Electronic
Research Archive

Research article

Dynamics of a stochastic epidemic model with information intervention and vertical transmission

Feng Wang ${ }^{1,2, *}$ and Taotao $\mathbf{L i}^{3}$
${ }^{1}$ School of Mathematics and Statistics, Central South University, Changsha 410083, China
${ }^{2}$ Department of Mathematics, Pingxiang University, Pingxiang 337055, China
${ }^{3}$ School of Mechanical and Electronic Engineering, Pingxiang University, Pingxiang 337055, China

* Correspondence: Email: wangfeng871618@126.com.

Abstract

The dynamic behavior of a stochastic epidemic model with information intervention and vertical transmission was the concern of this paper. The threshold to judge the extinction and persistence of the disease was obtained. Specifically, when $\Delta<0$ (Δ appears in Section 3), the three classes I_{t}, M_{t}, and R_{t} appearing in the model go extinct at an exponential rate, and the susceptible class S_{t} almost surely converges to the solution of the boundary equation exponentially. When $\Delta>0$, the result that the disease in the model is persistent in the mean and the existence of invariant probability measure are proved by constructing a new form of Lyapunov functions, which results in getting sufficient and nearly necessary conditions for different properties. Moreover, one of the main characteristics of this article was the study of the critical case of $\Delta=0$ under some conditions. Some examples were listed to confirm the obtained results.

Keywords: stochastic epidemic model; information intervention; vertical transmission; extinction; persistence; invariant probability measure

1. Introduction

Outbreaks of infectious diseases do great harm to life and fortune. The construction and research of mathematical models play an extremely important role in the prevention and control of diseases. Scholars have studied various properties of many epidemic models, such as SIR (Susceptible-Infected-Recovered), SEIR (Susceptible-Exposed-Infected-Recovered), SIRS, SIQS (Susceptible-Infected-Quarantined-Recovered), which portray different characteristics of disease transmission [1-6]. The authors in [6] studied the Hopf bifurcation and stability of a delayed SIR model. They established an epidemic model with temporary immunity and specific functional
response [7], and got the well-possedness and the threshold to determine different behaviors of the model.

When an epidemic occurs, people can learn about the transmission route of the disease, prevention measures and the government's policy on disease control from media such as the TV or Internet, so that they can take certain measures to slow down the spread of the disease, such as self-isolation, vaccination, and compliance with the government's anti-epidemic regulations. On account of the role of media information on disease control, scholars have studied the different properties of epidemic models with information intervention [8-12]. At present, there are mainly two ways to study the impact of information intervention on the behavior. One is to study the impact of information intervention on the contact rate $[8,9,13,14]$, and the other is to introduce a new class with information awareness [10, 11, 15, 16]. In [15], the following epidemic model with separate information intervention class was established:

$$
\left\{\begin{array}{l}
\dot{S}_{t}=\Lambda-d_{1} S_{t}-\beta S_{t} I_{t}-d_{2} m M_{t} S_{t}+\delta R_{t}, \tag{1.1}\\
\dot{I}_{t}=\beta S_{t} I_{t}-\left(d_{1}+\gamma+\mu\right) I_{t}, \\
\dot{R}_{t}=d_{2} m M_{t} S_{t}+\gamma I_{t}-\left(d_{1}+\delta\right) R_{t}, \\
\dot{M}_{t}=\frac{a_{1} I_{t}}{1+b_{1} I_{t}}-a_{2} M_{t},
\end{array}\right.
$$

where S_{t}, I_{t}, R_{t} denote the quantity of the susceptible class, the infected class, and the recovered class at time t, separately. M_{t} represents the individuals of the class with information awareness. The meanings of the parameters in model (1.1) are shown in Table 1. In addition, a_{2} represents the degradation rate of information, which contains the subtraction due to the natural death of M. Thus, the assumption that $a_{2}>d_{1}$ is reasonable. The whole part $d_{2} m$ indicates response rate; the detailed meaning of each parameter on the information and schematic diagram of the above model can be seen in [15]. All the above parameters are specified as positive.

Table 1. Meanings of the parameters in model (1.1).

Parameters	Meaning
Λ	The inflow rate in the population
d_{1}	The natural death rate
μ	Mortality due to disease
β	The contact rate between S and I
γ	The recovery rate of the infected
δ	The loss rate of immunity, turning the recovered into the susceptible
a_{1}, b_{1}	The information growth rate and the saturation coefficient
a_{2}	The degradation rate of information
m	The rate of information interaction
d_{2}	The response intensity

Reality is not immutable and often full of various uncertainties. The above deterministic model (1.1) can not reflect these uncertain factors. Therefore, the introduction of the model with stochastic noise will better reflect the reality and present more research contexts. For this reason,
many scholars have studied epidemic models with various stochastic factors [17-20]. The authors have studied the nontrivial positive periodic solution and condition for extinction of the model with media coverage and white noise [18]. Bao-Shao investigated an SIRS model with Markovian switching, which is used to describe the changes of coefficients in different environments, and discussed the influence of Markovian switching on the behavior of the model. In this paper, we introduce the stochastic perturbation of white noise into the above model, whose intensity is proportional to each class, that is

$$
\left\{\begin{array}{l}
d S_{t}=\left[\Lambda-d_{1} S_{t}-\beta S_{t} I_{t}-d_{2} m M_{t} S_{t}+\delta R_{t}\right] d t+\sigma_{1} S_{t} d W_{1}(t) \tag{1.2}\\
d I_{t}=\left[\beta S_{t} I_{t}-\left(d_{1}+\gamma+\mu\right) I_{t}\right] d t+\sigma_{2} I_{t} d W_{2}(t) \\
d R_{t}=\left[d_{2} m M_{t} S_{t}+\gamma I_{t}-(d+\delta) R_{t}\right] d t+\sigma_{4} R_{t} d W_{4}(t) \\
d M_{t}=\left(\frac{a_{1} I_{t}}{1+b_{1} I_{t}}-a_{2} M_{t}\right) d t+\sigma_{3} M_{t} d W_{3}(t)
\end{array}\right.
$$

Here, $W_{i}(t), i=1,2,3,4$ are mutually independent Brownian motions on probability space and $\sigma_{i}, i=1,2,3,4$ represent the intensities of the stochastic perturbations. The greater the stochastic perturbations, the deeper the impact on the system, the greater σ_{i} will be.

In addition to physical or respiratory transmission, there is also a form of vertical transmission from an infected mother to the newborns, such as with hepatitis B and AIDS. Vertical transmission from the mother to the newborn is considered as one of the most important ways of AIDS transmission. Thus, the epidemic models possessing vertical transmission have been extensively investigated [21-23]. The authors in [21] proposed an epidemic model with vertical transmission where the parameter b signifies the birth rate of the population and q stands for the proportion of newborns infected after birth from infectious mothers. $p=1-q$ and $d_{1}>b \geq 0$ is assumed. Therefore, $p b$ expresses the rate of newborns who have not been infected by their mothers and become susceptible.

Hence, introducing the above factors, including the information intervention and vertical transmission, we can obtain the following stochastic model:

$$
\left\{\begin{align*}
d S_{t}= & {\left[\Lambda-d_{1} S_{t}-\beta S_{t} I_{t}-d_{2} m M_{t} S_{t}+b\left(S_{t}+R_{t}+M_{t}\right)\right.} \tag{1.3}\\
& \left.+p b I_{t}+\delta R_{t}\right] d t+\sigma_{1} S_{t} d W_{1}(t) \\
d I_{t}= & {\left[q b I_{t}+\beta S_{t} I_{t}-\left(d_{1}+\gamma+\mu\right) I_{t}\right] d t+\sigma_{2} I_{t} d W_{2}(t) } \\
d M_{t}= & \left(\frac{a_{1} I_{t}}{1+b_{1} I_{t}}-a_{2} M_{t}\right) d t+\sigma_{3} M_{t} d W_{3}(t) \\
d R_{t}= & {\left[d_{2} m M_{t} S_{t}+\gamma I_{t}-\left(d_{1}+\delta\right) R_{t}\right] d t+\sigma_{4} R_{t} d W_{4}(t) }
\end{align*}\right.
$$

The above factors not only make the model more general, but also raise the degree of difficulty of the study. The novelties of this paper are as follows: (i) An epidemic model with information intervention and vertical transmission is established; (ii) a threshold is obtained to determine the different dynamics of the model and the exponential rates of three classes are studied; (iii) the critical case of $\Delta=0$, which has rarely been discussed in the literature, is investigated here.

This paper is arranged as follows: In Section 2, some estimations of the solution are given, followed by some lemmas to be used later. Section 3 gives a rough illustration of the value for disease extinction and provides the main conclusions of the paper. Part 4 focuses on the proof of Theorem 3.1 and Proposition 3.1 in detail. Part 5 proves the persistence of the model when $\Delta>0$ and obtains the condition that the model has a stationary distribution. Section 6 studies the critical case when $\Delta=0$. Section 7 discusses the results of the paper and lists some examples and numerical simulations to check the previous results.

2. Background knowledge

In this paper, $\left(\Omega, \mathfrak{F},\{\mathfrak{F}\}_{t}, \mathbb{P}\right)$ is assumed to be a complete probability space and $\mathbb{R}_{+}^{4}:=\{(a, b, c, d) \mid a \geq$ $0, b \geq 0, c \geq 0, d \geq 0\}$ and $\mathbb{R}_{+}^{4, o}:=\{(a, b, c, d) \mid a>0, b>0, c>0, d>0\} . a \wedge b=\min \{a, b\} . \mathbb{P}_{s, i, m_{0}, r}$ and $\mathbb{E}_{s, i, m_{0}, r}$ denote the probability and expectation with initial condition (s, i, m_{0}, r), respectively.

For the general SDE $d x_{t}=f\left(x_{t}\right) d t+g\left(x_{t}\right) d W(t)$ and the twice-differentiable function $V(x)$, the operator $\mathcal{L} V$ is defined by

$$
\begin{equation*}
\mathcal{L} V(x)=f^{T} V_{x}(x)+\frac{1}{2} \operatorname{tr}\left(g^{T} V_{x x}(x) g\right) . \tag{2.1}
\end{equation*}
$$

In addition, the Itô's formula can be expressed as

$$
\begin{equation*}
d V(x)=\mathcal{L} V(x) d t+V_{x}(x)^{T} g\left(x_{t}\right) d W(t) . \tag{2.2}
\end{equation*}
$$

First of all, we are concerned with the existence and uniqueness as well as approximate scope of the solution. The following lemmas will respond to these problems.

Lemma 2.1.

