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Abstract: In this paper, the principal component regression (PCR) estimators for regression parameters
were studied in a linear regression model. After discussing the advantages and disadvantages of the
classical PCR, we put forward three versions of hybrid PCR estimators. For the first two versions, we
obtained the corresponding optimal solutions under the prediction error sum of squares (PRESS) criterion,
while for the last one we offered two methods for obtaining the solution. In order to examine their
practicality and generalizability, we considered two real-world examples and conducted a simulation study,
which took into account varying degrees of multicollinearity. The numerical experiment revealed that the
new estimators could substantially improve the least squares (LS) and classical PCR estimators under
the PRESS criterion.
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1. Introduction

Linear models, as one of the core methods in classical statistics and machine learning, hold
significant theoretical and practical importance [1]. Theoretical research on linear models highlights
their interpretability, solvability, and a solid mathematical foundation, enabling a deeper understanding
of the patterns underlying model predictions and providing foundations for the development of more
advanced models as well as algorithms [2]. In practical applications, linear models are intuitive, easily
comprehensible, and applicable to various tasks. They have achieved significant outcomes in domains
like financial risk control and medical diagnosis [3]. Additionally, linear models bring the advantages of
low computational complexity, suitability for large-scale datasets and even online learning tasks,
regularization techniques to improve generalizability, and inherent feature selection capabilities. Hence,
linear models possess high practical value in real-world applications.
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Consider a linear regression model

y = β01 + Xβ + e, (1.1)

where y = (y1, · · · , yn)′ is a random vector of responses, e = (e1, · · · , en)′ is the vector of errors with
mean E (e) = 0 and covariance matrix D(e) = σ2In, X = (x1, · · · , xn)′ with xi = (xi1, · · · , xip)′ for
i = 1, · · · , n is the regressor matrix of full column rank, the constant β0, the vector of regression parameters
β = (β1, · · · , βp)′, and the error variance σ2 are assumed to be unknown, 1 is a vector of ones with suitable
orders, 0 is a vector or matrix of zeros with suitable orders, and In denotes the identity matrix of order n.
In addition, assume 1 < R(X), in which R(X) denotes the (column) range space of X.

It is well known that the ordinary LS estimators for β0 and β (denoted by β̂0 and β̂, respectively)
play an important role in parametric estimation theory, which can be expressed as the solution of the
following regular equation [

n 1′X
X′1 X′X

][
β̂0

β̂

]
=

[
1′y
X′y

]
, (1.2)

However, when severe multicollinearity is present in the model (1.1), the LS estimator usually performs
poorly under the mean squared error (MSE) criterion. The problem of multicollinearity usually occurs
in the case that there is potentially high approximate correlation among the regressors, which can lead
to unstable parameter estimation, increased variance of explanatory variables, and decreased reliability
and interpretability of the model.

To overcome the problem of multicollinearity, various biased estimators for different models were
put forward in the literature, such as the ordinary and generalized ridge regression estimators [4–12],
and very recently, the PCR estimator [13], the Liu and Liu-type estimators [14, 15] and their improved
versions [16, 17], and the double-k class estimators [18]. These biased estimators can locally improve
the LS estimator by appropriately choosing the biasing parameters involved. Among them, the PCR
estimator is of particular interest to us because of its geometric meaning and interpretation in trying to
capture the essence of the model and its effectiveness in addressing multicollinearity and enhancing
model stability. However, it involves dimensionality reduction, which may lead to information loss.
While the amount of information loss can be customized by the user, it can also give rise to subsequent
issues and challenges. In this paper, we analyze a shortcoming of the PCR estimator in detail and then
put forward an improvement from the perspective of overcoming the model instability and inaccurate
estimation caused by multicollinearity, while minimizing or even avoiding the loss of information
carried by the data as much as possible.

The remainder of the paper is organized as follows. Section 2 briefly analyzes the classical PCR
estimator. In Section 3, we discuss the motivation by exemplifying the advantages and disadvantages of
PCR. We then propose three versions of hybrid PCR estimators and provide the corresponding optimal
solutions under the PRESS criterion. In Section 4, we apply the theoretical results to two real examples
and conduct a simulation study. Section 5 provides concluding remarks and two suggestions for the
estimators’ use.

2. Classical PCR estimation

In this section, we concisely describe the classical PCR estimation and discuss a potential flaw of it
when used in practice. Centralize X as Xc = X − 1

n11′X such that 1′Xc = 0. Pre-multiplying the two
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sides of (1.2) with the nonsingular partitioned matrix
[

1 0
−1

n X′1 In

]
, we have the following equivalent

regular equation[
1 0

−1
n X′1 In

][
n 1′X

X′1 X′X

][
1 −1

n1′X
0 In

][
1 1

n1′X
0 In

][
β̂0

β̂

]
=

[
1 0

−1
n X′1 In

][
1′y
X′y

]
.

By direct operations, the LS estimators are given as{
β̂ = (X′cXc)−1X′cy
β̂0 = y − 1

n1′Xβ̂ = y − x′β̂
(2.1)

in which y = 1
n y′1 = 1

n

∑n
i=1 yi and x = 1

n X′1 = 1
n

∑n
i=1 xi denote the sample mean of the responses and

that of the regressors, respectively. Also, (2.1) can be derived from the centeralized model of (1.1),
y = α01 + Xcβ + e with α0 = β0 + x′β.

When multicollinearity is present in the centralized model, Xc is ill-conditioned. For this case, β̂0

and β̂ can be improved by PCR estimators [13]. Let λ1 ⩾ · · · ⩾ λp (> 0) be the eigenvalues of X′cXc,
and q1, · · · , qp be the corresponding standardized eigenvectors.

We set Λ = diag(λ1, · · · , λp), Q = (q1, · · · , qp), Z = XcQ ≜ (z1, · · · , zp), and
γ = Q′β ≜ (γ1, · · · , γp)′. It follows that the centralized model can be written as

y = α01 + XcQQ′β + e = α01 + Zγ + e = α01 +
p∑

j=1
γ j z j + e, (2.2)

considering that Q is an orthogonal matrix. If z′r+1 zr+1 = λr+1 ≈ 0 holds for some r (1 ⩽ r < p),
the value of

∑p
j=r+1 γ j z j is close to 0, and therefore can be omitted approximately or merged into the

intercept term, α01. The number r can be commonly determined by letting the cumulative percent
(λ1 + · · · + λr)/(λ1 + · · · + λp) be as large as possible, specifically, not less than 85%. In this sense, the
canonical model (2.2) reduces to

y ≈ α01 +
r∑

j=1
γ j z j + e ≜ α01 + Z1γ1 + e, (2.3)

with Z1 = (z1, · · · , zr) and γ1 = (γ1, · · · , γr)′. That is, γr+1, · · · , γp are regarded (or estimated) as zeros.
This means β = Qγ ≈ Q1γ1, with Q1 = (q1, · · · , qr). Set Λ1 = diag(λ1, · · · , λr). Imposing the LS
principle on the reduced model (2.3), it gives the PCR estimators as{

β̃ = Q̂γ = Qγ̂ ≈ Q1γ̂1 = Q1Λ
−1
1 Z′1y

β̃0 = y − x′β̃
(2.4)

3. Hybrid PCR estimation

In this section, we briefly discuss the limitations of the classical PCR estimator, which motivates
us to define three hybrid PCR estimators. We then employ the PRESS criterion to obtain the optimal
hybrid PCR estimators.
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3.1. Motivation and definition

The classical PCR estimators given in (2.4) can improve the LS estimator by discarding the redundant
part of the centralized regressor matrix. However, as we can see from the previous procedure, there may
be some potential problems for the PCR estimators: i) The cumulative percent (85% or other values) is
subjective; ii) A small cumulative percent can lead to too much loss of useful information; and iii) A
large cumulative percent will produce estimators performing badly.

