0, 0 ≤ ( IH
ϕ2(IH) )

′

≤ m0, 0 ≤ ( IH
ϕ3(IH) )

′

≤ m0, where m0 is a positive constant.
By looking at the model (1.3), the following equation is valid, dN

dt = Λ − mN, that indicates,
N(t) → Λ

m as t → ∞. Note that S H + IH + RH = K, S V + IV =
Λ
m , this means that RH = K − S H − IH,

S V =
Λ
m − IV , let ω = d + µ + γ, thus the host population and pathogen population system are equivalent

to the following system
˙S H = µ(K − S H) − β̄1ϕ1(IV)S H − β̄2ϕ2(IH)S H + dIH,

İH = β̄1ϕ1(IV)S H + β̄2ϕ2(IH)S H − ωIH,

İV = β3ϕ3(IH)(Λm − IV) − mIV .

(1.4)

Table 1. Variables and parameters in model (1.1).

Variables and Parameters Description
S H number of the susceptible human host
IH number of the infected human host
RH number of the recovered human host
K sum of the total human host
S V density of the susceptible mosquito vectors
IV density of the infected mosquito vectors
N sum of the total mosquito vectors density
β̄1 biting rate of an infected vector on the susceptible human
β̄2 infection incidence between infected and susceptible hosts
β3 infection ratio between infected hosts and susceptible vectors
η1 determines the level at which the force of infection saturates
η2 determines the level at which the force of infection saturates
η3 determines the level at which the force of infection saturates
γ the conversion rate of infected hosts to recovered hosts
µ natural death rate of human
Λ birth or immigration of human
m natural death rate of mosquito vectors
d disease-induced mortality of infected hosts
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Noise is ubiquitous in real life, and the spread of infectious diseases will inevitably be affected by the
environment and other external factors. With the unpredictable environment, some key parameters in the
infectious disease model are inevitably affected by external environmental factors. Therefore, in order
to more accurately describe the transmission process, we use a stochastic model to describe and predict
the epidemic trend of diseases. For the perturbation term of the parameter, two methods are commonly
used, including linear function of Gaussian noise and mean-reverting stochastic process [13–17]. For
Gaussian noise, when the time interval is very small, the variance of the parameter will become infinite,
indicating that the parameter has changed greatly in a short time, which is unreasonable [18]. So we
mainly consider the mean-reverting Ornstein–Uhlenbeck process. Let βi(i = 1, 2) take the following
form

dβi(t) = αi(β̄i − βi(t))dt + σidBi(t), (1.5)

where αi represent the speed of reversal and σi represent the intensity of fluctuation. Solve the Eq (1.5),
we can get

βi(t) = e−αitβi(0) + β̄i(1 − e−αit) + σi

∫ t

0
e−αi(t−s)dBi(s),

where βi(0) is the initial value of βi(t). For arbitrary initial value βi(0), βi(t) follows a Gaussian
distribution βi(t) ∼ N(β̄i,

σ2
i

2αi
) (t → ∞). Furthermore, setting βi(0) = β̄i, then the average value of βi(t)

satisfies

β̄i(t) =
1
t

∫ t

0
βi(s)ds = β̄i +

1
t

∫ t

0

σi

αi
(1 − eαi(s−t))dBi(s),

it is known that the mathematical expectation and variance of βi(t) are β̄i and σ
2
i t
3 + O(t2), respectively,

where O(t2) is the higher order infinitesimal of t2. Obviously, the variance becomes zero instead of
infinity as t → 0. This shows the universality of the Ornstein–Uhlenbeck process. Moreover, in order
to ensure the positivity of the parameter values after adding the perturbation, the log-normal Ornstein-
Uhlenbeck process for the noise perturbation to the transmission rates β1 and β2 of the system (1.4) is
used, then following stochastic model is obtained

dS H(t) = [µ(K − S H(t)) − β1ϕ1(IV(t))S H(t) − β2(t)ϕ2(IH(t))S H(t) + dIH(t)]dt,
dIH(t) = [β1(t)ϕ1(IV(t))S H(t) + β2(t)ϕ2(IH(t))S H(t) − ωIH(t)]dt,
dIV(t) = [β3ϕ3(IH(t))(Λm − IV(t)) − mIV(t)]dt,
d log β1(t) = α1(log β̄1 − log β1(t))dt + σ1dB1(t),
d log β2(t) = α2(log β̄2 − log β2(t))dt + σ2dB2(t).

(1.6)

In this paper, we extend the saturated incidence rate of model (1.1) to the general incidence ϕ1(IV),
ϕ2(IH) and ϕ3(IH) to obtain models (1.3) and (1.4), and investigate the global asymptotic stability of the
equilibrium point of model (1.3). Furthermore, we choose to modify the parameter β1 and β2 to satisfy
the log-normal Ornstein-Uhlenbeck process to obtain the stochastic model (1.6), and study its stationary
distribution, exponential extinction, probability density function near the quasi-equilibrium point and
other dynamic properties.

The rest of this article is organized as follows. In Section 2, some necessary mathematical symbols
and lemmas are introduced. In Section 3, some conclusions of deterministic model (1.3) are obtained and
the global stability of equilibrium point in this model is proved. In Section 4, we obtain some theoretical
results for the stochastic system (1.6) where we prove the existence of a unique global positive solution
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for the stochastic system (1.6). In addition, through the ergodic properties of parameters βi(t), i = 1, 2
and the construction of a series of suitable Lyapunov functions, sufficient criterion for the existence
of stationary distribution is obtained, which indicates that the disease in the system will persist. Next,
we have sufficient conditions for the disease to go extinct. Further, we solve the corresponding matrix
equation to obtain an expression for the probability density function near the quasi-local equilibrium
point of the stationary distribution. Next, in Section 5, some theoretical results are verified by several
numerical simulations. Finally, several conclusions are given in Section 6.

2. Preliminaries

To make it easier to understand, denote Rn
+ =

{
(y1, y2, ...yn) ∈ Rn|y j > 0, 1 ≤ j ≤ n

}
. In represents

the n-dimensional unit matrix. IA denotes the indicator function of set A, and it means that when
x ∈ A, IA = 1, otherwise, IA = 0. If A is a matrix or vector, then AT stands for its inverse matrix, and A−1

stands for its inverse matrix.

Lemma 2.1. (Itô’s formula [19]) Consider the n-dimensional stochastic differential equation

dx(t) = f (t)dt + g(t)dB(t), (2.1)

where B(t) = (B1(t), B2(t), ..., Bn(t)) and it represents n-dimensional Brownian motion defined on a
complete probability space, let L act on a function V ∈ C2,1(Rn × R+; R), then we have

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(t)dB(t), a.s.,

where

LV(x(t), t) = Vt(x(t), t) + Vx(x(t), t) f (t) +
1
2

trace(gT (t)Vxx(x(t), t)g(t)),

it represents the differential operator,and

Vt =
∂V
∂t
,Vx = (

∂V
∂x1
, ...,
∂V
∂xn

),Vxx = (
∂2V
∂xix j

)n×n.

Lemma 2.2. (Ma et al. [20]) Letting ϕ(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ + an is the characteristic
polynomial of the square matrix A, the matrix A is called a Hurwitz matrix if and only if all characteristic
roots of A are negative real parts, that is equivalent to the following conditions being true

Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2k−1

1 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 1 a2 · · · a2k−4
...
...
... · · ·

...

0 0 0 · · · ak

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

k = 1, 2, · · · , n, among them j > n, replenishing definition a j = 0.
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Lemma 2.3. ( [21]) For five-dimension algebraic equation G2
0 + LΘ+ΘLT = 0, where Θ is a symmetric

matrix, G0 = diag(1, 0, 0, 0, 0) and

L =


−l1 −l2 −l3 −l4 −l5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −l6

 .
If l1 > 0, l2 > 0, l3 > 0, l4 > 0 and l1l2l3 − l2

3 − l2
1l4 > 0, then the symmetric matrix Θ is a positive

semi-definite matrix. Thus, we have

Θ =


l1l4−l2l3

l 0 l3
l 0 0

0 −
l3
l 0 l1

l 0
l3
l 0 − l1

l 0 0
0 l1

l 0 l3−l1l2
ll4

0
0 0 0 0 0

 ,
where l = 2(l4l2

1 − l1l2l3 + l2
3).

Lemma 2.4. ( [22, 23]) For n-dimension stochastic process (1.6), X(t) ∈ Rn and its initial value
X(0) ∈ Rn, if there is a bounded closed domain U in Rn with a regular boundary and

lim inf
t→+∞

1
t

∫ t

0
P(τ, X(0),U)dτ > 0, a.s.,

in which P(τ, X(0),U) represents the transition probability of X(t), then X(t) has an invariant probability
measure on Rn, then it admits at least one stationary distribution.

3. Theoretical results for model (1.3)

In this section, we focus on the local stability of the equilibrium point of the deterministic model (1.3).
Initially, we verify the existence and uniqueness of equilibria model (1.3). We can calculate the basic
reproduction number of the deterministic model (1.3) by the next generation method [24], define

F =
(
β̄2ϕ

′

2(0)K β̄1ϕ
′

1(0)K
0 0

)
,V =

(
ω 0

−
β3Λϕ

′

3(0)
m m

)
,

therefore, the next generation matrix is

FV−1 =

(
β̄2Kϕ

′

2(0)
ω
+
β̄1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2ω

β̄1ϕ
′

1(0)K
m

0 0

)
,

then, the basic reproduction number for system (1.3) is obtained

R0 = ρ(FV−1) =
β̄2Kϕ

′

2(0)
ω

+
β̄1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2ω

.

Based on the key value of the basic reproduction number R0, the conditions for the existence of local
equilibrium point for the model (1.3) can be found.
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Theorem 3.1. The disease-free equilibrium E0 of model (1.3) is E0 = (S H0, 0, 0, S V0, 0) =
(K, 0, 0, Λm , 0) which always exists. If R0>1, there is a unique local equilibrium E∗ =
(S ∗H, I∗H, R∗H, S ∗V , I∗V).

After finding the conditions for the existence of the equilibrium point of model (1.3), next we verify
that the global stability of equilibria.

Theorem 3.2. (i) If R0<1, the disease-free equilibrium point E0 is globally asymptotically stable. If
R0>1, E0 is unstable. (ii) If R0>1, the endemic equilibrium point E∗ is globally asymptotically stable.

Remark 3.2 The global stability of E0 in this theorem can be referred to the method in the literature [10].
By constructing a series of suitable Lyapunov functions, we prove the global stability of E∗.

4. Theoretical results for model (1.6)

Initially, we verify that the stochastic model (1.6) has a unique global positive solution. This provides
preparation for the dynamic behavior of the model. For model (1.6), it is easy to see that

Γ =

{
(S H, IH, IV , β1, β2) ∈ R5

+ : S H + IH < K, IV <
Λ

m

}
is the positive invariant set, and the subsequent research will be discussed in Γ.

Theorem 4.1. For any initial value (S H(0), IH(0), IV(0), β1(0), β2(0)) ∈ Γ, there exists a unique solution
(S H(t), IH(t), IV(t), β1(t), β2(t)) of system (1.6) and the solution will remain in Γ with probability one
(a.s.).

The stationary distribution of stochastic model (1.6) plays a key role in regulating the dynamics
of disease and analyzing the sustainable development of disease. Next, sufficient conditions for the
existence of stationary distribution will be obtained. We define

Rs
0 =
β̃2Kϕ

′

2(0)
ω

+
β̃1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2ω

,

where

β̃1 = β̄1e
σ2

1
20α1 , β̃2 = β̄2e

σ2
2

12α2 .

