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1. Introduction

Smooth varieties have certain nice properties, and both algebraic and analytic methods can be applied
to them. However, when studying problems in birational geometry, particularly those related to the
minimal model program, it becomes necessary to investigate varieties with singularities. Fortunately, as
Hironaka’s famous theorem states, every variety in characteristic zero has a resolution of singularity.
The existence of resolutions of singularities provides a way to study singular varieties. For instance, by
comparing a variety to its resolution of singularities, one can measure the complexity of a singularity.
This is a fundamental technique in higher-dimensional birational geometry.

Since we want to understand a singularity through its resolution, it is natural to inquire about the
difference between two distinct resolutions of singularities. For an algebraic surface S , there exists a
smooth surface known as the minimal resolution of S . This is a resolution of singularities S̄ → S such
that ρ(S̄ /S ) is minimal. The minimal resolution S̄ is unique, and any birational morphism S ′ → S from
a smooth surface S ′ to S factors through S̄ → S .

In this paper, we want to find a higher-dimensional analog of the minimal resolution for surfaces.
It is not reasonable to assume the existence of a unique minimal resolution for higher-dimensional
singularities. For instance, if X d X′ is a smooth flop over W, then X and X′ are two different resolutions
of singularities for W. Since flops are symmetric (at least in dimension three), it appears that X and X′

are both minimal. Thus, we need to consider the following issues:

(1) To define “minimal resolutions”, which ideally should be resolutions of singularities with some
minimal geometric invariants.
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(2) To compare two different minimal resolutions. We need some symmetry between them, so that even
if minimal resolutions are not unique, it is not necessary to distinguish them.

(3) To compare a minimal resolution with an arbitrary resolution of singularities.

Inspired by the two-dimensional case, it is natural to consider resolutions of singularities with
minimal Picard number (we will call such resolutions P-minimal resolutions, see Section 7 for a more
precise definition). We know that a fixed singularity may have more than one P-minimal resolution, and
two different P-minimal resolutions can differ by a smooth flop. It is also possible that two different
P-minimal resolutions “differ by a singular flop”: consider X d X′ as a possibly singular flop over
W. Let X̃ → X and X̃′ → X′ be P-minimal resolutions of X and X′, respectively. Then, because of the
symmetry between flops, one may expect that X̃ and X̃′ are two different P-minimal resolutions of W.
We call the birational map X̃ d X̃′ a P-desingularization of the flop X d X′ (a precise definition can be
found in Section 7). If we consider P-desingularizations of flops as elementary birational maps, then in
dimension three, P-minimal resolutions have nice properties.

Theorem 1.1. Assume that X is a projective threefold over the complex numbers and X̃1, X̃2 are two
different P-minimal resolutions of X. Then X̃1 and X̃2 are connected by P-desingularizations of terminal
and Q-factorial flops.

Moreover, if X has terminal and Q-factorial singularities, then the birational map X̃1 d X̃2 has an
Ω-type factorization.

Please see Section 6 for the definition of Ω-type factorizations.

Theorem 1.2. Assume that X is a projective threefold over the complex numbers and W → X is a
birational morphism from a smooth threefold W to X. Then, for any P-minimal resolution X̃ of X, one
has a factorization

W = X̃k d ...d X̃1 d X̃0 = X̃

such that X̃i+1 d X̃i is either a smooth blow-down or a P-desingularization of a terminal Q-factorial flop.

Since three-dimensional terminal flops are topologically symmetric, some topological invariants like
Betti numbers will not change after P-desingularizations of terminal flops. Hence, it is easy to see that
P-minimal resolutions are the resolution of singularities with minimal Betti numbers.

Corollary 1.3. Assume that X is a projective threefold over the complex numbers and W → X is a
birational morphism from a smooth threefold W to X. Then, for any P-minimal resolution X̃ of X, one
has that bi(X̃) ≤ bi(W) for all i = 0, ..., 6.

Although in dimension three P-minimal resolutions behave well, for singularities of dimension
greater than three, P-minimal resolutions may not be truly “minimal”. A simple example is a smooth
flip. If X d X′ is a smooth flip over W, then both X and X′ are P-minimal resolutions of W, but X′

is better than X. Notice that the only known smooth flips are standard flips [1, Section 11.3], and if
X d X′ is a standard flip, then it is easy to see that bi(X) ≥ bi(X′) for all i and the inequality is strict
for some i. Thus, the resolution of singularities with minimal Betti numbers may be the right minimal
resolution for higher-dimensional singularities. Because of Corollary 1.3, in dimension three P-minimal
resolutions are exactly those smooth resolutions which have minimal Betti numbers. Therefore, this
new definition of minimal resolutions is compatible with our three-dimensional theorems.

Electronic Research Archive Volume 32, Issue 5, 3635–3699.



3637

We now return to the proof of our main theorems. Let X be a threefold and W → X be a resolution
of singularities. One can run KW-MMP over X as

W = X0 d X1 d ...d Xk = X.

Let X̃i be a P-minimal resolution of Xi. Then X̃0 = W and it is easy to see that X̃k is also a P-minimal
resolution of X. Thus, our main theorems can be easily proved if we know the relation between X̃i and
X̃i+1. Since Xi has only terminal and Q-factorial singularities, studying P-minimal resolutions of Xi

becomes simpler.
In [2], Chen introduced feasible resolutions for terminal threefolds, which is a resolution of singularities

consisting of a sequence of divisorial contractions to points with minimal discrepancies (see Section 2.3.3
for more detail). Given a terminal threefold X and a feasible resolution X̄ of X, one can define the
generalized depth of X to be the integer ρ(X̄/X). The generalized depth is a very useful geometric
invariant of a terminal threefold. In our application, the crucial factor is that one can test whether
a resolution of singularities W → X is a feasible resolution or not by comparing ρ(W/X) and the
generalized depth of X. We need to understand how generalized depths change after steps of the minimal
model program. After that, we can prove that for terminal and Q-factorial threefolds, P-minimal
resolutions and feasible resolutions coincide.

Now we only need to figure out the following two things: how generalized depths change after a step
of minimal model program (MMP), and how P-minimal resolutions change after a step of MMP. To
answer those questions, we have to factorize a step of MMP into more simpler birational maps. In [3],
Chen and Hacon proved that three-dimensional terminal flips and divisorial contractions to curves can
be factorized into a composition of (inverses of) divisorial contractions and flops. In this paper, we
construct a similar factorization for divisorial contractions to points. After knowing the factorization,
we are able to answer the two questions above and prove our main theorems.

In addition to the above, we introduce the notion of Gorenstein depth for terminal threefolds. The
basic idea is as follows: given a sequence of steps of MMP of terminal threefolds

X0 d X1 d ...d Xk,

one can show that the generalized depth of Xk is bounded above by the integer k and the generalized
depth of X0. That is to say, the number of steps of MMP bounds the singularities on the minimal model.
One may ask whether there is an opposite bound. Specifically, if we know the singularities of the
minimal model Xk, can we bound singularities of X0? In this paper, we define the Gorenstein depth of
terminal threefolds, which roughly speaking measures only Gorenstein singularities. One can show that
the Gorenstein depth is always non-decreasing when running three-dimensional terminal MMP. Our
result on Gorenstein depth will have important applications in [4].

This paper is structured as follows: Section 2 is a preliminary section. In Section 3, we develop
some useful tools to construct relations between divisorial contractions to points. Those tools, as well
as the explicit classification of divisorial contractions, will be used in Section 4 to construct links of
different divisorial contractions to points. In Section 5, we prove the property of the generalized depth.
The construction of diagrams in Theorem 1.1 will be given in Section 6. All our main theorems will be
proved in Section 7. In the last section, we discuss possible higher-dimensional generalizations of the
notion of minimal resolutions, and possible applications of our main theorems.
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2. Preliminaries

2.1. Notation and conventions

In this paper we only consider varieties over complex numbers.
Let X and Y be two algebraic varieties. We say that X and Y are birational if there exists Zariski

open sets U ⊂ X and V ⊂ Y such that U and V are isomorphic. If X and Y are birational, we say that
ϕ : X d Y is a birational map, and we will denote ϕ|U to be the isomorphism U → V . If ϕ : X → Y is a
morphism between X and Y and there exists a Zariski open set U ⊂ X such that ϕ|U is an isomorphism,
then we say that ϕ is a birational morphism.

For a divisorial contraction, we mean a birational morphism Y → X which contracts an irreducible
divisor E to a locus of codimension at least two, such that KY is Q-Cartier and is anti-ample over X. We
will denote by vE the valuation that corresponds to E.

Let G be a cyclic group of order r generated by τ. For any Z-valued n-tuple (a1, ..., an), one can
define a G-action on An

(x1,...,xn) by τ(xi) = ξai xi, where ξ = e
2πi
r . We will denote the quotient space An/G

by An
(x1,...,xn)/

1
r (a1, ..., an).

We say that w is a weight on W/G = An
(x1,...,xn)/G defined by w(x1, ..., xn) = 1

r (b1, ..., bn) if w is a map
OW →

1
rZ≥0 such that

w(
∑

(i1,...,in)∈Zn
≥0

c(i1,...,in)x
i1
1 ...x

in
n ) = min

{
1
r

(b1i1 + ... + bnin) c(i1,...,in) , 0
}
.

Assume that ϕ : X d Y is a birational map. Let U ⊂ X be the largest open set such that ϕ|U is an
isomorphism and Z ⊂ X be an irreducible subset such that Z intersects U non-trivially. We will denote
by ZY the closure of ϕ|U(Z|U).

2.2. Weighted blow-ups

Let W = An and G be a finite cyclic group, such that W̄ = W/G � An
(x1,...,xn)/

1
r (a1, ..., an). There is an

elementary way to construct a birational morphism W ′ → W̄, so called the weighted blow-up, defined
as follows.

We write everything in the language of toric varieties. Let N be the lattice ⟨e1, ..., en, v⟩Z, where e1, ...,
en is the standard basis of Rn and v = 1

r (a1, ..., an). Letσ = ⟨e1, ..., en⟩R≥0 . We have W̄ � Spec C[N∨∩σ∨].
Let w = 1

r (b1, ..., bn) be a vector such that bi = λai + kir for λ ∈ N and ki ∈ Z with bi , 0. We define
a weighted blow-up of W̄ with weight w to be the toric variety defined by the fan consisting of the cones

σi = ⟨e1, ..., ei−1,w, ei+1, ..., en⟩.

Let Ui be the toric variety defined by the cone σi and lattice N, namely

Ui = Spec C[N∨ ∩ σ∨i ].

Lemma 2.1. One has that
Ui � A

n/⟨τ, τ′⟩

where τ is the action given by
xi 7→ ξ−r

bi
xi, x j 7→ ξ

b j

bi
x j, j , i
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and τ′ is the action given by

xi 7→ ξai
bi

xi, x j 7→ ξ
a jbi−aib j

rbi
x j, j , i.

Here, ξk denotes a k-th roots of unity for any positive integer k.
In particular, the exceptional divisor of W ′ → W̄ is P(b1, ..., bn)/G′ where G′ is a cyclic group of

order m where m is an integer that divides λ.

Proof. Let Ti be a linear transformation such that Tie j = e j if j , i and Tiw = ei. One can see that

Tiei =
r
bi

(ei −
∑
j,i

b j

r
e j)

and

Tiv =
∑
j,i

a j

r
e j +

ai

r
r
bi

(ei −
∑
j,i

b j

r
e j) =

ai

bi
ei +
∑
j,i

a jbi − aib j

rb j
e j.

Under this linear transformation, σi becomes the standard cone ⟨e1, ..., en⟩R≥0 . Note that

kiTiei + λTiv =
kir + λai

bi
ei +
∑
j,i

λ(a jbi − aib j) − kib jr
rbi

e j

= ei +
∑
j,i

λa jbi − bib j

rbi
e j = ei −

∑
j,i

k je j.

Hence, ei ∈ TiN and TiN = ⟨e1, ..., en,Tiei,Tiv⟩Z. Now Tiei corresponds to the action τ and Tiv
corresponds to the action τ′. This means that Ui � A

n/⟨τ, τ′⟩.
The computation above shows that τki = τ′λ. If we glue (xi = 0) ⊂ An/⟨τ⟩ together, then we get a

weight projective space P(b1, ..., bn). The relation τki = τ′λ implies that (xi = 0) ⊂ Ui can be viewed as
P(b1, ..., bn)/G′ where G′ is a cyclic group of order m for some factor m of λ. □

Corollary 2.2. Let x1, ..., xn be the local coordinates of W and let y1, ..., yn be the local coordinates of

Ui. The change of coordinates of the morphism Ui → W̄ are given by x j = y jy
b j
r

i and xi = y
bi
r

i .