This can also be illustrated by the following two toy examples. One is:

λ1 = 30, λ2 = 13.3, λ3 = · · · = λ8 = 1.1, λ9 = 0.1,

and the other is with λ1 = 30, λ2 = 13.3, λ3 = 6.6, λ4 = 0.1. Both of them suffer from multicollinearity,
since they have the large (and identical) condition number, 300. Clearly, for the former, choosing
the first two principal components to estimate the regression parameters are reasonable because
λ1 + λ2 ⩾ 0.85 (λ1 + · · · + λ9) and all of λ3, · · · , λ8 are very small relative to λ1, while for the latter, it is
undesirable to discard the third principal component although λ1 + λ2 ⩾ 0.85 (λ1 + · · · + λ4).

To overcome the problems (ii) and (iii), one can use different cumulative percents (⩾ 85%, or ⩾ 90%,
or ⩾ 95%, etc.) in different problems. However, this may lead to much more subjectivity and thus
intensifying (i). An alternative way is to combine all possible PCR estimators in a suitable way such that the
contribution of each PCR estimator can be automatically computed. This will be studied in the next section.

As illustrated by the second example in Section 2, the third principal component with contribution
percent λ3/(λ1 + · · · + λ4) = 6.6/(30 + 13.3 + 6.6 + 0.1) = 13.2% should not be discarded directly,
but should be used with an appropriate proportion. This can be done by first weighting each principal
component and then estimating the parameters. This will yield a nonlinear estimator with respect to the
weights, and thus lead to new difficulties in determining the values of the weights.

An alternative method is to linearly weight all of the PCR estimators. This leads to the following
concept of hybrid PCR (HPCR) estimation:

Definition 1. Denote the PCR estimator of β based on the first k principal components by β̃
(k)

. For any
p constants w1, · · · ,wp ∈ R, we call β∗w ≜

∑p
k=1 wkβ̃

(k)
and β∗0,w ≜ y − x′β∗w to be the HPCR estimators

for β and β0, respectively, with respect to w = (w1, · · · ,wp)′.

Clearly, β∗w and β∗0,w reduce to the classical PCR estimators presented in (2.4) if taking wr = 1 and
wi = 0 for any i , r. When taking w1 = · · · = wp−1 = 0 and wp = 1, the LS estimators given in (2.1) are
derived. Hence, Definition 1 gives a set of estimators including classical PCR and LS estimations.

For Definition 1, the problem is to determine the values of w = (w1, · · · ,wp)′. A feasible method
is to simply take wi as the contribution percent of the i th principal component. This means that the
first PCR estimator gets the largest w1, the second PCR estimator gets the second largest w2, and so on.
However, this may not be suitable in some situations.

For example, consider the model (1.1) with λ1 = 23.3, λ2 = 20, λ3 = 6.6, and λ4 = 0.1. In this
example, the first PCR estimator only uses all of the 23.3/(23.3 + 20 + 6.6 + 0.1) = 46.6% information
about the regressors, while the second PCR estimator uses (23.3+20)/(23.3+20+6.6+0.1) = 86.6% out
of all information. Therefore, the first PCR estimator is quite bad relative to the second PCR estimator,
and thus it should not be given the largest weight in the HPCR estimator. In this sense, the selection of
w is a key procedure in getting a fine HPCR estimator. In what follows, we provide a selection under
the PRESS criterion.
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3.2. PRESS criterion

To find an optimal HPCR estimator, we use the PRESS put forward by [19, 20] to measure how
w influences on the predictive performance of β∗w and β∗0,w. We do not consider how β∗w and β∗0,w are
different from β and β0, because multicollinearity causes the differences between the true and estimated
values to be no longer true. For example, for a model y = β0+β1x1+β2x2+β3x3+ e with x3 ≈ 2x1−3x2,
it follows that y ≈ β0 + (β1 + 2β3)x1 + (β2 − 3β3)x2 + 0 · x3 + e. This means that the estimators of β1 + 2β3

and β2 − 3β3 can be good enough to estimate β1 and β2.
Observe now the PRESS criterion. Let α̂−i be denoted as an estimator of α based on all data points

except the i th one. With this notation (and some other similar ones), the PRESS statistic of the LS
estimators, that of classical and hybrid PCR estimators, can be expressed as follows:

PRES S
(
β̂0, β̂; β0,β

)
=

n∑
i=1

[
yi −

(
β̂0;−i + x′i β̂−i

)]2
, (3.1)

PRES S
(
β̃0, β̃; β0,β

)
=

n∑
i=1

[
yi −

(
β̃0;−i + x′i β̃−i

)]2
, (3.2)

PRES S
(
β∗0,w,β

∗
w; β0,β

)
=

n∑
i=1

[
yi −

(
β∗0,w;−i + x′i β

∗
w;−i

)]2
. (3.3)

Note that the expression of PRES S
(
β∗0,w,β

∗
w; β0,β

)
contains w, so the PRESS criterion imposed on

hybrid PCR estimators is to find w such that PRES S
(
β∗0,w,β

∗
w; β0,β

)
is minimized.

The PRESS statistic is seemingly similar to the sum of the residuals,
∑n

i=1

[
yi −

(
β̂0 + x′i β̂

)]2, of the
original LS principle. However, PRESS is essentially different from LS, because it avoids granting an
observation (data point) to play a dual role in simultaneously fitting old observations and predicting new
observations, and it can facilitate exploiting the predictive performance of estimation. This is why we
consider using the PRESS criterion.

3.3. Optimal HPCR estimators under the PRESS criterion

To find the PRESS-optimal HPCR estimators, we rewrite (3.3) as follows:

PRES S
(
β∗0,w,β

∗
w; β0,β

)
=

n∑
i=1

[
yi −

(
y−i − x′−iβ

∗
w;−i + x′i β

∗
w;−i

)]2

=
n∑

i=1

[(
yi − y−i

)
−

(
xi − x−i

)′ p∑
k=1

wkβ̃
(k)
−i

]2

=
n∑

i=1

{(
yi − y−i

)
−

p∑
k=1

[(
xi − x−i

)′
β̃

(k)
−i

]
wk

}2

=
( n

n − 1

)2 n∑
i=1

{(
yi − y

)
−

p∑
k=1

[(
xi − x

)′
β̃

(k)
−i

]
wk

}2
,

in view of the algebraic facts that yi − y−i =
n

n−1

(
yi − y

)
and xi − x−i =

n
n−1

(
xi − x

)
.