Theorem 4.2. If Rs
0 > 1, then stochastic system (1.6) has a stationary distribution.

Remark 4.2 The Theorem 4.2 is proved by constructing the Lyapunov functions. It is observed that
when Rs

0 > 1, a stationary distribution exists and the disease will be endemic for a long period of time.
Furthermore, disease propagation and extinction are two major areas of research in stochastic system

dynamics. After establishing the conditions under which a disease reaches a stable state, it is also
essential to understand the conditions under which the disease becomes extinct. In addition, we discuss
the sufficient condition for disease extinction in the model (1.6), define

RE
0 = R0 +

mR0(e
σ2

1
α1 − 2e

σ2
1

4α1 + 1)
1
2 + ϕ

′

2(0)Kβ̄2(e
σ2

2
α2 − 2e

σ2
2

4α2 + 1)
1
2

min{m, β̄2ϕ
′

2(0)K
R0
}

.
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Theorem 4.3. If RE
0 < 1, then the disease of the system (1.6) will become exponentially extinct with

probability 1.

Remark 4.3 Theorem 4.3 gives the sufficient condition for the exponential extinction of diseases IH, IV .
From the expressions of Rs

0 and RE
0 , the relationships Rs

0 ≥ R0 and RE
0 ≥ R0 are deduced, and the equal

sign holds if and only if σ1 = σ2 = 0.
Additionally, the density function of a continuous distribution is essential to understanding a stochas-

tic system, making the precise determination of its expression a crucial challenge. Through the matrix
analysis method, we have successfully derived the expression for the probability density function in
the vicinity of the equilibrium point for model (1.6). Linearize the model (1.6) before calculate the
probability density function. Define a quasi-endemic equilibrium point P∗ = (S ∗H, I

∗
H, I

∗
V , log β∗1, log β∗2),

it satisfies 
µK − µS ∗ − β1ϕ1(I∗V)S ∗H − β2ϕ2(I∗H)S ∗ + dI∗H = 0,
β1ϕ1(I∗V)S ∗H + β2ϕ2(I∗H)S ∗ − ωI∗H = 0,
β3ϕ3(I∗H)(Λm − I∗V) − mI∗V = 0,
α1(log β̄1 − log β∗1) = 0,
α2(log β̄2 − log β∗2) = 0.

(4.1)

Let (z1, z2, z3, x1, x2)T = (S H − S ∗H, IH − I∗H, IV − I∗V , log β1 − log β∗1, log β2 − log β∗2)T , then system (4.1)
can be linearized around P∗ as follows

dz1 = [−a11z1 − a12z2 − a13z3 − a14x1 − a15x2]dt,
dz2 = [a21z1 − a22z2 + a13z3 + a14x1 + a15x2]dt,
dz3 = [a32z2 − a33z3]dt,
dx1 = −a44x1dt + σ1dB1(t),
dx2 = −a55x2dt + σ2dB2(t),

(4.2)

where a11 = µ + β̄1ϕ1(I∗V) + β̄2ϕ2(I∗H), a12 = β̄2ϕ
′

2(I∗H)S ∗H − d, a13 = β̄1ϕ
′

1(I∗V)S ∗H, a14 = β̄1ϕ1(I∗V)S ∗H,
a15 = β̄2ϕ2(I∗H)S ∗H, a21 = β̄1ϕ1(I∗V) + β̄2ϕ2(I∗H), a22 = ω − β̄2ϕ

′

2(I∗H)S ∗H, a32 = β3ϕ
′

3(I∗H)(Λm − I∗V), a33 =

β3ϕ3(I∗H) + m, a44 = α1, a55 = α2. Apparently, ai j > 0.
By denoting

A =


−a11 −a12 −a13 −a14 −a15

a21 −a22 a13 a14 a15

0 a32 −a33 0 0
0 0 0 −a44 0
0 0 0 0 −a55

 , G =


0

0
0
σ1

σ2

 ,

B(t) = (0, 0, 0, B1(t), B2(t))T , Z(t) = (z1, z2, z3, x1, x2)T .

Then system (4.1) can be expressed as

dZ(t) = AZ(t)dt +GdB(t), (4.3)

then, the solution of (4.3) can be calculated as

X(t) = eAtX(0) +
∫ t

0
eA(t−s)GdB(t),
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since
∫ t

0 eA(t−s)GdB(t) obeys a normal distribution N(0, Σ̂(t)) at time t, where Σ̂(t) =∫ t
0 eA(t−s)GGT eAT (t−s)ds, then, we can get X(t) ∼ N(eAtX(0), Σ̂(t)).

First, we need to verify that matrix A is Hurwitz matrix [25], the characteristic polynomial of A can
be obtained as follows

φA(λ) =

∣∣∣∣∣∣∣∣∣∣
λ + a11 a12 a13 a14 a15

−a21 λ + a22 −a13 −a14 −a15

0 −a32 λ + a33 0 0
0 0 0 λ + a44 0
0 0 0 0 λ + a55

∣∣∣∣∣∣∣∣∣∣
= (λ + a44) (λ + a55)

∣∣∣∣∣∣
λ + a11 a12 a13

−a21 λ + a22 −a23

0 −a32 λ + a33

∣∣∣∣∣∣ .

Obviously there are λ1 = −a44, λ2 = −a55, other characteristic roots can also be found with negative real
part according to Section 3. Therefore, matrix A is a Hurwitz matrix by Lemma 2.2. According to the
stability theory of zero solution to the general linear equation [20], we have

lim
t→+∞

eAtX(0) = 0,

Σ ≜ lim
t→+∞
Σ̂ = lim

t→+∞

∫ t

0
eA(t−s)GGT eAT (t−s)ds =

∫ +∞
0

eAT tG2eAtdt.

Based on the solution of Gardiner [26], it follows

G2 + AΣ + ΣAT = 0. (4.4)

Second, we will solve the Eq (4.4) to get the exact expression of probability density function near the
quasi-endemic equilibrium.

Theorem 4.4. For any initial value (S H(0), IH(0), IV(0), β1(0), β2(0)) ∈ Γ, if R0 > 1 and m−µ+β3ϕ3(I∗H) >
0, then the stationary distribution of stochastic system (1.6) near the P∗ approximately admits a normal
probability density function as follows

Φ(S H, IH, IV , log β1, log β2)

=(2π)−
5
2 |Σ|−

1
2 exp[−

1
2

(S H − S ∗H, IH − I∗H, IV − I∗V , log β1 − log β̄1, log β2 − log β̄2)

Σ−1(S H − S ∗H, IH − I∗H, IV − I∗V , log β1 − log β̄1, log β2 − log β̄2)T ].

The exact expression of covariance matrix Σ is shown in the proof.

Remark 4.4 In Theorem 4.4, by defining the quasi-endemic equilibrium P∗, we derive an exact expres-
sion of probability density function of the stationary distribution around a quasi-positive equilibrium
P∗.

5. Numerical simulations and conclusions

In order to illustrate the above theoretical results, we perform several numerical simulations in
this section. Consider bilinear incidence rate ϕ1(IV) = IV , ϕ2(IH) = IH, ϕ3(IH) = IH, letting xi(t) =
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log βi(t) − log β̄i, i = 1, 2, then according to the method in [27], the following is the corresponding
discretized equation for the system (1.6)

S j+1
H = S j

H + [µ(K − S j
H) − β̄1ex j

1 I j
VS j

H + β̄2ex j
2 I j

HS j
H + dI j

H]∆t,
I j+i

H = I j
H + [β̄1ex j

1 I j
VS j

H + β̄2ex j
2 I j

HS j
H − ωI j

H]∆t,
I j+1
V = I j

V + [β3I j
H(Λm − I j

V) − mI j
V]∆t,

x j+1
1 = x j

1 − α1x j
1∆t + σ1

√
∆tξ1, j +

σ2
1

2 (ξ2
1, j − 1)∆t,

x j+1
2 = x j

2 − α2x j
2∆t + σ2

√
∆tξ2, j +

σ2
2

2 (ξ2
2, j − 1)∆t,

let ξi, j be random variables that follow a Gaussian distribution N(0, 1) for i = 1, 2 and j = 1, 2, ..., n.
The time interval is denoted by ∆t > 0. The values (S j

H, I
j
H, I

j
V , x

j
1, x

j
2) correspond to the j-th iteration of

the discretization equation.

5.1. Simulations for stationary distirbution and extinction

First and foremost, taking into consideration the importance of parameter selection, rationality, and
the visual effectiveness of theoretical results, we choose the following appropriate parameters, referring
to [10, 28, 29], and denoted them as Number 1

µ = 0.05,K = 100, β̄1 = 0.15, β̄2 = 0.1, β3 = 0.1, ω = 0.8, d = 0.5,

γ = 0.25,Λ = 5,m = 0.5, α1 = 0.8, α2 = 0.8, σ1 = 0.1, σ2 = 0.1,

after calculation, we can get m − µ + β3I∗H = 2.0391 > 0 and the indexes of deterministic system and
stochastic system can be obtained respectively, as shown below

R0 =
β̄2K
ω
+
β̄1β3Λk

m2ω
= 50 > 1, Rs

0 =
β̃2K
ω
+
β̃1β3Λk

m2ω
= 50.0365 > 1,

which satisfies the condition in Theorem 4.2. More importantly, we can calculate the quasi-endemic
equilibrium and the covariance matrix Σ, which have the following forms

(S ∗H, I∗H, I∗V , log β∗1, log β∗2) = (4.6565, 15.8906, 7.6066, log 0.15, log 0.1),

Σ =


0.0529 −0.0377 −0.0038 −0.0093 −0.0130
−0.0377 0.0352 0.0031 0.0072 0.0100
−0.0038 0.0031 0.0004 0.0006 0.0008
−0.0093 0.0072 0.0006 0.0062 0
−0.0130 0.0100 0.0008 0 0.0062

 .
Therefore, we can get that the solution (S H(t), IH(t), IV(t), β1(t), β2(t)) obeys the normal density function

Φ(S H, IH, IV , β1, β2) ∼ N((4.6565, 15.8906, 7.6066, 0.15, 0.1)T ,Σ).

The marginal density functions are as follows

ΦS H = 1.7345e−9.4518(S H−4.6565)2
, ΦIH = 2.1264e−14.2045(IH−15.8906)2

, ΦIV = 19.9471e−1250(IV−7.6066)2
.
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Using the above parameters, we can get trajectories of S H(t), IH(t) and IV(t) respectively, which
are present in Figure 1. It is used to represent the variation of the solution (S H(t), IH(t), IV(t)) in the
deterministic model (1.4) and the stochastic model (1.6). Frequency histograms and marginal density
function curves for S H(t), IH(t) and IV(t) are also given in the right column of the Figure 1.

In addition, the frequency fitted density functions and the marginal density functions for S H(t), IH(t)
and IV(t) are given in Figure 2, respectively, which are highly consistent. Therefore, we deduce that
the solutions (S H(t), IH(t), IV(t)) have a smooth distribution and their density functions follow a normal
distribution. As we can see, the disease eventually spreads, which is consistent with Theorem 4.2.