(i) For the initial condition $\left(s, i, m_{0}, r\right) \in \mathbb{R}_{+}^{4}$, the model (1.3) has a global solution $\left(S_{t}, I_{t}, M_{t}, R_{t}\right)$ that possesses Markov-Feller property. Moreover, the solution ($S_{t}, I_{t}, M_{t}, R_{t}$) will remain in \mathbb{R}_{+}^{4} with probability 1.
(ii) Let $\sigma=\max \left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$, for $0<\vartheta<p<\theta<\frac{2\left(d_{1}-b\right)}{\sigma^{2}}$, there exist constants $N_{1}>0$ and $N_{2}>0$ satisfying

$$
\begin{equation*}
\mathbb{E}\left[\left(S_{t}+I_{t}+M_{t}+R_{t}\right)^{1+\theta}+S_{t}^{-\vartheta}\right] \leq\left[\left(s+i+m_{0}+r\right)^{1+\theta}+s^{-\vartheta}\right] e^{-N_{1} t}+\frac{N_{2}}{N_{1}} \tag{2.3}
\end{equation*}
$$

Proof. The proof of part (i) is common and omitted. Our main proof is part (ii). Let $V_{1}(S, I, M, R):=$ $(S+I+M+R)^{1+\theta}+S^{-\vartheta}$. Direct calculation to $V_{1}(S, I, M, R)$ yields to

$$
\begin{aligned}
\mathcal{L} V_{1}(S, I, M, R)= & (1+\theta)(S+I+M+R)^{\theta}\left[\Lambda-\left(d_{1}-b\right)(S+I+M+R)\right. \\
& \left.-\mu I+\frac{a_{1} I}{1+b_{1} I}-\left(a_{2}-d_{1}\right) M\right] \\
& +\frac{\theta(1+\theta)}{2}(S+I+M+R)^{\theta-1}\left[\sigma_{1}^{2} S^{2}+\sigma_{2}^{2} I^{2}+\sigma_{3}^{2} M^{2}+\sigma_{3}^{2} R^{2}\right] \\
& -\vartheta S^{-\vartheta-1}\left[\Lambda-d_{1} S-\beta S I-d_{2} m M S+b(S+R+M)\right. \\
& +p b I+\delta R]+\frac{\vartheta(1+\vartheta) \sigma_{1}^{2}}{2} S^{-\vartheta} \\
\leq & (1+\theta)\left[\Lambda+\frac{a_{1}}{b_{1}}\right](S+I+M+R)^{\theta}+(1+\theta)(S+I+M+R)^{\theta-1}[\\
& \left.-\left(d_{1}-b\right)(S+I+M+R)^{2}+\frac{\theta \sigma^{2}}{2}\left(S^{2}+I^{2}+M^{2}+R^{2}\right)\right] \\
& -\vartheta \Lambda S^{-\vartheta-1}+\vartheta d_{1} S^{-\vartheta}+\vartheta \beta S^{-\vartheta} I+\vartheta d_{2} m S^{-\vartheta} M+\frac{\vartheta(1+\vartheta) \sigma_{1}^{2}}{2} S^{-\vartheta} .
\end{aligned}
$$

Let $0<\vartheta<p<\theta<\frac{2\left(d_{1}-b\right)}{\sigma^{2}}$, so $\frac{\vartheta(1+p)}{p}<1+\vartheta$ and $-\left(d_{1}-b\right)+\frac{\theta \sigma^{2}}{2}<0$ hold true. By using Young's inequality, it has

$$
S^{-\vartheta} I \leq \frac{p}{1+p}\left(S^{-\vartheta}\right)^{\frac{1+p}{p}}+\frac{1}{1+p} I^{1+p} \leq S^{-\frac{\vartheta(1+p)}{p}}+\frac{1}{1+p}(S+I+M+R)^{1+p},
$$

and

$$
S^{-\vartheta} M \leq \frac{p}{1+p}\left(S^{-\vartheta}\right)^{\frac{1+p}{p}}+\frac{1}{1+p} M^{1+p} \leq S^{-\frac{\vartheta(1+p)}{p}}+\frac{1}{1+p}(S+I+M+R)^{1+p} .
$$

Hence,

$$
\begin{aligned}
\mathcal{L} V_{1}(S, I, M, R)= & -\left[\left(d_{1}-b\right)-\frac{\theta \sigma^{2}}{2}\right](1+\theta)(S+I+M+R)^{\theta+1} \\
& +(1+\theta)\left[\Lambda+\frac{a_{1}}{b_{1}}\right](S+I+M+R)^{\theta}-\vartheta \Lambda S^{-\vartheta-1} \\
& +\left[\vartheta d_{1}+\frac{\vartheta(1+\vartheta) \sigma_{1}^{2}}{2}\right] S^{-\vartheta}+\left[\vartheta \beta+\vartheta d_{2} m\right] S^{-\frac{\vartheta(1+p)}{p}} \\
& +\frac{1}{1+p}\left[\vartheta \beta+\vartheta d_{2} m\right](S+I+M+R)^{1+p} .
\end{aligned}
$$

Let $N_{1}=d_{1}-b-\frac{\theta \sigma^{2}}{2}$, then $\mathcal{L} V_{1}(S, I, M, R)+N_{1} V_{1}(S, I, M, R) \leq N_{2}$, where

$$
\begin{aligned}
N_{2}= & \sup _{(S, I, M, R) \in \mathbb{R}_{+}^{4}}\left\{-N_{1} \theta(S+I+M+R)^{\theta+1}\right. \\
& +(1+\theta)\left[\Lambda+\frac{a_{1}}{b_{1}}\right](S+I+M+R)^{\theta}-\vartheta \Lambda S^{-\vartheta-1} \\
& +\left[\vartheta d_{1}+\frac{\vartheta(1+\vartheta) \sigma_{1}^{2}}{2}\right] S^{-\vartheta}+\left[\vartheta \beta+\vartheta d_{2} m\right] S^{-\frac{\vartheta(1+p)}{p}} \\
& \left.+\frac{1}{1+p}\left[\vartheta \beta+\vartheta d_{2} m\right](S+I+M+R)^{1+p}+N_{1} S^{-\vartheta}\right\}<\infty .
\end{aligned}
$$

The rest of the process is standard; one can see Lemma 2.3 in [24]. Thus, (2.3) is obtained.
Lemma 2.2. For all initial conditions $\left(s, i, m_{0}, r\right) \in \mathbb{R}_{+}^{4}$, the solution $\left(S_{t}, I_{t}, M_{t}, R_{t}\right)$ of (1.3) satisfies

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\left(S_{t}+I_{t}+M_{t}+R_{t}\right)<\infty, \text { a.s., } \tag{2.4}
\end{equation*}
$$

hence,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{S_{t}}{t}=0, \lim _{t \rightarrow \infty} \frac{I_{t}}{t}=0, \lim _{t \rightarrow \infty} \frac{M_{t}}{t}=0, \lim _{t \rightarrow \infty} \frac{R_{t}}{t}=0, \text { a.s., } \\
& \lim _{t \rightarrow \infty} \frac{\sigma_{1}}{t} \int_{0}^{t} S_{s} d W_{1}(s)=0, \lim _{t \rightarrow \infty} \frac{\sigma_{2}}{t} \int_{0}^{t} I_{s} d W_{2}(s)=0, \lim _{t \rightarrow \infty} \frac{\sigma_{4}}{t} \int_{0}^{t} R_{s} d W_{4}(s)=0, \text { a.s. } \tag{2.5}
\end{align*}
$$

Moreover, it has

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\ln S_{t}}{t}=0, \quad \lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t} \leq 0, \quad \lim _{t \rightarrow \infty} \frac{\ln M_{t}}{t} \leq 0, \quad \lim _{t \rightarrow \infty} \frac{\ln R_{t}}{t} \leq 0 \text {, a.s. } \tag{2.6}
\end{equation*}
$$

Proof. For (2.4), the proof is analogous to Lemma 3.1 in [22], mainly utilizing the result of Theorem 3.9 in [25], so it is omitted here. The proofs for (2.5) can be derived from (2.4) and strong law of large numbers.

For $\lim _{t \rightarrow \infty} \frac{\ln S_{t}}{t} \leq 0$ and other formulas in (2.6), we recommend Lemma 2.3 in [26] to get a detailed proof. In addition, the property that $\mathbb{E} S_{t}^{-\vartheta}<\infty$ will lead to $\liminf _{t \rightarrow \infty} \frac{\ln S_{t}}{t} \geq 0$, so $\lim _{t \rightarrow \infty} \frac{\ln S_{t}}{t}=0$ is obtained.

3. The threshold to determine the extinction or permanence of model (1.3)

We will give a value in this section and roughly explain it as the threshold of the extinction or persistence of model (1.3).

Take into account the first equation of model (1.3) on the boundary $I_{t}=0, M_{t}=0$, and $R_{t}=0$, it has

$$
\begin{equation*}
d \bar{S}_{t}=\left[\Lambda-\left(d_{1}-b\right) \bar{S}_{t}\right] d t+\sigma_{1} \bar{S}_{t} d W_{1}(t) . \tag{3.1}
\end{equation*}
$$

Let \bar{S}_{t}^{u} be the solution to (3.1) with the initial condition $\bar{S}_{0}=u$. It should be noted that $S_{t} \leq \bar{S}_{t}, t>0$ cannot be obtained by using the comparison theorem. Applying the Itô's formula to the function
$\bar{S}-1-\ln \bar{S}$ and making use of the result in [27], there exists the unique stationary distribution π_{0} for (3.1) with the density

$$
f^{*}(x)=\frac{\bar{u}^{\bar{u}}}{\Gamma(\bar{v})} x^{-\bar{v}-1} e^{-\frac{\bar{u}}{x}}, x>0,
$$

where $\bar{v}=\frac{2\left(d_{1}-b\right)}{\sigma_{1}^{2}}+1, \bar{u}=\frac{2 \Lambda}{\sigma_{1}^{2}}, \Gamma(\cdot)$ is the Gamma function. We get from the strong law of large numbers that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \beta \bar{S}_{s} d s=\int_{0}^{\infty} \beta x f^{*}(x) d x=\frac{\beta \Lambda}{d_{1}-b}, \text { a.s. } \tag{3.2}
\end{equation*}
$$

Calculating the second formula of model (1.3), it has

$$
\begin{equation*}
\frac{\ln I_{t}}{t}=\frac{\ln I_{0}}{t}+\frac{1}{t} \int_{0}^{t} \beta S_{s} d s-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right)+\frac{\sigma_{2} W_{2}(t)}{t} . \tag{3.3}
\end{equation*}
$$

 $\lim _{t \rightarrow \infty} R_{t}=0$, which will be explained in detail later. Thus, we have $S_{t} \approx \bar{S}_{t}$ if t is sufficiently large, then one can anticipate that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \beta S_{s} d s \approx \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \beta \bar{S}_{s} d s=\frac{\beta \Lambda}{d_{1}-b} . \tag{3.4}
\end{equation*}
$$

Defining the value

$$
\begin{equation*}
\Delta:=\frac{\beta \Lambda}{d_{1}-b}-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right) . \tag{3.5}
\end{equation*}
$$

Hence, $\lim \sup _{t \rightarrow \infty} \frac{\ln I_{t}}{t}$ will tend to Δ above. If $\Delta<0$, then $\lim \sup _{t \rightarrow \infty} \frac{\ln I_{t}}{t}$ will be negative, and the disease will die out. Conversely, when $\Delta>0$, no matter how small the initial value I_{0} is, I_{t} tends to be large for a sufficiently long time. The above description seems simple; however, the proof requires careful and rigorous implementation.

Now, we present the main conclusions of this paper, the proof of which will be given in the later section. Let $R_{0}^{S}=\frac{\beta \Lambda}{\left(d_{1}-b\right)\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right)}$.

Theorem 3.1. When $\Delta<0$, or equivalently $R_{0}^{S}<1$, the solution $\left(S_{t}, I_{t}, M_{t}, R_{t}\right)$ with the initial condition $\left(s, i, m_{0}, r\right) \in \mathbb{R}_{+}^{4, o}$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t}=\Delta<0, \text { a.s. } \tag{3.6}
\end{equation*}
$$

(3.6) implies that the disease I_{t} becomes extinct at an exponential rate.