Denote yc =
(
y1 − y, · · · , yn − y

)′ and A = (aik)n×p, with aik ≜
(

xi − x
)′
β̃

(k)
−i for i = 1, · · · , n and

k = 1, · · · , p. With these notations, we have

PRES S
(
β∗0,w,β

∗
w; β0,β

)
∝
(

yc − Aw
)′(yc − Aw

)
= y′cyc − 2y′c Aw + w′A′Aw. (3.4)
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If no constraints are imposed on w1, · · · ,wp, it is clear that minimizing PRES S
(
β∗0,w,β

∗
w; β0,β

)
gives

w∗ =
(

A′A
)−A′yc ≜

(
w∗1, · · · ,w

∗
p

)′
. (3.5)

This further implies

PRES S
(
β∗0,w∗ ,β

∗
w∗; β0,β

)
=
( n

n − 1

)2[
yc − A

(
A′A

)−A′y
]′[yc − A

(
A′A

)−A′y
]

=
( n

n − 1

)2
y′c
(

In − PA
)

yc, (3.6)

with PA = A(A′A)−A = AA+ being the orthogonal projection matrix [1, p. 24] over the (column) range
space, R(A), where A− is any 1-inverse, and A+ is the unique Moore-Penrose inverse (Definition 2.2
of [1]) of A.

According to the above derivations, we can present the following theorem:

Theorem 1. Let w∗ =
(
w∗1, · · · ,w

∗
p

)′ be defined in (3.5). Then, β∗w∗ =
∑p

k=1 w∗kβ̃
(k)

and β∗0,w∗ = y − x′β∗w∗
have the minimal PRESS value presented in (3.6) in all HPCR estimators.

This theorem concludes how to choose w under the PRESS criterion to get a fine HPCR estimator.
As seen, if the matrix A is of full column rank, w∗ is unique; otherwise, w∗ changes along with different
selections of the generalized inverse of A. For convenience, we will always use the Moore-Penrose
inverse, A+, in the simulation study.

Computationally, in the case that both of the matrices X and A are of full column rank, A is usually
more ill-conditioned than X. Although we cannot prove this result theoretically, the simulation study
will show this to us. The major reason may be that A derives from some PCR estimators consisting of
too many minor principal components. A potential solution is to discard the last several PCR estimators,
which contain one or more principal components with a too-small individual percentage (such as 5% and
even smaller) of variance, when using HPCR estimators. Specifically, letting K ∈ {1, · · · , p − 1} satisfy

λK

λ1 + · · · + λp
⩾ 5% >

λK+1

λ1 + · · · + λp
or
λ1 + · · · + λK−1

λ1 + · · · + λp
< 85% ⩽

λ1 + · · · + λK

λ1 + · · · + λp
,

the HPCR estimators that Definition 1 presents can be modified as β∗∗w ≜
∑K

k=1 wkβ̃
(k)

and β∗∗0,w ≜ y−x′β∗∗w ,
with w = (w1, · · · ,wK)′. That is, we use only the first K PCR estimators to get the hybrid version. Under
this modification, the PRESS-optimal selection for w1, · · · ,wK can be obtained in a similar fashion. The
details are omitted here.

3.4. Optimal WPCR estimators

Now, we assume w1, · · · ,wp are weights, satisfying
∑p

k=1 wk = 1′w = 1. In this case, we call β∗w
and β∗0,w the WPCR estimators. Here, we note that, similar to the ordinary HPCR estimators, WPCR
estimators also do not require w1, · · · ,wp to take nonnegative values, because a negative wi implies
the i th PCR estimator may produce some opposite estimates for the corresponding parameters to other
PCR estimators, and the negativity of wi can offset such effects in a way. Then, the problem of finding
optimal WPCR estimators under the PRESS criterion is equivalent to solving the optimization problem{

min y′cyc − 2y′c Aw + w′A′Aw
s.t. 1′w = 1

(3.7)
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To solve (3.7), we denote the Lagrange function by L(w, ℓ) = y′cyc − 2y′c Aw+w′A′Aw+ 2ℓ(1′w− 1), in
which ℓ is the Lagrange multiplier. By the formulas for partial derivatives of matrix functions [1, pp. 38–47],
we obtain the following matrix equations:{

∂L(w,ℓ)
∂w = 0 − 2A′yc + 2A′Aw + 2ℓ1 ≜ 0
∂L(w,ℓ)
∂ℓ
= 2(1′w − 1) ≜ 0

Equivalently, we have the following constrained regular equation:[
A′A 1
1′ 0

] [
w
ℓ

]
=

[
A′yc

1

]
. (3.8)

Note here that A′A is symmetric and nonnegative definite. In what follows, we show the Eq (3.8) is
consistent. In fact, as proven by [21], it can be shown that

R

(
A′A 1
1′ 0

)
= R

(
A′ 1 0
0 0 1

)
.

Hence, we get[
A′yc

1

]
=

[
A′ 0
0 1

][
yc

1

]
∈ R

(
A′ 0
0 1

)
⊆ R

(
A′ 1 0
0 0 1

)
= R

(
A′A 1
1′ 0

)
.

This shows the consistency of Eq (3.8). Using the formula for the generalized inverse (see Theorem 2.6
of [1]) of a partitioned matrix that[

S L
L′ 0

]−
=

[
T− − T−LQ−L′T− T−LQ−

Q−L′T− Q−Q − Q−
]
,

in which T = S + LL′ and Q = L′T−L with S being symmetric and nonnegative definite, we have[
A′A 1
1′ 0

]−
=

[
T− − T−1(1′T−1)−11′T− T−1(1′T−1)−1

(1′T−1)−11′T− 1 − (1′T−1)−1

]
,

with T = A′A + 11′. Here, 1′T−1 , 0, and this is an algebraic fact explained in what follows: First of
all, we note 1 ∈ R

(
1
)
⊆ R

([
A′, 1

])
= R

([
A′, 1

][
A′, 1

]′)
= R

(
A′A + 11′

)
= R

(
T
)
, in which R(·)

denotes the range space. This implies: i) the value of 1′T−1 is independent of the selection of T−, and
therefore 1′T−1 = 1′T+1; and ii) PT1 = 1.

Now, we prove 1′T−1 , 0 holds. Suppose 1′T−1 = 0. Combined with the fact that T is symmetric
and nonnegative definite, we obtain 1′T+1 = 1′T−1 = 0 ⇒ T+1 = 0 ⇒ 1 = PT1 = TT+1 = 0. This
contradicts with “1 , 0”, so we must have 1′T−1 , 0. Therefore,[

w
ℓ

]
=

[
A′A 1
1′ 0

]− [A′yc

1

]
=

[
T− − T−1(1′T−1)−11′T− T−1(1′T−1)−1

(1′T−1)−11′T− 1 − (1′T−1)−1

][
A′yc

1

]
.