0 1 2 3 4 5 6 7 8 9 10

Time t 105

3

3.5

4

4.5

5

5.5

S
H

(t
)

Stochastic system

Deterministic system

3.5 4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

V
a

lu
e

Frequency histogram and probability density curve of S(t)

0 1 2 3 4 5 6 7 8 9 10

Time t 105

15

15.5

16

16.5

17

17.5

IH
(t

)

Stochastic system

Deterministic system

14.5 15 15.5 16 16.5 17
0

0.5

1

1.5

2

2.5

V
a

lu
e

Frequency histogram and probability density curve of I(t)

0 1 2 3 4 5 6 7 8 9 10

Time t 105

7.5

7.55

7.6

7.65

7.7

7.75

IV
(t

)

Stochastic system

Deterministic system

7.4 7.45 7.5 7.55 7.6 7.65 7.7 7.75 7.8
0

5

10

15

20

25

V
a

lu
e

Frequency histogram and probability density curve of Y(t)

Figure 1. The left and right columns show the trajectories of the solutions (S H(t), IH(t), IV(t))
of the stochastic and deterministic systems under perturbations σ1 = 0.1, σ2 = 0.1, as well as
histograms of the solutions and the marginal density functions, respectively.

On the other hand, we select that a part of parameters are shown below, and the remaining parameters
are consistent with Number 1, β̄1 = 0.015, β̄2 = 0.001, β3 = 0.015. These are denoted as Number 2. The
crucial value RE

0 takes the form

RE
0 = R0 + (e

σ2
1
α1 − 2e

σ2
1

4α1 + 1)
1
2 +

Kβ̄2

m
(e
σ2

2
α2 − 2e

σ2
2

4α2 + 1)
1
2 = 0.7986 < 1

which satisfies the condition in Theorem 4.3. Figure 3 represents the trajectory of the solution
(S H(t), IH(t), IV(t)), and it is clearly visible that the eventual trend of the disease is towards extinc-
tion.

Electronic Research Archive Volume 32, Issue 6, 3777–3818.



3788

3.5 4 4.5 5 5.5 6 6.5

SH(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Histogram fitting curve

Margin density function

14.5 15 15.5 16 16.5 17

IH(t)

0

0.5

1

1.5

2

2.5

Histogram fitting curve

Margin density function

7.4 7.5 7.6 7.7 7.8

IV(t)

0

5

10

15

20

25

Histogram fitting curve

Margin density function

Figure 2. The frequency fitting density functions and marginal density functions of S H(t), IH(t)
and IV(t), respectively.
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Figure 3. The trajectory of solution (S H(t), IH(t), IV(t)) under the condition RE
0 < 1.
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Figure 4. The left panel shows the trajectories of the solution (S H(t), IH(t), IV(t)) in the
stochastic model (1.6) for Rs

0 > 1, and the right panel shows the trajectories of the solutions of
the stochastic model (1.6) for RE

0 < 1.

Further, by choosing the parameters in Numbers 1 and 2, respectively, the left panel in Figure 4
satisfies the condition Rs

0 > 1 and the right panel satisfies RE
0 < 1. It can be seen that the disease

exhibits a trend towards stabilization and extinction as conditions Theorems 4.2 and 4.3 are satisfied,
respectively.

5.2. The effect of noise on stochastic epidemic model

Now, we study the effect of perturbations for a mosquito-borne epidemic model. Assuming that all
parameters take the values in Number 1, we choose different reversion speed α and volatility intensity
σ to plot the graphs, respectively. Taking α1 = α2 = 0.8 and different volatility intensity as shown in
the Figure 5, the icons are red line σi = 0.05, blue line σi = 0.1 and green line σi = 0.15, i = 1, 2,
the trends of the solution (S H(t), IH(t), IV(t)) of the stochastic model (1.6) are represented by the figure.
It shows that the fluctuation decrease as the volatility intensity decreases. Then, we set the volatility
intensity σ1 = σ2 = 0.1, the reversion speed αi = 0.1 as shown by the red line in the figure, the blue
line shows αi = 1.0, and similarly, the green line indicates αi = 1.5, i = 1, 2, then the same insightful
changes in Figure 6 indicate that the fluctuation decreases with the increase of the reversion speed.

Further, we make the rest of the parameter assumptions consistent with Numbers 1 and 2, respectively,
except for the the volatility intensity and reversion speed. Figures 7 and 8 depict the trends of R0,Rs

0,

and RE
0 under different volatility intensity and different reversion speed, respectively, and the range of

the two variables we choose is [0, 1]. Combining the information in the two figures, it can be concluded
that higher reversion speed and lower volatility intensity can make RE

0 and Rs
0 smaller.
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Figure 5. Trajectory plots of the solution (S H(t), IH(t), IV(t)) of the stochastic model (1.6) at
the reversion speed αi = 0.8, i = 1, 2 and different volatility intensity is shown in the icon with
the red line σ1 = σ2 = 0.05, the blue line σ1 = σ2 = 0.1 and the green line σ1 = σ2 = 0.15.
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Figure 6. Trajectory plots of the solution (S H(t), IH(t), IV(t)) of the stochastic model (1.6) at
the volatility intensity σi = 0.1, i = 1, 2 and different reversion is shown in the icon with the
red line α1 = α2 = 0.1, the blue line α1 = α2 = 1 and the green line α1 = α2 = 1.5.
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Figure 7. Trend plots of R0,Rs
0, and RE

0 at fixed reversion speed α1 = α2 = 0.8 and volatility
intensity σ1 ∈ [0.01, 1], σ2 = 0.1. The rest of the parameter values in the left figure are
consistent with those in Number 1, and the rest of the parameter values in the right figure are
consistent with those in Number 2.
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Figure 8. Trend plots of R0,Rs
0, and RE

0 at fixed volatility intensity σ1 = σ2 = 0.1 and
reversion speed α1 ∈ [0.01, 1], α2 = 0.8. The rest of the parameter values in the left figure are
consistent with those in Number 1, and the rest of the parameter values in the right figure are
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Figure 9. Color plot of the trend of RE
0 and Rs

0 with variables (α1, σ1) ∈ [0.5, 0.6] ×
[0.005, 0.09], with the rest of the parameters consistent with those in Number 1.

Next, we continue to discuss the effects of reversion speed α and volatility intensity σ on Rs
0 and RE

0
and their magnitude relationships under different conditions.

(i) Assuming that α1, σ1 are the variables, and the other parameters are consistent with Number 1,
The Figure 9 shows the three-dimensional chromatograms of Rs

0 and RE
0 , which are consistent with the

results of Figures 7 and 8, where Rs
0 increases with increasing σ1, and decreases with increasing α1.

This indicates that the disease stabilizes as the reversion speed decreases or volatility intensity increases.
In addition, it can be seen that both Rs

0 and RE
0 are greater than 1 and RE

0 is greater than Rs
0 in the range

where α1 belongs to [0.5, 0.6] and σ1 belongs to [0.005, 0.09];
(ii) Conditionally the same as in (i), we set the other parameters are consistent with Number 2, it

is noted that RE
0 increases with the increase of σ1 and decreases with the increase of α1 in Figure 10,

implying that the diseases in the stochastic model (1.6) tend to become extinct when the volatility
intensity decreases. Moreover, in the parameter range of the plot, both Rs

0 and RE
0 are less than 1, and RE

0
is greater than Rs

0.

5.3. The mean first passage time

Next, we will discuss the mean first passage time, the moment a stochastic process first transitions
from one state to another is termed the first passage time (FPT ) [30]. The mean first passage time
(MFPT ) is then defined as the average of these first passage times [31]. Starting with an initial value of
(S H(0), IH(0), IV(0)), we aim to examine the time it takes for the system to evolve from this initial state
to either a stationary state (MFPT1) or to an extinction state (MFPT2).
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Figure 10. Color plot of the trend of RE
0 and Rs

0 with variables (α1, σ1) ∈ [0.5, 0.6] ×
[0.005, 0.09], with the rest of the parameters consistent with those in Number 2.
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Figure 11. The mean first passage time for transitioning from the initial state values
(S H(0), IH(0), IV(0)) = (3, 1, 1) to the state of stationary with σi ∈ [0.01, 0.1], αi = 4, 5, 6, i =
1, 2. The other fixed parameter values are consistent with those in Number 1.
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Figure 12. The mean first passage time for transitioning from the initial state values
(S H(0), IH(0), IV(0)) = (5, 200, 10) to the state of extinction with σi ∈ [0.01, 0.1], αi =

0.1, 0.15, 0.2, i = 1, 2. The other fixed parameter values are consistent with those in Number 2.

Then we define τ1 as the FPT from the initial state to the persistent state, and τ2 as the FPT from
the initial state to the extinct state

τ1 = inf
{

t : S H < S ∗H, IH > I∗H, IV > I∗V
}
,

τ2 = inf {t : IH0 < 0.0001, IV0 < 0.0001} .

Then we have
MFPT1 = E(τ1), MFPT2 = E(τ2).

Using Monte Carlo numerical simulation method, if S H(n∆t) < S ∗H, IH(n∆t) > I∗H, IV(n∆t) > I∗V , then
τ1 = n∆t, assuming that the number of simulations is N, then

MFPT1 =

∑N
i=1 ni∆t

N
.

Similarly, if IH0 < 0.0001 and IV0 < 0.0001, then τ2 = m∆t and

MFPT2 =

∑N
i=1 ni∆t

N
.

Here, we set N = 2000, σi and αi, i = 1, 2 are random variables. Figures 11 and 12 depict the relationship
between MFPT1 and MFPT2 and the speed of reversion αi and the volatility intensity σi, i = 1, 2 in
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stochastic system (1.6) with the bilinear incidence rate, respectively. Figure 11 reveals the values of
MFPT1 with N = 2000, σi ∈ [0.01, 0.1] and αi = 4, 5, 6, i = 1, 2, respectively. It shows that MFPT1

decreases with decreasing reversion speed αi or increasing voltility intensity σi, implying that the
disease is much easier to arrive the stable state. Similarly, Figure 12 shows the trend of MFPT2 at
N = 2000, σi ∈ [0.01, 0.1] and αi = 0.1, 0.15, 0.2. Through the figure it can be noted that MFPT2

increases with αi decrease and σi increase.

6. Conclusions

We mainly develop a stochastic model, coupled with the general incidence rate and Ornstein-
Uhlenbeck process, to study the dynamic of infectious disease spread, which includes the stationary
distribution and probability density function. In view of our analysis, we can draw the following
conclusions

(i) For the deterministic epidemic model, two equilibria and the basic reproduction number R0 are
obtained, and their global asymptotic stability are deduced. Specificaly, the endemic equilibrium is
globally asymptotically stable if R0 > 1, and the disease free equilibrium is globally asymptotically
stable if R0 < 1 .

(ii) Considering that the spread of infectious disease is inevitably affected by environmental pertur-
bations, we propose a stochastic model with general incidence and the Ornstein-Uhlenbeck process.
By constructing a series of appropriate Lyapunov functions, the stationary distribution of model (1.6)
is derived and we establish the sufficient criterion for the existence of the extinction. Specifically, the
innovation of this paper is that we obtain a precise expression of the distribution around its quasi-positive
equilibrium P∗ by solving a difficult five-dimensional matrix equation, which is quite challenging.