Theorem 3.1 gives a condition to judge the extinction of the disease.
Proposition 3.1. If $\Delta<0$, let $\bar{\Delta}:=\min \left\{-\Delta, a_{2}+\frac{1}{2} \sigma_{3}^{2}, d_{1}+\delta+\frac{1}{2} \sigma_{4}^{2}\right\}>0$ and $\bar{\Delta}_{1}:=\min \left\{-\Delta, a_{2}+\frac{1}{2} \sigma_{3}^{2}\right\}>0$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\ln M_{t}}{t}=-\bar{\Delta}_{1}=\max \left\{\Delta,-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right)\right\}, \text { a.s., } \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\ln R_{t}}{t}=-\bar{\Delta}=\max \left\{\Delta,-\left(a_{2}+\frac{1}{2} \sigma_{3}^{2}\right),-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right)\right\}, \text { a.s. } \tag{3.8}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\ln \left|S_{t}-\bar{S}_{t}\right|}{t} \leq \max \left\{-\bar{\Delta},-\left(d_{1}-b+\frac{\sigma_{1}^{2}}{2}\right)\right\}, \text { a.s. } \tag{3.9}
\end{equation*}
$$

Definition 3.1. [28] The disease in model (1.3) is called to be persistent in the mean, if the following inequality holds

$$
\liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} I(u) d u>0, \text { a.s. }
$$

Theorem 3.2. For the solution $\left(S_{t}, I_{t}, M_{t}, R_{t}\right)$ with the initial condition $\left(s, i, m_{0}, r\right) \in \mathbb{R}_{+}^{4, o}$, when $\Delta>0$, that is, $R_{0}^{S}>1$, the disease I_{t} in model (1.3) is persistent in the mean. Moveover, the solution ($S_{t}, I_{t}, M_{t}, R_{t}$) has the invariant probability measure.

Remark 3.1. According to Theorems 3.1 and 3.2, we know that the sign of Δ will judge extinction or persistence of model (1.3) and R_{0}^{S} can be regarded as the reproduction number, which depicts the number of second-generation infections after a single infected one enters the population.
4. The case of $\Delta<0$

In this section, we will prove Theorem 3.1 and Proposition 3.1 with the assumption that $\Delta<0$.

4.1. Proof of Theorem 3.1

First, consider the equation

$$
\begin{equation*}
d \bar{S}_{t}^{\varepsilon}=\left[\Lambda-\left(d_{1}-b\right) \bar{S}_{t}^{\varepsilon}+\varepsilon\right] d t+\sigma_{1} \bar{S}_{t}^{\varepsilon} d W_{1}(t) \tag{4.1}
\end{equation*}
$$

Similar to the Eq (3.1), a suitable Lyapunov function can be proved to obtain the invariant measure π^{ε} with density

$$
f^{\varepsilon}(s)=\frac{\left(\frac{2(\Lambda+\varepsilon)}{\sigma_{1}^{2}}\right)^{\frac{2\left(d_{1}-b\right)}{\sigma_{1}^{2}}+1}}{\Gamma\left(\frac{\left(d_{1}-b\right)}{\sigma_{1}^{2}}+1\right)} x^{-\frac{2\left(d_{1}-b\right)}{\sigma_{1}^{2}}-2} e^{-\frac{2(\Lambda+\varepsilon)}{\sigma_{1}^{2} x}}, x>0
$$

Lemma 4.1. Provided that $\Delta<0$, for any $\epsilon>0$ and $H>0$, there is a constant $\delta_{1}>0$ such that for any $\left(s, i, m_{0}, r\right) \in[0, H] \times\left[0, \delta_{1}\right]^{3}$ (where $\left[0, \delta_{1}\right]^{3}$ represents $\left.\left[0, \delta_{1}\right] \times\left[0, \delta_{1}\right] \times\left[0, \delta_{1}\right]\right)$, it has

$$
\begin{equation*}
\mathbb{P}_{s, i, m_{0}, r}\left\{\lim _{t \rightarrow \infty} I_{t}=0, \lim _{t \rightarrow \infty} M_{t}=0, \lim _{t \rightarrow \infty} R_{t}=0\right\} \geq 1-\epsilon . \tag{4.2}
\end{equation*}
$$

Proof. Let $\left(s, i, m_{0}, r\right) \in[0, H] \times\left[0, \delta_{1}\right]^{3}$. For the $0<\varepsilon_{1}<\frac{\left(d_{1}-b\right) \bar{\Delta}}{8 \beta}$ ($\bar{\Delta}$ is defined in Proposition 3.1), consider the $\mathrm{Eq}(4.1)$ with ε replaced by ε_{1}, the ergodicity of solution with the initial data s denoted by $\bar{S}_{t}^{\varepsilon_{1}, s}$ leads to

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \bar{S}_{u}^{\varepsilon_{1}, s} d u=\int_{0}^{\infty} x f^{\varepsilon_{1}}(x) d x=\frac{\Lambda+\varepsilon_{1}}{d_{1}-b}
$$

If the initial value is not emphasized later, we still use $\bar{S}_{t}^{\varepsilon_{1}}$ to express the solution of the equation. Thus, there is a constant T_{1} such that $\mathbb{P}\left(\Omega_{1}^{H}\right)>1-\frac{\epsilon}{5}$, where

$$
\Omega_{1}^{s}=\left\{\omega: \frac{1}{t} \int_{0}^{t} \bar{S}_{u}^{\varepsilon_{1, s}} d u \leq \frac{\Lambda+\varepsilon_{1}}{d_{1}-b}+\frac{\bar{\Delta}}{8 \beta}, \forall t \geq T\right\} .
$$

Due to $\bar{S}_{t}^{\varepsilon_{1}, s} \leq \bar{S}_{t}^{\varepsilon_{1}, H}$ for $s \leq H$, it yields $\mathbb{P}_{s}\left(\Omega_{1}\right)>1-\frac{\epsilon}{5}$ for $s \in[0, H]$.
Because $\lim _{t \rightarrow \infty} \frac{\sigma_{i} W_{i}(t)}{t}=0$, a.s., $i=1,2,3,4$, it has for some constant $T_{2}, \mathbb{P}\left(\Omega_{2}\right)>1-\frac{\epsilon}{5}$, where

$$
\Omega_{2}=\left\{\omega: \frac{\sigma_{i} W_{i}(t)}{t} \leq \min \left\{\frac{\bar{\Delta}}{8}, \varepsilon_{1}\right\}, \forall t \geq T_{2} \text { and } i=1,2,3,4\right\} .
$$

Assume that $T=\max \left\{T_{1}, T_{2}\right\}$; thanks to Lemmas 2.1 and 2.2, then for some positive constants C_{1} and K, it has $\mathbb{P}\left(\Omega_{3}\right)>1-\frac{\epsilon}{5}$ and $\mathbb{P}\left(\Omega_{4}\right)>1-\frac{\epsilon}{5}$, where

$$
\begin{equation*}
\Omega_{3}=\left\{\omega: S_{t}(\omega) \leq C_{1}, t>0\right\}, \tag{4.3}
\end{equation*}
$$

and

$$
\Omega_{4}=\left\{\omega: \int_{0}^{T} \beta S_{u} d u \leq K\right\} .
$$

Let K above be sufficiently large such that $\mathbb{P}\left(\Omega_{5}\right)>1-\frac{\epsilon}{5}$. Here,

$$
\Omega_{5}=\left\{\omega:\left|\sigma_{i} W_{i}(t)\right| \leq K, \text { for } i=1,2,3,4 \text { and } t \leq T\right\} .
$$

Choose δ_{1} sufficiently small so that

$$
\begin{equation*}
\delta_{1}\left(e^{2 K}+a_{1} e^{4 K} T+d_{2} m\left(e^{3 K}+a_{1} e^{6 K} T\right) K / \beta+\gamma e^{4 K} T\right)<\frac{\varepsilon_{1}}{2 b+p b+\delta}, \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{1} \max \left\{C_{2}, C_{3}\right\}<\frac{\varepsilon_{1}}{2 b+p b+\delta} . \tag{4.5}
\end{equation*}
$$

Here, C_{2} and C_{3} will be determined in (4.11) and (4.12), respectively, later.
Let the stopping time be defined as

$$
\tau=\inf \left\{t: \max _{\gg 0}\left\{I_{t}, M_{t}, R_{t}\right\} \geq \frac{\varepsilon_{1}}{2 b+p b+\delta}\right\} .
$$

From the second equation, we get

$$
\begin{equation*}
I_{t}=I_{0} \exp \left\{\int_{0}^{t} \beta S_{u} d u-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right) t+\sigma_{2} W_{2}(t)\right\} . \tag{4.6}
\end{equation*}
$$

Similarly, the third and fourth equations of (1.3) result in

$$
\begin{equation*}
M_{t}=\Psi_{1}(t)\left[M_{0}+\int_{0}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u\right] \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{t}=\Psi_{2}(t)\left[R_{0}+\int_{0}^{t}\left(d_{2} m S_{u} M_{u}+\gamma I_{u}\right) \Psi_{2}^{-1}(u) d u\right] \tag{4.8}
\end{equation*}
$$

where $\Psi_{1}(t)=\exp \left\{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t+\sigma_{3} W_{3}(t)\right\}$ and $\Psi_{2}(t)=\exp \left\{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right) t+\sigma_{4} W_{4}(t)\right\}$.
Hence, we get from (4.6) that for almost every $\omega \in \Omega_{4} \cap \Omega_{5}$ and $t \in[0, T \wedge \tau]$, it has

$$
I_{t} \leq I_{0} e^{\int_{0}^{T} \beta S_{u} d u+\sigma_{2} W_{2}(u)} \leq I_{0} e^{2 K} \leq \delta_{1} e^{2 K} \leq \frac{\varepsilon_{1}}{2 b+p b+\delta} .
$$

Moreover, the expression of $\Psi_{1}(t)$ leads to that for $\omega \in \Omega_{5}$,

$$
\exp \left\{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t-K\right\} \leq \Psi_{1}(t) \leq \exp \left\{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t+K\right\}, \forall t \in[0, T \wedge \tau]
$$

Thus, when $\omega \in \cap_{i=4}^{5}$,

$$
\begin{align*}
& \Psi_{1}(t) \int_{0}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u \\
\leq & \int_{0}^{t} a_{1} I_{0} e^{2 K} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t+\sigma_{3} W_{3}(t)} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) u-\sigma_{3} W_{3}(u)} d u \tag{4.9}\\
\leq & \delta_{1} a_{1} e^{4 K} T .
\end{align*}
$$

Due to (4.4), it has

$$
\begin{align*}
M_{t} & =\Psi_{1}(t) M_{0}+\Psi_{1}(t) \int_{0}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u \tag{4.10}\\
& \leq e^{K} \delta_{1}+\delta_{1} a_{1} e^{4 K} T \leq \frac{\varepsilon_{1}}{2 b+p b+\delta} .
\end{align*}
$$

In the same way, for $t \in[0, T \wedge \tau]$ on $\cap_{i=4}^{5}$,

$$
\begin{aligned}
& \Psi_{2}(t) \int_{0}^{t} d_{2} m S_{u} M_{u} \Psi_{2}^{-1}(u) d u \\
\leq & \int_{0}^{t} d_{2} m \delta_{1}\left[e^{K}+a_{1} e^{4 K} T\right] S_{u} e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right)(t-u)+\sigma_{3} W_{3}(t)-\sigma_{3} W_{3}(u)} d u \\
\leq & d_{2} m \delta_{1}\left[e^{K}+a_{1} e^{4 K} T\right] e^{2 K} K / \beta
\end{aligned}
$$

and

$$
\Psi_{2}(t) \int_{0}^{t} \gamma I_{u} \Psi_{2}^{-1}(u) d u \leq \int_{0}^{T} \gamma I_{0} e^{2 K} e^{2 K} d u \leq \delta_{1} \gamma e^{4 K} T
$$