Proof. The change of coordinates is defined by T t
i , where Ti is defined as in Lemma 2.1. □

Corollary 2.3. Assume that

S = ( f1(x1, ..., xn) = ... = fk(x1, ..., xn) = 0) ⊂ W̄

is a complete intersection and S ′ is the proper transform of S on W ′. Assume that the exceptional locus
E of S ′ → S is irreducible and reduced. Then

a(E, S ) =
b1 + ... + bn

r
−

k∑
i=1

w( fk) − 1.

Electronic Research Archive Volume 32, Issue 5, 3635–3699.



3640

Proof. Assume first that k = 0. Denote ϕ : W ′ → W̄. Then, on Ui, we have

ϕ∗dx1 ∧ ... ∧ dxn =
bi

r
y

bi
r −1

i

∏
j,i

y
b j
r

i

 dy1 ∧ ... ∧ dyn,

hence KW′ = ϕ
∗KW̄ + ( b1+...+bn

r − 1)F where F = exc(W ′ → W̄).
Now the statement follows from the adjunction formula. □

Corollary 2.4. Let F = exc(W ′ → W̄). Then

Fn =
(−1)n−1rn−1

b1...bnm
.

Here, m is the integer in Lemma 2.1.

Proof. From the change of coordinate formula in Corollary 2.2, one can see that F|F = OP(b1,...,bn)/G(−r).
It follows that

Fn = (F|F)n−1 =
(−1)n−1rn−1

b1...bnm
.

□

Definition 2.5. Let ϕi : Ui → W̄ be the morphism in Corollary 2.2. For any G-semi-invariant function
u ∈ OW , we can define the strict transform of u on Ui by (ϕ−1

i )∗(u) = ϕ∗(u)/yw(u)
i .

In this paper, we will consider terminal threefolds which are embedded into a cyclic quotient ofA4 orA5

X ↪→ A4
(x,y,z,u)/

1
r

(a, b, c, d) or X ↪→ A5
(x,y,z,u,t)/

1
r

(a, b, c, d, e).

We say that Y → X is a weighted blow-up with weight w if Y is the proper transform of X inside the
weighted blow-up of A4

(x,y,z,u)/
1
r (a, b, c, d) or A5

(x,y,z,u,t)/
1
r (a, b, c, d, e) with weight w.

Notation 2.6. Assume that X is of the above form and let Y → X be a weighted blow-up. The notation
Ux, Uy, Uz, Uu and Ut will stand for U1, ..., U5 in Lemma 2.1.

Notation 2.7. Assume that w is a weight on An
(x1,...,xn) determined by w(x1, ..., xn) = (a1, ..., an) and

f (x1, ..., xn) =
∑

(i1,...,in)∈Zn
≥0

λi1,...,in xi1
1 ...x

in
n

is a regular function on An. We denote

fw =
∑

a1i1+...+anin=w( f )

λi1,...,in xi1
1 ...x

in
n .
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2.3. Terminal threefolds

2.3.1. Local classification

The local classification of terminal threefolds was done by Reid [5] for Gorenstein cases and Mori [6]
for non-Gorenstein cases.

Definition 2.8. A compound Du Val point P ∈ X is a hypersurface singularity which is defined by
f (x, y, z) + tg(x, y, z, t) = 0, where f (x, y, z) is an analytic function which defines a Du Val singularity.

Theorem 2.9 ( [5, Theorem 1.1]). Let P ∈ X be a point of threefold. Then P ∈ X is an isolated
compound Du Val point if and only if P ∈ X is terminal and KX is Cartier near P.

Theorem 2.10 ( [6], cf. [7, Theorem 6.1]). Let P ∈ X be a germ of three-dimensional terminal singularity
such that KX has Cartier index r > 1. Then

X � ( f (x, y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
r

(a1, ..., a4)

such that f , r and ai are given by Table 1.

Table 1. Classification of terminal threefolds.

Type f (x, y, z, u) r ai condition

cA/r xy + g(zr, u) any (α,−α, 1, r)
g ⊂ m2

P
α and r are coprime

cAx/4
xy + z2 + g(u)
x2 + z2 + g(y, u)

4 (1, 1, 3, 2) g ∈ m3
P

cAx/2 xy + g(z, u) 2 (0, 1, 1, 1) g ∈ m4
P

cD/3
x2 + y3 + z3 + u3

x2 + y3 + z2u + yg(z, u) + h(z, u)
x2 + y3 + z3 + yg(z, u) + h(z, u)

3 (0, 2, 1, 1)
g ∈ m4

P
h ∈ m6

P

cD/2
x2 + y3 + yzu + g(z, u)
x2 + yzu + yn + g(z, u)
x2 + yz2 + yn + g(z, u)

2 (1, 0, 1, 1) g ∈ m4
P, n ≥ 4

n ≥ 3

cE/2 x2 + y3 + yg(z, u) + h(z, u) 2 (1, 0, 1, 1)
g, h ∈ m4

P
h4 , 0

Assume that P ∈ X is a three-dimensional terminal singularity. Then there exists a section H ∈ |−KX |

which has Du Val singularities (referred to as a general elephant). Please see [7, (6.4)] for details.

2.3.2. Classification of divisorial contractions to points

Divisorial contractions to points between terminal threefolds are well-classified by Kawamata [8],
Hayakawa [9–11], Kawakita [12–14] and Yamamoto [15].

Theorem 2.11. Assume that Y → X is a divisorial contraction to a point between terminal threefolds.
Then there exists an embedding X ↪→ W with W = A4

(x,y,z,u) or A5
(x,y,z,u,t) and a weight w(x, y, z, u) =

Electronic Research Archive Volume 32, Issue 5, 3635–3699.
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1
r (a1, ..., a4) or w(x, y, z, u, t) = 1

r (a1, ..., a5), respectively, such that Y → X is a weighted blow-up with
respect to w.

The defining equation of X ⊂ W and the weight are given in Table 2 to Table 11.

For the reader’s convenience, we put these tables in Section 4. In those tables, we use the following
notation: For a non-negative integer m, the notation g≥m represents a function g ∈ OW such that w(g) = m.
The notation pm represents a function p ∈ OW which is homogeneous of weight m with respect to the
weight w.

The reference of each of the cases in Table 2, Table 3, Table 5, ..., Table 7, Table 9, ..., Table 11 is
as follows:

• Case A1 is [13, Theorem 1.2 (i)]. Case A2 is [15, Theorem 2.6].
• Case Ax1–Ax4 are [9] Theorems 7.4, 7.9, 8.4 and 8.8 respectively.
• Cases D6 and D7 are [13, Theorem 1.2 (ii)]. Case D8–D11 is [15] Theorem 2.1–2.4. Case D12

is [15, Theorem 2.7].
• Case D13 is [9, Theorems 9.9, 9.14, 9.20]. Case D14 is [9, Theorem 9.25].
• Case D16 is [10, Proposition 4.4]. Case D17 is [10, Proposition 4.7, 4.12]. Case D18 is [10,

Proposition 4.9]. Case D18 is [10, Proposition 5.4]. Case D19 is [10, Propositions 5.8, 5.13, 5.22,
5.28, and 5.35]. Case D20 is [10, Propositions 5.18 and 5.25]. Case D21 is [10, Propositions 5.16
and 5.32]. Case D22 is [10, Propositions 5.9 and 5.36].
• Cases D23 and D24 is [13, Theorem 1.2(ii)] and [11, Theorem 1.1 (iii)]. Case D25–D28 is [11]

Theorem 1.1 (i), (i’), (ii’), (iii), (ii) respectively. Case D29 is [14, Theorem 2].
• Case E19–E21 is [15] Theorems 2.5, 2.9 and 2.10 respectively.
• Case E22 is [9, Theorems 10.11, 10.17, 10.22, 10.28, 10.33 and 10.41]. Case E23 is [9, Theorems

10.33 and 10.47]. Case E24 is [9, Theorems 10.54 and 10.61]. Case E25 is [9, Theorem 10.67].
Case E26 is [11, Theorem 1.2].

Divisorial contractions to cD points of discrepancy one (Case D1–D5 in Table 4) and divisorial
contractions to cE points of discrepancy one (Case E1–E18 in Table 8) was completely classified
by Hayakawa in his two unpublished papers “Divisorial contractions to cD points” and “Divisorial
contractions to cE points”. We will briefly introduce how to derive this classification. For more detail,
please contact the author or Professor Takayuki Hayakawa in Kanazawa University.

Let (o ∈ X) be a germ of three-dimensional Gorenstein terminal singular point with type cD or cE.

Step 1: Construct a divisorial contraction X1 → X which contracts an exceptional divisor of discrepancy
one to o. We refer to [2, Section 4, Section 6] for the explicit construction. X1 → X can be viewed
as a weighted blow-up with respect to an explicit embedding and a explicit weight.

Step 2: Find all exceptional divisors E over X such that a(E, X) = 1 and CenterXE = o. We know
that exc(X1 → X) is an exceptional divisor of discrepancy one. Assume that E , exc(X1 → X).
Then an easy computation on discrepancies shows that a(E, X1) < 1. In particular, CenterX1 E is a
non-Gorenstein point. Since X1 → X is an explicit weighted blow-up, all non-Gorenstein points
on X1 can be explicitly computed, and all exceptional divisors of discrepancy less than one can be
explicitly write down. Say S is the set of exceptional divisors over X1 with discrepancy less than
one. One can compute a(E, X) for E ∈ S. If a(E, X) > 1, then we remove E form S. After that, S
is a set consisting exceptional divisors over X of discrepancy one.
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Step 3: For any exceptional divisor E ∈ S, the valuation of E on X can be calculated. One can construct
a weighted blow-up YE → X with respect to this valuation. If YE do not have terminal singularities,
then we remove E form S. Now, YE → X for all E ∈ S, together with X1 → X, are all divisorial
contractions to o with discrepancy one.

2.3.3. The depth

Definition 2.12. Let Y → X be a divisorial contraction which contracts a divisor E to a point P. We say
that Y → X is a w-morphism if a(X, E) = 1

rP
, where rP is the Cartier index of KX near P.

Definition 2.13. The depth of a terminal singularity P ∈ X, dep(P ∈ X), is the minimal length of
the sequence

Xm → Xm−1 → · · · → X1 → X0 = X,

such that Xm is Gorenstein and Xi → Xi−1 is a w-morphism for all 1 ≤ i ≤ m.
The generalized depth of a terminal singularity P ∈ X, gdep(P ∈ X), is the minimal length of

the sequence
Xn → Xn−1 → · · · → X1 → X0 = X,

such that Xn is smooth and Xi → Xi−1 is a w-morphism for all 1 ≤ i ≤ n. The variety Xn is called a
feasible resolution of P ∈ X.

The Gorenstein depth of a terminal singularity P ∈ X, depGor(P ∈ X), is defined by gdep(P ∈
X) − dep(P ∈ X).

For a terminal threefold we can define

dep(X) =
∑

P

dep(P ∈ X),

gdep(X) =
∑

P

gdep(P ∈ X)

and
depGor(X) =

∑
P

depGor(P ∈ X).

Remark 2.14. In the above definition, the existence of a sequence

Xm → Xm−1 → · · · → X1 → X0 = X,

such that Xm is Gorenstein follows from [10, Theorem 1.2]. The existence of a sequence

Xn → Xn−1 → · · · → X1 → X0 = X,

such that Xn is smooth follows from [2, Theorem 2].

Definition 2.15. Assume that Y → X is a w-morphism such that gdep(Y) = gdep(X) − 1. Then we say
that Y → X is a strict w-morphism.
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Lemma 2.16. Assume that Y → X is a divisorial contraction which is a weighted blow-up with the
weight w(x1, ..., xn) = 1

r (a1, ..., an) with respect to an embedding X ↪→ An
(x1,...,xn)/G where G is a cyclic

group of index r. Assume that E is an exceptional divisor over X and vE(x1, ..., xn) = 1
r (b1, ..., bn). Then

CenterY E ∩ Ui non-trivially if and only if bi
ai
≤

b j

a j
for all 1 ≤ j ≤ n. Here, U1, ..., Un denotes the

canonical affine chart of the weighted blow-up on Y .

Proof. Let y1, ..., yn be the local coordinates of Ui. Then we have the following change of coordinates
formula:

xi = y
ai
r

i , x j = y
a j
r

i y j if i , j.

One can see that

vE(yi) =
bi

ai
, vE(y j) =

bi

r
−

a jbi

rai
if i , j.

We know that CenterEY intersects Ui non-trivially if and only if bi
r −

a jbi

rai
≥ 0 for all j , i, or, equivalently,

b j

a j
≥

bi
ai

for all j , i. □

Corollary 2.17. Assume that Y → X and Y1 → X are two different w-morphisms over the same point.
Let E and F be the exceptional divisors of Y → X and Y1 → X, respectively. Then there exists u ∈ OX

such that vE(u) < vF(u).