(iii) We also verify some conclusions of this paper by several numerical simulations.
• When Rs

0 > 1, i.e., the parameters satisfy the condition of Theorem 4.2, we obtain trajectory
plots of the solutions of the deterministic model (1.4) and the stochastic model (1.6), as well as the
corresponding frequency histograms and edge density functions, and as shown in Figures 1 and 2, the
disease eventually persists. This provides some verification of Theorem 4.2 of the theoretical results.
• Also, from Figure 3, we can further find that when RE

0 < 1, the population strengths decrease with
time and eventually converge to zero, which implies extinction of the disease. Figure 4 also further
illustrates these points. The theoretical result of Theorem 4.3 is visualized through Figures 3 and 4.
• In addition, we also investigate the effect of perturbations and give Figures 5 and 6 to depict the

effect of trends with different reversion speed and different volatility intensity. It can be seen that the
fluctuation decreases as the volatility intensity decrease and the reversion speed increase.
• Then, correlation plots of Rs

0, RE
0 with reversion speed and volatility intensity are obtained in

Figures 7–10. We conculde that higher reversion speed and lower volatility intensity can make RE
0 and

Rs
0 more smaller.
• Finally, Figures 11 and 12 visually demonstrate the relationship between MFPT and the αi and

σi, i = 1, 2 in a stochastic system (1.6) with bilinear incidence. We can see that if voltility intensity σi

is much bigger (or the reversion speed αi is much smaller), then the disease is more easier to arrive the
stable state. This is consistent with the results of the above conclusions.
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Appendix A. Proof of the Theorem 3.1

Proof. The equilibria of system (1.3) satisfy
µ(K − S H) − β̄1ϕ1(IV)S H − β̄2ϕ2(IH)S H + dIH = 0,
β̄1ϕ1(IV)S H + β̄2ϕ2(IH)S H − ωIH = 0,
γIH − µRH = 0,
Λ − β3Φ3(IH)S V − mS V = 0,
β3ϕ3(IH)S V − mIV = 0.

(A.1)

Notice that
RH = K − S H − IH, S V =

Λ

m
− IV ,
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and we have 
µ(K − S H) − β̄1ϕ1(IV)S H − β̄2ϕ2(IH)S H + dIH = 0,
β̄1ϕ1(IV)S H + β̄2ϕ2(IH)S H − ωIH = 0,
β3ϕ3(IH)(Λm − IV) − mIV = 0.

(A.2)

Obviously E0 = (S H0, 0, 0, S V0, 0) = (K, 0, 0, Λm , 0) always exists.
On the other hand, we have 

S H = K − (1 + γ
µ
)IH,

IV =
β3ϕ3(IH)Λ

m2+mβ3ϕ3(IH)

IH =
β̄1ϕ1(IV )S H

ω
+
β̄2ϕ2(IH)S H

ω
.

Therefore, IH ∈ [0, µK
µ+γ

], let

H(IH) =
β̄1ϕ1(IV)S H

ω
+
β̄2ϕ2(IH)S H

ω
− IH,

then by calculation, H(0) = 0,H( µK
µ+γ

) = − µK
µ+γ
< 0, and

H
′

(IH) =
β̄1ϕ

′

1(IV)S H

ω

m2β3ϕ
′

3(IH)Λ
(m2 + mβ3ϕ3(IH))2 − (1 +

γ

µ
)
β̄1ϕ1(IV)
ω

+
β̄2ϕ

′

2(IH)S H

ω
− (1 +

γ

µ
)
β̄2ϕ2(IH)
ω

− 1.

If R0 > 1, then

H
′

(0) =
β̄2Kϕ

′

2(0)
ω

+
β̄1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2ω

− 1 = R0 − 1 > 0,

H
′

(
µK
µ + γ

) = −(1 +
γ

µ
)[
β̄1ϕ1(IV( µK

µ+γ
))

ω
+
β̄2ϕ2( µK

µ+γ
)

ω
] − 1 < 0,

therefore, there exists a point ξ such that H
′

(IH) > 0 on
[
0, ξ) and H

′

(IH) < 0 on
(
ξ, µK
µ+γ

]
, i.e., H(IH) is

monotonically increasing on
[
0, ξ) and monotonically decreasing on

(
ξ, µK
µ+γ

]
.

Hence, there is a unique I∗H ∈ (0, µK
µ+γ

) such that H(I∗H) = 0, which implies that when R0 > 1,
system (1.4) has a unique endemic equilibrium E∗ = (S ∗H, I

∗
H,R

∗
H, S

∗
V , I
∗
V). This completes the proof. □

Appendix B. Proof of the Theorem 3.2

Proof. (i) Through calculation, Jacobian matrix of model (1.3) is obtained as follows

J(S H, IH,RH, S V IV)

=


−µ − β̄1ϕ1(IV) − β̄2ϕ2(IH) d − β̄2ϕ

′

2(IH)S H 0 0 −β̄1ϕ
′

1(IV)S H

β̄1ϕ1(IV) + β̄2ϕ2(IH) β̄2ϕ
′

2(IH)S H − ω 0 0 β̄1ϕ
′

2(IV)S H

0 γ −µ 0 0
0 −β3Φ

′

3(IH)S V 0 −β3Φ
′

3(IH) − m 0
0 β3Φ

′

3(IH)S V 0 β3Φ3(IH) −m

 .
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Substituting E0 into the matrix J to get J0

J0 =


−µ d − β̄2Kϕ

′

2(0) 0 0 −β̄1ϕ
′

1(0)K
0 β̄2ϕ

′

2(0)K − ω 0 0 β̄1ϕ
′

1(0)K
0 γ −µ 0 0
0 −Λmβ3ϕ

′

3(0) 0 −m 0
0 Λ

mβ3ϕ
′

3(0) 0 0 −m

 ,
the corresponding characteristic polynomial is as follows

ϕJ0(λ) = (λ + µ)(λ + µ)(λ + m)(λ + m)(λ + (ω − β̄2Φ
′

2(0))),

obviously, if R0 < 1, then ω − β̄2Φ
′

2(0) > 0, according to the Routh-Hurwitz criterion, there are only
negative real part characteristic roots, so the disease-free equilibrium E0 is locally asymptotically stable.

If R0 > 1, then ω − β̄2Φ
′

2(0) < 0, this indicates that J0 has the eigenvalue of the positive real part, so
the disease-free equilibrium E0 is unstable.

Next we prove the global attractiveness of E0, define

V = S H − K − K log
S H

K
+ IH + S V −

Λ

m
−
Λ

m
log

mS V

Λ
+ IV ,

Using Itô’s formula for the above equation, we get

LV =µK + dIH − µS H − β̄1Φ1(IV)S H − β̄2Φ2(IH)S H −
µK2

S H
−

dIHK
S H

+ β̄1Φ1(IV)K + β̄2Φ2(IH)K + µK + β̄1Φ1(IV)S H + β̄2Φ2(IH)S H − ωIH

+ Λ − β3Φ3(IH)S V − mS V −
Λ2

mS V
+ β3Φ3(IH)

Λ

m
+ Λ + β3Φ3(IH)S V − mIV

≤2µK + dIH − µS H −
µK2

S H
−

dIHK
S H

+ β̄1Φ
′

1(0)IV K + β̄2Φ
′

2(0)IHK − ωIH

− mS V −
Λ2

mS V
+ β3Φ

′

3(0)IH
Λ

m
+ 2Λ − mIV ,

according to the method in [10], it is easy to see that S H → K as t → ∞, S V →
Λ
m as t → ∞, and

IH, IV → 0 as t → ∞. Then, LV ≤ 0 and equal to 0 when it takes E0. Therefore, according to the
LaSalle invariance principle, we conclude that when R0 < 1, E0 is globally asymptotically stable.

(ii) According to the method in [32], the positive equilibrium point E∗ of the model (1.3) satisfies the
following system of equations

µK = µS ∗H +
(
β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H − dI∗H,(

β̄1Φ1(I∗V) + β̄2Φ2(I∗H)
)

S ∗H = ωI∗H,
γI∗H = µR

∗
H,

Λ = β3Φ3(I∗H)S ∗V + mS ∗V ,
β3Φ3(I∗H)S ∗V = mI∗V .

(A.3)

Define
V1 = S H − S ∗H − S ∗Hlog

S H

S ∗H
+ IH − I∗H − I∗Hlog

IH

I∗H
,

Electronic Research Archive Volume 32, Issue 6, 3777–3818.



3801

after calculation

d(−S ∗HlogS H
S ∗H

)

dt
=S ∗H

(
−
µK
S H
+ µ + β̄1Φ1(IV) + β̄2Φ2(IH) −

dIH

S H

)
=S ∗H

(
−

(
µ + β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H − dI∗H

S H
+ µ + β̄1Φ1(IV) + β̄2Φ2(IH) −

dIH

S H

)

=S ∗H

(
−

(
µ + β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H

S H
+ β̄1Φ1(I∗V)

Φ1(IV)
Φ1(I∗V)

+ β̄2Φ2(I∗H)
Φ2(IH)
Φ2(I∗H)

)
+ µS ∗H(1 −

S ∗H
S H

) +
S ∗H
S H

(dI∗H − dIH),

d(−I∗Hlog IH
I∗H

)

dt
= − β̄1Φ1(I∗V)S ∗H

S HΦ1(IV)I∗H
S ∗HΦ1(I∗V)IH

− β̄2Φ2(I∗H)S ∗H
S HΦ2(IH)I∗H
S ∗HΦ2(I∗H)IH

+ ωI∗H,

d(S H + IH)
dt

=µK − µS H + dIH − ωIH

=
(
µ + β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H − dI∗H − µS H + dIH −

(
β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H

I∗H
IH

=µS ∗H(1 −
S ∗H
S H

) +
(
β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H(1 −

IH

I∗H
) − d(I∗H − IH),

then we have

dV1

dt
=µS ∗H(1 −

S ∗H
S H

) +
(
β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H(1 −

IH

I∗H
) − d(I∗H − IH) + ωI∗H

+ S ∗H

(
−

(
µ + β̄1Φ1(I∗V) + β̄2Φ2(I∗H)

)
S ∗H

S H
+ β̄1Φ1(I∗V)

Φ1(IV)
Φ1(I∗V)

+ β̄2Φ2(I∗H)
Φ2(IH)
Φ2(I∗H)

)
+ µS ∗H(1 −

S ∗H
S H

) +
S ∗H
S H

(dI∗H − dIH) − β̄1Φ1(I∗V)S ∗H
S HΦ1(IV)I∗H
S ∗HΦ1(I∗V)IH

− β̄2Φ2(I∗H)S ∗H
S HΦ2(IH)I∗H
S ∗HΦ2(I∗H)IH

=µS ∗H(2 −
S ∗H
S H
−

S H

S ∗H
) + β̄1Φ1(I∗V)S ∗H

[
Φ1(IV)
Φ1(I∗V)

−
S ∗H
S H
−

S HΦ1(IV)I∗H
S ∗HΦ1(I∗V)IH

−
IH

I∗H
+ 3
]

+ β̄2Φ2(I∗H)S ∗H

[
Φ2(IH)
Φ2(I∗H)

−
S ∗H
S H
−

S HΦ2(IH)I∗H
S ∗HΦ2(I∗H)IH

−
IH

I∗H
+ 3
]
− dI∗H(1 −

S ∗H
S H

)(1 −
I∗H
IH

)

≤µS ∗H(2 −
S ∗H
S H
−

S H

S ∗H
) + β̄1Φ1(I∗V)S ∗H

[
Φ1(IV)
Φ1(I∗V)

− log
S ∗H
S H
− log

S HΦ1(IV)I∗H
S ∗HΦ1(I∗V)IH

−
IH

I∗H

]
+ β̄2Φ2(I∗H)S ∗H

[
Φ2(IH)
Φ2(I∗H)

− log
S ∗H
S H
− log

S HΦ2(IH)I∗H
S ∗HΦ2(I∗H)IH

−
IH

I∗H

]
= − µ

(S H − S ∗H)2

S H
+ β̄1Φ1(I∗V)S ∗H

[
Φ1(IV)
Φ1(I∗V)

− log
I∗HΦ1(IV)
IHΦ1(I∗V)

−
IH

I∗H

]
+ β̄2Φ2(I∗H)S ∗H

[
Φ2(IH)
Φ2(I∗H)

− log
I∗HΦ2(IH)
IHΦ2(I∗H)

−
IH

I∗H

]
.