Further, the w-solution of (3.8) can be expressed as

w∗∗ =
(

T− −
T−11′T−

1′T−1

)
A′yc +

T−1
1′T−1

= T−A′yc +
1 − 1′T−A′yc

1′T−1
T−1 ≜

(
w∗∗1 , · · · ,w

∗∗
p

)′
. (3.9)
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Note that both 1′T−1 and 1′T−A′ are invariant with respect to all generalized inverses of T,
since 1 ∈ R(T) and R(A′) ⊆ R(T). Clearly,

∑p
k=1 w∗∗k = 1′w∗∗ = 1. Recalling that the objective

function of (3.7) is quadratic with respect to w, this gives the globally optimal WPCR estimators
under the PRESS criterion. The result is summarized in the following theorem:

Theorem 2. Let w∗∗ =
(
w∗∗1 , · · · ,w

∗∗
p

)′ be defined in (3.9). Then,

β∗w∗∗ =
∑p

k=1 w∗∗k β̃
(k)

and β∗0,w∗∗ = y − x′β∗w∗∗

have the minimal PRESS value in all of the WPCR estimators.

As Theorem 1 does, Theorem 2 also provides us with the method of choosing the weights to get
the optimal WPCR estimators, β∗w∗∗ and β∗0,w∗∗ , under the PRESS criterion. Further, if the matrix T is of
full column rank, w∗∗ is unique; otherwise, w∗∗ changes along with T. In the simulation study, we will
always use the Moore-Penrose inverse, T+, when considering β∗w∗∗ and β∗0,w∗∗ . Note that, in any case, the
minimal PRESS value remains unchanged.

3.5. Optimal WPCR estimators with nonnegative weights

The above two subsections obtain optimal HPCR and WPCR estimators, respectively. Finally,
we assume constants w1, · · · ,wp are weights (that is,

∑p
k=1 wk = 1) and each weighting constant is

nonnegative. In this case, we call β∗w and β∗0,w the WPCR estimators with nonnegative weights (WnnPCR
estimators). That is, we need to solve the following quadratic programming (QP) problem{

min y′cyc − 2y′c Aw + w′A′Aw
s.t. 1′w = 1 and w ⩾ 0

(3.10)

Problem (3.10) can be solved by the commonly used procedure of quadratic programming in various
mathematical softwares. To improve the performance, we take w∗∗+ ≜

(
w∗∗1;+, · · · ,w

∗∗
p;+

)′ as the initial
value of the search, in which

w∗∗i;+ =
u∗∗i∑p
j=1 u∗∗j

,

with u∗∗i = max {w∗∗i , 0}, for i = 1, · · · , p. Here, w∗∗1 , · · · ,w
∗∗
p are defined in (3.9).

In what follows, we give a procedure of getting an approximate solution of the QP problem (3.10).
Let I be a subset of {1, · · · , p}, and we denote the following QP problem as QP(I):{

min y′cyc − 2y′c Aw + w′A′Aw
s.t. 1′w = 1 and wi = 0 (∀i ∈ I)

(3.11)

We note here that this problem has the same structure as (3.7), because the constraint wi = 0 with i ∈ I
renders the reduction of matrix A in (3.11) to a sub-matrix consisting of the columns except those in I.
Then, the approximate solution of (3.10) can be obtained by the following steps:

Step 1: Initialize I(k) = Ø and k = 0.
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Step 2: Use (3.9) to get a solution of QP
(

I(k)
)
, namely w(k) ≜

(
w(k)

1 , · · · ,w
(k)
p

)′
. We set

J (k) =
{

j
∣∣w(k)

j < 0, j = 1, · · · , p
}
.

Step 3: If J (k) , Ø, solve QP
(

I(k) ∪ { j}
)

for every j ∈ J (k), find jmin which minimizes the QP objectives,
set

I(k+1) ← I(k) ∪ { jmin}

and k ← k + 1, and then go to Step 2. Otherwise, return to the approximate solution of the QP
problem (3.10), w∗∗∗ ≜ w(k).

This procedure modifies negative weights as 0 stepwise. In the whole process, all calculations
can be theoretically performed. Therefore, it is essentially different from the solution derived by any
mathematical software, when nonnegativity is required for weights.

We mention here that, as explained after Definition 1, LS and PCR are two special cases of HPCR (as
well as WPCR and WnnPCR), so the optimal HPCR/WPCR/WnnPCR estimators will always perform
better than LS/PCR theoretically in the PRESS sense.

4. Numerical study

In this section, we first apply the theoretical results to two real examples, namely Hald data [22]
and Acetylene data [23], to preliminarily observe their performance. To investigate the numerical
performance of classical and hybrid PCR in detail, we then conduct a simulation study to observe the
changes in the PRESS values of the estimators under various degrees of multicollinearity, and analyze
the potential reasons behind the observations.

4.1. Real examples

The Hald dataset [22] uses the heat of hardening after 180 days as the response and four ingredients
as regressors, while the Acetylene dataset [23] uses the reactor temperature, rate of H2 to n-heptane,
and contact time as regressors and conversion of n-heptane to acetylene (%) as the response. Under
the model (1.1) with p = 4 for Hald and p = 3 for Acetylene, the condition numbers for the regressor
matrices are 20.5846 and 36935.9119, so these two datasets represent moderate multicollinearity and
severe multicollinearity, respectively.

By direct computations, we obtain the PRESS values and then list them into Tables 1 and 2. The
results reveal that:

• Regardless of the severity of multicollinearity, the estimators (HPCR/WPCR/WnnPCR)
consistently yield lower PRESS compared to LS and PCR. As a result, the new estimators can be
considered as competitive biased estimators in practical applications.
• When the condition number of the regressor matrix is not excessively high, PCR tends to eliminate

valuable information due to its inherent construction features, leading to a higher value of PRESS.
However, when the condition number of the regression matrix is extremely high, PCR usually
performs relatively well.
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• For the Hald data, the PRESS value of the classic PCR estimator unexpectedly exceeds that of
the LS estimator and three hybrid PCR estimators. After careful checking, we find that PCR
uses only the first principal component (contributing 86.60%) to estimate parameters, while
the information carried by the second and third principal components (contributing 11.29
and 2.07%, respectively) is directly discarded! Furthermore, we find that, as one of the hybrid
PCR estimators, WnnPCR nearly gives a 100% (to be more specifically, it is 99.9999999995337%)
proportion to the estimator based on the first three principal components. This means that the WnnPCR
estimator for Hald data is very close to the one constructed by the first three principal components,
retaining 86.60 + 11.29 + 2.07 = 99.96% of all information, rather than just retaining 85% of the
information in the traditional sense.
• For the Acetylene data, the situation is different. As seen, the WnnPCR estimator is composed

of the first two PCR estimators, with weights 51.45 and 48.55%, respectively. Note that the
contribution rate of the first principal component is 99.53%, while that of the second is only 0.47%.
Therefore, the WnnPCR assigns a weight slightly lower than 50% to the second PCR estimator.
Maybe this is just an attempt to extract as much useful information as possible from the information
carried by the second principal component, which contributes 0.47% only.

