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Abstract: Anomaly detection is a binary classification task, which is to determine whether each pixel
is abnormal or not. The difficulties are that it is hard to obtain abnormal samples and predict the
shape of abnormal regions. Due to these difficulties, traditional supervised segmentation methods fail.
The usual weakly supervised segmentation methods will use artificially generate defects to construct
training samples. However, the model will be overfitted to artificially generated defects during training,
resulting in insufficient generalization ability of the model. In this paper, we presented a novel
reconstruction-based weakly supervised method for sparse anomaly detection. We proposed to use
generative adversarial networks (GAN) to learn the distribution of positive samples, and reconstructed
negative samples which contained the sparse defect into positive ones. Due to the nature of GAN,
the training dataset only needs to contain normal samples. Subsequently, the segmentation network
performs progressive feature fusion on reconstructed and original samples to complete the anomaly
detection. Specifically, we designed the loss function based on kullback-leibler divergence for sparse
anomalous defects. The final weakly-supervised segmentation network only assumes a sparsity prior
of the defect region; thus, it can circumvent the detailed semantic labels and alleviate the potential
overfitting problem. We compared our method with the state of the art generation-based generative
anomaly detection methods and observed the average area under the receiver operating characteristic
curve increase of 3% on MVTec anomaly detection.
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1. Introduction

Anomaly detection is widely used in various fields. In industry [1], it is employed to address
safety and security concerns. For instance, it is also very important to ensure quality in the case
of materials production, while in the medical field, it is utilized to analyze medical images, such as
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identifying the location of tumors [2]. One of the primary challenges in anomaly detection is the
scarcity of abnormal samples, which complicates the acquisition of representative and comprehensive
data for training and testing purposes. Furthermore, anomalies tend to be unpredictable and diverse,
making it challenging to capture all possible variations and features of abnormal regions. Additionally,
the process of labeling and calibrating datasets is both costly and time-consuming. These factors
suggest that traditional supervised learning methods are not well-suited for anomaly detection, and
that unsupervised or weakly-supervised learning methods are more appropriate.

In recent years, deep learning techniques have been widely applied to various reconstruction
tasks [3], leading to the development of numerous anomaly detection methods that rely on
reconstruction quality [4]. Some methods [5] attempt to reconstruct abnormal samples as normal
samples by learning the distribution of normal samples. Using a threshold method, the regions with
large differences between the abnormal samples and the reconstructed samples are identified as
defects. Other methods [6] use artificially generated defects for training, which weakens the
reconstruction of anomalous regions. However, due to the difficulty of learning real defect features,
these methods do not generalize well enough for real defects and can lead to overfitting.

To address these issues, in this paper, we propose a weakly-supervised anomaly detection
method (WADS) that utilizes sparsity priority. We employ the Perlin noise function to generate
random anomaly regions and construct various types of anomaly samples based on normal samples.
In particular, we utilize sparsity prior as a regularization term to mitigate overfitting of the model and
to enhance its generalization to real anomalies. In summary, we make the following contributions:

• The new segmentation subnetwork provides segmentation information for the generating
subnetworks and addresses the overfitting issue prevalent in anomaly detection methods based
on generative models.
• A sparse regular term based on kullback-leibler (KL) divergence is designed to constrain the

area of the abnormal region, provide prior information about the abnormal region to the model,
and enhance the model’s generalization capabilities.

2. Related work

Anomaly detection: Many researchers work a lot for anomaly detection tasks. Traditional anomaly
detection methods, such as principal component analysis and random projection [7], is to downscale
the input data. The downscaled data contains main features, and the anomalous image will lose more
information in the downscaling process leading to a larger reconstruction error, through which the
anomaly detection is completed. With the development of deep learning, many deep learning methods
in anomaly detection have gained better performance than traditional methods. Among them, methods
based on image reconstruction work very well.