Electronic Research Archive Volume 32, Issue 6, 3777–3818.



3802

Similarly, define

V2 = S V − S ∗V − S ∗V log
S V

S ∗V
+ IV − I∗V − I∗V log

IV

I∗V
,

the same can be obtained

dV2

dt
=mS ∗V(1 −

S V

S ∗V
) + β3Φ3(I∗H)S ∗V(1 −

IV

I∗V
) + β3Φ3(I∗H)S ∗V

(
−

S ∗V
S V
+
Φ3(IH)
Φ3(I∗H)

)
+ mS ∗V(1 −

S ∗V
S V

) − β3S ∗VΦ3(I∗H)
I∗VS VΦ3(I∗H)
IVS ∗VΦ3(IH)

+ β3S ∗VΦ3(I∗H)

=mS ∗V(1 −
S V

S ∗V
−

S ∗V
S V

) + β3S ∗VΦ3(I∗H)
[
Φ3(IH)
Φ3(I∗H)

−
S ∗V
S V
−

I∗VS VΦ3(I∗H)
IVS ∗VΦ3(IH)

−
IV

I∗V
+ 2
]

≤ − mS ∗V
(S V − S ∗V)2

S V
+ β3S ∗VΦ3(I∗H)

[
Φ3(IH)
Φ3(I∗H)

− log
I∗VΦ3(I∗H)
IVΦ3(IH)

−
IV

I∗V

]
.

Next, define

V3 = V1 +
β̄1Φ1(I∗V)S ∗H
β̄3Φ3(I∗H)S ∗V

V2,

we can get

dV3

dt
≤ − µS ∗H

(S H − S ∗H)2

S H
−

mβ̄1Φ1(I∗V)S ∗H
β̄3Φ3(I∗H)

+ β̄2Φ2(I∗H)S ∗H

[
Φ2(IH)
Φ2(I∗H)

− log
I∗HΦ2(IH)
IHΦ2(I∗H)

−
IH

I∗H

]
+ β̄1Φ1(I∗V)S ∗H

[
Φ1(IV)
Φ1(I∗V)

− log
I∗HΦ1(IV)
IHΦ1(I∗V)

−
IH

I∗H
+
Φ3(IH)
Φ3(I∗H)

− log
I∗VΦ3(I∗H)
IVΦ3(IH)

−
IV

I∗V

]
≤ − µS ∗H

(S H − S ∗H)2

S H
−

mβ̄1Φ1(I∗V)S ∗H
β̄3Φ3(I∗H)

+ β̄2Φ2(I∗H)S ∗H

[
Φ2(IH)
Φ2(I∗H)

+
IHΦ2(I∗H)
I∗HΦ2(IH)

−
IH

I∗H
− 1
]

+ β̄1Φ1(I∗V)S ∗H

[
Φ1(IV)
Φ1(I∗V)

+
IVΦ1(I∗V)
I∗VΦ1(IV)

−
IV

I∗V
− 1 +

IHΦ3(I∗H)
I∗HΦ3(IH)

+
Φ3(IH)
Φ3(I∗H)

−
IH

I∗H
− 1
]
,

by the condition (A2) and (A3), we can know

Φ1(IV)
Φ1(I∗V)

+
IVΦ1(I∗V)
I∗VΦ1(IV)

−
IV

I∗V
− 1 =

IV

Φ1(IV)Φ1(I∗V)

[
(Φ1(IV) − Φ1(I∗V))(

Φ1(IV)
IV

−
Φ1(I∗V)

I∗V
)
]
≤ 0,

Φ2(IH) and Φ3(IH) similarly satisfy the structure of the above equation, combined with S H and S V are
bounded, we finally get

dV3

dt
≤ −
µ

K
(S H − S ∗H)2 −

m2

Λ

β̄1Φ1(I∗V)S ∗H
β̄3Φ3(I∗H)S ∗V

(S V − S ∗V)2.

Next, we define

V4 =
(S H − S ∗H + IH − I∗H)2

2
, V5 =

(RH − R∗H)2

2
, V6 =

(S V − S ∗V + IV − I∗V)2

2
,

similarly calculated

dV4

dt
= − µ(S H − S ∗H)2 − (d + γ)(IH − I∗H)2 − ω(S H − S ∗H)(IH − I∗H)
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≤ − µ(S H − S ∗H)2 − (d + γ)(IH − I∗H)2 +
(d + γ)

2
(IH − I∗H)2 +

ω2

2(d + γ)
(S H − S ∗H)2

≤
ω2

2(d + γ)
(S H − S ∗H)2 −

(d + γ)
2

(IH − I∗H)2,

and

dV5

dt
= γ(IH − I∗H)(RH − R∗H) − µ(RH − R∗H)2 ≤ −

µ

2
(RH − R∗H)2 +

γ2

2µ
(IH − I∗H)2,

and
dV6

dt
= − m(S V − S ∗V)2 − m(IV − I∗V)2 − 2m(S V − S ∗V)(IV − I∗V)

= − m(S V − S ∗V)2 − m(IV − I∗V)2 +
m
2

(IV − I∗V)2 + 2m(S V − S ∗V)2

≤m(S V − S ∗V)2 −
m
2

(IV − I∗V)2.

Finally, define
V = V3 + A1V4 + A2V5 + A3V6,

then

dV
dt
≤ − (

µ

K
− A1

ω2

2(d + γ)
)(S H − S ∗H)2 − (

d + γ
2

A1 −
γ2

2µ
A2)(IH − I∗H)2 −

µ

2
A2(RH − R∗H)2

− (
m2

Λ

β̄1Φ1(I∗V)S ∗H
β̄3Φ3(I∗H)S ∗V

− A3m)(S V − S ∗V)2 −
m
2

A3(IV − I∗V)2,

take

A1 =
µ(d + γ)

Kω2 , A2
γ2

µ
=

d + γ
2

A1, A3 =
m2

Λ

β̄1Φ1(I∗V)S ∗H
2mβ̄3Φ3(I∗H)S ∗V

,

we get

dV
dt
≤ −

µ

2K
(S H − S ∗H)2 −

d + γ
4

A1(IH − I∗H)2 −
µ

2
A2(RH − R∗H)2

−
m2

Λ

β̄1Φ1(I∗V)S ∗H
2β̄3Φ3(I∗H)S ∗V

(S V − S ∗V)2 −
m
2

A3(IV − I∗V)2,

the proof is done. □

Appendix C. Proof of the Theorem 4.1

Proof. It is obvious that the coefficients of the system is locally Lipschitz continuous, so there is a unique
local solution (S H(t), IH(t), IV(t), β1(t), β2(t)) on t ∈ [0, τe), where τe represents explosion time. To show
that the solution is global, according to the method in [33], we just need to verify that τe = +∞ a.s..

Choose k0 be a sufficiently large integer for every component of (S H(0), IH(0), IV(0), β1(0), β2(0))
within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time as

τk = inf
{

t ∈ [0, τe) |min(S H(t), IH(t), IV(t), β1(t), β2(t)) ≤
1
k

or max(S H(t), IH(t), IV(t), β1(t), β2(t)) ≥ k
}
.
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It can be seen that τk is monotonically increasing with respect to k. Then define inf{∅} = +∞ and
τ∞ = limt→+∞ τk. It is clearly visible that the solution is global due to the fact that τ∞ < τe a.s., τ∞ = ∞
leading to τe = ∞. Next, we will prove τ∞ = ∞ by the contradiction method. Assuming τ∞ < +∞ a.s.,
then there are ε0 ∈ (0, 1) and T > 0 such that P(τ∞ ≤ T ) > ε, so there is a positive integer k1 > k0 that
makes

P(τk ≤ T ) ≥ ε, ∀k ≥ k1.

Define a non-negative C2-function V(S H, IH, IV , β1, β2) as follows

V =S H − 1 − log S H + IH − 1 − log IH + IV − 1 − log IV + (K − S H − IH) − 1 − log(K − S H − IH)

+ (
Λ

m
− IV) − 1 − log(

Λ

m
− IV) + β1 − 1 − log β1 + β2 − 1 − log β2.

Applying Itô’s formula to V , then we can get

LV =µ(K − S H) − β1ϕ1(IV)S H − β2ϕ2(IH)S H + dIH −
µK
S H
+ µ + β1ϕ1(IV) + β2ϕ2(IH) −

dIH

S H

+ β1ϕ1(IV)S H + β2ϕ2(IH)S H − ωIH −
β1ϕ1(IV)S H

IH
−
β2ϕ2(IH)S H

IH
+ ω

+ β3ϕ3(IH)(
Λ

m
− IV) − mIV − β3ϕ3(IH)

Λ

mIV
+ β3ϕ3(IV) + m

+
1

Λ
m − IV

(β3ϕ3(IH)(
Λ

m
− IV) − mIV) − β3ϕ3(IH)(

Λ

m
− IV) + mIV

+
1

K − (S H + IH)
(µ(K − S H) + (d − ω)IH) − µ(K − S H) − (d − ω)IH

+ β1(α1 log β̄1 − α1 log β1 +
1
2
σ2

1) − α1(log β̄1 − log β1)

+ β2(α2 log β̄2 − α2 log β2 +
1
2
σ2

2) − α2(log β̄2 − log β2)

≤µK + dIH + µ + β1ϕ1(IV) + β2ϕ2(IH) + ω +
Λ

m
β3ϕ3(IH) + m + 2β3ϕ3(IH) + µ + γIH

+ β1(α1 log β̄1 − α1 log β1 +
1
2
σ2

1) − α1(log β̄1 − log β1)

+ β2(α2 log β̄2 − α2 log β2 +
1
2
σ2

2) − α2(log β̄2 − log β2).

By the conditionA3, we can know that

ϕ1(IV) ≤ ϕ
′

1(0)IV , ϕ2(IH) ≤ ϕ
′

2(0)IH, ϕ3(IH) ≤ ϕ
′

3(0)IH,

then, we obtain

LV ≤µK + 2µ + ω + m + β1ϕ
′

1(0)IV + [β2ϕ
′

2(0) +
Λ

m
β3ϕ

′

3(0) + 2β3ϕ
′

3(0) + γ]IH

+ β1(α1 log β̄1 − α1 log β1 +
1
2
σ2

1) − α1(log β̄1 − log β1)

+ β2(α2 log β̄2 − α2 log β2 +
1
2
σ2

2) − α2(log β̄2 − log β2)
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≤µK + 2µ + ω + m + β1ϕ
′

1(0)
Λ

m
+ [β2ϕ

′

2(0) +
Λ

m
β3ϕ

′

3(0) + 2β3ϕ
′

3(0) + γ]K

+ β1(α1 log β̄1 − α1 log β1 +
1
2
σ2

1) − α1(log β̄1 − log β1)

+ β2(α2 log β̄2 − α2 log β2 +
1
2
σ2

2) − α2(log β̄2 − log β2)

:=H(β1, β2).