Thus, it yields from (4.8) and (4.4) that

$$
\begin{aligned}
R_{t} & \leq e^{K} R_{0}+d_{2} m \delta_{1}\left[e^{K}+a_{1} e^{4 K} T\right] e^{2 K} K / \beta+\delta_{1} \gamma e^{4 K} T \\
& \leq \delta_{1}\left[e^{K}+d_{2} m\left(e^{3 K}+a_{1} e^{6 K} T\right) K / \beta+\gamma e^{4 K} T\right] \\
& \leq \frac{\varepsilon_{1}}{2 b+p b+\delta} .
\end{aligned}
$$

Hence, for $\left(s, i, m_{0}, r\right) \in[0, H] \times\left[0, \delta_{1}\right]^{3}$ on almost every $\omega \in \cap_{i=4}^{5}$, we have

$$
\tau \geq T
$$

Next, we shall prove the assertion $\tau=\infty$ for almost every $\omega \in \cap_{k=1}^{5} \Omega_{k}$.
First, when $t \in[T, \tau]$, it has $S_{v} \leq \bar{S}_{v}^{\varepsilon_{1}}$ for all $v \in[0, t]$ by comparison principle; then for almost $\omega \in \cap_{k=1}^{5} \Omega_{k}$,

$$
\begin{aligned}
I_{t} & =I_{0} \exp \left\{\int_{0}^{t} \beta S_{u} d u-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right) t+\sigma_{2} W_{2}(t)\right\} \\
& \leq I_{0} \exp \left\{\int_{0}^{t} \beta \bar{S}_{u}^{\varepsilon_{1}} d u-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right) t+\sigma_{2} W_{2}(t)\right\} \\
& \leq I_{0} \exp \left\{\beta\left(\frac{\Lambda+\varepsilon_{1}}{d_{1}-b}\right) t+\frac{\bar{\Delta}}{8} t-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right) t+\frac{\bar{\Delta}}{8} t\right\} \\
& \leq I_{0} \exp \left\{\Delta t+\frac{2 \bar{\Delta}}{8} t+\frac{\beta \varepsilon_{1}}{d_{1}-b} t\right\} \\
& \leq I_{0} e^{\left(\Delta+\frac{3 \bar{d}}{8}\right) t} \leq \delta_{1} e^{-\frac{5 \bar{d}}{8} t},\left(s, i, m_{0}, r\right) \in[0, H] \times\left[0, \delta_{1}\right]^{3} .
\end{aligned}
$$

One can rewrite M_{t} on $t \geq T$ that

$$
M_{t}=\Psi_{1}(t)\left[M_{0}+\int_{0}^{T} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u+\int_{T}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u\right]
$$

For almost every $\omega \in \Omega_{2}, \exp \left\{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t-\frac{1}{8} \bar{\Delta} t\right\} \leq \Psi_{1}(t) \leq \exp \left\{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t+\frac{1}{8} \bar{\Delta} t\right\}$ is obtained and

$$
\begin{aligned}
& \Psi_{1}(t) \int_{T}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} \Psi_{1}^{-1}(u) d u \\
\leq & e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) t+\frac{1}{8} \bar{\Delta} t} \int_{T}^{t} a_{1} I_{0} e^{-\frac{5 \bar{\delta}}{8} u} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\frac{1}{8} \bar{\Delta}\right) u} d u \\
\leq & \frac{\delta_{1} a_{1}}{a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{2} \bar{\Delta}} e^{-\frac{3}{8} \bar{\Delta} t}, \text { on } \cap_{i=1}^{2} \Omega_{i} .
\end{aligned}
$$

Therefore, there exists a positive constant C_{2} satisfying

$$
\begin{aligned}
M_{t} & \leq e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{8} \overline{\bar{\delta}}\right) t}\left[m_{0}+\int_{0}^{T} a_{1} I_{0} e^{2 K} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) u+K} d u\right]+\frac{\delta_{1} a_{1}}{a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{2} \bar{\Delta}} e^{-\frac{3}{8} \bar{\Delta} t} \\
& \leq\left(\delta_{1}+a_{1} \delta_{1} e^{3 K} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) T} T\right) e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{8} \bar{\Delta}\right) t}+\frac{\delta_{1} a_{1}}{a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{2} \bar{\Delta}} e^{-\frac{3}{8} \bar{\Delta} t} \\
& \leq \delta_{1} C_{2} e^{-\frac{3}{8} \bar{\Delta} t},
\end{aligned}
$$

where

$$
\begin{equation*}
C_{2}=\frac{a_{1}}{a_{2}+\frac{\sigma_{3}^{2}}{2}-\frac{1}{2} \bar{\Delta}}+1+a_{1} e^{3 K} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right) T} T . \tag{4.11}
\end{equation*}
$$

Similarly, rewriting the expression of R_{t} (4.8) yields

$$
R_{t}=\Psi_{2}(t)\left[R_{0}+\int_{0}^{T}\left(d_{2} m S_{u} M_{u}+\gamma I_{u}\right) \Psi_{2}^{-1}(u) d u\right]+\Psi_{2}(t) \int_{T}^{t}\left(d_{2} m S_{u} M_{u}+\gamma I_{u}\right) \Psi_{2}^{-1}(u) d u
$$

For almost all $\omega \in \Omega_{2}$, we have

$$
e^{-\left(d_{1}+\delta+\frac{\sigma_{2}^{2}}{2}\right) t-\frac{1}{8} \bar{\Delta} t} \leq \Psi_{2}(t) \leq e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right) t+\frac{1}{8} \bar{\Delta} t}
$$

For almost all $\omega \in \cap_{i=1}^{3} \Omega_{i}$ and $t>T$, it has

$$
\begin{aligned}
& \Psi_{2}(t) \int_{T}^{t} d_{2} m S_{u} M_{u} \Psi_{2}^{-1}(u) d u \\
\leq & e^{-\left(d_{1}+\delta+\frac{\sigma_{2}^{2}}{2}\right) t+\frac{1}{8} \bar{\delta} t} \int_{T}^{t} d_{2} m C_{1} \delta_{1} C_{2} e^{-\frac{3}{8} \bar{\Delta} u} e^{\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}+\frac{1}{8} \bar{\Delta}\right) u} d u \\
\leq & \frac{\delta_{1} d_{2} m C_{1} C_{2}}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{4} \bar{\Delta}} e^{-\frac{1}{8} \bar{\Delta} t} .
\end{aligned}
$$

Similar to the proof of M_{t}, it has

$$
\Psi_{2}(t) \int_{T}^{t} \gamma I_{u} \Psi_{2}^{-1}(u) d u \leq \frac{\gamma I_{0}}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{2} \bar{\Delta}} e^{-\frac{3}{\delta} \bar{\Delta} t} .
$$

Thus,

$$
\begin{aligned}
R_{t} \leq & \leq e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right) t+\frac{1}{8} \bar{\Delta} t}\left[\delta_{1}+d_{2} m \delta_{1}\left(e^{3 K}+a_{1} e^{6 K} T\right) K / \beta+\delta_{1} \gamma e^{4 K} T\right] \\
& +\frac{\delta_{1} d_{2} m C_{1} C_{2}}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{4} \bar{\Delta}} e^{-\frac{1}{8} \bar{\Delta} t}+\frac{\gamma \delta_{1}}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{2} \bar{\Delta}} e^{-\frac{3}{8} \bar{\Delta} t} \\
& \leq \delta_{1} C_{3} e^{-\frac{1}{8} \bar{\Delta} t},
\end{aligned}
$$

where

$$
\begin{equation*}
C_{3}=\frac{d_{2} m C_{1} C_{2}}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{4} \bar{\Delta}}+\frac{\gamma}{d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\frac{1}{2} \bar{\Delta}}+1+d_{2} m\left(e^{3 K}+a_{1} e^{6 K} T\right) K / \beta+\gamma e^{4 K} T . \tag{4.12}
\end{equation*}
$$

Assume that n is an integer with $n>T$. We get from the estimation of I_{t}, M_{t} and R_{t} for $t \in[0, n \wedge \tau]$ and almost every $\omega \in \cap_{k=1}^{5} \Omega_{k}$ that

$$
I_{t} \leq \delta_{1} \leq \frac{\varepsilon_{1}}{2 b+p b+\delta}, \quad M_{t} \leq \delta_{1} C_{2} \leq \frac{\varepsilon_{1}}{2 b+p b+\delta},
$$

and

$$
R_{t} \leq \delta_{1} C_{3} \leq \frac{\varepsilon_{1}}{2 b+p b+\delta} .
$$

These results imply $n \leq \tau$ on almost every $\omega \in \cap_{k=1}^{5} \Omega_{k}$. On the basis of arbitrariness of n, the assertion $\tau=\infty$ is obtained. In addition, from the estimation of I_{t}, M_{t}, and R_{t}, one has

$$
\lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t} \leq-\frac{5 \bar{\Delta}}{8}, \lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t} \leq-\frac{3 \bar{\Delta}}{8}, \lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t} \leq-\frac{\bar{\Delta}}{8}
$$

This will lead to the (4.2) for any initial condition $\left(s, i, m_{0}, r\right) \in[0, H] \times\left[0, \delta_{1}\right]^{3}$ on almost $\cap_{k=1}^{5} \Omega_{k}$ with $\mathbb{P}\left(\cap_{k=1}^{5} \Omega_{k}\right) \geq 1-\epsilon$.

The subsequent proof of Theorem 1 is analogue to that of Theorem 2.2 in [29], so it is omitted here.

4.2. Proof of Proposition 3.1

Now, we provide the proof of the Proposition 3.1. From (3.6), we get that for any small ϵ_{1}, there exist positive random variables ξ_{1}, ξ_{2} satisfying that for $t>0$,

$$
\xi_{1} e^{\left(\Delta-\epsilon_{1}\right) t} \leq I_{t} \leq \xi_{2} e^{\left(\Delta+\epsilon_{1}\right) t} .
$$

Due to the expression of $\Psi_{1}(t)$, it yields

$$
\lim _{t \rightarrow \infty} \frac{\ln \Psi_{1}(t)}{t}=-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}\right), \text { a.s. }
$$

This means there exist random variables $\xi_{3}>0, \xi_{4}>0$ satisfying that for $t>0$,

$$
\xi_{3} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\epsilon_{1}\right) t} \leq \Psi_{1}(t) \leq \xi_{4} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}-\epsilon_{1}\right) t} .
$$

By virtue of (4.7) and the increasing property of $\frac{a_{1} I}{1+b_{1} I}$ with respect to I, it yields

$$
\begin{aligned}
M_{t} & \geq \xi_{3} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\epsilon_{1}\right) t} m_{0}+\xi_{3} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\epsilon_{1}\right) t} \int_{0}^{t} \frac{a_{1} \xi_{1} e^{\left(\Delta-\epsilon_{1}\right) u}}{\xi_{4}\left(1+b_{1} \xi_{1} e^{\left(\Delta-\epsilon_{1}\right) u}\right)} e^{\left(a_{2}+\frac{\sigma_{3}^{2}}{2}-\epsilon_{1}\right) u} d u \\
& \geq \xi_{3} e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\epsilon_{1}\right) t} m_{0}+\frac{\xi_{3} a_{1} \xi_{1}}{\xi_{4}\left(1+b_{1} \xi_{1}\right)\left(\Delta+a_{2}+\frac{\sigma_{3}^{2}}{2}-2 \epsilon_{1}\right)}\left[e^{\left(\Delta-3 \epsilon_{1}\right) t}-e^{-\left(a_{2}+\frac{\sigma_{3}^{2}}{2}+\epsilon_{1}\right) t}\right] .
\end{aligned}
$$

Thus,

$$
\liminf _{t \rightarrow \infty} \frac{\ln M_{t}}{t} \geq-\bar{\Delta}_{1}-4 \epsilon_{1}
$$

Similarly, we can get that

$$
\limsup _{t \rightarrow \infty} \frac{\ln M_{t}}{t} \leq-\bar{\Delta}_{1}+4 \epsilon_{1} .
$$

Therefore, one obtains that for almost every $\omega \in \cap_{k=1}^{5} \Omega_{k}$, (3.7) holds true by the arbitrariness of ϵ_{1}.