Reconstruction Methods: Methods based on reconstruction utilize the properties of reconstructed
models, such as auto-encoder (AE) [8] and generative adversarial networks (GAN) [9]. By learning
the distribution of positive samples, it can reconstruct negative samples into positive ones. Comparing
the reconstructed samples with the negative samples, the regions with larger differences can be
considered as anomalous regions. AE is widely used in image reconstruction. It will map the input
image into a hidden space vector, which can represent the features of the image. Then the hidden
space vector is decoded into a reconstructed image. GAN is similar to AE, but it uses an adversarial
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loss function for training and calculates anomaly scores based on the image reconstruction effect for
improving the reconstruction performance. Many methods combine the ideas of AE and GAN.
GANomaly [10] improves on anoGAN by adding the structure of AE to the generator.
Skip-GAN [11], in order to improve the reconstruction performance, further incorporates U-Net
structure in the generator for feature fusion. However the reconstruction performance is so strong that
anomalous regions are also reconstructed. TricycleGAN [12], proposed in 2021, implements a
picture-to-picture image segmentation network, which accomplishes anomaly detection through three
GANs. However, it needs to know the shape of the anomaly region, which means it can only segment
for a certain class of shape.

Reconstruction by inpainting based anomaly detection method (RIAD) [13] proposes a novel
anomaly detection method based on image inpainting. It reconstructs anomalous regions by utilizing
information from normal regions, and the difference between the reconstructed image and the original
image highlights the anomalous regions. Multi-resolution knowledge distillation (MKD) [14]
proposes a novel anomaly detection method based on knowledge distillation. It distills knowledge
from a teacher network trained on normal data to a student network at multiple resolutions, and
anomalies are detected by the inconsistency between the student and teacher predictions.
RevDistill [15] proposes a novel anomaly detection method based on reverse knowledge distillation.
It first trains an embedding network on normal data, and then distills knowledge from the embedding
network to a student network, which is trained to reconstruct normal data. Anomalies are detected by
the reconstruction error of the student network. RealNet [16] proposes a framework for anomaly
detection using pretrained models. The framework includes three key components:
strength-controllable diffusion anomaly synthesis (SDAS), anomaly-aware features selection (AFS),
and reconstruction residuals selection (RRS), which are used to generate synthetic anomaly samples,
select key features, and screen reconstructed residuals, respectively. Through the synergy of these
components, RealNet is able to achieve significant performance improvements in anomaly
detection tasks.

Segmentation methods: In order to extract features from reconstructed and original images,
reconstruction-based methods use image segmentation models for anomaly localization. Fully
convolutional networks (FCN) [17], a landmark algorithm in image segmentation, reduces the
computational effort by converting all fully connected layers of traditional convolutional neural
networks (CNN) into convolutional layers. However, FCN uses the last layer of feature maps for
prediction, and the segmentation for small targets is not good. Feature pyramid network (FPN) [18]
utilizes the idea of image pyramid to construct multi-scale features and improve segmentation
performance by processing different scale features. U-Net [19], which works well in the medical field,
has a similar structure to FPN. It fuses multi-scale feature maps, and the overall structure is similar to
a “U”, with the first half completing feature extraction and the second half completing upsampling.

3. WADS

The proposed anomaly detection method (WADS) comprises a reconstructive subnetwork and a
segmental subnetwork. The reconstructive subnetwork learns the distribution of normal regions and
identifies regions that deviate from this normal distribution as abnormal. It then reconstructs these
abnormal regions to resemble normal regions. The resulting reconstructed image serves as input for
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the segmental subnetwork. By comparing the features of the reconstructed image with those of the
original input image, the segmental subnetwork identifies the regions that significantly differ from the
original, thereby completing the defect segmentation task.

3.1. The overview of WADS

The procedure of the proposed method is shown in Figure 1. The procedure is divided into three
parts: 1) Processing normal samples to obtain abnormal samples and abnormal region masks; 2) using
a GAN to reconstruct the input image and obtain the reconstructed image; 3) the segmental
subnetwork processes both the input image and the reconstructed image to predict the mask of the
anomalous region.