It’s easy to see H(β1, β2)→ −∞ as β1 → +∞, β1 → 0, β2 → +∞, β2 → 0, so there’s a positive constant
H0 that makes LV ≤ H0. Integrating on both sides and taking the expectation, then

0 ≤ EW (S H (τk ∧ T ) , IH (τk ∧ T ) , IV (τk ∧ T ) , β1 (τk ∧ T ) , β2 (τk ∧ T ))

= EW (S H(0), IH(0), IV(0), β1(0), β2(0)) + E
∫ τn∧T

0
LV (S H(τ), IH(τ), IV(τ), β1(τ), β2(τ)) dτ

≤ EV (S H(0), IH(0), IV(0), β1(0), β2(0)) + H0T.

One gets that for any ζ ∈ Gk, W (S H (τk, ζ) , IH (τk, ζ) , IV (τk, ζ) , β1 (τk, ζ) , β2 (τk, ζ)) will larger than(
ek − 1 − k

)
∧
(
e−k − 1 + k

)
, so

EW (S H(0), IH(0), IV(0), β1(0), β2(0)) + H0T

≥ EW (S H (τk ∧ T ) , IH (τk ∧ T ) , IV (τk ∧ T ) , β1 (τk ∧ T ) , β2 (τk ∧ T ))

≥ E
[
IGk(ζ)W (S H (τk ∧ T ) , IH (τk ∧ T ) , IV (τk ∧ T ) , β1 (τk ∧ T ) , β2 (τk ∧ T ))

]
≥ P (Gk(ζ)) W (S H (τk, ζ) , IH (τk, ζ) , IV (τk, ζ) , β1 (τk, ζ) , β2 (τk, ζ))

≥ ε0
[(

ek − 1 − k
)
∧
(
e−k − 1 + k

)]
.

Since k is an arbitrary constant, it can be contradictory by making k → +∞

+∞ ≤ EV (S H(0), IH(0), IV(0), β1(0), β2(0)) + H0T < +∞.

Therefore τ∞ = +∞ a.s., i.e., τe = +∞. Then system (1.6) has a unique global solution
(S H(t), IH(t), IV(t), β1(t), β2(t)) on Γ. □

Appendix D. Proof of the Theorem 4.2

Proof. The theorem will be proved next in the following two steps.
Step 1. Construct Lyapunov functions
Using Itô’s formula, we obtain

L(− log S H) = −
µK
S H
+ µ + β1ϕ1(IV) + β2ϕ2(IH) −

dIH

S H
,

L(− log IH) = −
β1ϕ1(IV)S H

IH
−
β2ϕ2(IH)S H

IH
+ ω,

L(− log IV) = −
Λ

m
β3ϕ3(IH)

1
IV
+ β3ϕ3(IH) + m.
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Define a function V1 = − log IH−c1 log S H−c2 log S H−c3 log IV , where c1, c2, c3 are given in subsequent
calculation. Using Itô’s formula, then

LV1 = −
β1ϕ1(IV)S H

IH
−
β2ϕ2(IH)S H

IH
+ ω −

c1µK
S H
+ c1µ + c1β1ϕ1(IV) + c1β2ϕ2(IH) −

c1dIH

S H

−
c2µK
S H
+ c2µ + c2β1ϕ1(IV) + c2β2ϕ2(IH) −

c2dIH

S H
− c3
Λ

m
β3ϕ3(IH)

1
IV
+ c3β3ϕ3(IH) + c3m

− c4
IV

ϕ1(IV)
+ c4

1
ϕ
′

1(0)
+ c4(

IV

ϕ1(IV)
−

1
ϕ
′

1(0)
) − c5

IH

ϕ3(IH)
+ c5

1
ϕ
′

3(0)
+ c5(

IH

ϕ3(IH)
−

1
ϕ
′

3(0)
)

− c6
IH

ϕ2(IH)
+ c6

1
ϕ
′

2(0)
+ c6(

IH

ϕ2(IH)
−

1
ϕ
′

2(0)
).

By the conditionA3, notice that

(
IV

ϕ1(IV)
)
′

=

IV
ϕ1(IV ) −

1
ϕ1(IV )

IV
≤ m0,

which can deduce

IV

ϕ1(IV)
−

1
ϕ
′

1(0)
≤ m0IV , (A.4)

similarly, one gets

IH

ϕ2(IH)
−

1
ϕ
′

2(0)
≤ m0IH,

IH

ϕ3(IH)
−

1
ϕ
′

3(0)
≤ m0IH. (A.5)

Combining (A.4) and (A.5), we have

LV1 ≤ − 5 5

√
c1c3c4c5β1β3µK

Λ

m
+ c1µ + c3m + c4

1
ϕ
′

1(0)
+ c5

1
ϕ
′

3(0)
− 3 3
√

c2c6β2µK

+ c2µ + c6
1
ϕ
′

2(0)
+ ω + c1β1ϕ

′

1(0)IV + c1β2ϕ
′

2(0)IH + c3β3ϕ
′

3(0)IH + c2β1ϕ
′

1(0)IV

+ c2β2ϕ
′

2(0)IH + c4m0IV + (c5 + c6)m0IH

= − 5 5

√
c1c3c4c5β̃1β3µK

Λ

m
+ c1µ + c3m + c4

1
ϕ
′

1(0)
+ c5

1
ϕ
′

3(0)
− 3 3
√

c2c6β̃2µK

+ c2µ + c6
1
ϕ
′

2(0)
+ ω + c1β1ϕ

′

1(0)IV + c1β2ϕ
′

2(0)IH + c3β3ϕ
′

3(0)IH + c2β1ϕ
′

1(0)IV

+ c2β2ϕ
′

2(0)IH + c4m0IV + (c5 + c6)m0IH + 5( 5

√
c1c3c4c5β̃1β3µK

Λ

m
−

5

√
c1c3c4c5β1β3µK

Λ

m
)

+ 3( 3
√

c2c6β̃2µK −
3
√

c2c6β2µK).

Let c1, c2, c3, c4, c5 and c6 satisfy the following equalities

c1µ = c3m = c4
1
ϕ
′

1(0)
= c5

1
ϕ
′

3(0)
=
β̃1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2 ,
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c2µ = c6
1
ϕ
′

2(0)
= β̃2Kϕ

′

2(0),

then

LV1 ≤ −
β̃1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2 − β̃2Kϕ

′

2(0) + ω + (c1 + c2)ϕ
′

2(0)β2IH + c3ϕ
′

3(0)β3IH

+ (c1 + c2)ϕ
′

1(0)β1IV + c4m0IV + (c5 + c6)m0IH

+ 5( 5

√
c1c3c4c5β̃1β3µK

Λ

m
−

5

√
c1c3c4c5β1β3µK

Λ

m
) + 3( 3

√
c2c6β̃2µK −

3
√

c2c6β2µK)

= − ω(Rs
0 − 1) + (c1 + c2)ϕ

′

2(0)β2IH + c3ϕ
′

3(0)β3IH + (c1 + c2)ϕ
′

1(0)β1IV + c4m0IV + (c5 + c6)m0IH

+ 5( 5

√
c1c3c4c5β̃1β3µK

Λ

m
−

5

√
c1c3c4c5β1β3µK

Λ

m
) + 3( 3

√
c2c6β̃2µK −

3
√

c2c6β2µK),

where

Rs
0 =
β̃1β3ΛKϕ

′

1(0)ϕ
′

3(0)
m2ω

+
β̃2Kϕ

′

2(0)
ω

.

By Holder inequality, for any positive constant δ, the following equations are true

β1IV ≤ (δβ2
1 +

1
4δ

)IV ≤ δβ
2
1
Λ

m
+

IV

4δ
=
Λ

m
δβ̄1

2e
σ2

1
α1 +

IV

4δ
+
Λ

m
δ(β2

1 − β̄1
2e
σ2

1
α1 ),

β2IH ≤ (δβ2
2 +

1
4δ

)IH ≤ δβ
2
2K +

IH

4δ
= Kδβ̄2

2e
σ2

2
α2 +

IH

4δ
+ Kδ(β2

2 − β̄2
2e
σ2

2
α2 ).

If take δ to be

δ =
ω
2 (Rs

0 − 1)

( β̄1β3µKϕ
′

1(0)ϕ′3(0)
µm2 +

β̄2Kϕ′2(0)
µ

)(ϕ′2(0)Kβ̄2
2e
σ2

2
α2 + ϕ

′

1(0)Λm β̄1
2e
σ2

1
α1 )
,

then we can get

LV1 ≤ − ω(Rs
0 − 1) + (c1 + c2)ϕ

′

2(0)Kδβ̄2
2e
σ2

2
α2 + (c1 + c2)ϕ

′

2(0)
IH

4δ
+ c3ϕ

′

3(0)β3IH

+ (c1 + c2)ϕ
′

1(0)
Λ

m
δβ̄1

2e
σ2

1
α1 + (c1 + c2)ϕ

′

1(0)
IV

4δ
+ c4m0IV + (c5 + c6)m0IH

+ (c1 + c2)ϕ
′

2(0)Kδ(β2
2 − β̄2

2e
σ2

2
α2 ) + (c1 + c2)ϕ

′

1(0)
Λ

m
δ(β2

1 − β̄1
2e
σ2

1
α1 )

+ 5( 5

√
c1c3c4c5β̃1β3µK

Λ

m
−

5

√
c1c3c4c5β1β3µK

Λ

m
) + 3( 3

√
c2c6β̃2µK −

3
√

c2c6β2µK)

:= −
ω

2
(Rs

0 − 1) + [(c1 + c2)ϕ
′

2(0)
1
4δ
+ c3ϕ

′

3(0)β3 + (c5 + c6)m0]IH

+ [(c1 + c2)ϕ
′

1(0)
1
4δ
+ c4m0]IV + F(β1, β2),

where

F(β1, β2) =(c1 + c2)ϕ
′

2(0)Kδ(β2
2 − β̄2

2e
σ2

2
α2 ) + (c1 + c2)ϕ

′

1(0)
Λ

m
δ(β2

1 − β̄1
2e
σ2

1
α1 )
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+ 5( 5

√
c1c3c4c5β̃1β3µK

Λ

m
−

5

√
c1c3c4c5β1β3µK

Λ

m
) + 3( 3

√
c2c6β̃2µK −

3
√

c2c6β2µK).

Next we define

V2 = V1 +
(c1 + c2)ϕ

′

1(0) + 4δc4m0

4mδ
IV ,

applying Itô’s formula to V2, it leads to

LV2 ≤ −
ω

2
(Rs

0 − 1) + [(c1 + c2)ϕ
′

2(0)
1
4δ
+ c3ϕ

′

3(0)β3 + (c5 + c6)m0]IH

+
(c1 + c2)ϕ

′

1(0) + 4δc4m0

4δ
IV + F(β1, β2) +

(c1 + c2)ϕ
′

1(0) + 4δc4m0

4mδ
β3ϕ3(IH)

Λ

m

−
(c1 + c2)ϕ

′

1(0) + 4δc4m0

4mδ
β3ϕ3(IH)IV −

(c1 + c2)ϕ
′

1(0) + 4δc4m0

4δ
IV

≤ −
ω

2
(Rs

0 − 1) + AIH + F(β1, β2),

where

A = (c1 + c2)ϕ
′

2(0)
1
4δ
+ c3ϕ

′

3(0)β3 + (c5 + c6)m0 +
((c1 + c2)ϕ

′

1(0) + 4δc4m0)β3ϕ
′

3(0)Λ
4m2δ

.