Proof. Let X → An
(x1,...,xn)/G be the embedding so that Y1 → X can be obtained by the weighted blow-up

with respect to the embedding. We may assume that (xn = 0) defines a Du Val section. Then

vE(xn) = a(E, X) = a(F, X) = vF(xn).

It follows that an = bn = 1 where (a1, ..., an) and (b1, ..., bn) are integers in Lemma 2.16. Now, since
a(F, X) = a(E, X), one has that CenterY1 E is a non-Gorenstein point (if Y1 is generically Gorenstein
along CenterY1 E, then an easy computation shows that a(E, X) > a(F, X)). It follows that CenterY1 E∩Un

is empty since an = 1 implies that Un is Gorenstein. Thus, by Lemma 2.16 we know that there exists j
so that b j

a j
< 1. Hence, vE(u) > vF(u) if u = x j. □

2.4. Chen-Hacon factorizations

We have the following factorization of steps of three-dimensional terminal MMP by Chen and
Hacon [3].

Theorem 2.18 ( [3, Theorem 3.3]). Assume that either X d X′ is a flip over V , or X → V is a divisorial
contraction to a curve such that the exceptional locus contains a non-Gorenstein singular point. Then
there exists a diagram

Y1

��

// · · · // Yk

��
X

!!

X′

}}
V

such that Y1 → X is a w-morphism, Yk → X′ is a divisorial contraction, Y1 d Y2 is a flip or a flop, and
Yi d Yi+1 is a flip for i > 1. If X → V is divisorial, then Yk → X′ is a divisorial contraction to a curve
and X′ → V is a divisorial contraction to a point.
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Remark 2.19. Notation as in the above theorem. From the construction of the diagram, we can state
the following:

(1) Let CY1 be a flipping/flopping curve of Y1 d Y2. Then CX is a flipping curve of X d X′. Here, we
use the notation introduced in Section 2.1, so CX is the image of CY1 on X.

(2) Assume that the exceptional locus of X → V contains a non-Gorenstein point P which is not a cA/r
or a cAx/r point. Then Y1 → X can be chosen to be any w-morphism over P. This statement follows
from the proof of [3, Theorem 3.1].

We have the following properties of the depth [3, Propositions 2.15, 3.8 and 3.9]:

Lemma 2.20. Let X be a terminal threefold.

1. If Y → X is a divisorial contraction to a point, then dep(Y) ≥ dep(X) − 1.

2. If Y → X is a divisorial contraction to a curve, then dep(Y) ≥ dep(X).

3. If X d X′ is a flip, then dep(X) > dep(X′).

2.5. The negativity lemma

We have the following negativity lemma for flips.

Lemma 2.21. Assume that X d X′ is a (KX + D)-flip. Then, for all exceptional divisors E, one has that
a(E, X,D) ≤ a(E, X′,DX′). The inequality is strict if CenterXE is contained in the flipping locus.

Proof. It is a special case of [16, Lemma 3.38]. □

What we really need is the following corollary of the negativity lemma.

Corollary 2.22. Assume that X d X′ is a (KX + D)-flip and C ⊂ X is an irreducible curve which is not
a flipping curve. Then (KX + D).C ≥ (KX′ + DX′).CX′ . The inequality is strict if C intersects the flipping
locus non-trivially.

Proof. Let X W
ϕoo ϕ′ // X′ be a common resolution such that C is not contained in the

indeterminacy locus of ϕ. Then Lemma 2.21 implies that F = ϕ∗(KX + D) − ϕ′∗(KX′ + DX′) is an
effective divisor and is supported on exactly those exceptional divisors whose centers on X are
contained in the flipping locus. Hence,

(KX + D).C − (KX′ + DX′).CX′ = (ϕ∗(KX + D) − ϕ′∗(KX′ + DX′)).CW = F.CW ≥ 0.

The last inequality is strict if and only if CW intersects F non-trivially, or, equivalently, C intersects the
flipping locus non-trivially. □
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3. Factorize divisorial contractions to points

Let Y → X be a divisorial contraction between Q-factorial terminal threefolds that contracts a divisor
E to a point. We construct the diagram

Z1
//

��

... // Zk

��
Y

  

Y1

~~
X

as follows: Let Z1 → Y be a w-morphism and let H ∈ | − KX | be a Du Val section. According
to [3, Lemma 2.7 (ii)], we have a(E, X,H) = 0. We run the (KZ1 + HZ1 + ϵEZ1)-MMP over X for some
ϵ > 0 such that (Z1,HZ1 +ϵEZ1) is klt. Notice that a general curve inside EZ1 intersects the pair negatively,
and a general curve in F intersects the pair positively where F = exc(Z1 → Y). Thus, after finitely many
(KZ1 + HZ1 + ϵEZ1)-flips Z1 d ... d Zk, the MMP ends with a divisorial contraction Zk → Y1 which
contracts EZk , and Y1 → X is a divisorial contraction which contracts FY1 .

Lemma 3.1. Keeping the above notation, assume that KZ1 is anti-nef over X and EZ1 is not covered
by KZ1-trivial curves. Then Zi d Zi+1 is a KZi-flip or flop for all i and Zk → Y1 is a KZk-divisorial
contraction. In particular, Y1, Z2, ..., Zk are all terminal.

Proof. Assume first that k = 1. If Z1 → Y1 is a KZ1-negative contraction, then we are done. Otherwise,
Z1 → Y1 is a KZ1-trivial contraction. In this case, EZ1 is covered by KX1-trivial curves, which contradicts
our assumption.

Now assume that k > 1. We know that Z1 d Z2 is a KZ1-flip or flop. Also, notice that a general curve
on EZ1 is KZ1-negative. Hence a general curve on EZ2 is KZ2-negative by Corollary 2.22. Now the relative
effective cone NE(Z2/X) is a two-dimensional cone. One of the boundaries of NE(Z2/X) corresponds
to the flipped/flopped curve of Z1 d Z2 and is KZ2-non-negative. Since there is a KZ2-negative curve,
we know that the other boundary of NE(Z2/X) is KZ2-negative. Therefore, if k = 2, then Z2 → Y1 is
a KZ2-divisorial contraction, and for k > 2, Z2 d Z3 is a KZ2-flip. One can prove the statement by
repeating this argument k − 2 more times. □

We are going to find the sufficient conditions for the assumptions of Lemma 3.1. Our final results are
Lemmas 3.4 and 3.6.

Let X ↪→ An
(x1,...,xn)/G = W/G be the embedding such that Y → X is a weighted blow-up with respect

to the weight w and this embedding. First, we show that after replacing W by a larger affine space, if
necessary, we may assume that Z1 → Y → X can be viewed as a sequence of weighted blow-ups with
respect to the embedding X ↪→ W/G.

Let V be a suitable open set which contains P = CenterY F such that Z1 → Y can be viewed as a
weighted blow-up with respect to an embedding V ↪→ An1

(y′1,...,y
′
n1 )/G

′. For j = 1, ..., n1, we define D j ⊂ V
to be the Weil divisor corresponding to y′j = 0. Then D j,X = ϕ∗D j is a Weil divisor on X. Since X is
Q-factorial, D j,X corresponds to a G-semi-invariant function s j ∈ OW . We can consider the embedding

X ↪→ W/G ↪→ (xn+ j − s j = 0) j=1,...,n1 ⊂ A
n
(x1,...,xn+n1 )/G = W̄/G.
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Then, Y → X is also a weighted blow-up with respect the weight w̄ which is defined by w̄(x j) = w(x j) if
j < n, and w̄(xn+ j) = w(s j). The embedding X ↪→ W̄ is exactly what we need.

Now, let W ′ → W be the first weighted blow-up. We may assume P = CenterY F is the origin of
Ui ⊂ W ′. Let y1, ..., yn be the local coordinate system of Ui that is mentioned in Corollary 2.2. We know
that E|Ui = (yi = 0). Let f4, ..., fn be the defining equation of X ⊂ W/G. Then f ′4 , ..., f ′n define Y |Ui

where f ′i = (ϕ|−1
Ui

)∗( fi). Since Y has terminal singularities, the weighted embedding dimension of Y |Ui

near P is less than 4. For 5 ≤ j ≤ n, we may write f ′j = ξ jy j + f ′j (y1, ...y4) for some ξ j which does not
vanish on P. One can always assume that HY = (y3 = 0) and so i , 3.

Let f ′j
◦ = f ′j |yi=y3=0. Then f ′4

◦, ..., f ′n
◦ defines H ∩E near P. If f ′j

◦ is irreducible as a G′-semi-invariant
function, then we let η′j = f ′j

◦. Otherwise, let η′j be a G′-semi-invariant irreducible factor of f ′j
◦.

Lemma 3.2. Assume that Y → X can be viewed as a four-dimensional weighted blow-up. Then
η′4 = ... = η

′
n = 0 defines an irreducible component of HY ∩ E.

Proof. Since Y → X can be viewed as a four-dimensional weighted blow-up, we know that i ≤ 4 and
f ′j
◦ = y j + f ′j |y3=yi=0 for all j > 4. Hence, we have η′j = f ′j

◦. One can see that the projection

(η′4 = ... = η
′
n = 0)|HY∩E ⊂ P(a1, ..., an)→ P(a1, ..., a4) ⊃ (η′4 = 0)|HY∩E

is an isomorphism. Since η′4 is an irreducible function, it defines an irreducible curve. □

Notice that η′j is a polynomial in y1, ..., yn. There exists η j ∈ OW such that η′j = (ϕ|−1
Ui

)∗(η j). We
assume that Y → X is a weighted blow-up with the weight 1

r (a1, ..., an) and Z1 → Y is a weighted
blow-up with the weight 1

r′ (a
′
1, ..., a

′
n).

Lemma 3.3. Let Γ = (η′4 = ... = η
′
n = 0) and assume that Γ is an irreducible and reduced curve. Then

KZ1 .ΓZ1 = −
a2

3vE(η4)...vE(ηn)rn−3

ma1...an
+

a′ivF(η′4)...vF(η′n)r′n−4

a′1...a
′
n

.

Here, m is the integer in Lemma 2.1 corresponding to the weighted blow-up Y → X.

Proof. Since Γ ⊂ E and KZ1 + HZ1 is numerically trivial over X, we only need to show that

HZ1 .ΓZ1 =
a2

3vE(η4)...vE(ηn)rn−3

ma1...an
−

a′ivF(η′4)...vF(η′n)r′n−4

a′1...a
′
n

. (3.1)

We know that HZ1 .ΓZ1 = H.Γ − vF(HY)F.ΓZ1 . We need to show that the first term of (3.1) equals H.Γ and
the second term of (3.1) equals vF(HY)F.ΓZ1 .

We have an embedding Y ⊂ W ′ ⊂ PW(a1, ..., an). Let D j be the divisor on W ′ which corresponds to
η′j. Then Γ = D4. · · · .Dn.E.H is a weighted complete intersection, so ΓZ1 = D4,Z1 . · · · .Dn,Z1 .EZ1 .HZ1 . To
compute H.Γ, we view Γ as a curve inside P(a1, ..., an) which is defined by H = D4 = ... = Dn = 0. It
follows that

H.Γ =
a2

3vE(η4)...vE(ηn)rn−3

ma1...an
.

To compute F.ΓZ1 , one writes
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F.ΓZ1 = F.(ψ∗D4 − vF(η′4)F). · · · .(ψ∗Dn − vF(η′n)F).(ψ∗E − vF(E)F).(ϕ∗HY − vF(HY)F)
= (−1)n−1vF(η′4)...vF(η′n)vF(E)vF(HY)Fn.

Since Z1 → Y is a w-morphism, the integer λ in Section 2.2 is 1. Hence, we know that Fn =
(−1)n−1r′n−1

a′1...a
′
n

.

Now, vF(E) = a′i
r′ and vF(HY) = a(Y, F) = 1

r′ , so

vF(HY)F.ΓZ1 =
a′ivF(η′4)...vF(η′n)r′n−4

a′1...a
′
n

.

□

Lemma 3.4. Notation and assumption as in Lemma 3.3. Assume that:

(i) For all 4 ≤ j ≤ n, there exists an integer δ j so that xk j

δ j
appears in η j as a monomial for some

positive integer k j. Moreover, the integers δ4, ..., δn are all distinct.

(ii) If j , i, 3, δ4, ..., δn, then a3a′j ≥ a j.

Then KZ1 .ΓZ1 ≤ 0.

Proof. Fix j ≥ 4. From the construction and our assumption we know that that i, δ4, ..., δn are all
distinct. One can see that rvE(η j) = k jaδ j and r′vF(η′j) ≤ k ja′δ j

. Thus, we have a relation

rvE(η j)
aδ j

≥
r′vF(η′j)

a′δ j

.