Table 1. Estimates of the parameters and the PRESS values with respect to the Hald data, in
which the weights of HPCR, WPCR, and WnnPCR are (−0.0447, −0.0367, 2.3798, −1.2986),
(−0.0445, −0.0366, 2.3803, −1.2991), and (0.0000, 0.0000, 1.0000, 0.0000), respectively.

Parameter LS PCR HPCR WPCR WnnPCR
β0 62.4054 89.3820 176.9994 177.0226 111.4759
β1 1.5511 0.0375 0.4240 0.4238 1.0350
β2 0.5102 0.3757 −0.6765 −0.6766 0.0073
β3 0.1019 −0.0161 −1.1140 −1.1142 −0.4237
β4 −0.1441 −0.4047 −1.3018 −1.3021 −0.6379
PRESS 110.3466 1095.7010 85.2456 85.2457 93.4901

Table 2. Estimates of the parameters and the PRESS values with respect to the Acetylene
data, in which the weights of HPCR, WPCR, and WnnPCR are (0.3552, 11.7020, −11.0943),
(0.4062, 11.5567, −10.9629), and (0.5145, 0.4855, 0.0000), respectively.

Parameter LS PCR HPCR WPCR WnnPCR
β0 −121.2696 −133.0231 −229.8512 −234.9098 −131.8903
β1 0.1269 0.1395 0.2098 0.2141 0.1368
β2 0.3482 0.0022 0.2463 0.2412 0.1716
β3 −19.0217 −0.0000 211.0306 208.5313 −0.0000
PRESS 336.2955 311.4937 175.9425 178.8785 291.1463
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4.2. Simulation

This subsection makes a short simulation study to examine the numerical performance of LS and
classical/hybrid PCR estimators for the model (1.1). In this study, we take n = 30, 70, 100, 200 and
p = 3, 6, 9. For each case of p, take σ from {0.75, 0.25}. The explanatory variables are generated by
using the simulation procedure suggested by McDonald and Galarneau [24]:

xi j = (1 − ρ2)1/2ζi j + ρζi0, i = 1, · · · , n, j = 1, · · · , p,

where ζi j’s are independent standard normal pseudo-random numbers, and ρ2 is the correlation between
any two explanatory variables. To see how multicollinearity influences the performance, we take ρ as 0.5,
0.9, 0.999, and 0.99999, respectively, to get regressor matrices with different condition numbers, from
small to large. In addition, for each case, we randomly generate β0 and β from the interval [−5, 5]. After
that, we create a pseudo observation to compute the PRESS values of the five estimates (including LS,
PCR with cumulative percent not less than 85%, HPCR, WPCR, and weighted PCR with nonnegative
weights (WnnPCR). 100 runs are then performed and averaged for each case.

The results are computed and presented in Tables A1–A4 in the Appendix. By the tables, it follows
that: (i) PCR can improve LS only when explanatory variables are highly correlated, and the degree
of improvement depends on the error variance σ2. In particular, when σ2 = 0.752, PCR has smaller
PRESS values than LS if ρ takes either 0.999 or 0.99999; when σ2 = 0.252, PCR cannot improve LS
unless ρ = 0.99999. Especially, in the case of ρ = 0.5 or 0.9, PCR performs very badly. (ii) Each of
HPCR, WPCR, and WnnPCR improves LS and PCR substantially because, in any case, these three
estimators have far smaller PRESS values than LS/PCR estimators. Naturally, HPCR performs the
best, since the values of w can be selected from a wider range. (iii) The degree of the improvement of
HPCR/WPCR/WnnPCR over LS/PCR depends on p and ρ. Specifically, the larger p is, the higher the
degree is; and the lager ρ is, the higher the degree is. (iv) All estimators can be computed efficiently.

In view of the fact that LS can be regarded as a special PCR with all principal components, PCR
can perform the same theoretically as LS if taking the cumulative percent as 100%. However, in
this case, PCR fails to deal with multicollinearity. Therefore, HPCR/WPCR/WnnPCR can be a
desirable remedying procedure, because these estimators collect information carried by all possible
PCR estimators in an efficient way.

4.3. Discussion

It is well known that when multicollinearity is severe, the LS estimator performs poorly under the
MSE criterion. However, as shown by the two real examples and the simulation study, the LS estimator
seems to be relatively robust under the PRESS criterion. Although it is only slightly worse than the
three newly proposed HPCR estimators, it is not to the extent of being surprising.

Why is this?
In fact, this is directly related to the nature of the MSE and PRESS criteria. MSE measures

the difference between the regression parameters and their estimates, while PRESS considers the
contribution of each observation point, rather than the direct difference between parameters and estimates.
Although the LS estimator appears to be only slightly worse than HPCR estimators in the sense of
PRESS, this slight difference has indicated a substantial improvement of HPCR over LS.

On the other hand, we also note that under severe multicollinearity, the PRESS value of a classical
PCR estimator is very large. The reason for the poor performance of classical PCR is different from
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the aforementioned reasons. Instead, this is mainly because the contribution rate, namely 85%, is
chosen subjectively rather than being data-driven, which leads to the results of a PCR falling short of
theoretical expectations.

To check how contribution rates influence the corresponding PRESS values, we reevaluate the
classical PCR estimators in simulation studies, with the contribution rates taking 75, 85, and 95%,
respectively. All of the results are presented in corresponding tables. The results indicate that:

• In any case of n, p, σ, and ρ, the value of PRESS of PCR decreases as the cumulative contribution
rate of the principal components increases, although the decrease in PRESS may not be strict.
For example, in the case of n = 30, p = 6, and σ = 0.75, the PRESS values of the three PCR
estimators are 263.6573, 234.4363, and 108.8466 when ρ takes 0.9, while the values are equal to
each other when ρ takes 0.999.
• For any case of n, p, σ, and a fixed cumulative contribution rate of the principal components, the

value of PRESS of PCR strictly decreases as large ρ increases. Taking also the case of n = 30,
p = 6, and σ = 0.75, the PRESS values of the 95% PCR estimators are 108.8466, 13.1987, and
9.8573 for ρ taking 0.9, 0.999, and 0.99999.
• In any case of p, σ, ρ, and a fixed cumulative contribution rate of the principal components, the

averaged value of PRESS of PCR with respect to n, namely 1
nPRESS, strictly decreases as n

increases. For example, in the case of p = 6, σ = 0.75, and ρ = 0.9, the averaged PRESS values of
the 95% PCR estimators are

35.5229
30

= 1.1841,
72.2737

70
= 1.0325,

83.8286
100

= 0.8383,
91.9920

200
= 0.4600,

respectively, for n = 30, 70, 100, and 200.