Next, define

V3 = − log S H − log IV − log(K − (S H + IH)) − log(
Λ

m
− IV) + (β1 − 1 − log β1) + (β2 − 1 − log β2),

then, we have

LV3 = −
µK
S H
+ µ + β1ϕ1(IV) + β2ϕ2(IH) −

dIH

S H
−
Λ

m
β3ϕ3(IH)

1
IV
+ β3ϕ3(IH) + m −

IH

ϕ3(IH)
+

1
ϕ
′

3(0)

−
1

K − (S H + IH)
[−µ(K − (S H + IH)) + γIH] −

1
Λ
m − IV

[−β3ϕ3(IH)(
Λ

m
− IV) + mIV] +

IH

ϕ3(IH)

−
1
ϕ
′

3(0)
+ β1(α1 log β̄1 −

1
2
α1 log β1 +

1
2
σ2

1) − α1(log β̄1 −
1
2

log β1) −
1
2
β1α1 log β1 +

1
2
α1 log β1

+ β2(α2 log β̄2 −
1
2
α2 log β2 +

1
2
σ2

2) − α2(log β̄2 −
1
2

log β2) −
1
2
β2α2 log β2 +

1
2
α2 log β2.

≤ −
µK
S H
−

√
Λβ3IH

mIV
−

γIH

K − (S H + IH)
−

mIV
Λ
m − IV

+W(β1, β2)

−
1
2
β1α1 log β1 +

1
2
α1 log β1 −

1
2
β2α2 log β2 +

1
2
α2 log β2,

where

W(β1, β2) =2µ + m +
1
ϕ
′

3(0)
+ β1ϕ

′

1(0)
Λ

m
+ β2ϕ

′

2(0)K + 2β3ϕ
′

3(0)K + m0K

+ β1(α1 log β̄1 −
1
2
α1 log β1 +

1
2
σ2

1) − α1(log β̄1 −
1
2

log β1)
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+ β2(α2 log β̄2 −
1
2
α2 log β2 +

1
2
σ2

2) − α2(log β̄2 −
1
2

log β2).

Choose M is a large enough positive constant , let

V̄ = MV2 + V3,

where M satisfying the following inequality

−
Mω

2
(Rs

0 − 1) + sup
(β1,β2)∈R2

+

W(β1, β2) ≤ −2.

Notice that V̄ has a minimum value V̄min in the interior of Γ because V̄ → +∞ as (S H, IH, IV , β1, β2) tends
to the boundary of Γ. Ultimately, establish a non-negative C2-function V(S H, IH, IV , β1, β2) : Γ→ R+ as
follows

V(S H, IH, IV , β1, β2) = V̄(S H, IH, IV , β1, β2) − V̄min,

then we obtain

LV ≤ −
Mω

2
(Rs

0 − 1) + MAIH + MF(β1, β2) −
µK
S H
−

√
Λβ3IH

mIV
−

γI
K − (S H + IH)

−
mIV
Λ
m − IV

−
1
2
β1α1 log β1 +

1
2
α1 log β1 −

1
2
β2α2 log β2 +

1
2
α2 log β2 +W(β1, β2)

:=G(S H, IH, IV , β1, β2) + MF(β1, β2).

(A.6)

Step 2. Set up the closed set Uε

Uε ={(S H, IH, IV , β1, β2) ∈ Γ|IH ≥ ε, S H ≥ ε, IV ≥ ε
2,

S H + IH ≤ K − ε2, IV ≤
Λ

m
− ε3, ε ≤ β1 ≤

1
ε
, ε ≤ β2 ≤

1
ε
},

where ε is a small enough constant and the complement of Uε can be divided into nine small sets as
follows

Uc
1,ε = {(S H, IH, IV , β1, β2) ∈ Γ|0 < β1 < ε},Uc

2,ε = {(S H, IH, IV , β1, β2) ∈ Γ|β1 >
1
ε
},

Uc
3,ε = {(S H, IH, IV , β1, β2) ∈ Γ|0 < β2 < ε},Uc

4,ε = {(S H, IH, IV , β1, β2) ∈ Γ|β2 >
1
ε
},

Uc
5,ε = {(S H, IH, IV , β1, β2) ∈ Γ|0 < IH < ε},Uc

6,ε = {(S H, IH, IV , β1, β2) ∈ Γ|0 < S H < ε},

Uc
7,ε = {(S H, IH, IV , β1, β2) ∈ Γ|0 < IV < ε

2, IH ≥ ε},

Uc
8,ε = {(S H, IH, IV , β1, β2) ∈ Γ|S H + IH > K − ε2, IH ≥ ε},

Uc
9,ε = {(S H, IH, IV , β1, β2) ∈ Γ|IV >

Λ

m
− ε3, IV ≥ ε

2},

then the following results hold
Case 1: (S H, IH, IV , β1, β2) ∈ Uc

1,ε, then

G(S H, IH, IV , β1, β2) = −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) −
µK
S H
−

√
Λβ3IH

mIV
−

γI
K − (S H + IH)
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−
mIV
Λ
m − IV

−
1
2
β1α1 log β1 +

1
2
α1 log β1 −

1
2
β2α2 log β2 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) +
1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK +
1
2
α1logε +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 2: (S H, IH, IV , β1, β2) ∈ Uc
2,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) +
1
2
α1logβ1 +

1
2
α2 log β2 −

1
2
β1α1 log β1

≤ −
Mω

2
(Rs

0 − 1) + MAK +
1
2
α1logβ1 +

1
2
α2 log β2 −

α1log1
ε

2ε
+ sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 3: (S H, IH, IV , β1, β2) ∈ Uc
3,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) +
1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK +
1
2
α2logε +

1
2
α1logβ1 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 4: (S H, IH, IV , β1, β2) ∈ Uc
4,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) +
1
2
α1logβ1 +

1
2
α2 log β2 −

1
2
β2α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK −
α2log1

ε

2ε
+

1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 5: (S H, IH, IV , β1, β2) ∈ Uc
5,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) +
1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAε +
1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 6: (S H, IH, IV , β1, β2) ∈ Uc
6,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) −
µK
S H
+

1
2
α1logβ1 +

1
2
α2 log β2
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≤ −
Mω

2
(Rs

0 − 1) + MAK −
µK
ε
+

1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 7: (S H, IH, IV , β1, β2) ∈ Uc
7,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) −
√
Λβ3IH

mIV
+

1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK −

√
Λβ3

mε
+

1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 8: (S H, IH, IV , β1, β2) ∈ Uc
8,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) −
γIH

K − (S H + IH)
+

1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK −
γ

ε
+

1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

Case 9: (S H, IH, IV , β1, β2) ∈ Uc
9,ε, then

G(S H, IH, IV , β1, β2) ≤ −
Mω

2
(Rs

0 − 1) + MAIH +W(β1, β2) −
mIV
Λ
m − IV

+
1
2
α1logβ1 +

1
2
α2 log β2

≤ −
Mω

2
(Rs

0 − 1) + MAK −
m
ε
+

1
2
α1logβ1 +

1
2
α2 log β2 + sup

(β1,β2)∈R2
+

W(β1, β2)

≤ − 1.

According to the discussion of cases above, we can know that

G (S H, IH, IV , β1, β2) ≤ −1, ∀ (S H, IH, IV , β1, β2) ∈ Γ\Uε,

in other words, let H is a positive constant that makes

G (S H, IH, IV , β1, β2) ≤ H < +∞, ∀ (S H, IH, IV , β1, β2) ∈ Γ.

For any initial value (S H(0), IH(0), IV(0), β1(0), β2(0)) ∈ Γ, integrating the inequality (A.6) and taking
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the expectation, we get

0 ≤
E[V (S H(t), IH(t), IV(t), β1(t), β2(t))]

t

=
E[V (S H(0), IH(0), IV(0), β1(0), β2(0))]

t
+

1
t

∫ t

0
E (LV (S H(τ), IH(τ), IV(τ), β1(τ), β2(τ))) dτ

≤
EV (S H(0), IH(0), IV(0), β1(0), β2(0))

t
+

1
t

∫ t

0
E (G (S H(τ), IH(τ), IV(τ), β1(τ), β2(τ))) dτ

+ 5M
5

√
c1c3c4c5β3µK

Λ

m
1
t

∫ t

0
E
(

5
√
β̃1 −

5
√
β1(τ)

)
dτ + 3M 3

√
c2c6µK

1
t

∫ t

0
E
(

3
√
β̃2 −

3
√
β2(τ)

)
dτ

+ (c1 + c2)ϕ
′

1(0)δ
Λ

m
1
t

∫ t

0
E
(
β2

1(τ) − β̄1
2e
σ2

1
α1

)
dτ + (c1 + c2)ϕ

′

2(0)δK
1
t

∫ t

0
E
(
β2

2(τ) − β̄2
2e
σ2

2
α2

)
dτ.

(A.7)
One gets that βi(i = 1, 2) is ergodic according to [34, 35], then we can get that

lim
t→+∞

1
t

∫ t

0
β

p
i (τ)dτ = lim

t→+∞

1
t

∫ t

0
eplogβi(τ)dτ =

∫ +∞
−∞

epyiπ(yi)dyi = β̄i
pe

p2σ2
i

4αi ,

hence

lim
t→+∞

1
t

∫ t

0
β

1
5
1 (τ)dτ = β̄1

1
5 e

σ2
1

100α1 = β̃1
1
5 , lim

t→+∞

1
t

∫ t

0
β

1
3
2 (τ)dτ = β̄2

1
3 e

σ2
1

36α2 = β̃2
1
3 ,

lim
t→+∞

1
t

∫ t

0
β2

1(τ)dτ = β̄1
2e
σ2

1
α1 , lim

t→+∞

1
t

∫ t

0
β2

2(τ)dτ = β̄2
2e
σ2

2
α2 .

Then letting t → +∞ and taking infimum to (A.7) it follows

0 ≤ lim inf
t→+∞

1
t

∫ t

0
E (G (S H(τ), IH(τ), IV(τ), β1(τ), β2(τ))) dτ

= lim inf
t→+∞

1
t

∫ t

0
E
(
G (S H(τ), IH(τ), IV(τ), β1(τ), , β2(τ)) I{(S H(τ),IH(τ),IV (τ),β1(τ),β2(τ)∈Uε}

)
dτ

+ lim inf
t→+∞

1
t

∫ t

0
E
(
G (S H(τ), IH(τ), IV(τ), β1(τ), β2(τ)) I{(S H(τ),IH(τ),IV (τ),β1(τ),β2(τ)∈Γ\Uε}

)
dτ

≤H lim inf
t→+∞

1
t

∫ t

0
I{(S H(τ),IH(τ),IV (τ),β1(τ),β2(τ)∈Uε}dτ

− lim inf
t→+∞

1
t

∫ t

0
I{(S H(τ),IH(τ),IV (τ),β1(τ),β2(τ)∈Γ\Uε}dτ

≤ − 1 + (H + 1) lim inf
t→+∞

1
t

∫ t

0
I{(S H(τ),IH(τ),IV (τ),β1(τ),β2(τ)∈Uε}dτ,

which means

lim inf
t→+∞

1
t

∫ t

0
P {(S H(τ), IH(τ), IV(τ), β1(τ), β2(τ)) ∈ Uε} dτ ≥

1
H + 1

> 0 a.s.,

lim inf
t→+∞

1
t

∫ t

0
P {τ, (S H(0), IH(0), IV(0), β1(0), β2(0)) ,Uε} dτ ≥

1
H + 1

,
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∀(S H(0), IH(0), IV(0), β1(0), β2(0)) ∈ Γ.