One can always assume that if j > 4, j , i, then δ j = j. By interchanging the order of y1, ..., y4, we
may assume that δ4 = 4. Now, if i < 4, then we may assume that i = 1. If i > 4, then we may assume
that δi = 1. We can write

a2
3vE(η4)...vE(ηn)rn−3

ma1...an
=

1
mai

a3

a2

rvE(η4)
aδ4

...
rvE(ηn)

aδn

and
a′ivF(η4)...vF(η′n)r′n−4

a′1...a
′
n

=
1
r′

1
a′2

r′vF(η′4)
a′δ4

...
r′vF(η′n)

a′δn

.

Since mai = r′, a3
a2
≥ 1

a′2
and rvE(η j)

aδ j
≥

r′vF (η′j)

a′δ j
, we know that

a2
3vE(η4)...vE(ηn)rn−3

ma1...an
≥

a′ivF(η′4)...vF(η′n)r′n−4

a′1...a
′
n

,

So KZ1 .ΓZ1 ≤ 0. □
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Remark 3.5.

(1) From the construction we know that if j ≥ 5, j , i, then one can choose δ j = j.

(2) If Y → X can be viewed as a four-dimensional weighted blow-up, then condition (i) of Lemma 3.4 always
holds. Indeed, in this case one has i ≤ 4, so η′4 is a two-variable irreducible function, hence there
exists δ4 ≤ 4 such that yk4

δ4
∈ η′4 for some positive integer k4. One also has δ j = j for all j > 4. Thus,

condition (i) of Lemma 3.4 holds.

(3) If for j , i, 3, δ4, ..., δn one has that a j ≤ ai, then condition (ii) of Lemma 3.4 holds. Indeed, by
Lemma 2.1 we know that Ui � An/⟨τ, τ′⟩ where τ corresponds to the vector
v = 1

ai
(a1, ..., ai−1,−r, ai+1, an). Let v̄ be the vector corresponding to the cyclic action near P ∈ Ui.

Then v ≡ mv̄ (mod Zn) and r′ = mai. Since Z1 → Y is a w-morphism, and since HY is defined by
y3 = 0, we know that a′3 = 1 and v̄ ≡ a3

1
r′ (a

′
1, ..., a

′
n) (mod Zn). One can see that a3a′j ≡ a j (mod r′).

This implies that a3a′j ≥ a j since
a j ≤ ai ≤ mai = r′.

Lemma 3.6. Assume that KZ1 is anti-nef over X and there exists u ∈ OX such that vE(u) < a(E,X)
a(F,X) vF(u).

Then Zi d Zi+1 is a KZi-flip or flop for all 1 ≤ i ≤ k − 1 and Zk → Y1 is a terminal divisorial contraction.
In particular, if there exists j , i such that a3a′j > a j, then the conclusion of this lemma holds.

Proof. We only need to show that EZ1 is not covered by KZ1-trivial curves. Then the conclusion follows
from Lemma 3.1.

Assume that EZ1 is covered by KZ1-trivial curves. Since KZ1 is anti-nef, those KZ1-trivial curves
are contained in the boundary of the relative effective cone NE(Z1/X). Hence, k = 1 and Z1 → Y1 is
a KZ1-trivial divisorial contraction. Notice that if CY ⊂ E is a curve which does not contain P, then
KZ1 .CZ1 = KY .CY < 0, hence the curve CZ1 is not contracted by Z1 → Y1. Thus, Z1 → Y1 is a divisorial
contraction to the curve CY1 . Notice that, in this case, a(E,Y1) = 0.

By computing the discrepancy, one can see that the pull-back of FY1 on Z1 is FZ1 +
a(E,X)
a(F,X) EZ1 . It

follows that for all u ∈ OX, one has that

vE(u) ≥
a(E, X)
a(F, X)

vF(u).

Hence, if there exists u such that vE(u) < a(E,X)
a(F,X) vF(u), then EZ1 is not covered by KZ1-trivial curves, so

Zk → Y1 is a terminal divisorial contraction.
Now, by Lemma 3.7, we know that

a(E, X)
a(F, X)

=
r′a3

r + a3a′i
.

Consider u = x j. For j , i we know that vE(x j) =
a j

r and

vF(x j) = vF(y jy
a j
r

i ) =
a′j
r′
+

a ja′i
rr′
=

ra′j + a ja′i
rr′

.

The inequality vE(u) ≥ a(E,X)
a(F,X) vF(u) becomes

a j

r
≥

r′a3

r + a3a′i

ra′j + a ja′i
rr′

=
1
r

a3(ra′j + a ja′i)

r + a3a′i
,
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or, equivalently,
a j(r + a3a′i) ≥ a3(ra′j + a ja′i).

This is equivalent to
a j ≥ a3a′j.

Hence, the condition a3a′j > a j implies that vE(u) < a(E,X)
a(F,X) vF(u). □

Lemma 3.7. One has that

a(E, X) =
a3

r
, a(F, X) =

r + a3a′i
rr′

.

Proof. Since a(E, X,H) = 0, we know that a(E, X) = vE(H) = a3
r . Then

a(F, X) =
1
r′
+

a3

r
a′i
r′
=

r + a3a′i
rr′

.

□

Remark 3.8. Note that the assumption in Lemma 3.4 depends only on the first weighted blow-up
Y → X. In other words, we can check whether the assumption holds or not by simply considering the
embedding which defines the weighted blow-up Y → X instead of considering the (possibly) larger
embedding which defines both Y → X and Z1 → Y . Likewise, to apply Lemma 3.6, we can simply look
at the embedding that defines Y → X, if condition a3a′j > a j already holds under this embedding.

Notation 3.9.

(1) We say that the condition (Ξ) holds if conditions (i) and (ii) in Lemma 3.4 hold for all possible
choices of Γ. We say that the condition (Ξ′) holds if conditions (2) and (3) in Remark 3.5 hold for
all possible choices of Γ. As explained in Remark 3.5, we know that the condition (Ξ′) implies the
condition (Ξ).

(2) We say that the condition (Ξ−) (resp. (Ξ′−)) holds if the condition (Ξ) (reps. (Ξ′)) holds and the
inequality in Lemma 3.4 is strict for all possible choices of Γ. Using the notation in Lemma 3.4, it is
equivalent to say that either there exists j , i, 3, δ4, ..., δn such that a3a′j > a j, or there exists j ≥ 4
such that

rvE(η j)
aδ j

>
r′vF(η′j)

a′δ j

.

(3) We say that the condition (Θu) holds for some function u if vE(u) < a(E,X)
a(F,X) vF(u). We say that the

condition (Θ j) holds for some index j if a3a′j > a j. In either case, Lemma 3.6 can be applied.

Notation 3.10. We say that a divisorial contraction Y → X is linked to another divisorial contraction
Y1 → X if the diagram

Z1
//

��

... // Zk

��
Y

  

Y1

~~
X
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exists, where Z1 → Y is a strict w-morphism over a non-Gorenstein point, Zk → Y1 is a divisorial
contraction, and Zi d Zi+1 is a flip or a flop for all 1 ≤ i ≤ k − 1. We use the notation Y ⇒

X
Y1 if Y → X

is linked to Y1 → X.
Furthermore, if all Zi d Zi+1 are all flips, or k = 1, then we say that Y is negatively linked to Y1, and

use the notation Y
−

⇒
X

Y1.

Remark 3.11. At this point, it is not clear why Z1 → Y should be a divisorial contraction to a
non-Gorenstein point. In fact, from the classification of divisorial contractions between terminal
threefolds (cf. Tables in Section 4), one can see that if there are two different divisorial contractions
Y → X and Y1 → X, then Y or Y1 always contain a non-Gorenstein point. It is natural to construct the
diagram starting with the most singular point, which is always a non-Gorenstein point.

Remark 3.12.

(1) If (Ξ) or (Ξ′) holds and (Θu) or (Θ j) holds for some function u or index j, then by Lemmas 3.4 and 3.6
one has that Y ⇒

X
Y1.

(2) Assume that (Ξ−) or (Ξ′−) holds and (Θu) or (Θ j) holds for some function u or index j. Then one has

that Y
−

⇒
X

Y1.

Lemma 3.13. Assume that

X � (x1(x1 + p(x2, ..., x4)) + g(x2, ..., x4) = 0) ⊂ A4/G,

such that

(1) vE(g) = a1
r + vE(p) = 2a1

r − 1.

(2) i = 1, a2 + a4 = a1 and a3 = 1.

Then Y
−

⇒
X

Y1.

Proof. We know that a1 > a j for j = 2, ..., 4, so (Ξ′) holds. Consider the embedding

X � (x1x5 + g(x2, ..., x4) = x5 − x1 − p(x2, ..., x4) = 0) ⊂ A5
(x1,...,x5)/G.

Then Y → X can be viewed as a weighted blow-up with the weight 1
r (a1, ..., a5) with respect to this

embedding, where a5 = rvE(p). The origin of U1 is a cyclic quotient point of type 1
a1

(−r, a2, ..., a5). The
only w-morphism is the weighted blow-up that corresponds to the weight w(y2, ...y4) = 1

a1
(a2, ..., a4).

One can see that a′5 = rvE(g) > rvE(p) = a5, hence (Θ5) holds. Moreover, one can see that η′5 =
y5 − p(y2, 0, y4), so r′vF(η′5) = rvE(η5) = rvE(p(x2, 0, x4)), hence

rvE(η5)
a5

>
r′vF(η′5)

a′5
.

Thus, Y
−

⇒
X

Y1. □
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Lemma 3.14. Assume that Y → X and Y1 → X are two divisorial contractions such that Y ⇒
X

Y1. Let E
and F be the exceptional divisors of Y → X and Y1 → X, respectively. Assume that there exists u ∈ OX

such that vF(u) = 1
r and vF(u′) > 0 where r is the Cartier index of CenterXE and u′ is the strict transform

of u on Y . Then a(F, X) < a(E, X) if a(E, X) > 1.

Proof. Notice that we have
vF(u) = vF(ũ) + vE(u)vF(E).

Since vE(u) ≥ 1
r and vF(ũ) > 0, we know that vF(E) < 1. Thus

a(F, X) =
1
r′
+ a(E, X)vF(E) ≤

1
r′
+ a(E, X)

r′ − 1
r′
= a(E, X) +

1 − a(E, X)
r′

where r′ is the Cartier index of CenterY F. Hence, a(F, X) < a(E, X) if a(E, X) > 1. □

4. Constructing links

The aim of this section is to prove the following proposition:

Proposition 4.1. Let X be a terminal threefold and Y → X, Y ′ → X be two different divisorial
contractions to points over X. Then there exists Y1, ..., Yk, Y ′1, ..., Y ′k′ such that

Y = Y1 ⇒
X

Y2 ⇒
X
...⇒

X
Yk = Y ′k′ ⇐X

...⇐
X

Y ′1 = Y ′.

Proof. We need a case-by-case discussion according to the type of the singularity on X. Please see
Propositions 4.2, 4.3, 4.5–4.10 and 4.15–4.18. □

We keep the notation in Section 3.

4.1. Divisorial contractions to cA/r points

In this subsection, we assume that X has cA/r singularities. Divisorial contractions over X are listed
in Table 2.

Table 2. Divisorial contractions to cA/r points.

No. defining equations
(r; ai)
weight

type
a(X, E)

condition

A1 xy + zrk + g≥ka(z, u)
(r; β,−β, 1, r)

1
r (b, c, a, r)

cA/r
a/r

b ≡ aβ (mod r),b + c = rka

A2 x2 − y2 + z3+xu2 + g≥6(x, y, z, u)
(1;−)

(4, 3, 2, 1)
cA2

3
xz < g(x, y, z, u)

Proposition 4.2.

(1) If Y → X is of type A1 with a > 1, then Y
−

⇒
X

Y1 for some Y1 → X which is of type A1 with the
discrepancy less than a.
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(2) If Y → X is of type A1 with a = 1 and b > r, then Y ⇒
X

Y1 where Y1 is an A1 type weighted blow-up

with the weight 1
r (b − r, c + r, 1, r). One also has Y1 ⇒

X
Y if we begin with Y1 → X and interchange

the role of x and y. Moreover, Y ̸
−

⇒
X

Y1 if and only if η4 = y.

(3) If Y → X is of type A2, then Y
−

⇒
X

Y1 where Y1 → X is a divisorial contraction of type A1.

Proof. Assume first that Y → X is of type A1. We are going to prove (1) and (2). If both b and c are
less than r, then a = k = 1. In this case, there is exactly one divisorial contraction of type A1, so there is
nothing to prove. Thus, we may assume that one of b or c, say b > r.

The origin of the chart Ux ⊂ Y is a cyclic quotient point. On this chart, one can choose
(y1, ..., y4) = (x, u, z, y) with i = 1 and δ4 = 4. One can see that (Ξ′) holds. Now the two action in
Lemma 2.1 is given by

τ =
1
b

(−r, c, a, r), τ′ =
1
b

(β,
−β(b + c)

r
,

b − aβ
r

, b − β).