For the Hald and Acetylene data, we consider the performance of the ordinary ridge regression (ORR) [4]
and the Liu estimator (LE) [14], since each of these two estimators involves only one biased parameter,
which can be easily adjusted by linearly changing the values from 0 to 1 or to a smaller/larger scalar
when computing the PRESS values for the associated estimates. By direct computations, the results are
derived and presented in Figures 1 and 2. By the figures, it follows that

• For the Hald data, LE and ORR have the minimal PRESS values 97.6613 and 96.8488, respectively,
when the Liu parameter d takes 0.1954 and the ridge parameter k takes 0.002153.
• For the Acetylene data, LE and ORR get the minimal PRESS values 330.8642 and 311.2461,

respectively, when d = 0.9345 and the ridge parameter k takes 0.005355.

By Tables 1 and 2, all of the three new estimators (HPCR, WPCR, and WnnPCR) have much smaller
PRESS values and therefore outperform LE and ORR under the PRESS criterion.

Additionally, note here that the smaller the PRESS value, the better the model’s predictive ability.
We employ a predicted version of R2 to measure the predictive ability of the model. The predicted R2 of
an estimator, (β⃗0, β⃗), is defined as follows:

R2
PRESS

(
β⃗0, β⃗; β0, β

)
≜ 1 −

PRESS
(
β⃗0, β⃗; β0, β

)
n∑

i=1

(
yi −

1
n−1

∑
j,i

y j

)2 .
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By direct computations, the R2
PRESS values of the seven estimators (LS, PCR, HPCR, WPCR, WnnPCR,

LE, and ORR) in the Hald and Acetylene data are

Hald data : 0.9654, 0.6562, 0.9733, 0.9733, 0.9707, 0.9662, 0.9696;
Acetylene data : 0.8608, 0.8711, 0.9272, 0.9260, 0.8795, 0.8631, 0.8712.

The results indicate similar expected conclusions to that of Subsection 4.1.
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Figure 1. PRESS curves of LE (left) and ORR (right) versus the biased parameters, d and k,
for the Hald data.
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Figure 2. PRESS curves of LE (left) and ORR (right) versus the biased parameters, d and k,
for the Acetylene data.

5. Conclusions and suggestion

This paper addresses the issues existing in the classic PCR estimation and proposes three hybrid PCR
estimators. The two real examples and the simulation study demonstrate the desirable performance of
the new methods. Also, the three hybrid PCR estimators could also be studied under the MSE criterion.
However, since they are biased estimators, the determination of the weights in the MSE sense can only be
iteratively solved from a numerical perspective. This also implies that the estimators will no longer be
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linear estimators after the first iteration, making it difficult to accurately represent the value of MSE and
only approximate results can be obtained. In short, the study of hybrid PCR estimation under the MSE
criterion is challenging. In what follows, we give two suggestions for the use of the new estimators.

Suggestion 1: Despite the issue of selecting the contribution rate, classic PCR estimation still yields
decent estimators by automatically determining which cumulative contribution rate to use (in
essence, this is equivalent to how many principal components to use). Therefore, in cases where
data size is large and there are numerous regression variables, users can still employ the classic
PCR method to estimate parameters. This can be seen from the aforementioned fact that the
averaged PRESS value decreases as the data size increases.

Suggestion 2: We can determine which estimator to use by considering the degree of multicollinearity.
If multicollinearity is absent or weak, we can use the LS estimator directly. If multicollinearity is
moderate, we can combine the above Suggestion 1 to choose a classical PCR estimator with an
appropriate cumulative contribution rate. If multicollinearity is severe, it is recommended to use
the hybrid PCR estimator.
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Appendix

Table A1. PRESS values of the five estimates with respect to n = 30 and different p (the number
of explanatory variables), σ (the model error standard deviation), and ρ (the correlation between
regressors, measuring the degree of multicollinearity). In addition, the averaged time (AT) in
seconds for every run is presented in the final column of each subtable.

𝑝 = 3 and 𝜎 = 0.75 𝑝 = 3 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 11.0539 11.2180 10.6930 10.5669 5.20 × 10−6 LS 0.1312 0.1394 0.1360 0.1354 5.19 × 10−6 

75% PCR 227.8098 91.9703 11.0269 9.8523 8.42 × 10−6 75% PCR 178.7443 125.1205 1.1773 0.1356 8.15 × 10−6 

85% PCR 80.9064 85.9203 11.0269 9.8523 8.70 × 10−6 85% PCR 36.3780 112.9114 1.1773 0.1356 8.60 × 10−6 

95% PCR 11.0539 35.5229 11.0269 9.8523 8.84 × 10−6 95% PCR 0.1312 36.1212 1.1773 0.1356 8.55 × 10−6 

HPCR 10.8179 10.8774 8.8617 8.2479 4.49 × 10−4 HPCR 0.1285 0.1370 0.1334 0.1138 4.38 × 10−4 

WPCR 10.8823 10.9076 8.9095 8.3367 4.51 × 10−4 WPCR 0.1293 0.1374 0.1335 0.1144 4.36 × 10−4 

WnnPCR 10.9890 11.0487 9.8872 9.6319 1.07 × 10−3 WnnPCR 0.1307 0.1388 0.1349 0.1251 1.03 × 10−3 

𝑝 = 6 and 𝜎 = 0.75 𝑝 = 6 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 12.5214 13.4138 12.7414 12.2797 7.51 × 10−6 LS 0.1523 0.1536 0.1457 0.1566 7.53 × 10−6 

75% PCR 567.5426 263.6573 13.1987 9.8573 1.26 × 10−5 75% PCR 486.3268 266.7937 2.9079 0.1509 1.25 × 10−5 

85% PCR 395.4563 234.4363 13.1987 9.8573 1.31 × 10−5 85% PCR 296.2013 238.4373 2.9079 0.1500 1.30 × 10−5 

95% PCR 99.7852 108.8466 13.1987 9.8573 1.35 × 10−5 95% PCR 67.0567 105.7575 2.9079 0.1509 1.29 × 10−5 

HPCR 11.5709 12.2411 8.3825 6.7288 1.02 × 10−4 HPCR 0.1382 0.1419 0.1357 0.1004 1.04 × 10−3 

WPCR 11.6566 12.2800 8.4516 6.7911 1.02 × 10−4 WPCR 0.1393 0.1425 0.1360 0.1012 1.02 × 10−3 

WnnPCR 12.3923 13.0533 10.6819 9.5118 1.93 × 10−3 WnnPCR 0.1510 0.1516 0.1430 0.1297 1.64 × 10−3 

𝑝 = 9 and 𝜎 = 0.75 𝑝 = 9 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 14.7597 14.4471 14.6638 13.8221 1.12 × 10−5 LS 0.1849 0.1789 0.1814 0.1783 1.09 × 10−5 

75% PCR 875.0244 420.0682 14.2038 9.8126 2.01 × 10−5 75% PCR 826.4022 417.4707 4.6853 0.1645 1.93 × 10−5 

85% PCR 670.1962 376.9690 14.2038 9.8126 2.04 × 10−5 85% PCR 595.5124 350.4838 4.6853 0.1645 2.00 × 10−5 

95% PCR 271.4669 209.5098 14.2038 9.8126 2.20 × 10−5 95% PCR 257.5705 187.1392 4.6853 0.1645 2.11 × 10−5 

HPCR 12.3959 12.0719 7.8661 5.4684 2.07 × 10−3 HPCR 0.1578 0.1539 0.1533 0.0924 2.04 × 10−3 

WPCR 12.5516 12.1457 7.9631 5.5474 2.01 × 10−3 WPCR 0.1595 0.1545 0.1540 0.0935 2.02 × 10−3 

WnnPCR 14.3971 13.9815 10.8856 9.3178 2.78 × 10−3 WnnPCR 0.1822 0.1765 0.1757 0.1318 2.69 × 10−3 

 

Electronic Research Archive Volume 32, Issue 6, 3758–3776.