Due to Lemma 2.2 and (3.7), it has $\lim _{t \rightarrow \infty} \frac{\ln S_{t} M_{t}}{t}=-\bar{\Delta}_{1}$, which leads to there being random variables $\xi_{5}>0$ and $\xi_{6}>0$ satisfying

$$
\xi_{5} e^{\left(-\bar{\Delta}_{1}-\epsilon_{1}\right) t} \leq S_{t} M_{t} \leq \xi_{6} e^{\left(-\bar{\Delta}_{1}+\epsilon_{1}\right) t}
$$

Moreover, there are random variables $\xi_{7}>0$ and $\xi_{8}>0$ such that

$$
\xi_{7} e^{-\left(d_{1}+\delta+\frac{\sigma_{\frac{4}{2}}^{2}}{2}+\epsilon_{1}\right) t} \leq \Psi_{2}(t) \leq \xi_{8} e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\epsilon_{1}\right) t}
$$

Thus, we get from (4.8) that

$$
\begin{align*}
& \xi_{7} e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}+\epsilon_{1}\right) t}\left[R_{0}+\frac{1}{\xi_{8}} \int_{0}^{t}\left(d_{2} m \xi_{5} e^{\left(-\overline{-}_{1}-\epsilon_{1}\right) u}+\gamma \xi_{1} e^{\left(\Delta-\epsilon_{1}\right) u}\right) e^{\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\epsilon_{1}\right) u} d u\right] \leq \\
& R_{t} \leq \xi_{8} e^{-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}-\epsilon_{1}\right) t}\left[R_{0}+\frac{1}{\xi_{7}} \int_{0}^{t}\left(d_{2} m \xi_{6} e^{\left(-\bar{\Delta}_{1}+\epsilon_{1}\right) u}+\gamma \xi_{2} e^{\left(\Delta+\epsilon_{1}\right) u}\right) e^{\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}+\epsilon_{1}\right) u} d u\right] . \tag{4.13}
\end{align*}
$$

Hence, it has

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \frac{\ln R_{t}}{t} \leq \max \left\{-\bar{\Delta}_{1},-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right)\right\}+4 \epsilon_{1} \\
& \liminf _{t \rightarrow \infty} \frac{\ln R_{t}}{t} \geq \max \left\{-\bar{\Delta}_{1},-\left(d_{1}+\delta+\frac{\sigma_{4}^{2}}{2}\right)\right\}-4 \epsilon_{1}
\end{aligned}
$$

This implies that (3.8) holds.
For the convergence rate of the solution S_{t} with initial data $\left(s, i, m_{0}, r\right)$ of (1.3) to the solution \bar{S}_{t} with initial data s of (3.1), take into account the equation

$$
\begin{align*}
d\left(\bar{S}_{t}-S_{t}\right)= & {\left[-\left(d_{1}-b\right)\left(\bar{S}_{t}-S_{t}\right)+\beta S_{t} I_{t}+d_{2} m M_{t} S_{t}\right.} \\
& \left.-p b I_{t}-b M_{t}-(b+\delta) R_{t}\right] d t+\sigma_{1}\left(\bar{S}_{t}-S_{t}\right) d W_{1}(t) \tag{4.14}
\end{align*}
$$

Let $\Psi_{3}(t):=\exp \left\{-\left(d_{1}-b+\frac{\sigma_{1}^{2}}{2}\right) t+\sigma_{1} W_{1}(t)\right\}$, then utilizing the constant variation method, we can obtain

$$
\begin{equation*}
\bar{S}_{t}-S_{t}=\Psi_{3}(t) \int_{0}^{t}\left[\beta S_{u} I_{u}+d_{2} m M_{u} S_{u}-p b I_{u}-b M_{u}-(b+\delta) R_{u}\right] \Psi_{3}^{-1}(u) d u \tag{4.15}
\end{equation*}
$$

This means

$$
\begin{align*}
- & \Psi_{3}(t) \int_{0}^{t}\left[p b I_{u}+b M_{u}+(b+\delta) R_{u}\right] \Psi_{3}^{-1}(u) d u \leq \bar{S}_{t}-S_{t} \tag{4.16}\\
& \leq \Psi_{3}(t) \int_{0}^{t}\left[\beta S_{u} I_{u}+d_{2} m M_{u} S_{u}\right] \Psi_{3}^{-1}(u) d u .
\end{align*}
$$

By (3.6) and Lemma 2.2, there is a random variable $\xi_{9}>0$ such that

$$
\begin{equation*}
S_{t} I_{t} \leq \xi_{9} e^{\left(\Delta+\epsilon_{1}\right) t} \tag{4.17}
\end{equation*}
$$

Let $\Delta_{1}:=\max \left\{-\bar{\Delta},-\left(d_{1}-b+\frac{\sigma_{1}^{2}}{2}\right)\right\}$, and $\Delta_{2}>\Delta_{1}$. For a sufficiently small $\epsilon_{1}, \Delta_{2}>\Delta_{1}+3 \epsilon_{1}$ can be satisfied. The expression of $\Psi_{3}(t)$ implies that there exist random variables $\xi_{10}>0$ and $\xi_{11}>0$ such that

$$
\xi_{10} e^{-\left(d_{1}-b+\frac{\sigma_{1}^{2}}{2}+\epsilon\right) t} \leq \Psi_{3}(t) \leq \xi_{11} e^{-\left(d_{1}-b+\frac{\sigma_{2}^{2}}{2}-\epsilon_{1}\right) t} .
$$

Similar to the method in (4.12), we can get from (4.16) that

$$
\bar{S}_{t}-S_{t} \leq \frac{\xi_{11}}{\xi_{10}} e^{-\left(d_{1}-b+\frac{\sigma_{1}^{2}}{2}-\epsilon_{1}\right) t} \int_{0}^{t}\left[\beta \xi_{9} e^{\left(\Delta+d_{1}-b+\frac{\sigma_{1}^{2}}{2}+2 \epsilon_{1}\right) u}+d_{2} m \xi_{6} e^{\left(-\bar{\Delta}_{1}+d_{1}-b+\frac{\sigma_{1}^{2}}{2}+2 \epsilon_{1}\right) u}\right] d u .
$$

Applying L'Hospital rule means

$$
\lim _{t \rightarrow \infty} \frac{\bar{S}_{t}-S_{t}}{e^{\Delta_{2} t}} \leq 0 .
$$

Likewise, we can get that $\lim _{t \rightarrow \infty} \frac{\bar{S}_{t}-S_{t}}{e^{\Delta_{2} t}} \geq 0$. Thus, (3.9) is obtained.

5. The case of $\Delta>0$

In this section, we shall prove Theorem 3.2, which studies the condition of persistence in the mean and the invariant probability measure of the model (1.3). First, we prove the disease persistence in Subsection 5.1.

5.1. Persistence of the disease

For C_{1} in (4.3), define $V_{2}(I)=-\ln I, V_{3}=\bar{S}-S$ and

$$
\begin{equation*}
V_{4}(S, I, M)=V_{2}(I)+\frac{\beta}{d_{1}-b} V_{3}+\frac{\beta d_{2} m C_{1}}{\left(d_{1}-b\right) a_{2}} M \tag{5.1}
\end{equation*}
$$

Direct calculation by Ito's formula yields that

$$
\begin{equation*}
d V_{4}=\mathcal{L} V_{4} d t+\frac{\beta \sigma_{1}}{d_{1}-b}(\bar{S}-S) d W_{1}(t)-\sigma_{2} d W_{2}(t)+\frac{\beta d_{2} m C_{1} \sigma_{3}}{\left(d_{1}-b\right) a_{2}} M d W_{3}(t) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{L} V_{4}= & -\frac{1}{I}\left[\beta S I-\left(d_{1}+\gamma+\mu-q b\right) I\right]+\frac{\sigma_{2}^{2}}{2}+\frac{\beta}{d_{1}-b}\left[-\left(d_{1}-b\right)(\bar{S}-S)+\beta S I\right] \\
& +\frac{\beta}{d_{1}-b}\left[d_{2} m M S-(b+\delta) R-b M-p b I\right]+\frac{\beta d_{2} m C_{1}}{\left(d_{1}-b\right) a_{2}}\left(\frac{a_{1} I}{1+b_{1} I}-a_{2} M\right) \\
\leq & -\beta S+\left(d_{1}+\gamma+\mu-q b+\frac{\sigma_{2}^{2}}{2}\right)-\beta(\bar{S}-S)+\frac{\beta^{2}}{d_{1}-b} S I \\
& +\frac{\beta d_{2} m M S}{d_{1}-b}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I-\frac{\beta d_{2} m C_{1}}{d_{1}-b} M \tag{5.3}\\
\leq & -\beta \bar{S}+\left(d_{1}+\gamma+\mu-q b+\frac{\sigma_{2}^{2}}{2}\right)+\frac{\beta^{2} C_{1}}{d_{1}-b} I+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I \\
\leq & -\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} I+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I-\beta\left(\bar{S}-\frac{\Lambda}{d_{1}-b}\right) .
\end{align*}
$$

Here, we use (4.3) and (4.14). Hence, integrating for (5.2) from 0 to t and dividing it by t, we have

$$
\begin{aligned}
& \frac{V_{4}\left(S_{t}, I_{t}, M_{t}\right)-V_{4}\left(S_{0}, I_{0}, M_{0}\right)}{t} \\
\leq & -\Delta+\left(\frac{\beta^{2} C_{1}}{d_{1}-b}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}}\right) \frac{1}{t} \int_{0}^{t} I_{s} d s-\frac{\beta}{t} \int_{0}^{t} \bar{S}_{s} d s+\frac{\beta \Lambda}{d_{1}-b}-\frac{\sigma_{2} W_{2}(t)}{t} \\
& +\frac{\beta \sigma_{1}}{d_{1}-b} \frac{1}{t} \int_{0}^{t}\left(\bar{S}_{s}-S_{s}\right) d W_{1}(s)+\frac{\beta d_{2} m C_{1} \sigma_{3}}{\left(d_{1}-b\right) a_{2}} \frac{1}{t} \int_{0}^{t} M_{s} d W_{3}(s) .
\end{aligned}
$$

Then, taking the limit, for $\Delta>0$, using the results in Lemma 2.2 and the expression of V_{4} as well as the ergodicity of \bar{S}, yields

$$
\begin{equation*}
\left(\frac{\beta^{2} C_{1}}{d_{1}-b}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}}\right) \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} I_{s} d s \geq \Delta \tag{5.4}
\end{equation*}
$$

which signifies the disease in model (1.3) is persistent in the mean.
Next, we prove the invariant probability measure of the model (1.3) under the condition of $\Delta>0$.