Since Ux is terminal, there exists a vector τ′′ = 1
b (b − δ, ϵ, 1, δ) such that τ ≡ aτ′′ (mod Z4) and

τ′ ≡ λ′τ′′ (mod Z4) for some integer λ′. There is exactly one w-morphism over the origin of Ux which
extracts the exceptional divisor F so that vF corresponds to the vector τ′′. One can also see that

ϵ

b
= vF(y) = vF(g′) ≥

rk
b

where g′ is the strict transform of g on Ux, since if zrpuq ∈ g′, then ap + q ≥ ak and

vF(zrpuq) =
1
b

(rp + δq) =
1

ab
(rap + δaq) ≥

rka
ab
=

rk
b

for δa ≥ r because δa ≡ r(mod b) and b > r. Thus,

a4 = c < rka ≤ aϵ = a3a′4,

hence (Θ4) holds, and there exists Y1 → X such that Y ⇒
X

Y1.
We need to check whether (Ξ′−) holds or not. We have that f ′4

◦ = η′4 = y4 + g′◦. One always has that

r′vF(η′4)
a′4

=
b ϵ

b

ϵ
= 1.

Now, g′◦ = 0 if and only if
rvE(η4)

a4
=

r c
r

c
= 1,

and δa = r if and only if
a3a′2 = aδ = r = a2.

Thus, (Ξ′−) holds if and only if g′◦ , 0 or a do not divide r.
One can compute the discrepancy of Y1 → X using Lemma 3.7. We know that a′i = b− δ and a3 = a, so

a(F, X) =
r + a3a′i

rr′
=

r − δa + ba
rb

≤
a
r
= a(E, X).
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If a = 1, then r = δ, so a(F, X) = a(E, X) = 1
r . One can verify that Y1 → X is the weighted blow-up

with the weight 1
r (b − r, c + r, 1, r). In this case, Y

−

⇒
X

Y1 if and only if g′◦ , 0. Hence, Y ̸
−

⇒
X

Y1 if and
only if η4 = y. This proves (2).

Now assume that a > 1. We already know that δa ≥ r. If δa > r, then a(F, X) < a(E, X) and Y
−

⇒
X

Y1,
so (1) holds. Hence, one only needs to show that δa , r. If δa = r, then

b = aβ + λ′r = a(β + λ′δ)

where λ′ = b−aβ
r . One can see that b − β = (a − 1)β + λ′aδ. On the other hand, since τ′ ≡ λ′τ′′ (mod Zn),

we know that b − β ≡ λ′δ (mod b). Hence, b divides

b − β − λ′δ = (a − 1)(β + λ′δ).

This is impossible since (a − 1)(β + λ′δ) is a positive integer and is less than b.
Finally, assume that Y → X of type A2. In this case, one needs to look at the chart Ux ⊂ Y , and we

choose (y1, ..., y4) = (x, z, y, u) with i = 1 and δ4 = 4. One can see that (Ξ′) holds. The origin of the chart
Ux is a cAx/4 point of the form

(x2 − y2 + z3 + u2 + g′(x, y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
4

(1, 1, 2, 3).

From [9, Theorem 7.9], we know that there are exactly two w-morphisms over this point which are
weighted blow-ups with the weights w±(x±y, x∓y, z, u) = 1

4 (5, 1, 2, 3). For both these two w-morphisms,
one has that a2 = 2, a3 = 3 and a′2 = 2, so (Θ2) holds and (Ξ−) holds since a3a′2 > a2. Thus, there exists

Y1 → X so that Y
−

⇒
X

Y1. One can compute that the discrepancy of Y1 → X is one, so Y1 → X is of type
A1. This proves (3). □

4.2. Divisorial contractions to cAx/r points

In this subsection, we assume that X has cAx/r singularities with r = 2 or 4. Divisorial contractions
over X are listed in Table 3.

Proposition 4.3. (1) Assume that Y → X is of type Ax1 or Ax3. Then Y → X is the only divisorial
contraction over X.

(2) Assume that Y → X is of type Ax2 or Ax4. Then there are exactly two divisorial contractions over
X. Let Y1 → X be another divisorial contraction. Then Y1 → X has the same type of Y → X, and
one has that Y

−

⇒
X

Y1
−

⇒
X

Y .

Proof. The number of divisorial contractions follows from [9, Section 7,8]. So we can assume that
Y → X is of type Ax2 or Ax4, and Lemma 3.13 implies that Y

−

⇒
X

Y1. □
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Table 3. Divisorial contractions to cAx/r points

No. defining equations
(r; ai)
weight

type
a(X, E)

condition

Ax1 x2 + y2 + g≥ 2k+1
2

(z, u)
(4; 1, 3, 1, 2)

1
4 (b, c, 1, 2)

cAx/4
1/4

(b, c) = (2k + 1, 2k + 3)
or (2k + 3, 2k + 1)

Ax2
x2 + y2 + (λx + µy)p 2k+1

4
(z, u)

+g≥ 2k+3
2

(z, u)
(4; 1, 3, 1, 2)

1
4 (b, c, 1, 2)

cAx/4
1/4

(b, c, λ, µ) =
(2k + 5, 2k + 3, 1, 0)
or (2k + 3, 2k + 5, 0, 1)

Ax3 x2 + y2 + g≥k(z, u)
(2; 0, 1, 1, 1)

1
2 (b, c, 1, 1)

cAx/2
1/2

(b, c) = (k, k + 1)
or (k + 1, k)

Ax4
x2 + y2 + (λx + µy)p k

2
(z, u)

+g≥k+1(z, u)
(2; 0, 1, 1, 1)

1
2 (b, c, 1, 1)

cAx/2
1/2

(b, c, λ, µ) =
(k + 2, k + 1, 1, 0)
or (k + 1, k + 2, 0, 1)

4.3. Divisorial contractions to cD points

In this subsection, we assume that X has cD singularities. At first, we consider w-morphisms over X,
which are listed in Table 4. Notice that for types D1, D2 or D5 in Table 4 there is at most one divisorial
contraction over X which is of the given type. This is because the equations of type D1, D2 and D5
come from the normal form of cD-type singularities, which are unique, and the blowing-up weights are
determined by the defining equations.

Lemma 4.4. Assume that there exists two different divisorial contractions with discrepancy one over X.
Then, one of the following holds:

(1) One of the divisorial contractions is of type D1.

(2) The two morphisms are of type D2 and D5, respectively.

(3) Both of the divisorial contractions are of type D3.

(4) Both of the divisorial contractions are of type D4.

Proof. Assume that Y → X and Y1 → X are the two given divisorial contractions. It is enough to prove
the following statements:

(i) If Y → X is of type D4, then Y1 → X is of type D1 or D4.

(ii) If Y → X is of type D2, then Y1 → X is of type D1 or D5.

(iii) If Y → X is of type D5, then Y1 → X is not of type D3.

Let E and F be the exceptional divisors of Y → X and Y1 → X, respectively. Then a(F,Y) < 1, since
otherwise a(F, X) > 1. Thus, P = CenterFY is a non-Gorenstein point.

First, assume that Y → X is of type D4. In this case, P may be the origin of Ux or the origin of
Uy, and they are both cyclic quotient points. Exceptional divisors over P with discrepancy less than
one are described in [4, Proposition 3.1]. The origin of Ux is a 1

b+1(b, 1, 1) point. If P is this point,
then, since z = 0 defines a Du Val section, we have that vF(z) = a(F, X) = 1. One can verify that
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vF(u) = vF(z) = 1 and vF(x) = vF(y) = b. Now, vF(x) = b only when xpb(z, u) ∈ g(x, z, u) for some
homogeneous polynomial p(z, u) of degree b. One can check that vF(x + p(z, u)) = b + 1. In this case,
Y1 → X is also of type D4 after a change of coordinates x 7→ x − p(z, u). If P is the origin of Uy, then it
is a 1

b (1,−1, 1) point. One can verify that vF(u) > 1. This implies that Y1 → X is of type D1.
Now, assume Y → X is of type D2. Then P is the origin of Uy ⊂ Y , which is a cA/b point.

Exceptional divisors of discrepancy less than one over P are described in [4, Proposition 3.4]. One can
verify that if λ , 0 and k = b, then vF(u) = 1. In this case, Y1 → X is of type D5. Otherwise, vF(u) = 2,
and so Y1 → X is of type D1.

Finally, assume that Y → X is of type D5. One can see that Y1 → X cannot have type D3 since
zb ∈ p(z, u). This finishes the proof. □

Table 4. Divisorial contractions to cD points with discrepancy one.

No. defining equations weight
type
a(X, E)

condition

D1 x2 + y2u + λyzk + g≥l(z, u) (b, b − 1, 1, 2)
cD
1

b = min{k − 1, ⌊ l
2⌋}

D2 x2 + y2u + λyzk + g≥2l(z, u) (b, b, 1, 1)
cD
1

b = min{k, l}

D3
{

x2 + ut + λyzk + g≥2b+2(z, u)
y2 + p2b(x, z, u) + t

(b + 1, b, 1, 1, 2b + 1)
cD
1

k ≥ b + 2

D4 x2 + y2u + yh≥k(z, u)+g≥2b+1(x, z, u) (b + 1, b, 1, 1)
cD
1

k ≥ b + 1

D5
{

x2 + yt + g≥2b(z, u)
yu + pb(z, u) + t

(b, b − 1, 1, 1, b + 1)
cD
1

zb ∈ p(z, u)

Proposition 4.5. Assume that there exist two different divisorial contractions with discrepancy one over
X, say Y → X and Y1 → X.

(1) If Y → X and Y1 → X are both of type D4, then Y
−

⇒
X

Y1
−

⇒
X

Y .

(2) If Y → X is of type D3 and Y1 → X is of type D1, then Y
−

⇒
X

Y1. If Y1 → X is of type D3, then there

exists another divisorial contraction Y2 → X which is of type D1 so that Y
−

⇒
X

Y2
−

⇐
X

Y1.

(3) If Y → X is of type D2 and Y1 → X is of type D5, then Y
−

⇒
X

Y1.

(4) If Y → X is of type D1 and Y1 → X is not of type D3, then Y
−

⇒
X

Y1.

Proof. Assume first that Y → X and Y1 → X are both of type D4. Notice that, in this case, xpb(z, u) ∈
g(x, z, u). Thus, Y

−

⇒
X

Y1 by Lemma 3.13.
Now assume that Y → X is of type D3. Consider the chart Ut ⊂ Y which is defined by

Electronic Research Archive Volume 32, Issue 5, 3635–3699.



3657

(x2 + u + λyzktb+k−2b−2 + g′(z, u, t) = y2 − p(x, z, u) + t = 0) ⊂

A5
(x,y,z,u,t)/

1
2b + 1

(b + 1, b, 1, 1,−1).

Notice that, using the notation in Section 3, we know that

f ′4
◦
= η′4 = x2 + u + g′(0, u, 0), f ′5

◦
= y2 + p(x, 0, u).

η′5 can be y ± µub if p(x, 0, u) = −µ2u2b for some µ ∈ C, and otherwise η′5 = f ′5
◦. One can see that

η′4 = η
′
5 = 0 defines an irreducible and reduced curve. There is only one w-morphism over the origin

of Ut which is defined by weighted blowing up the weight w(x, y, z, u, t) = 1
2b+1(b + 1, b, 1, 2b + 2, 2b).

Now, in this case we choose (y1, ..., y5) = (x, y, z, u, t) with i = 5, δ4 = 4, δ5 = 2. One can see that (Ξ)
holds and (Θ4) holds. Also, one has that rvE(η4)

a4
= 2b + 2 while r′vF (η′4)

a′4
= 1. Thus, (Ξ−) holds and so there

exists Y2 → X such that Y
−

⇒
X

Y2. One can compute that Y2 → X is of type D1. If Y1 → X is of type D1,
then Y2 = Y1 since there is at most one divisorial contraction with type D1. This proves statement (2).

Now assume that Y → X is of type D2 and Y1 → X is of type D5. In this case, we consider the
embedding corresponding to Y1 → X. Under this embedding, Y → X is given by the weighted blow-up
with the weight (b, b, 1, 1, b) and the chart Uy ⊂ Y is given by

Uy = (x2 − t + g′(y, z, u) = yu + zb + t = 0) ⊂ A5
(x,y,z,u,t)/

1
b

(0,−1, 1, 1, 0).