3774

Table A2. PRESS values and the AT in seconds of the five estimates with respect to n = 70
and different p (the number of explanatory variables), σ (the model error standard deviation),
and ρ (the correlation between regressors, measuring the degree of multicollinearity).

𝑝 = 3 and 𝜎 = 0.75 𝑝 = 3 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 23.8596 23.2023 23.3577 22.6883 6.83 × 10−6 LS 0.2953 0.2833 0.2816 0.2867 6.69 × 10−6 

75% PCR 411.9952 260.9086 25.1142 22.0457 1.06 × 10−5 75% PCR 341.8998 239.6013 2.5855 0.3004 1.11 × 10−5 

85% PCR 37.2456 240.8555 25.1142 22.0457 1.02 × 10−5 85% PCR 8.7850 219.9861 2.5855 0.3004 1.04 × 10−5 

95% PCR 23.8596 72.2737 25.1142 22.0457 1.04 × 10−5 95% PCR 0.2953 29.7473 2.5855 0.3004 1.07 × 10−5 

HPCR 23.7499 23.0839 22.1389 19.7402 1.05 × 10−3 HPCR 0.2938 0.2824 0.2790 0.2688 1.02 × 10−3 

WPCR 23.7774 23.1177 22.1569 19.7513 1.03 × 10−3 WPCR 0.2941 0.2824 0.2791 0.2692 1.01 × 10−3 

WnnPCR 23.8379 23.1618 22.9429 21.8573 1.74 × 10−3 WnnPCR 0.2951 0.2830 0.2804 0.2805 1.63 × 10−3 

𝑝 = 6 and 𝜎 = 0.75 𝑝 = 6 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 25.0859 24.9995 23.8188 24.3008 9.65 × 10−6 LS 0.3013 0.3014 0.3020 0.3018 9.67 × 10−6 

75% PCR 924.9686 647.3329 27.8634 22.39580 1.55 × 10−5 75% PCR 1004.9610 578.6075 6.1000 0.3300 1.48 × 10−5 

85% PCR 469.1337 573.0600 27.8634 22.3958 1.56 × 10−5 85% PCR 535.3425 497.5772 6.1000 0.3300 1.53 × 10−5 

95% PCR 25.0859 249.1194 27.8634 22.3958 1.64 × 10−5 95% PCR 0.9748 222.4911 6.1000 0.3300 1.33 × 10−5 

HPCR 24.5928 24.5647 20.7465 17.4100 2.44 × 10−3 HPCR 0.2959 0.2958 0.2963 0.2584 2.45 × 10−3 

WPCR 24.6228 24.5746 20.7771 17.5404 2.42 × 10−3 WPCR 0.2960 0.2958 0.2964 0.2587 2.43 × 10−3 

WnnPCR 25.0408 24.9294 22.7655 22.0787 3.05 × 10−3 WnnPCR 0.3006 0.3009 0.3010 0.2868 3.06 × 10−3 

𝑝 = 9 and 𝜎 = 0.75 𝑝 = 9 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 26.5505 25.6543 25.6111 25.4260 2.09 × 10−5 LS 0.3117 0.3226 0.3140 0.3199 2.07 × 10−5 

75% PCR 1832.3860 925.2033 31.6841 22.5608 2.23 × 10−5 75% PCR 1752.8440 933.2482 9.6699 0.3885 2.22 × 10−5 

85% PCR 1067.9560 809.5815 31.6841 22.5608 2.90 × 10−5 85% PCR 1056.16210 780.3915 9.6699 0.3885 2.87 × 10−5 

95% PCR 388.8009 377.3299 31.6841 22.5608 2.42 × 10−5 95% PCR 485.5310 364.0007 9.6699 0.3885 2.69 × 10−5 

HPCR 25.5102 24.6260 20.9860 16.1435 6.45 × 10−3 HPCR 0.2989 0.3100 0.3013 0.2577 6.36 × 10−3 

WPCR 25.5238 24.6415 21.0128 16.1996 6.61 × 10−3 WPCR 0.2995 0.3101 0.3015 0.2580 6.52 × 10−3 

WnnPCR 26.4616 25.4983 23.9798 22.0273 7.71 × 10−3 WnnPCR 0.3110 0.3218 0.3126 0.2975 7.49 × 10−3 
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Table A3. PRESS values and the AT in seconds of the five estimates with respect to n = 100
and different p (the number of explanatory variables), σ (the model error standard deviation),
and ρ (the correlation between regressors, measuring the degree of multicollinearity).

𝑝 = 3 and 𝜎 = 0.75 𝑝 = 3 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 33.9000 33.0669 32.5858 32.6356 9.01 × 10−6 LS 0.4054 0.4031 0.4175 0.4063 8.89 × 10−6 

75% PCR 576.7535 407.6325 35.1806 31.9583 1.20 × 10−5 75% PCR 594.0972 323.1151 3.5926 0.4293 1.24 × 10−5 

85% PCR 33.9000 384.1914 35.1806 31.9583 1.26 × 10−5 85% PCR 0.4445 292.3829 3.5926 0.4293 1.26 × 10−5 

95% PCR 33.9000 83.8286 35.18060 31.9583 1.12 × 10−5 95% PCR 0.4054 28.7849 3.5926 0.4293 1.35 × 10−5 

HPCR 33.8552 32.9863 31.0655 28.7446 1.89 × 10−3 HPCR 0.4044 0.4021 0.4159 0.3811 1.88 × 10−3 

WPCR 33.8610 33.0130 31.0746 28.7604 1.87 × 10−3 WPCR 0.4046 0.4022 0.4159 0.3812 1.87 × 10−3 

WnnPCR 33.8837 33.0495 32.1851 31.7592 2.56 × 10−3 WnnPCR 0.4052 0.4030 0.4168 0.4005 2.54 × 10−3 

𝑝 = 6 and 𝜎 = 0.75 𝑝 = 6 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 34.0111 33.0242 34.2546 33.8952 1.25 × 10−5 LS 0.4188 0.4164 0.4192 0.4185 1.24 × 10−5 