5.2. Invariant probability measure of model (1.3)

Let $\sigma^{2}=\max \left\{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}, \sigma_{4}^{2}\right\}$. Define a function by

$$
\begin{equation*}
F(S, I, M, R):=H_{2} V_{4}(S, I, M)+V_{5}(S, I, M, R)-\ln S-\ln M-\ln R, \tag{5.5}
\end{equation*}
$$

where the function V_{4} is defined in (5.1), $V_{5}(S, I, M, R)=\frac{1}{1+a}(S+I+M+R)^{1+a}, a \in(0,1)$ satisfies

$$
\begin{equation*}
d_{1}-b-\frac{a \sigma^{2}}{2}>0 \tag{5.6}
\end{equation*}
$$

and the constant H_{2} is to be explained later.
Notice that the function $F(S, I, M, R)$ is continuous, and thus in the interior of \mathbb{R}_{+}^{4}, it has the minimum value $F\left(S_{0}, I_{0}, M_{0}, R_{0}\right)$. So, a nonnegative function $\widetilde{F}(S, I, M, R)$ can be defined by

$$
\widetilde{F}(S, I, M, R)=F(S, I, M, R)-F\left(S_{0}, I_{0}, M_{0}, R_{0}\right) .
$$

By calculation to V_{5}, it has

$$
\begin{align*}
\mathcal{L} V_{5} \leq & (S+I+M+R)^{a}\left[\Lambda-\left(d_{1}-b\right) S-\left(d_{1}-b\right) I-\mu I-\left(a_{2}-b\right) M\right. \\
& \left.-\left(d_{1}-b\right) R+\frac{a_{1}}{b_{1}}\right]+\frac{a(S+I+M+R)^{a-1}}{2}\left(\sigma_{1}^{2} S^{2}+\sigma_{2}^{2} I^{2}+\sigma_{3}^{2} M^{2}+\sigma_{4}^{2} R^{2}\right) \\
\leq & \left(\Lambda+\frac{a_{1}}{b_{1}}\right)(S+I+M+R)^{a}-\left(d_{1}-b-\frac{a \sigma^{2}}{2}\right)(S+I+M+R)^{a+1} \tag{5.7}\\
\leq & N_{1}-\frac{1}{2}\left(d_{1}-b-\frac{a \sigma^{2}}{2}\right)(S+I+M+R)^{a+1},
\end{align*}
$$

where $N_{1}=\sup _{(S, I, M, R) \in \mathbb{R}_{+}^{4}}\left[\left(\Lambda+\frac{a_{1}}{b_{1}}\right)(S+I+M+R)^{a}-\frac{1}{2}\left(d_{1}-b-\frac{a \sigma^{2}}{2}\right)(S+I+M+R)^{a+1}\right]<\infty$ by (5.6).
Meanwhile,

$$
\begin{aligned}
\mathcal{L}(-\ln S)= & -\frac{1}{S}\left[\Lambda-d_{1} S-\beta S I-d_{2} m M S\right] \\
& -\frac{1}{S}[b(S+R+M)+p b I+\delta R]+\frac{1}{2} \sigma_{1}^{2} \\
\leq & -\frac{\Lambda}{S}+d_{1}+\frac{\sigma_{1}^{2}}{2}+\beta I+d_{2} m M, \\
\mathcal{L}(-\ln M) & =-\frac{1}{M}\left[\frac{a_{1} I}{1+b_{1} I}-a_{2} M\right]+\frac{\sigma_{3}^{2}}{2} \\
& \leq-\frac{a_{1} I}{M\left(1+b_{1} I\right)}+a_{2}+\frac{\sigma_{3}^{2}}{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{L}(-\ln R) & =-\frac{1}{R}\left[d_{2} m M S+\gamma I-\left(d_{1}+\delta\right) R\right]+\frac{\sigma_{4}^{2}}{2} \\
& \leq-\frac{d_{2} m M S}{R}-\frac{\gamma I}{R}+d_{1}+\delta+\frac{\sigma_{4}^{2}}{2} \\
& \leq-\frac{\gamma I}{R}+d_{1}+\delta+\frac{\sigma_{4}^{2}}{2} .
\end{aligned}
$$

Hence, let $N_{2}=2 d_{1}+a_{2}+\delta+\frac{\sigma_{1}^{2}+\sigma_{3}^{2}+\sigma_{4}^{2}}{2}$,

$$
\begin{align*}
\mathcal{L} \widetilde{F}(S, I, M, R, \bar{S}) \leq & H_{2}\left[-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} I+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I\right]+N_{1}+N_{2} \\
& -\frac{1}{2}\left(d_{1}-b-\frac{a \sigma^{2}}{2}\right)(S+I+M+R)^{a+1}-\frac{\Lambda}{S}+\beta I \tag{5.8}\\
& +d_{2} m M-\frac{a_{1} I}{M\left(1+b_{1} I\right)}-\frac{\gamma I}{R}-H_{2}\left[\beta\left(\bar{S}-\frac{\beta}{d_{1}-b}\right)\right] \\
= & \widetilde{F}_{1}(S, I, M, R)-H_{2}\left[\beta\left(\bar{S}-\frac{\beta}{d_{1}-b}\right)\right] .
\end{align*}
$$

We define the function $f_{1}(S, I, M, R):=\frac{1}{2}\left(d_{1}-b-\frac{a \sigma^{2}}{2}\right)(S+I+M+R)^{a+1}$ for convenience. Let the constants $N_{i}(i=3,4,5)$ be defined as follows,

$$
\begin{aligned}
& N_{3}:=\sup _{(S, I, M, R) \in \mathbb{R}_{+}^{4}}\left\{-f_{1}+H_{2}\left[-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} I+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I\right]+\beta I+d_{2} m M\right\}, \\
& N_{4}=\sup _{(S, I, M, R) \in \mathbb{R}_{+}^{4}}\left\{-f_{1}(S, I, M, R)+\beta I+d_{2} m M\right\},
\end{aligned}
$$

and

$$
N_{5}:=\sup _{\left\{\left.S \geq \frac{1}{\varepsilon_{2}} \right\rvert\, \times(I, M, R) \in \mathbb{R}_{+}^{3}\right.}\left\{H_{2}\left[-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} I+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} I\right]-\frac{1}{2} f_{1}+\beta I+d_{2} m M\right\} .
$$

It is easy to see that $N_{i}<\infty(i=3,4,5)$. Let the constant ϵ_{2} be sufficiently small and H_{2} sufficiently large such that

$$
\begin{gather*}
-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} \epsilon_{2}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} \epsilon_{2}<0, \tag{5.9}\\
-\frac{\Lambda}{\epsilon_{2}}+N_{1}+N_{2}+N_{3} \leq-1, \tag{5.10}\\
H_{2}\left(-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} \epsilon_{2}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} \epsilon_{2}\right)+N_{1}+N_{2}+N_{4} \leq-1, \tag{5.11}\\
-\frac{a_{1}}{\epsilon_{2}\left(1+b_{1} \epsilon_{2}\right)}+N_{1}+N_{2}+N_{3} \leq-1, \tag{5.12}\\
-\frac{\gamma}{\epsilon_{2}}+N_{1}+N_{2}+N_{3} \leq-1, \tag{5.13}
\end{gather*}
$$

and

$$
\begin{equation*}
-\frac{d_{1}-b-\frac{a \sigma^{2}}{2}}{4} \frac{1}{\varepsilon_{2}^{a+1}}+N_{1}+N_{2}+N_{5} \leq-1 . \tag{5.14}
\end{equation*}
$$

For the ϵ_{2} above, define the bounded set E as the following form,

$$
E:=\left\{(S, I, M, R): \epsilon_{2} \leq S \leq \frac{1}{\epsilon_{2}}, \epsilon_{2} \leq I \leq \frac{1}{\epsilon_{2}}, \epsilon_{2}^{2} \leq R \leq \frac{1}{\epsilon_{2}^{2}}, \epsilon_{2}^{2} \leq M \leq \frac{1}{\epsilon_{2}^{2}}\right\}
$$

The following will suffice to prove $\mathcal{L} \widetilde{F}_{1}(S, I, M, R) \leq-1$ in the domain $\mathbb{R}_{+}^{4} \backslash E$. Note that $\mathbb{R}_{+}^{4} \backslash E$ could be divided into eight sub-regions $E_{i}^{c}, i=1, \ldots, 8$:

$$
\begin{aligned}
E_{1}^{c} & =\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: S<\epsilon_{2}\right\}, E_{2}^{c}=\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: I<\epsilon_{2}\right\}, \\
E_{3}^{c} & =\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: M<\epsilon_{2}^{2}, I \geq \epsilon_{2}\right\}, E_{4}^{c}=\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: R<\epsilon_{2}^{2}, I \geq \epsilon_{2}\right\}, \\
E_{5}^{c} & =\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: S>\frac{1}{\epsilon_{2}}\right\}, E_{6}^{c}=\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: I>\frac{1}{\epsilon_{2}}\right\}, \\
E_{7}^{c} & =\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: M>\frac{1}{\epsilon_{2}^{2}}, E_{8}^{c}=\left\{(S, I, M, R) \in \mathbb{R}_{+}^{4}: R>\frac{1}{\epsilon_{2}^{2}}\right\} .\right.
\end{aligned}
$$

(i) When $(S, I, M, R) \in E_{1}^{c}$, it follows from (5.8) and (5.10) that

$$
\widetilde{F}_{1}(S, I, M, R) \leq-\frac{\Lambda}{S}+N_{1}+N_{2}+N_{3} \leq-\frac{\Lambda}{\epsilon_{2}}+N_{1}+N_{2}+N_{3} \leq-1
$$

(ii) When $(S, I, M, R) \in E_{2}^{c}$, it yields from (5.8) and (5.11) that

$$
\widetilde{F}_{1}(S, I, M, R) \leq H_{2}\left(-\Delta+\frac{\beta^{2} C_{1}}{d_{1}-b} \epsilon_{2}+\frac{\beta d_{2} m C_{1} a_{1}}{\left(d_{1}-b\right) a_{2}} \epsilon_{2}\right)+N_{1}+N_{2}+N_{4} \leq-1
$$

(iii) When $(S, I, M, R) \in E_{3}^{c}$, (5.8) and (5.12) lead to

$$
\begin{aligned}
\widetilde{F}_{1}(S, I, M, R) & \leq-\frac{a_{1} I}{M\left(1+b_{1} I\right)}+N_{1}+N_{2}+N_{3} \\
& \leq-\frac{a_{1}}{\epsilon_{2}\left(1+b_{1} \epsilon_{2}\right)}+N_{1}+N_{2}+N_{3} \leq-1
\end{aligned}
$$

(iv) When $(S, I, M, R) \in E_{4}^{c}$, it follows from (5.8) and (5.13) that

$$
\widetilde{F}_{1}(S, I, M, R) \leq-\frac{\gamma I}{R}+N_{1}+N_{2}+N_{3} \leq-\frac{\gamma}{\epsilon_{2}}+N_{1}+N_{2}+N_{3} \leq-1
$$

(v) When $(S, I, M, R) \in E_{5}^{c}$, we know from (5.8) and (5.14) that

$$
\begin{aligned}
\widetilde{F}_{1}(S, I, M, R) & \leq-\frac{d_{1}-b-\frac{a \sigma^{2}}{2}}{4} S^{a+1}+N_{1}+N_{2}+N_{5} \\
& \leq-\frac{d_{1}-b-\frac{a \sigma^{2}}{2}}{4} \frac{1}{\varepsilon_{2}^{a+1}}+N_{1}+N_{2}+N_{5} \leq-1
\end{aligned}
$$

The cases in $E_{6}^{c}, E_{7}^{c}, E_{8}^{c}$ are similar to that in E_{5}^{c}, which we will omit here. Hence, the assertion that $\mathcal{L} \widetilde{F}_{1}(S, I, M, R) \leq-1$ in $\mathbb{R}_{+}^{4} \backslash E$ is obtained.