We take (y1, ..., y5) = (y, u, z, x, t) with δ4 = 4 and δ5 = 5. Then (Ξ) holds. The origin of Uy is a cA/b point
and the weight w(y1, ..., y5) = 1

b(b − 1, 1, 1, b, 2b) defines a w-morphism over Uy. One can see that (Θ5)

holds. Moreover, since a′5 = 2b > b = a5, we know that (Ξ−) holds. Thus, Y
−

⇒
X

Y1.
Finally, assume that Y → X is of type D1 and Y1 → X is not of type D3. Let b and b1 be the integers in

Table 4 corresponding to Y → X and Y1 → X, respectively. First, we claim that b ≤ b1. Indeed, if Y1 → X
is of type D5, then zb1 ∈ h(z, u), which implies that b1 ≥ b + 1. If Y1 → X is of type D2 or D4, then the
inequality b ≤ b1 follows from Corollary 2.17. Now, the origin of the chart Uu ⊂ Y is defined by

(x2 + y2 + λyzkuk−b−1 + g′(z, u) = 0) ⊂ A4
(x,y,z,u)/

1
2

(b, b − 1, 1, 1),

which is a cAx/2 point. We can take (y1, ..., y4) = (u, y, z, x) with i = 1 and δ4 = 4. w-morphisms
over this point are fully described in [9, Section 8]. Since b ≤ b1, we know that 2k − b − 1 > b and
the multiplicity of g′(z, u) is greater than or equal to 2b. Hence, if F is the exceptional divisor of a
w-morphism over Y , then

vF(y) ≥ b > b − 1 = vE(y).

Thus, (Ξ−) and (Θ2) holds and one has Y
−

⇒
X

Y1. □

Now we study divisorial contractions of discrepancy greater than one. All such divisorial contractions
are listed in Table 5.
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Table 5. Divisorial contractions to cD points with discrepancies greater than one.

No. defining equations weight
type
a(X, E)

condition

D6 x2 + y2u + zk + g≥2b+1(x, y, z, u) (b + 1, b, a, 1)
cD
a

ak = 2b + 1

D7
{

x2 + yt + g≥2b+2(y, z, u)
yu + zk + pb+1(z, u) + t

(b + 1, b, a, 1, b + 2)
cD
a

ak = b + 1

D8
{

x2 + ut + λz
b+1

4 + g≥b+1(y, z, u)
y2 + µz

b−1
4 + pb−1(x, z, u) + t

( b+1
2 ,

b−1
2 , 4, 1, b)

cD
4

b+1
4 ∈ N, λ = 1,
µ = 0, or b−1

4 ∈ N,
µ = 1, λ = 0.

D9
{

x2 + ut + z
b+1

2 + g≥b+1(y, z, u)
y2 + pb−1(x, z, u) + t

( b+1
2 ,

b−1
2 , 2, 1, b)

cD
2

D10 x2 + y2u + zb + g≥2b(y, z, u) (b, b, 2, 1)
cD
2

D11 x2 + y2u + yp3(z, u)+u3 + g≥6(z, u) (3, 3, 1, 2)
cD4

2
z3 ∈ p(z, u)

D12 x2 + y2u + z3+yu2 + g≥6(y, z, u) (3, 4, 2, 1)
cD4

3

Proposition 4.6. Assume that Y → X is a divisorial contraction with discrepancy a > 1. Then there
exists a divisorial contraction Y1 → X such that Y ⇒

X
Y1, and a(F, X) < a where F = exc(Y1 → X).

Proof. First, notice that (Θu) holds in cases D6–D10 or D12, and (Θz) holds in case D11. This is because
vE(u) or vE(z) = 1 in those cases and a(E,X)

a(F,X) = a > 1.
Now we list all cases in Table 5, write down the chart on Y we are looking at, and write down the

variables y1, ..., yn. One can easily see that (Ξ) holds in all cases.

(1) Assume that Y → X is of type D6. Consider the chart Ux ⊂ Y and take (y1, ..., y4) = (x, y, z, u) with
δ4 = 4.

(2) Assume that Y → X is of type D7. Consider the chart Ut ⊂ Y and take (y1, ..., y5) = (y, u, z, x, t),
δ4 = 4 and δ5 = 1 or 2.

(3) Assume that Y → X is of type D8 or D9. We consider the chart Ut ⊂ Y and take (y1, ..., y5) =
(x, y, z, u, t) with δ4 = 4 and δ5 = 2.

(4) Assume that Y → X is of type D10. We consider the chart Uy ⊂ Y and take (y1, ..., y4) = (y, u, z, x)
with δ4 = 4.

(5) Assume that Y → X is of type D11. We consider the chart Uy ⊂ Y and (y1, ..., y4) = (y, z, u + λy, x)
for some λ ∈ C with δ4 = 4.

(6) Assume that Y → X is of type D12. We consider the chart Uy ⊂ Y and (y1, ..., y4) = (y, z, x + λy, u)
for some λ ∈ C with δ4 = 4.

Now we know that there exists Y1 → X so that Y ⇒
X

Y1. Then Y1 → X is of one of types in Table 4
or Table 5. One can see that vF(z) = 1 if Y1 → X is of types D1–D5, D7–D9 or D11 and vF(u) = 1 if
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Y1 → X is of type D6, D10 or D12. Since CenterY F is the origin of the chart Ux, Uy or Ut, one can
apply Lemma 3.14 to say that a(F, X) < a. This finishes the proof. □

4.4. Divisorial contractions to cD/r points with r > 1

In this subsection, we assume that X has cD/r singularities with r = 2 or 3. We first study w-
morphisms over X.

Table 6. Divisorial contractions to cD/r points with discrepancy one.

No. defining equations
(r; ai)
weight

type
a(X, E)

condition

D13 x2 + y3 + g≥k(y, z, u)
(3; 0, 2, 1, 1)
1
3 (3, 2, 4, 1)

cD/3
1/3

k = 2 and zu2 or z3 ∈ g, or
k = 3 and z2u ∈ g

D14 x2 + y3 + z3 + g≥4(y, z, u)
(3; 0, 2, 1, 1)
1
3 (6, 5, 4, 1)

cD/3
1/3

D15 x2 + yzu + g≥2(y, z, u)
(2; 1, 1, 1, 0)
1
2 (3, 1, 1, 2)

cD/2
1/2

D16 x2 + yzu + g≥3(y, z, u)
(2; 1, 1, 1, 0)
1
2 (3, b, c, d)

cD/2
1/2

(b, c, d) =
(3, 1, 2)
(1, 1, 4)

D17
{

x2 + yt + g≥3(z, u)
zu + y3 + t

(2; 1, 1, 1, 0, 1)
1
2 (3, 1, 1, 2, 5)

cD/2
1/2

D18 x2 + y2u + λyzk + g≥l(z, u)
(2; 1, 1, 1, 0)

1
2 (b, b − 2, 1, 4)

cD/2
1/2

b = min{k − 2, ⌈ l
2 ⌉ − 1}

D19 x2 + y2u + λyzk + g≥l(z, u)
(2; 1, 1, 1, 0)
1
2 (b, b, 1, 2)

cD/2
1/2

b = min{k, l}

D20
{

x2 + ut + λyzk + g≥b+2(z, u)
y2 + pb(x, z, u) + t

(2; 1, 1, 1, 0, 0)
1
2 (b + 2, b, 1, 2, 2b + 2)

cD/2
1/2

k ≥ b + 4

D21 x2 + y2u + yh≥k(z, u)+g≥b+1(x, z, u)
(2; 1, 1, 1, 0)

1
2 (b + 2, b, 1, 2)

cD/2
1/2

k ≥ b + 2

D22
{

x2 + yt + g≥2b(z, u)
yu + zb + t

(2; 1, 1, 1, 0, 1)
1
2 (b, b − 2, 1, 2, b + 2)

cD/2
1/2

Proposition 4.7. Assume that X has cD/3 singularities.

(1) If Y → X is of type D14 or if Y → X is of type D13 and both zu2 and z2u < g(y, z, u), then there is
only one w-morphism over X.

(2) If Y → X is of type D13 and zu2 or z2u ∈ g(y, z, u), then there are two or three w-morphisms over
X. Say Y1 → X, ..., Yk → X are other w-morphisms with k = 1 or 2. Then Y

−

⇒
X

Yi
−

⇒
X

Y for all
1 ≤ i ≤ k.

Proof. The statement about the number of w-morphisms follows from [9, Section 9]. Now we may
assume that Y → X is of type D13 and zu2 or z2u ∈ g(y, z, u). The chart Uz ⊂ Y is defined by

(x2 + y3 + g′(y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
4

(3, 2, 1, 1)

Electronic Research Archive Volume 32, Issue 5, 3635–3699.



3660

with u2 or zu ∈ g′(y, z, u). We can take (y1, ..., y4) = (z, x, u + λz, y) for some λ ∈ C with δ4 = 4. Now
the w-morphism over Uz is a weighted blow-up with the weight w(y1, ...y4) = 1

4 (3, 5, 1, 2). One can see

that (Θ2) and (Ξ′−) hold. Hence, we can get a divisorial contraction Y1 → X such that Y
−

⇒
X

Y1. One can
compute that Y1 → X is also a w-morphism.

If there are three w-morphisms over X, then the defining equation of X is of the form x2 + y3 + zu(z+ u)
as in [9, Section 9.A], so g′(y, z, u) = u(z+ u). One can make a change of coordinates u 7→ u− z and again
consider the weighted blow-up with the same weight 1

4(3, 2, 1, 5). In this way, we can get a divisorial

contraction Y2 → X which is different to Y1, and we also have that Y
−

⇒
X

Y2. This finishes the proof. □

Proposition 4.8. Assume that X has cD/2 singularities and Y → X is of type D15, D16 or D17.

(1) If Y → X is of type D15, then there is only one w-morphism over X.

(2) If Y → X is of type D17, then there exists exactly two w-morphisms over X. The other one, Y1 → X,
is of type D16, and one has that Y ⇒

X
Y1.

(3) If Y → X is of type D16 and there are no w-morphisms over X with type D17, then there are exactly
three w-morphisms over X. They are all of type D16 and are negatively linked to each other.

Proof. The statement about the number of w-morphisms follows from [10, Section 4]. Assume that
Y → X is of type D17. Consider the chart Ut ⊂ Y with (y1, ..., y5) = (y, u, y + z, x, t) with δ4 = 4 and
δ5 = 1. One can see that (Ξ) holds. Now the origin of Ut is a cyclic quotient point. Let F be the
exceptional divisor of the w-morphism over Ut. Then one has that vF(y1, ...y5) = 1

5 (6, 2, 1, 3, 3). One can
see that (Θ1) holds.

Assume that Y → X is of type D16 and there are no w-morphisms of type D17 over X. By [10,
Section 4], we know that neither y4 nor z4 ∈ g(y, z, u). Assume first that (b, c, d) = (1, 1, 4). Consider
the chart Uu ⊂ Y which has a cAx/4 singular point at the origin. We choose (y1, ..., y4) = (y, u, y + z, x)
with δ4 = 4. One can see that (Ξ′) holds. Let w be the weight on Uu so that w(y1, ..., y4) = 1

4(5, 2, 1, 3).
Then the weighted blow-up with weight w gives a w-morphism. It follows that (Θ1) holds and also
(Ξ′−) holds since a′1 = 5 > 3 = a1. Hence, there exists a w-morphism Y1 → X so that Y

−

⇒
X

Y1. If we

interchange the roles of y and z, we can get another w-morphism Y2 → X with Y
−

⇒
X

Y2.
Now assume that (b, c, d) = (3, 1, 2). Consider the chart Uy ⊂ Y which is defined by

(x2 + zu + g′(y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
3

(0, 1, 1, 2).

Taking (y1, ..., y4) = (y, u, y + z, x), then (Ξ′) holds. Let w be the weight w(y1, ..., y4) = 1
3(1, 5, 1, 3). Then

the weighted blow-up with the weight w gives a w-morphism over Uy and (Θ2) and (Ξ′−) holds. If we
take w to be another weight w(x, y, z, u) = 1

3(3, 1, 4, 2), then we get another w-morphism over Uy and (Θz)
holds. Thus, we can get two different w-morphisms over X and Y is negatively linked to both of them. □

Proposition 4.9. Assume that X has cD/2 singularities, Y → X is of type D18–D22, and assume that
there are two w-morphisms Y → X and Y1 → X.

(1) Assume that Y → X is of type D18 and Y1 → X is not of type D20. Then Y
−

⇒
X

Y1.
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(2) Assume that both Y → X and Y1 → X are not of type D18. Then, one of the following holds:

(2–1) Y → X is of type D19 and Y1 → X is of type D22. One has that Y
−

⇒
X

Y1.

(2–2) Both Y → X and Y1 → X are of type D21 and Y
−

⇒
X

Y1
−

⇒
X

Y .

(2–3) Both Y → X and Y1 → X are of type D20 and there exists another w-morphism Y2 → X
which is of type D18 so that Y

−

⇒
X

Y2
−

⇐
X

Y1.

Proof. The computation is similar to the proof of Proposition 4.5 after replacing the types D1–D5 by
D18–D22, so we will omit the proof. Notice that an analog result of Lemma 4.4 can be proved by a
similar computation, or can be directly followed by [10, Section 5]. □

Now we consider non-w-morphisms over X. Notice that there is no divisorial contraction with
discrepancy greater than 1

3 over cD/3 points. Divisorial contractions of discrepancy greater than 1
2 over

cD/2 points are listed in Table 7.