Figure 1. Method Procedure.

In particular, the reconstructive subnetwork and the segmental subnetwork should be trained
together during the training process because they are interdependent. The reconstructive subnetwork
needs to reconstruct the image to facilitate easier segmentation, while the segmental subnetwork
needs to compare the features of the reconstructed image with those of the original image. During
back propagation, their loss functions are combined and optimized concurrently.

3.2. Dataset generation

The training dataset requires only normal images, as we generate abnormal regions that deviate
from the normal distribution, which can be used to construct abnormal samples. Specifically, the final
dataset comprises normal images, abnormal images, and abnormal area mask images.

Normal images and random images serve as the basis for constructing the dataset. The distribution
of the random image is independent of the distribution of the normal image, so the area in the random
image can be considered as an abnormal area in the abnormal image. All processes are depicted in
Figure 2. First, due to the randomness of the abnormal area, Perlin [20] noise is utilized to construct
the mask image of the abnormal area. Then, according to the mask image, the corresponding areas in
the random image are extracted. Finally, image fusion is performed between the extracted area and the
normal image to obtain the abnormal image Ia, which can be expressed as Eq (3.1):

Ia = β ∗ Ib + (1 − β) ∗ I (3.1)
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where Ib is the normal image and I is the random image after separation. In addition, we also
performed rotation, scale transformation, and other operations on the normal images for dataset
enhancement. According to processes, we can finally get normal pictures, abnormal pictures and
abnormal region masks.

Figure 2. Dataset generation process.

3.3. Reconstructive subnetwork

The reconstructive subnetwork mainly performs the task of image reconstruction in the whole
approach, using the structure of GAN. In fact, variational auto-encoder (VAE) [21] also has generative
properties, but VAE requires that the encoding of the hidden space needs to conform to a specific
distribution, such as a mixed Gaussian distribution. The VAE structure is shown in Figure 3. To
approximate the true distribution, VAE uses KL divergence to define the optimization objective,
which is to maximize:

Loss =
∫

p(z|x)log(q(x|z))dz −
∫

p(z|x)log(
p(z|x)
p(z)

)dz (3.2)

where p(z) is a given distribution. From Eq (3.2), VAE requires forcing the inputs data to be fitted to a
specific distribution, which can create some problems: First, information will be lost in the mapping
process. Second, input data that does not conform to the preset distribution will be poorly encoded
and reconstructed. For reconstructed images, it will be blurred. GAN, on the other hand, does not
have strong preconditioning like VAE; it directly fits the hidden space code to the known data
distribution and uses discriminator network for optimization, so it can have better reconstruction for
anomalous samples.

The structure of reconstructive subnetwork is mainly borrowed from skip-GAN, which adds encoder
and decoder structure to the generator structure to enhance the reconstruction performance. The model
structure is shown in Figure 4. The main body of the generator structure is the encoder and decoder,
combined with the structure of feature fusion. The original structure of skip-GAN fuses the features
of each layer of the encoder, so the reconstruction performance is too strong to reconstruct abnormal
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regions into normal regions. We only input the last layer of the encoder feature into the decoder. The
discriminator structure is relatively simple and completes the binary classification task.

Figure 3. VAE structure. Where X is inputs, Z is latent variable.

Figure 4. Reconstructive subnetwork.

The loss function of the generator consists of three parts:

Lcon = S S IM(X, X̂) + L2(X, X̂) ,
Llat = L2(Z, Ẑ) ,
Ladv = BCE( f (X), f (X̂))

(3.3)

where X is the input image, X̂ is the reconstructed image, Z is the output of the normal image through
the encoder, Ẑ is the output of the abnormal image through the encoder, f (X) is the feature output of the
normal image at the last layer of the discriminator, and f (X̂) is the feature output of the reconstructed
image at the last layer of the discriminator. Lcon and Llat guarantee the reconstruction performance
of the generator. L2 loss, which reflects the overall difference between the reconstructed image and
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the original image, is often used in reconstruction methods. However, it considers that each pixel
is independent, without considering the relationship between pixels. Therefore, we add structural
similarity index measure (SSIM) loss [22], which calculates the loss based on patches, taking the
connection between pixels into account. The reconstruction performance is guaranteed while limiting
the reconstruction of abnormal regions in terms of luminance, contrast and structure. The final loss
function of the generator is:

Ltotal = λadv ∗ Ladv + λcon ∗ Lcon + λlat ∗ Llat , (3.4)

where λadv, λcon, λlat are the weights of the three loss functions, respectively.
The discriminator is mainly used for binary classification. It uses binary cross entropy (BCE) loss,

which is:
Ldisc = BCE(y, ŷ) , (3.5)

where y is the real label of the input image and ŷ is the output label of the discriminator. The
discriminator will determine whether the input is a reconstructed image.

3.4. Segmental subnetwork

The segmental subnetwork performs the anomaly segmentation task, outputting a masked map of
the anomaly region. The model structure is shown in Figure 5. It draws on the structure of FPN [18].
First, residual network 50 (ResNet50) [23] with strong feature extraction ability is used to downsample
the input, followed by upsampling the downsampled image. Finally, after sigmoid activation, the
output is the mask of the anomalous region. In the upsampling process, features of downsampling
layers are used for feature fusion. By comparing the original and reconstructed image, the areas with
large differences are considered as abnormal regions.

Figure 5. Segmentation model structure.

The segmental subnetwork actually performs a binary classification task for each pixel in the image.
BCE loss is often used in the binary classification. However, in anomaly detection task, the abnormal
region accounts for a small proportion of the whole image, so the number of abnormal points are
smaller than the normal points, resulting in an unbalanced problem. Using BCE loss will get bad
results. Focal loss [24], which can increase the weights of a few categories in training, perfectly solves
the problem of imbalance. In addition, for the sparsity defect, we design a special sparsity loss based
on KL divergence [25]. KL divergence describes the distance between the two distributions. Sparsity
loss is as follows:

Lkl = M ∗ log(
M
ρ

) + (1 − M) ∗ log(
1 − M
1 − ρ

) , (3.6)
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where M is the abnormal area mask image and ρ is a constant, representing the proportion of abnormal
areas, which limits the area of abnormal areas in the mask image. The total loss function is:

FL(y, ŷ) =

−(1 − ŷ)γlogŷ, y = 1
−ŷγlog(1 − ŷ), y = 0

,

Lseg = FL(y, ŷ) + Lkl

(3.7)

where y is the ground truth of segmentation and ŷ is the output of the segmentation model.

4. Experiments

The proposed method is widely evaluated and compared with other generative anomaly
segmentation methods. The effects of SSIM and KL divergence loss function were verified by an
ablation study.

4.1. Dataset and setup

Our proposed method is evaluated on MVTec anomaly detection (MVTecAD) [26], which is often
used for the evaluation of weakly supervised or unsupervised anomaly detection algorithms. The
dataset contains 15 kinds of data, and some of which are shown in Figure 6. The training set only
contains normal images, and the testing set contains different types of defects that gives a
comprehensive picture of the capabilities and bounds of our method. In order to compare with others,
the final dataset uses 128 × 128 size images, with random cropping, scale transformation, and random
rotation strategies for large size images, resulting in a final data of around 20000 per kind.

Figure 6. Examples of MVTec. Normal images (left), abnormal images (center) and mask
images (right) are shown in the figure.
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4.2. Results

During the training process, the hyperparameters in the algorithm are set uniformly. To make the
loss functions have the same order of magnitude, λadv is set to 1, λcon is set to 20, λlat is set to 1, ρ is set
to 0.1, the learning rate is set to 0.0001, and the encoding length of the hidden space of the encoder is
set to 200. The model is trained for 700 epochs. For evaluation, we choose the pixel-based area under
the receiver operating characteristic curve (AUROC) to evaluate the performance of our method. The
larger the AUROC value, the better the model performance.