Meanwhile, by the continuity of $\widetilde{F}_{1}(S, I, M, R)$ and the compactness of E, there is a constant $H_{3}>0$ such that $\widetilde{F}_{1}(S, I, M, R) \leq H_{3}$ for $(S, I, M, R) \in E$. Thus, it yields

$$
\begin{aligned}
& -\frac{\mathbb{E}\left(\widetilde{F}\left(S_{0}, I_{0}, M_{0}, R_{0}\right)\right)}{t} \\
\leq & \frac{\mathbb{E}\left(\widetilde{F}\left(S_{t}, I_{t}, M_{t}, R_{t}\right)\right)-\mathbb{E}\left(\widetilde{F}\left(S_{0}, I_{0}, M_{0}, R_{0}\right)\right)}{t} \\
= & \frac{1}{t} \int_{0}^{t} \mathbb{E}\left[\mathcal{L} \widetilde{F}\left(S_{u}, I_{u}, M_{u}, R_{u}\right)\right] d u \\
\leq & \frac{1}{t} \int_{0}^{t} \widetilde{F}_{1}\left(S_{u}, I_{u}, M_{u}, R_{u}\right) d u-H_{2} \beta \frac{1}{t} \int_{0}^{t}\left[\left(\widetilde{S}_{u}-\frac{\Lambda}{d_{1}-b}\right)\right] d u .
\end{aligned}
$$

By using the ergodicity of \bar{S}_{t}, it has

$$
\begin{aligned}
0 & \leq \liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \widetilde{F}_{1}\left(S_{u}, I_{u}, M_{u}, R_{u}\right) d u \\
& =\liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\widetilde{F}_{1}\left(S_{u}, I_{u}, M_{u}, R_{u}\right) \mathbb{I}_{\{(S, I, M, R) \in E\}}+\widetilde{F}_{1}\left(S_{u}, I_{u}, M_{u}, R_{u}\right) \mathbb{I}_{\left\{(S, I, M, R) \in E^{c}\right\}}\right) d u \\
& \leq \liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} H_{3} \mathbb{P}\left(\left\{\left(S_{u}, I_{u}, M_{u}, R_{u}\right) \in E\right\}\right)+(-1) \mathbb{P}\left(\left\{\left(S_{u}, I_{u}, M_{u}, R_{u}\right) \in E^{c}\right\}\right) d u \\
& \leq \liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[\left(1+H_{3}\right) \mathbb{P}\left\{\left(S_{u}, I_{u}, M_{u}, R_{u}\right) \in E\right\}-1\right] d u .
\end{aligned}
$$

This means

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \mathbb{P}\left(u,\left(S_{0}, I_{0}, M_{0}, R_{0}\right), E\right) d u \geq \frac{1}{1+H_{3}} . \tag{5.15}
\end{equation*}
$$

Therefore, due to the compactness of E and (5.15), model (1.3) has the invariant probability measure by exploiting Theorem 2 in [30].

6. The case of $\Delta=0$

This section will deal with the case of $\Delta=0$, which is a critical one that has been less investigated in literature.

Theorem 6.1. For the model (1.3) with initial condition $\left(s, i, m_{0}, r\right) \in \mathbb{R}_{+}^{4, o}$, if $\Delta=0$ and $d_{1}-b+\mu-$ $\frac{b a_{1}}{a_{2}}>0$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} I(u) d u=0, \text { a.s. } \tag{6.1}
\end{equation*}
$$

Proof. We prove it by contradiction. Assume that $\left(S_{t}, I_{t}, M_{t}, R_{t}\right)$ has the invariant measure \mathfrak{m} on $\mathbb{R}_{+}^{4, o}$. Thus, it can be concluded by the ergodicity that for any \mathfrak{m} measurable function g,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} g\left(S_{u}, I_{u}, M_{u}, R_{u}\right) d u=\int_{\mathbb{R}_{+}^{4,}} g(s, i, m, r) \mathfrak{m}(d s, d i, d m, d r) \tag{6.2}
\end{equation*}
$$

Hence, there exist positive constants h_{1} and h_{2} such that

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} I_{u} d u=\int_{\mathbb{R}_{+}^{4,}} i \mathfrak{m}(d s, d i, d m, d r)=h_{1}>0,
$$

and

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} R_{u} d u=\int_{\mathbb{R}_{+}^{4,0}} r \mathfrak{m}(d s, d i, d m, d r)=h_{2}>0
$$

Integrating for the second equation of (1.3) and using (2.4) as well as Lemma 2.2 leads to

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\beta S_{u} I_{u}-\left(d_{1}+\gamma+\mu-q b\right) I_{u}\right) d u+\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \sigma_{2} I_{u} d W_{2}(u)=\lim _{t \rightarrow \infty} \frac{I_{t}-i}{t}=0 . \tag{6.3}
\end{equation*}
$$

Thus, $\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \beta S_{u} I_{u} d u=\left(d_{1}+\gamma+\mu-q b\right) \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} I_{u} d u$.
Utilizing the same method yields to

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} d_{2} m M_{u} S_{u} d u=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(-\gamma I_{u}+\left(d_{1}+\delta\right) R_{u}\right) d u \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} a_{2} M_{u} d u=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \frac{a_{1} I_{u}}{1+b_{1} I_{u}} d u \leq \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} a_{1} I_{u} d u \tag{6.5}
\end{equation*}
$$

For (4.14), it has

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[-\left(d_{1}-b\right)\left(\bar{S}_{u}-S_{u}\right)+\beta S_{u} I_{u}+d_{2} m M_{u} S_{u}\right. \tag{6.6}\\
& \left.\quad-p b I_{u}-b M_{u}-(b+\delta) R_{u}\right] d u=\lim _{t \rightarrow \infty} \frac{\bar{S}_{t}-S_{t}}{t}=0
\end{align*}
$$

Substituting (6.3)-(6.5) into the above equation yields

$$
\begin{aligned}
0 & =\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[-\left(d_{1}-b\right)\left(\bar{S}_{u}-S_{u}\right)+\beta S_{u} I_{u}+d_{2} m M_{u} S_{u}-p b I_{u}-b M_{u}-(b+\delta) R_{u}\right] d u \\
& \geq \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[-\left(d_{1}-b\right)\left(\bar{S}_{u}-S_{u}\right)+\left(d_{1}-b+\mu-\frac{b a_{1}}{a_{2}}\right) I_{u}+\left(d_{1}-b\right) R_{u}\right] d u .
\end{aligned}
$$

Then,

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\bar{S}_{u}-S_{u}\right) d u & \geq \frac{1}{d_{1}-b} \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[\left(d_{1}-b+\mu-\frac{b a_{1}}{a_{2}}\right) I_{u}+\left(d_{1}-b\right) R_{u}\right] d u \tag{6.7}\\
& \geq \frac{1}{d_{1}-b}\left[\left(d_{1}-b+\mu-\frac{b a_{1}}{a_{2}}\right) h_{1}+\left(d_{1}-b\right) h_{2}=: h_{3}>0 .\right.
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\ln I_{t}}{t} & =\lim _{t \rightarrow \infty} \frac{\ln I_{0}+\sigma_{2} W_{2}(t)}{t}+\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\beta S_{u}-\left(d_{1}+\gamma+\mu-q b+\frac{\sigma_{2}^{2}}{2}\right)\right) d u \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left(\beta \bar{S}_{u}-\left(d_{1}+\gamma+\mu-q b+\frac{\sigma_{2}^{2}}{2}\right)\right) d u-\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \beta\left(\bar{S}_{u}-S_{u}\right) d u \\
& \leq \Delta-\beta h_{3}=-\beta h_{3}<0, \text { a.s. }
\end{aligned}
$$

Consequently, $\mathbb{P}\left\{\lim _{t \rightarrow \infty} I_{t}=0\right\}=1$, which contradicts the hypothesis at the beginning of this proof.

7. Discussion and simulations

From the analysis above, we see that Δ could be used to determine the different dynamical behavior of the model. In the deterministic model without stochastic noise, if $\Delta>0$, then the disease will persist. When the noise σ_{2} is large enough, $\Delta<0$ can always hold, which means the disease shall be extinct by Theorem 3.1. This reveals that stochastic noise contributes to the extinction of disease.

If $b=0$ and $q=0$, that is, there is no vertical transmission, the model (1.3) we discuss in this paper becomes the one in [16]. The authors in [16] obtained the value \mathfrak{R}_{0}^{S} to decide the persistence and stationary distribution of the model with information intervention. However, compared with the value R_{1}^{S} in this paper, there is an additional term $\frac{\mu_{1} m a}{a_{0} b}$ in \mathfrak{R}_{0}^{S}, which makes the value \mathfrak{R}_{0}^{S} smaller. In fact, this term can be eliminated by establishing appropriate functions. Due to the two terms $\frac{\mu_{1} m a}{a_{0} b}$ in \Re_{0}^{S} and $\frac{1}{2} \sigma^{2}$, there is a greater gap between the value \Re_{S} to judge extinction and the value \mathfrak{R}_{0}^{S} to determine persistence. This article gets the same value that determines both behaviors. In addition, we also obtain more detailed estimates of I, M, and R when $\Delta<0$.

In addition, our model is more complex and general than that in [22]. If there is no M_{t} and R_{t} class, model (1.3) will degenerate into the model similar to that in [22]. For the two-dimensional model there, the author obtained the values R_{0}^{S} and \tilde{R}_{0}^{S} for deciding the extinction ($\tilde{R}_{0}^{S}<1$) and the existence of stationary distribution ($R_{0}^{S}>1$), which are different. In our paper, a new function is built to acquire the same threshold that determines different properties.

Moreover, we see from the expression of Δ that $q b$ will make Δ larger, and when $\Delta>0$, the disease will spread by Theorem 3.2. Therefore, it is proposed that women should avoid to get pregnant during the period of infection for the sake of maternal and child health, which will reduce the vertical transmission rate and be beneficial for disease control.

In what follows, we will enumerate some examples to check the conclusions reached in the previous section.

Example 7.1. In order to verify the conclusion of Theorem 3.1, let $\Lambda=0.12, d_{1}=0.05, \beta=0.16$, $a_{1}=0.12, b_{1}=0.12, a_{2}=0.5, b=0.02, p=0.4, \mu=0.02, \delta=0.35, \gamma=0.45, m=1.2, \sigma_{1}=0.4$, $\sigma_{2}=0.6, \sigma_{3}=0.2$ and $\sigma_{4}=0.1$, thus, the parameter $\Delta=-0.048<0$, the disease will die out; see Figure 1(a) with the initial condition $S_{0}=2.1, I_{0}=1.2, M_{0}=0, R_{0}=1.2$. While in the deterministic model without noise, the value $\Delta=0.132>0$, the disease is persistent; see Figure 1(b). Figure 1(b) shows the trajectories of various parts of the model, indicating that the disease is persistent, while Figure 1(a) shows that the disease is extinct without noise.