Table 7. Divisorial contractions to cD/r points with large disprepancies.

No. defining equations
(r; ai)
weight

type
a(X, E)

condition

D23
x2 + y2u + zm+

g≥b+1(x, y, z, u)
(2; 1, 1, 1, 0)

1
2 (b + 2, b, a, 2)

cD/2
a/2

ma = 2b + 2,
a and b are odd

D24
{

x2 + yt + g≥b+2(z, u)
yu + zm + p b

2+1(z, u) + t
(2; 1, 1, 1, 0, 1)

1
2 (b + 2, b, a, 2, b + 4)

cD/2
a/2

ma = b + 2
a ≡ b(mod 2)

D25 x2 + y2u + z4b+g≥4b(y, z, u)
(2; 1, 1, 1, 0)
(2b, 2b, 1, 1)

cD/2
1

D26 x2 + yzu + y4 + zb + uc (2; 1, 1, 1, 0)
(2, 1, 2, 1)

cD/2
1

b, c ≥ 4
b is even

D27
{

x2 + ut + y4 + z4

yz + u2 + t
(2; 1, 1, 1, 0, 0)
(2, 1, 1, 1, 3)

cD/2
1

D28
{

x2 + ut + g≥2b+2(y, z, u)
y2 + p2b(x, z, u) + t

(2; 1, 1, 1, 0, 0)
(b + 1, b, 1, 1, 2b + 1)

cD/2
1

Either b is odd, or
b is even and
xzb−1 or z2b ∈ p

D29
{

x2 + ut + g≥2b+2(y, z, u)
y2 + p2b(x, z, u) + t

(2; 1, 1, 1, 0, 0)
(b + 1, b, 2, 1, 2b + 1)

cD/2
2

xz
b−1

2 or zb ∈ p

Proposition 4.10. Assume that r = 2 and Y → X is a divisorial contraction with the discrepancy
a
2 > 1. Then there exists a divisorial contraction Y1 → X such that Y ⇒

X
Y1, and a(F, X) < a

2 where
F = exc(Y1 → X).

Proof. First, assume that Y → X is of type D23. Consider the chart Ux ⊂ Y which is defined by

(x + y2u + zm + g′(x, y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
b + 2

(−2, b, a, 2).
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We take (y1, ..., y4) = (x, y, z, u) with δ4 = 2 or 4. One can see that (Ξ′) holds. Since a4 = 2 and a ≥ 3,
we know that (Θ4) holds. Thus, there exists Y1 → X such that Y ⇒

X
Y1. The origin of Ux is a cyclic

quotient point. Let F be the exceptional divisor of the w-morphism over this point. Then vF(x) ≤ m
b+2 . It

follows that
a(F, X) =

1
b + 2

+
a
2

vF(x) ≤
2 + ma
2b + 4

= 1 <
a
2
.

Assume that Y → X is of type D24. Consider the chart Ut ⊂ Y which is defined by

(x2 + y + g′(z, u, t) = yu + zm + p(z, u) + t = 0) ⊂ A4
(x,y,z,u,t)/

1
b + 4

(c1, ..., c5)

where (c1, ..., c5) = (b + 2, b, a, 2,−2) if a, b are odd, and (c1, ..., c5) = (b + 3, b + 2, a
2 , 1,−1) if a,

b are even. We take (y1, ..., y5) = (y, u, z, x, t) with δ4 = 4 and δ5 = 1 or 2. Then (Ξ) holds. Now
the origin of Ut is a cyclic quotient point. Let F be the exceptional divisor over this point. Then
vF(y1, ..., y5) = 1

b+4(a′1, ..., a
′
5) with a′2 + a′4 = b + 4. It follows that a(a′2 + a′4) > b + 4 = a2 + a4, hence

(Θ j) holds for j = 2 or 4. Thus, there exists Y1 → X so that Y ⇒
X

Y1. One has that

a(F, X) =
1

b + 4
+

a
2

vF(x) ≤
2 + ma
2b + 8

≤
1
2
.

Hence, Y1 → X is a w-morphism.
Assume that Y → X is of type D25. The chart Uy ⊂ Y is given by

(x2 + yu + z4b + g′(y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
4b

(0, 2b − 1, 1, 2b + 1).

We take (y1, ..., y4) = (y, u, z, x) with δ4 = 4. One can see that (Ξ′) holds. The origin of Uy is a
cA/4b point and there is only one w-morphism over this point. Let F be the exceptional divisor of the
w-morphism. Then vF(y1, ..., y4) = 1

4b(2b − 1, 2b + 1, 1, 4b). Hence, (Θ2) holds. One can also compute
that a(F, X) = 1

2 , hence there exists a w-morphism Y1 → X such that Y ⇒
X

Y1.
Assume that Y → X is of type D26. The chart Uz ⊂ Y is a cA/4 point given by

(x2 + yu + y4 + z2b−4 + uczc−4 = 0) ⊂ A4
(x,y,z,u)/

1
4

(0, 1, 1, 3).

We take (y1, ..., y4) = (y, u, y + z, x) with δ4 = 4. One can see that (Ξ′) holds. Now let w be the weight
such that w(y1, ..., y4) = 1

4(1, 3, 1, 4) if b = 4 and w(y1, ..., y4) = 1
4(1, 7, 1, 4) if b ≥ 6. Hence, (Θ2) holds,

and there exists Y1 → X such that Y ⇒
X

Y1. One can compute that a(F, X) = 1
2 .

Assume that Y → X is of type D27. Consider the chart Ut ⊂ Y which is defined by

(x2 + u + y4 + z4 = yz + u2 + t = 0) ⊂ A5
(x,y,z,u,t)/

1
6

(5, 1, 1, 4, 2).

We take (y1, ..., y5) = (u, y, y + z, x, t) with δ4 = 4 and δ5 = 1. In this case, (Ξ) holds. Now the origin
of Ut is a cyclic quotient point. Let F be the exceptional divisor over this point which corresponds to
a w-morphism. Then vF(y1, ..., y5) = 1

6(5, 1, 1, 4, 2). One can see that (Θ1) holds. Thus, there exists
Y1 → X which extracts F so that Y ⇒

X
Y1. One can compute that a(F, X) = 1

2 .
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Finally, assume that Y → X is of type D28 or D29. The chart Ut ⊂ Y is defined by

(x2 + u + g′(y, z, u, t) = y2 + p(x, z, u) + t = 0) ⊂ A4
(x,y,z,u,t)/

1
4b + 2

(1,−1, a − 2b − 1, 2,−2),

where a = 2 in case D28 and a = 4 in case D29. We take (y1, ..., y5) = (x, y, z, u, t) with δ4 = 4
and δ5 = 2. Then (Ξ) holds. The origin of Ut is a cyclic quotient point. Let F be the exceptional
divisor corresponding to the w-morphism over this point. Then vF(y1, ..., y5) = 1

4b+2(a′1, ..., a
′
5) with

a′1 + a′2 = 4b + 2, a′2(2b + 1 − a) ≡ 1 (mod 4b + 2) and a′3 = 1. From the defining equation one can see
that a′4 > 1, hence (Θ4) holds. Thus, there exists a divisorial contraction Y1 → X which extracts F so
that Y ⇒

X
Y1. We only need to show that a(F, X) < a

2 .
Assume that Y → X is of type D28. In this case, a′2 is the integer such that a′2(2b − 1) ≡ 1 (mod 4b + 2).

If b is odd, then a′2 = b since

b(2b − 1) = 2b2 − b = (4b + 2)
b − 1

2
+ 1.

One can see that a′5 ≤ 2b. If b is even, then a′2 = 3b + 1 since

(3b + 1)(2b − 1) = 6b2 − b − 1 = (4b + 2)(
3
2

b − 1) + 1.

Hence, a′1 = b+ 1. Now, since xzb−1 or z2b ∈ p(x, z, u), we also have that a′5 ≤ 2b. In either case we have

a(F, X) =
1

4b + 2
+

a′5
4b + 2

≤
2b + 1
4b + 2

=
1
2
< 1 =

a
2
.

Finally, assume that Y → X is of type D29. We want to show that a′5 < 4b + 2. Then

a(F, X) =
1

4b + 2
+ 2

a′5
4b + 2

≤
1

4b + 2
+

8b + 2
4b + 2

< 2 =
a
2

and we can finish the proof. If zb ∈ p(x, z, u), then a′5 ≤ b. If a′2 < 2b + 1, then a′5 ≤ 4b. Assume that
zb < p(x, z, u) and a′2 ≥ 2b + 1. Then a′1 ≤ 2b + 1 and xz

b−1
2 ∈ p(x, z, u). Hence,

a′5 ≤ 2b + 1 +
b − 1

2
< 4b + 2.

□
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4.5. Divisorial contractions to cE points

In this subsection, we assume that X has cE singularities. First, we study w-morphisms over cE
points. All w-morphisms over cE type points are listed in Tables 8 and 9.

Table 8. Divisorial contractions to cE points with discrepancy one.

No. defining equations weight
type
a(X, E)

condition

E1 x2 + y3 + g≥4(y, z, u) (2, 2, 1, 1)
cE6

1
∂2

∂y2 g(y, z, u) = 0

E2 x2 + xp2(z, u) + y3 + g≥5(y, z, u) (3, 2, 1, 1)
cE6,7

1

E3 x2 + y3 + g≥6(y, z, u) (3, 2, 2, 1)
cE
1

E4 x2 + y3 + y2 p2(z, u) + g≥8(y, z, u) (4, 3, 2, 1)
cE
1

E5 x2 + xp4(y, z, u) + y3 + g≥9(y, z, u) (5, 3, 2, 1)
cE
1

E6 x2 + y3 + y2 p3(z, u) + g≥10(y, z, u) (5, 4, 2, 1)
cE7,8

1

E7 x2 + y3 + g≥12(y, z, u) (6, 4, 3, 1)
cE
1

E8 x2 + y3 + y2 p4(z, u) + g≥14(y, z, u) (7, 5, 3, 1)
cE7,8

1

E9 x2 + xp7(y, z, u) + y3 + g≥15(y, z, u) (8, 5, 3, 1)
cE7,8

1

E10 x2 + y3 + g≥18(y, z, u) (9, 6, 4, 1)
cE7,8

1

E11 x2 + y3 + y2 p6(z, u) + g≥20(y, z, u) (10, 7, 4, 1)
cE8

1

E12 x2 + y3 + g≥24(y, z, u) (12, 8, 5, 1)
cE8

1

E13 x2 + y3 + g≥30(y, z, u) (15, 10, 6, 1)
cE8

1
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Table 9. Divisorial contractions to cE points with discrepancy one, continued.

No. defining equations weight
type
a(X, E)

condition

E14
{

x2 + y3 + tz + g≥6(y, z, u)
p4(x, y, z, u) + t

(3, 2, 1, 1, 5)
cE6,7

1
p(x, y, z, u) is irreducible

E15 x2 + xp2(z, u) + y3 + g≥6(x, y, z, u) (4, 2, 1, 1)
cE6

1

E16
{

x2 + y3 + tp2(z, u) + g≥6(y, z, u)
q3(y, z, u) + t

(3, 2, 1, 1, 4)
cE7

1
q(y, z, u) is irreducible

E17 x2 + y3 + yz3 + g≥6(y, z, u) (3, 3, 1, 1)
cE7

1
y2u2 ∈ g

E18
{

x2 + yt + g≥10(y, z, u)
y2 + p6(y, z, u) + t

(5, 3, 2, 1, 7)
cE7,8

1
y2 + p(y, z, u) is irreducible

We assume that there exist two different w-morphisms over X, say Y → X and Y1 → X. Let
F = exc(Y1 → X). Let P = CenterY F. One always has that a(F,Y) < 1, so P is a non-Gorenstein point.

Lemma 4.11. Assume that both Y → X and Y1 → X are of type E1–E13. Then Y → X is not of type
E1 or E6.

Proof. Assume that Y → X is of type E1. Then the only non-Gorenstein point on Y is the origin of

Uy = (x′2 + y′2 + g′(z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
2

(0, 1, 1, 1).

This is a cAx/2 point. The exceptional divisor G of discrepancy less than one over this point is given by
the weighted blow-up with the weight w(x′, y′, z′, u′) = 1

2 (2, 3, 1, 1). One can compute that a(G, X) = 2,
hence there is only one w-morphism over X. Thus, Y → X is not of type E1.

Assume that Y → X is of type E6. If X has cE8 singularities, then there is only one non-Gorenstein
point on Y , namely the origin of Uy. If X has cE7 singularities, then the origin of Uz is also a non-
Gorenstein point. Assume first that P is the origin of Uz. Then P is a cyclic quotient point of index
two and there is only one exceptional divisor over P with discrepancy less than one. Hence, F should
correspond to this exceptional divisor. One can compute that vF(x, y, z, u) = (3, 3, 1, 1), so Y1 → X
should be of type E17. Nevertheless, in this case one can see that vF(σ) ≤ vE(σ) for all σ ∈ OX. This
contradicts Corollary 2.17. Hence, P can not be the origin of Uz.