75% PCR 1366.4144 820.9073 40.7334 32.0514 1.88 × 10−5 75% PCR 1229.5673 842.4245 9.5972 0.4833 1.88 × 10−5 

85% PCR 697.7698 738.3613 40.7334 32.0514 1.86 × 10−5 85% PCR 571.2204 728.8761 9.5972 0.4833 1.84 × 10−5 

95% PCR 34.0111 332.7033 40.7334 32.0514 1.91 × 10−5 95% PCR 0.4188 275.1532 9.5972 0.4833 2.02 × 10−5 

HPCR 33.5875 32.6632 31.8211 25.5422 4.16 × 10−3 HPCR 0.4140 0.4124 0.4144 0.3811 4.14 × 10−3 

WPCR 33.6049 32.6659 31.8451 25.6628 4.17 × 10−3 WPCR 0.4142 0.4124 0.4145 0.3813 4.15 × 10−3 

WnnPCR 33.9789 32.9370 33.5012 31.7416 4.86 × 10−3 WnnPCR 0.4182 0.4159 0.4183 0.4077 4.83 × 10−3 

𝑝 = 9 and 𝜎 = 0.75 𝑝 = 9 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 35.9664 35.3190 35.2747 34.8187 3.23 × 10−5 LS 0.4213 0.4350 0.4327 0.4350 3.18 × 10−5 

75% PCR 2166.8784 1310.8235 46.3709 31.9581 4.16 × 10−5 75% PCR 2229.7730 1263.3911 14.7056 0.5296 4.43 × 10−5 

85% PCR 1241.8423 1108.2647 46.3709 31.9581 4.13 × 10−5 85% PCR 1162.7843 1145.1165 14.7056 0.5296 4.11 × 10−5 

95% PCR 439.4468 499.6003 46.3709 31.9581 4.20 × 10−5 95% PCR 356.5309 466.6388 14.7056 0.5296 4.67 × 10−5 

HPCR 35.2201 34.4002 31.9476 23.9691 1.22 × 10−2 HPCR 0.4114 0.4248 0.4222 0.3776 1.22 × 10−2 

WPCR 35.2739 34.4100 31.9613 24.0010 1.23 × 10−2 WPCR 0.4115 0.4248 0.4223 0.3778 1.23 × 10−2 

WnnPCR 35.8971 35.2194 34.1270 31.4494 1.34 × 10−2 WnnPCR 0.4207 0.4341 0.4317 0.4181 1.35 × 10−2 
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Table A4. PRESS values and the AT in seconds of the five estimates with respect to n = 200
and different p (the number of explanatory variables), σ (the model error standard deviation),
and ρ (the correlation between regressors, measuring the degree of multicollinearity).

𝑝 = 3 and 𝜎 = 0.75 𝑝 = 3 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 65.8927 64.8278 65.3548 63.7734 3.19 × 10−5 LS 0.7912 0.7970 0.7888 0.8047 3.06 × 10−5 

75% PCR 1101.2950 630.3620 72.6789 63.2837 4.03 × 10−5 75% PCR 1006.2337 623.7216 7.2759 0.8634 3.90 × 10−5 

85% PCR 65.8927 621.7803 72.6789 63.2837 3.74 × 10−5 85% PCR 0.7912 608.3858 7.2759 0.8634 3.55 × 10−5 

95% PCR 65.8927 91.9920 72.6789 63.2837 4.18 × 10−5 95% PCR 0.7912 45.5516 7.2759 0.8634 3.83 × 10−5 

HPCR 65.8383 64.7109 63.7329 58.5412 4.05 × 10−3 HPCR 0.7905 0.7963 0.7877 0.7821 4.01 × 10−3 

WPCR 65.8433 64.7160 63.9414 58.5526 3.86 × 10−3 WPCR 0.7908 0.7963 0.7877 0.7821 3.84 × 10−3 

WnnPCR 65.8810 64.8086 65.0444 63.0243 4.61 × 10−3 WnnPCR 0.7911 0.7969 0.7885 0.8008 4.57 × 10−3 

𝑝 = 6 and 𝜎 = 0.75 𝑝 = 6 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 65.3578 66.0217 67.1194 64.6662 3.74 × 10−5 LS 0.8292 0.8143 0.8016 0.8168 3.78 × 10−5 

75% PCR 2356.9438 1724.4008 81.6643 63.2941 4.81 × 10−5 75% PCR 2493.9479 1601.8222 17.1199 0.9537 5.11 × 10−5 

85% PCR 1281.3240 1499.5096 81.6643 63.2941 4.53 × 10−5 85% PCR 1232.6163 1343.0020 17.1199 0.9537 4.60 × 10−5 

95% PCR 65.3578 548.4416 81.6643 63.2941 4.06 × 10−5 95% PCR 0.8292 423.7067 17.1199 0.9537 4.75 × 10−5 

HPCR 65.1159 65.7827 64.5475 54.7151 8.99 × 10−3 HPCR 0.8262 0.8110 0.7984 0.7846 8.93 × 10−3 

WPCR 65.1209 65.7867 64.5600 54.7449 8.84 × 10−3 WPCR 0.8262 0.8110 0.7984 0.7847 8.79 × 10−3 

WnnPCR 65.3326 65.9825 66.5801 62.7871 9.55 × 10−3 WnnPCR 0.8290 0.8139 0.8012 0.8096 9.49 × 10−3 

𝑝 = 9 and 𝜎 = 0.75 𝑝 = 9 and 𝜎 = 0.25 

Estimation 
𝜌 

AT Estimation 
𝜌 

AT 
0.5 0.9 0.999 0.99999 0.5 0.9 0.999 0.99999 

LS 66.9855 66.9353 65.4687 65.5627 5.19 × 10−5 LS 0.8073 0.8207 0.8114 0.8317 5.17 × 10−5 

75% PCR 3941.4811 2510.8703 91.0613 62.9964 4.80 × 10−5 75% PCR 3986.4039 2601.2332 27.1017 1.0544 7.01 × 10−5 

85% PCR 2587.3025 2073.7567 91.0613 62.9964 5.98 × 10−5 85% PCR 2687.6931 2178.3749 27.1017 1.0544 5.97 × 10−5 

95% PCR 78.3062 884.2350 91.0613 62.9964 6.24 × 10−5 95% PCR 7.1094 850.8616 27.1017 1.0544 6.34 × 10−5 

HPCR 66.4251 66.3840 62.3900 51.3104 2.49 × 10−3 HPCR 0.8008 0.8149 0.8033 0.7884 2.49 × 10−3 

WPCR 66.4438 66.3861 62.4011 51.3373 2.52 × 10−3 WPCR 0.8010 0.8149 0.8033 0.7885 2.54 × 10−3 

WnnPCR 66.9269 66.8833 64.8061 62.5617 2.64 × 10−3 WnnPCR 0.8070 0.8203 0.8106 0.8222 2.72 × 10−3 
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