Figure 7 shows some experimental results of WADS. As can be seen from the figure, the generation
model can reconstruct the normal regions well, and the less obvious anomalous regions that can be
removed, and the more obvious ones can be weakened significantly. The segmentation model can also
get an accurate segmentation image of abnormal regions.

Figure 7. Outputs of the method. Input images (first), reconstructed images (second),
ground truth images (third) and, output mask images (fourth) are shown in the figure.

In Tables 1–3, the comparison results of our method and other methods are shown. From the table,
we can see that our method achieves better results in all surface anomaly detection, such as wood,
leather, etc. In object anomaly detection, the results are not uniform. It can achieve particularly good
results on toothbrush and hazelnut, but particularly poor results on zipper. This occurs because the
SSIM loss function is concerned with human vision, which drives the generation model to reconstruct
the image to visually approximate a normal image. However, on the zipper dataset, the anomalous
regions are so weak that it is difficult for human vision to detect the anomalous regions, resulting in the
reconstructed images not being well cleared of the anomalous regions. Other methods do not achieve
segmentation by comparing the differences between the reconstructed images and the input images,
so the above problems do not exist. On the visually distinguishable anomalous dataset, our method
achieves better results. Therefore, the segmentation model gets bad results. Other methods focus on
distribution, so the above problems do not exist. On visually distinguishable abnormal datasets, our
method has achieved better results.
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Table 1. AUROC in % in MVTecAD.

Class Ours Ustd γ-VAE grad RAID MKD P-Net GDR RevDistill
[27] [28] [13] [14] [29] [28] [15]

Mean 93.0 85.7 88.8 91.7 90.7 88.7 89.5 91.4

Table 2. AUROC in % on object images in MVTecAD.

Class Ours Ustd γ-VAE grad RAID MKD P-Net GDR RevDistill
bottle 97.0 91.8 93.1 99.9 99.4 99.0 92.0 46.2
capsule 80.1 91.6 91.7 88.4 80.5 84.0 92.0 97.3
pill 94.6 93.5 93.5 83.8 82.7 91.0 93.0 94.9
transistor 94.6 70.1 93.1 90.9 85.6 82.0 92.0 91.5
zipper 73.8 93.3 87.1 98.1 93.2 90.0 87.0 98.9
cable 95.6 86.5 88.0 81.9 89.2 70.0 91.0 76.9
hazelnut 99.2 93.7 98.8 83.3 98.4 97.0 98.0 100.0
metal nut 93.9 89.5 91.4 88.5 73.6 79.0 91.0 94.9
screw 93.6 92.8 97.2 84.5 83.3 99.9 95.0 96.5
toothbrush 99.1 86.3 98.3 100.0 92.2 99.0 99.0 83.6
Mean 92.2 88.9 93.2 89.9 87.8 89.1 93.0 88.1

Table 3. AUROC in % on texture images in MVTecAD.

Class Ours Ustd γ-VAE grad RAID MKD P-Net GDR RevDistill
grid 94.3 81.9 97.9 99.6 78.0 78.0 96.0 97.9
leather 96.4 81.9 89.7 100.0 95.1 95.1 93.0 100.0
tile 95.6 91.2 58.1 98.7 91.6 91.6 65.0 97.7
carpet 91.5 69.5 72.7 84.2 79.3 79.3 74.0 95.7
wood 94.5 72.5 80.9 93.0 94.3 94.3 84.0 98.9
Mean 94.5 79.4 79.9 95.1 87.7 87.7 82.4 97.9

4.3. Ablation study

To verify the effectiveness of SSIM and KL divergence loss functions, we conducted ablation
experiments, respectively. The effect on model performance was observed by deleting SSIM in the
loss function of the generator and deleting KL divergence loss function in the segmentation model.
AUROC is used for performance evaluation, and results are shown in Table 4.