According to the Lemma 2.4, we can conclude that when Rs
0 > 1 system (1.6) has a stationary distribution

on Γ. □

Appendix E. Proof of the Theorem 4.3

Proof. Define a C2-function G(IH, IV , β1, β2) : Γ→ R by

G(IH, IV , β1, β2) = v1IH + v2IV ,

where v1 = R0, v2 =
β̄1ϕ
′

1(0)K
m . Applying Itô’s formula to G(IH, IV , β1, β2), then we have

L(logG) =
1

v1IH + v2IV
[v1(β1ϕ1(IV)S H + β2ϕ2(IH)S H − ωIH) + v2(β3ϕ3(IH)(

Λ

m
− IV) − mIV)]

≤
1

v1IH + v2IV
[v1β1ϕ

′

1(0)KIV + v1β2ϕ
′

2(0)KIH − v1ωIH + v2β3ϕ
′

3(0)(
Λ

m
− IV)IH − v2mIV]

=
1

v1IH + v2IV
[v1β̄1ϕ

′

1(0)KIV + v1β̄2ϕ
′

2(0)KIH − v1ωIH + v2β3ϕ
′

3(0)(
Λ

m
− IV)IH − v2mIV]

+
1

v1IH + v2IV
[v1(β1 − β̄1)ϕ

′

1(0)KIV + v1(β2 − β̄2)ϕ
′

2(0)KIH]

≤
1

v1IH + v2IV
[(v1β̄1ϕ

′

1(0)K − v2m)IV + (v1β̄2ϕ
′

2(0)K + v2β3ϕ
′

3(0)
Λ

m
− v1ω)IH]

+
mR0

β̄1
|β1 − β̄1| + ϕ

′

2(0)K|β2 − β̄2|

≤
1

v1IH + v2IV
[β̄1ϕ

′

1(0)K(R0 − 1)IV + β̄2ϕ
′

2(0)K(R0 − 1)IH] +
mR0

β̄1
|β1 − β̄1| + ϕ

′

2(0)K|β2 − β̄2|

≤min{m,
β̄2ϕ

′

2(0)K
R0

}(R0 − 1) +
mR0

β̄1
|β1 − β̄1| + ϕ

′

2(0)K|β2 − β̄2|.

Integrating both sides of this equation from 0 to t and dividing by t, we get

log G(t) − log G(0)
t

≤ min{m,
β̄2ϕ

′

2(0)K
R0

}(R0−1)+
mR0

β̄1

1
t

∫ t

0
|β1(τ)− β̄1|dτ+ϕ

′

2(0)K
1
t

∫ t

0
|β2(τ)− β̄2|dτ.

(A.8)
According to the ergodicity of β1, β2, then

lim
t→∞

1
t

∫ t

0
|β1(τ) − β̄1|dτ ≤ lim

t→∞
(
1
t

∫ t

0
(β1(τ) − β̄1)2dτ)

1
2 = β̄1(e

σ2
1
α1 − 2e

σ2
1

4α1 + 1)
1
2 ,

lim
t→∞

1
t

∫ t

0
|β2(τ) − β̄2|dτ ≤ lim

t→∞
(
1
t

∫ t

0
(β2(τ) − β̄2)2dτ)

1
2 = β̄2(e

σ2
2
α2 − 2e

σ2
2

4α2 + 1)
1
2 .

(A.9)

Letting t → +∞, and submitting (A.9) into (A.8), then inequailty (A.8) becomes

lim sup
t→+∞

log G(t)
t

≤min{m,
β̄2ϕ

′

2(0)K
R0

}(R0 − 1) + mR0(e
σ2

1
α1 − 2e

σ2
1

4α1 + 1)
1
2 + ϕ

′

2(0)Kβ̄2(e
σ2

2
α2 − 2e

σ2
2

4α2 + 1)
1
2
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:=min{m,
β̄2ϕ

′

2(0)K
R0

}(RE
0 − 1),

where

RE
0 = R0 +

mR0(e
σ2

1
α1 − 2e

σ2
1

4α1 + 1)
1
2 + ϕ

′

2(0)Kβ̄2(e
σ2

2
α2 − 2e

σ2
2

4α2 + 1)
1
2

min{m, β̄2ϕ
′

2(0)K
R0
}

.

If RE
0 < 1,

lim sup
t→+∞

log G(t)
t

< 0

will be true which indicates
lim

t→+∞
IH(t) = 0 lim

t→+∞
IV(t) = 0,

this means the disease will die out exponentially. □

Appendix F. Proof of the Theorem 4.4

Proof. Step 1 Consider the following equation

G2
1 + AΣ1 + Σ1AT = 0, (A.10)

where G1 = diag(0, 0, 0, σ1, 0).
Let A1 = J1AJ−1

1 , where

J1 =


0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 ,
then

A1 =


−a44 0 0 0 0
−a14 −a11 −a12 −a13 −a15

a14 a21 −a22 a13 a15

0 0 a32 −a33 0
0 0 0 0 −a55

 .
Let A2 = J2A1J−1

2 , where

J2 =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
and

A2 =


−a44 0 0 0 0
−a14 a12 − a11 −a12 −a13 −a15

0 a12 − a11 + a21 + a22 −a12 − a22 0 0
0 −a32 a32 −a33 0
0 0 0 0 −a55

 .
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Due to a12 − a11 + a21 + a22 = γ > 0, let A3 = J3A2J−1
3 , where

J3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 a32

γ
1 0

0 0 0 0 1

 ,
and

A3 =


−a44 0 0 0 0
−a14 a12 − a11

a13a32
γ
− a12 −a13 −a15

0 γ −a12 − a22 0 0
0 0 w −a33 0
0 0 0 0 −a55

 .
in which

w = a32 −
a32(a12 + a22)

γ
+

a32a33

γ
= m − µ + β3ϕ3(I∗) > 0.

By using the methodology in [36, 37], the standard transformation matrix of A3 has the following form

M =


m1 m2 m3 m4 m5

0 wγ −w(a12 + a22 + a33) a2
33 0

0 0 w −a33 0
0 0 0 1 0
0 0 0 0 1

 ,
where m1 = −wγa14, m2 = −wγ(a33 + a11 + a22), m3 = wa13a32 −wγa12 +w(a12 + a22 + a33)(a12 + a22)+
wa2

33, m4 = −γwa13 − a3
33,m5 = −γwa15.

Define A01 = MA3M−1, then we can get

A01 =


−b1 −b2 −b3 −b4 −b5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −a55

 ,
in which

b1 =a11 + a22 + a33 + a44,

b2 =a44(a11 + a22 + a33) + a11a22 + a12a21 + a11a33 − a13a32 + a22a33,

b3 =a44(a11a22 + a12a21 + a11a33 − a13a32 + a22a33) − a11a13a32 + a11a22a33

+ a12a21a33 + a13a21a32,

b4 =a44(a11a22a33 − a11a13a32 + a12a21a33 + a13a21a32).

Let J = J3J2J1, we can equivalently transform the Eq (A.10) into

(MJ)G2
1(MJ)T + [(MJ)A(MJ)−1][(MJ)Σ1(MJ)T ] + [(MJ)Σ1(MJ)T ][(MJ)A(MJ)−1]T = 0, (A.11)
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where (MJ)G2
1(MJ)T = diag((m1σ1)2, 0, 0, 0, 0), let ρ1 = m1σ1, then (A.11) becomes

G2
0 + ρ

−2
1 A01[(MJ)Σ1(MJ)T ] + ρ−2

1 [(MJ)Σ1(MJ)T ]AT
01 = 0,

then we obtian

Σ01 := ρ−2
1 (MJ)Σ1(MJ)T =


b1b4−b2b3

b 0 b3
b 0 0

0 −
b3
b 0 b1

b 0
b3
b 0 −b1

b 0 0
0 b1

b 0 b3−b1b2
b4b 0

0 0 0 0 0

 ,
where b = 2[b4b2

1 − b1b2b3 + b2
3]. We can obtain that the matrix Σ01 is a positive semi-definite matrix,

the exact expression of Σ1 is as follows

Σ1 = ρ
2
1(MJ)−1Σ01[(MJ)−1]T .

Step 2 Consider the following equation

G2
2 + AΣ2 + Σ2AT = 0, (A.12)

where G2 = diag(0, 0, 0, 0, σ2).
Let B1 = P1AP−1

1 , where

P1 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,
then

B1 =


−a55 0 0 0 0
−a15 −a11 −a12 −a13 −a14

a15 a21 −a22 a13 a14

0 0 a32 −a33 0
0 0 0 0 −a44

 .
Let B2 = P2B1P−1

2 , where

P2 =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,
then

B2 =


−a55 0 0 0 0
−a15 a12 − a11 −a12 −a13 −a14

0 a12 − a11 + a21 + a22 −a12 − a22 0 0
0 −a32 a32 −a33 0
0 0 0 0 −a44

 .
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Similarly, due to a12 − a11 + a21 + a22 = γ > 0, let B3 = P3B2P−1
3 , where

P3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 a32

γ
1 0

0 0 0 0 1

 ,
and

B3 =


−a55 0 0 0 0
−a15 a12 − a11

a13a32
γ
− a12 −a13 −a14

0 γ −a12 − a22 0 0
0 0 w −a33 0
0 0 0 0 −a44

 ,
in which

w = a32 −
a32(a12 + a22)

γ
+

a32a33

γ
= m − µ + β3ϕ3(I∗) > 0.

The standard transformation matrix of B3 has the following form

N =


n1 n2 n3 n4 0
0 wγ −w(a33 + a12 + a22) a2

33 0
0 0 w −a33 0
0 0 0 1 0
0 0 0 0 1

 ,
where n1 = −wγa15, n2 = −wγ(a33 + a11 + a22), n3 = wa13a32 − wγa12 + w(a12 + a22 + a33)(a12 + a22) +
wa2

33, n4 = −γwa13 − a3
33, n5 = −γwa14.

Define B01 = NB3N−1, then we can get

B01 =


−d1 −d2 −d3 −d4 −d5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −a44

 ,
in which

d1 =a11 + a22 + a33 + a55,

d2 =a55(a11 + a22 + a33) + a11a22 + a12a21 + a11a33 − a13a32 + a22a33,

d3 =a55(a11a22 + a12a21 + a11a33 − a13a32 + a22a33) − a11a13a32 + a11a22a33

+ a12a21a33 + a13a21a32,

d4 =a55(a11a22a33 − a11a13a32 + a12a21a33 + a13a21a32).

Let P = P3P2P1, the equation (A.12) can be equivalently transformed into

(NP)G2
2(NP)T + [(NP)A(NP)−1][(NP)Σ2(NP)T ] + [(NP)Σ2(NP)T ][(NP)A(NP)−1]T = 0, (A.13)
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where (NP)G2
2(NP)T = diag((n1σ2)2, 0, 0, 0, 0), let ρ2 = n1σ2, then (A.13) becomes

G2
0 + ρ

−2
2 B01[(NP)Σ2(NP)T ] + ρ−2

3 [(NP)Σ2(NP)T ]BT
01 = 0,

then we obtian

Σ02 := ρ−2
2 (NP)Σ2(NP)T =


d1d4−d2d3

d 0 d3
d 0 0

0 −
d3
d 0 d1

d 0
d3
d 0 −d1

d 0 0
0 d1

d 0 d3−d1d2
d3d 0

0 0 0 0 0

 ,

where d = 2(d4d2
1 − d1d2d3 + d2

3), and we can obtain that the matrix Σ02 is a positive semi-definite matrix,
the exact expression of Σ2 is as follows

Σ2 = ρ
2
2(NP)−1Σ02[(NP)−1]T .

Finally, Σ = Σ1 + Σ2. Obviously, the matrix Σ is a positive definite matrix. The proof is complete. □
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