Figure 1. (a) The trajectory of model (1.3) taking values in Example 7.1; (b) the trajectory of model (1.3) with values in Example 6.1 without stochastic noise.

Example 7.2. Let $\Lambda=0.12, d_{1}=0.06, d_{2}=0.8, \beta=0.08, a_{1}=0.12, b_{1}=1, a_{2}=0.25, b=0.03$, $p=0.4, \mu=0.04, \delta=0.35, \gamma=0.55, m=0.15, \sigma_{1}=0.3, \sigma_{2}=0.4, \sigma_{3}=0.2$ and $\sigma_{4}=0.1$ such that $\Delta<-0.392$. According to the results of Proposition 3.1, $\lim _{t \rightarrow \infty} \frac{\ln R_{t}}{t}=-0.27, \lim _{t \rightarrow \infty} \frac{\ln R_{t}}{t}=-0.27$ and $\lim _{t \rightarrow \infty} \frac{\ln \left|S_{t}-\bar{S}_{t}\right|}{t} \leq-0.075$; see Figure 2.

Figure 2. The trajectory of model (1.3) with values in Example 7.2 and the same initial values as in Example 7.1: (a) the trajectory of $\frac{\ln R_{t}}{t}$, (b) the trajectory of $\frac{\ln M_{t}}{t}$, and (c) the trajectory of $\frac{\ln \left|S_{t}-\bar{S}_{t}\right|}{t}$.

Example 7.3. Let $\Lambda=0.12, \beta=0.2$ and $\gamma=0.45$; other parameters are the same as those in Example 7.2. Thus, $\Delta=0.7213>0$. We know from Theorem 3.2 that the disease in model (1.3) is persistent in the mean; see Figure 3.

(a)

Figure 3. The trajectory of I_{t} and M_{t} in model (1.3) with values in Example 7.3.

Example 7.4. Now, we discuss the influence of information intervention factor on the behavior of model (1.3). Suppose that $m=0.5, d_{2}=0.8$, and other parameters are the same as those in Example 6.2. First, let $a_{1}=0 a_{2}=0$, that is, there is no M_{t} class, then $\Delta=0.7563>0$ and the disease will spread. The trajectory of susceptible class S_{t} is shown in Figure 4(a). When $a_{1}=0.9, a_{2}=0.3$, and $\sigma_{3}=0.2$, the class M_{t} affected by the information intervention exists and makes themselves as uninfected as possible through different measures, such as self-isolation or vaccination, which will reduce the size of the susceptible population to varying degrees. Figure 4(b) shows the trajectory of M_{t} and S_{t}, where the trajectory of S_{t} is slightly smaller than that of S_{t} in Figure 4(a).

Figure 4. (a) The trajectory of S_{t} in model (1.3) taking values in Example 7.4; (b) the trajectory of S_{t} and M_{t} in model (1.3) with values in Example 7.4.

Example 7.5. Next, to verify the conclusion of Theorem 6.1, let $\Lambda=0.12, d_{1}=0.06, \beta=0.2$, $a_{1}=0.2, b_{1}=1, a_{2}=0.25, b=0.02, p=0.4, \mu=0.047, \delta=0.4, \gamma=0.5, m=0.15, \sigma_{1}=0.08$, $\sigma_{2}=0.1, \sigma_{3}=0.5$ and $\sigma_{4}=0.05$; thus, the parameter $\Delta=0$ and $d_{1}-b+\mu-\frac{b a_{1}}{a_{2}}>0$, and the disease will not be persistent in the mean. See Figure 5 with the initial condition $S_{0}=2.1, I_{0}=1.2, M_{0}=0$, and $R_{0}=1.2$. (a) is the sample path of model (1.3) and (b) represents the trajectory of $\frac{1}{t} \int_{0}^{t} I_{s} d s$.

Figure 5. (a) The sample path of (1.3) with values in Example 7.5; (b) the trajectory of $\frac{1}{t} \int_{0}^{t} I_{s} d s$ in (1.3) with values in Example 7.5.

8. Conclusions and future research

The dynamic behavior of a stochastic epidemic model with information intervention and vertical transmission was the concern of this paper. The threshold to judge the extinction and persistence of the disease is obtained. When $\Delta=\frac{\beta \Lambda}{d_{1}-b}-\left(d_{1}+\gamma+\mu-q b+\frac{1}{2} \sigma_{2}^{2}\right)<0$, the three classes I_{t}, M_{t}, and R_{t} appearing in the model go extinct at an exponential rate, and the susceptible class S_{t} almost surely converges to the solution of the boundary equation exponentially. When $\Delta>0$, the disease in the model is persistent in the mean. Besides, the existence of invariant probability measure under this condition is proved by constructing proper Lyapunov functions. In addition, the critical case of $\Delta=0$ is also investigated and it is found that the disease will not be persistent in the mean under some conditions. Several discussions are presented to explain the results and some numerical examples are proposed to verify the obtained results.

A few other issues are worth further studies. This paper analyzes the model with a bilinear incidence rate, while a nonlinear one can be applied to a wider range of circumstances. Therefore, it will be more generic to generalize the model to one with nonlinear incidence. We consider, in this paper, that the stochastic noise is continuously characterized by white noise, and the introduction of more noises such as Markovian switching and Lévy noise will enable the model to be more realistic. Further research can be conducted on optimizing strategies for some control and prevention measures. We leave these issues for future investigations.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported by the Jiangxi Province High level and High skilled Leading Talent Training Project, the Science and Technology projects of Jiangxi Province Education Department (No. GJJ212716) and the National Key R\&D Program of China (No. 2023YFC3008902).

Conflict of interest

The authors declare that they have no competing interests.

References

1. F. A. C. Chalub, M. O. Souza, The SIR epidemic model from a PDE point of view, Math. Comput. Modell., 53 (2011), 1568-1574. https://doi.org/10.1016/j.mcm.2010.05.036
2. M. D. la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953-976. https://doi.org/10.1016/j.amc.2015.08.099
3. A. E. Koufi , A. Bennar, N. Yousfi, M. Pitchaimani, Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching, Math. Modell. Nat. Pheno., 16 (2021), 55. https://doi.org/10.1051/mmnp/2021047
4. N. T. Dieu, Asymptotic properties of a stochastic SIR epidemic model with Beddington-DeAngelis incidence rate, J. Dyn. Differ. Equations, 30 (2018), 93-106. https://doi.org/10.1007/s10884-016-9532-8
5. F. Wei, R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence, Math. Comput. Simul., 170 (2020), 1-15. https://doi.org/10.1016/j.matcom.2018.09.029
6. H. Yang, Y. Wang, S. Kundu, Z. Song, Z. Zhang, Dynamics of an SIR epidemic model incorporating time delay and convex incidence rate, Results Phys., 32 (2022), 105025. https://doi.org/10.1016/j.rinp.2021.105025
7. K. Hattaf, M. Mahrouf, J. Adnani, N. Yousfi, Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity, Physica A, 490 (2018), 591-600. https://doi.org/10.1016/j.physa.2017.08.043
8. Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74. https://doi.org/10.1142/S1793524508000023
9. Y. Zhao, L. Zhang, S. Yuan, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Physica A, 512 (2018), 248-260. https://doi.org/10.1016/j.physa.2018.08.113
10. F. Al Basir, S. Ray, E. Venturino, Role of media coverage and delay in controlling infectious diseases: A mathematical model, Appl. Math. Comput., 337 (2018), 372-385. https://doi.org/10.1016/j.amc.2018.05.042
11. H. Huo, S. Huang, X. Wang, H. Xiang, Optimal control of a social epidemic model with media coverage, J. Biol. Dyn., 11 (2017), 226-243. https://doi.org/10.1080/17513758.2017.1321792
12. B. Zhou, D. Jiang, B. Han, T. Hayat, Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein-Uhlenbeck process, Math. Comput. Simul., 196 (2022), 15-44. https://doi.org/10.1016/j.matcom.2022.01.014
13. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage, Chaos, Solitons Fractals, 139 (2020), 110013. https://doi.org/10.1016/j.chaos.2020.110013
14. J. Ge, L. Lin, L. Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, Discrete Contin. Dyn. Syst. - Ser. B, 22 (2017), 2763-2776. https://doi.org/10.3934/dcdsb. 2017134
15. A. Kumar, P. K. Srivastava, Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theor. Biol., 414 (2017), 103-119. https://doi.org/10.1016/j.jtbi.2016.11.016
16. X. Jin, J. Jia, Qualitative study of a stochastic SIRS epidemic model with information intervention, Physica A, 547 (2020), 123866. https://doi.org/10.1016/j.physa.2019.123866
17. T. Feng, Z. Qiu, Analysis of an epidemiological model driven by multiple noises: Ergodicity and convergence rate, J. Franklin Inst., 357 (2020), 2203-2216. https://doi.org/10.1016/j.jfranklin.2019.09.004
18. Y. Ding, X. Ren, C. Jiang, Q. Zhang, Periodic solution of a stochastic SIQR epidemic model incorporating media coverage, J. Appl. Anal. Comput., 10 (2020), 2439-2458. https://doi.org/10.11948/20190333
19. J. Bao, J. Shao, Asymptotic behavior of SIRS models in state-dependent random environments, Nonlinear Anal. Hybrid Syst., 38 (2020), 100914. https://doi.org/10.1016/j.nahs.2020.100914
20. D. Kuang, Q. Yin, J. Li, The threshold of a stochastic SIRS epidemic model with general incidence rate under regime-switching, J. Franklin Inst., 360 (2023), 13624-13647. https://doi.org/10.1016/j.jfranklin.2022.04.027
21. X. Zhang, S. Chang, H. Huo, Dynamic behavior of a stochastic SIR epidemic model with vertical transmission, Electron. J. Differ. Equations, 2019 (2019), 1-20.
22. X. Zhang, S. Chang, Q. Shi, H. Huo, Qualitative study of a stochastic SIS epidemic model with vertical transmission, Physica A, 505 (2018), 805-817. https://doi.org/10.1016/j.physa.2018.04.022
23. Y. Chen, W. Zhao, Asymptotic behavior and threshold of a stochastic SIQS epidemic model with vertical transmission and Beddington-DeAngelis incidence, Adv. Differ. Equations, 2020 (2020), 353. https://doi.org/10.1186/s13662-020-02815-6
24. N. Dieu, D. Nguyen, N. Du, G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062-1084. https://doi.org/10.1137/15M1043315
25. X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
26. N. T. Dieu, V. H. Sam, N. H. Du, Threshold of a stochastic SIQS epidemic model with isolation, Discrete Contin. Dyn. Syst. - Ser. B, 27 (2022), 5009-5028. https://doi.org/10.3934/dcdsb. 2021262
27. C. Zhu, G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155-1179. https://doi.org/10.1137/060649343
28. Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718-727. https://doi.org/10.1016/j.amc.2014.05.124
29. D. H. Nguyen, G. Yin, C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates, SIAM J. Appl. Math., 80 (2020), 814-838. https://doi.org/10.1137/19M1246973
30. L. Stettner, On the Existence and Uniqueness of Invariant Measure for Continuous Time Markov Processes, Brown University, 1986. http://doi.org/10.21236/ADA174758
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