From the results, it can be seen that after removing the SSIM loss function, the model works poorly
for some object anomaly detection, such as capsule, transistor, and screw. That is because that the
reconstruction performance of the model is reduced, resulting in the inability to accurately determine
the anomaly region. The effect is still good for surface anomaly detection, which is because the model
can distinguish the anomalous region from the perspective of distribution. Specifically for zipper,
without using SSIM, the effect of anomaly detection is better. After deleting the KL divergence loss
function, the proportion of sparsity samples in each class testing set is different, so the results are not
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the same. For the bottle with more sparsity samples, after deleting the KL divergence loss function,
the AUROC decreases by about 10%, but for the grid and tile with less sparsity samples, the AUROC
increases. This is in line with our expectations. From the ablation study, it can be seen that the
SSIM loss function does guide the reconstruction of the model from the visual angle, and weakens the
influence of the distribution on the reconstruction. KL divergence loss function does have better effect
for sparsity abnormal samples.

To verify the effectiveness of the discriminant subnetwork, we also conducted ablation
experiments on it. The ablation experiment in this section primarily compares the changes in
structured sparse bayesian gaussian (SSBG) AUROC on MVTecAD after post-processing with the
discriminant subnetwork and the traditional local binary patterns (LBP) algorithm. The experimental
results are presented in Table 4.

Table 4. Ablation Results for SSIM, KL, and subnetwork on the MVTec dataset (AUROC).

Class Method MethodnoS S IM MethodnoKL MethodLBP

bottle 97.0 82.2 87.7 94.3
capsule 80.1 51.6 78.6 73.6
grid 94.3 93.5 97.2 85.6
leather 96.4 99.1 94.2 93.7
pill 94.6 92.8 86.8 84.8
tile 95.6 98.7 97.1 92.3
transistor 94.6 67.7 89.2 90.2
zipper 73.8 84.8 78.5 59.3
cable 95.6 96.2 94.1 87.9
carpet 91.5 88.9 90.2 86.4
hazelnut 99.2 93.4 97.9 95.8
metal nut 93.9 74.9 82.3 87.9
screw 93.6 59.9 96.3 86.8
toothbrush 99.1 98.4 96.4 96.4
wood 94.5 91.5 90.6 90.7
Mean 93.0 84.9 90.7 87.0

As seen in the table, the post-processing effect of the traditional LBP algorithm is inferior to that
of the discriminant subnetwork, especially in categories where the target area is not distinct, such as
capsules and zippers, where the traditional LBP algorithm performs poorly. This is because there is a
discrepancy between the reconstructed background region and the real background region, and the
traditional algorithm’s feature extraction capability is weaker compared to the discriminant
subnetwork. Consequently, when the difference between the target region and the background region
is minimal, the traditional algorithm’s segmentation performance is significantly less effective than
that of the deep learning method. Overall, since the discriminant subnetwork has superior feature
extraction capabilities and can better measure the distance between the target region and the
background region, using the discriminant subnetwork for segmentation is more efficient than using
the traditional algorithm.
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5. Conclusions

In this paper, we propose a WADS based on sparsity-constrained reconstruction. To enhance the
reconstruction quality of the reconstructive subnetwork, we employ a hybrid of GAN and AE. We
also adopt SSIM loss function to quantify the discrepancy between the reconstructed image and the
original image. To tackle the over-fitting issue of the generative model-based anomaly detection
method, WADS utilizes a segmental subnetwork to supply segmention information for the
reconstructive subnetwork. Specifically, we devise a sparsity regularized based on KL divergence,
which constrains the size of anomaly regions and prioritizes anomaly regions for the model, to
improve the generalization of WADS. Overall, our method achieves a superior segmentation
performance for visually salient anomalies, especially for sparsity defects. However, since SSIM loss
mimics human perception by primarily focusing on edge and texture similarity, its detection
performance is insufficient for subtle and visually unobtrusive anomalies. In the future, we will
further investigate the problem of detecting weak anomalous regions.
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