We want to show that P is also not the origin of Uy. The chart Uy is defined by

(x′2 + y′(y′ + p(z′, u′)) + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
4

(1, 3, 2, 1).

The origin of Uy is a cAx/4 point. Since (u = 0) defines a Du Val section, we know that vF(u) =
vF(y′) + vF(u′) = 1. Hence, both vF(y′) and vF(u′) < 1. This means that vF(y) ≤ 3. Assume that Y → X
and Y1 → X correspond to the same embedding X ↪→ A4. Then, since vF(y) ≤ 3, we know that Y1 → X
is of type E1–E5. However, in those cases one always has that vF(σ) ≤ vE(σ) for all σ ∈ OX. This
contradicts Corollary 2.17. Thus, Y1 → X corresponds to a different embedding.
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Let Z → Y be a w-morphism over the origin of Uy. From the classification we know that Z → Y is a
weighted blow-up with the weight w(x′, y′, z′, u′) = 1

4(5, k, 2, 1) for k = 3 or 7. One can compute that
non-Gorenstein points on Z over Uy are cyclic quotient points. Let Z̄ → Z be an economic resolution
over those cyclic quotient points. Then F appears on Z̄ since a(F,Y) < 1. Moreover, Z̄ → X can be
viewed as a sequence of weighted blow-ups with respect to the embedding X ↪→ A4

(x,y,z,u). We write
(x1, ..., x4) = (x, y, z, u) and let X ↪→ A4

(x′1,...,x
′
4) be the embedding corresponding to the weighted blow-up

Y1 → X. One can always assume that x′4 = x4 = u since vE(u) = 1. We write x′j = x j + q j. Since
Y → X and Y1 → X correspond to different embeddings, there exists j < 4 such that q j , 0 and
vF(x′j) > vF(x j) = vF(q). Since Z̄ → X can be viewed as a sequence of weighted blow-ups with respect
to the embedding X ↪→ A4

(x,y,z,u), we know that the defining equation of Z̄ is of the form x j + q j + h̄ such
that vF(x′j) = vF(h̄). Hence, there is exactly one j such that q j , 0, and the defining equation of X is of
the form ξ(x j + q j) + h. One can see that either x j = z, or x j = y and q j = p.

Now, if x j = z, then x′1 = x1 = x and x′2 = x2 = y. One can see that vF(x′2) = vF(y) ≤ 3. So, Y1 → X
is of type E1–E5. In those cases, vF(x′j) ≤ 2, so vF(x j) = vF(q j) = 1 and vF(x′j) = 2. Hence, Y1 → X
is of type E3–E5 and vF(y) = vF(x′2) ≥ 2. Also, since vF(q j) = 1, q j = λu for some λ ∈ C. Therefore
vF(z) = vF(x′j − q j) = 1. But, then

vF(z)
vE(z)

=
1
2
≤

vF(y)
vE(y)

.

By Lemma 2.16, CenterY F can not be the origin of Uy. This leads to a contradiction.
Finally, we assume that x j = y and q j = p. Notice that p = λ1zu + λ2u3, hence vF(p) ≥ 2. If

vF(z) = vF(x′3) = 1, then Y1 → X is of type E1 or E2, and so vF(x′j) = 2. However, we know that
vF(p) ≥ 2. This contradicts the assumption that vF(x′j) > vF(q j) = vF(p). Hence, vF(z) ≥ 2 and so
vF(p) ≥ 3. Since

vF(y) = vF(x j) = vF(q j) = vF(p) ≥ 3

and vF(y) ≤ 3 by the previous discussion, we know that vF(y) = 3. Recall that we write

Uy = (x′2 + y′(y′ + p(z′, u′)) + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
4

(1, 3, 2, 1).

Since vF(y) = 3, vF(E) = vF(y′) = 3
4 . This means that a(F,Y) = 1

4 , so F corresponds to a w-morphism
over Uy. Nevertheless, as we mentioned before, w-morphisms over Uy can be obtained by a weighted
blow-up with respect to the above embedding, hence Y1 → X and Y → X correspond to the same
four-dimensional embedding, leading to a contradiction. □

Lemma 4.12. Assume that both Y → X and Y1 → X are of type E1–E13. If P is the origin of Ux ⊂ Y ,
then Y → X is of type E2, E5 or E9, and Y1 → X has the same type. One has that Y

−

⇒
X

Y1
−

⇒
X

Y .

Proof. This assumption implies that the origin of Ux is contained in Y, so Y → X is of type E2, E5 or E9
and P is a cyclic quotient point. If Y → X is a weight blow-up with the weight (b, c,d,1), then b = c+d and

Ux = (x′ + p(z′, u′) + g′(x′, y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
b

(−1, c, d, 1).

Since a(F,Y) < 1, F is the valuation described by [4, Proposition 3.1]. Hence, vF(y′, z′, u′) = 1
b (c′, d′, a′)

with c′ + d′ = b and a′
b = a(F,Y). Since a(F, X) = a(F,Y) + vF(x′) = 1, we know that vF(x′) = 1 − a′

b .
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One can compute that

vF(x, y, z, u) = (b − a′, c −
(a′c − c′)

b
, d −

a′d − d′

b
, 1).

Since c′ < b and a′c ≡ c′(mod b), we know that a′c−c′
b ≥ 0, so vF(y) ≤ c = vE(y). Likewise, we know

that vF(z) ≤ d = vE(z). One also has that vF(x) < vE(x) and vF(u) = vE(u).
On the other hand, Corollary 2.17 says that there exists σ ∈ OX such that vF(σ) > vE(σ). This can

only happen when

vF(x′) = vF(p(z′, u′)) < vF(x′ + p(z′, u′)) = vF(g′(x′, y′, z′, u′))

and in this case one can choose σ = x + p(z, u) ∈ OX. Now, Y1 → X can be obtained by a weighted
blow-up with respect to the embedding

X ↪→ (σ2 − σp(z, u) + y3 + g(y, z, u) = 0) ⊂ A4
(σ,y,z,u)

and with the weight w1(σ, y, z, u) = (b1, c1, d1, 1) where c1 = c− (a′c−c′)
b and d1 = d − a′d−d′

b . Since c1 ≤ c,
d1 ≤ d and b1 = vF(v) > vE(v), by Lemma 2.16 we know that CenterY1 E is the origin of U1,σ.

Now, if we interchange Y and Y1, then the above argument yields that c ≤ c1 and d ≤ d1. Hence,
c = c1 and d = d1 and so Y → X and Y1 → X are of the same type. One has that a′ = 1 and c′ = c,
d′ = d. Thus, F is the exceptional divisor of the w-morphism over P. Now we know that Y

−

⇒
X

Y1 by

Lemma 3.13 and also Y1
−

⇒
X

Y by the symmetry. □

Lemma 4.13. Assume that both Y → X and Y1 → X are of type E1–E13. Then P is not the origin of
Uy ⊂ Y .

Proof. By Lemma 4.11, we know that Y → X is not of type E1 or E6, hence Y → X is of type E4, E8 or
E11 and the origin of Uy is a cyclic quotient point. We assume that Y → X is a weighted blow-up with
the weight (b, c, d, 1). Following the same computation as in the proof of Lemma 4.12, we may write
Y1 → X as a weighted blow-up with respect to the embedding

X ↪→ (x2 + (σ − p(z, u))2σ + g(σ, z, u) = 0) ⊂ A4
(x,σ,z,u)

and with the weight (b1, c1, d1, 1), such that CenterY1 E is the origin of U1,σ ⊂ Y1. Nevertheless, in this
case one always has that b1 < b since b > c. The symmetry between Y and Y1 yields that b > b1 > b,
which is impossible. □

Lemma 4.14. Assume that both Y → X and Y1 → X are of type E1–E13. Let X ↪→ A4
(x1,...,x4) be the

embedding that corresponds to Y → X in Table 8. Then P is the origin of Ui for some i ≤ 4.

Proof. Assume that P is not the origin of Ui for all i ≤ 4. Then Y has a non-Gorenstein point on
Ui ∩ U j for some i , j. In this case, Y → X is of type E7 or E10–E13. For simplicity we assume
that i = 1 and j = 2. If Y → X is a weighted blow-up with the weight (a1, ..., a4), then we have the
following observation:

(1) a1 = dk1 and a2 = dk2 for some integers k1, k2 and d. We may assume that k2 = 2 and k1 is odd.
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(2) xk2
1 and xk1

2 appear in f where f is the defining equation of X. Moreover vE(xk2
1 ) = vE(xk1

2 ) = vE( f ).

(3) P is a cyclic quotient point of index d. On U1, the local coordinate system is given by (x′1, x
′
3, x

′
4),

where x′l is the strict transform of xl on U1.

Since F is a valuation of discrepancy less than 1 over P, we know that vF(x′1, x
′
3, x

′
4) = 1

d (a′1, a
′
3, a

′
4) with

a′l < d for l = 1, 3, and 4. One can compute that

vF(x1, ..., x4) = (k1a′1, k2a′1,
1
d

(a′3 + a3a′1),
1
d

(a′4 + a4a′1)),

and Y1 → X can be obtained by the weighted blow-up with respect to the same embedding X ↪→ A4
(x1,...,x4)

and with the weight vF . Nevertheless, one can easily see that vF(xl) ≤ vE(xl) for all 1 ≤ l ≤ 4. This
contradicts Corollary 2.17. □

Proposition 4.15. Assume that both Y → X and Y1 → X are both of type E1–E13. Then Y → X is of
type E2, E5 or E9, and Y1 → X has the same type. One has that Y

−

⇒
X

Y1
−

⇒
X

Y .

Proof. Let
X ↪→ ( f (x, y, z, u) = 0) ⊂ A4

(x,y,z,u)

be the embedding corresponding to Y → X, and

X ↪→ ( f1(x1, y1, z1, u1) = 0) ⊂ A4
(x1,y1,z1,u1)

be the embedding corresponding to Y1 → X. If CenterY F is the origin of Ux ⊂ Y or CenterY1 E is the
origin of Ux1 ⊂ Y1, then the statement follows from Lemma 4.12. We do not consider these cases here.
Then, Lemmas 4.13 and 4.14 imply that CenterY F = Uz ⊂ Y and CenterY1 E = Uz1 ⊂ Y1.

We may assume that vE( f ) ≤ vF( f1). Since vE(u) = vF(u1) = 1, one can always assume that u = u1

and (u = 0) defines a Du Val section. Lemma 2.16 implies that vE(z) > vE(z1) and vF(z) < vF(z1), hence
z , z1. We may write z1 = z + h. If vE(h) ≥ vE(z), then we may replace z by z + h, which will lead to
a contradiction. Hence, vE(h) < vE(z). Thus, h = λuk for some k < vE(z). Since (u = 0) defines a Du
Val section, we know that z4, yz3 or z5 ∈ f . It follows that u4k, yu3k or u5k appear in either f or f1. This
means that vE( f ) ≤ 4k, vE(y) + 3k or 5k for some k < vE(z). One can easily check that for all the cases
in Table 8 this inequality never holds. Thus, we get a contradiction. □

Proposition 4.16. Assume that Y → X is of type E14–E18. Then there exists Y1 → X which is of type
E3 or E6 such that Y ⇒

X
Y1. Moreover, if Y → X is of type E15 or E17, then Y

−

⇒
X

Y1.

Proof. Assume that Y → X is of type E14. Consider the chart

Ut = (x′2 + y′3 + z′ + g′(y′, z′, u′, t′) = p(x′, y′, z′, u′) + t′ = 0) ⊂ A5
(x′,y′,z′,u′,t′)/

1
5

(3, 2, 1, 1, 4).

We choose (y1, ..., y5) = (x′, y′, u′, z′, t′) with δ4 = 1 and δ5 = 2 or 4, or δ4 = 2 and δ5 = 1 or 4. Then (Ξ)
holds. Now, let F be the exceptional divisor that corresponds to the w-morphism over the origin of Ut.
Then

vF(y1, ..., y5) =
1
5

(3, 2, 1, 6, 4).
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One can see that (Θ4) holds. Thus, there exists a divisorial contraction Y1 → X so that Y ⇒
X

Y1 which
extracts F. One can compute that vF(x, y, z, u) = (3, 2, 2, 1), so Y1 → X is of type E3.

Assume that Y → X is of type E15. Consider the chart

Ux = (x′2 + p(z′, u′) + y′3 + g′(x′, y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
4

(3, 2, 1, 1).

We choose (y1, ..., y4) = (x′, z′, u′, y′) with δ4 = 4. Then (Ξ′) holds. Now the origin of Ux is a cAx/4
point. After a suitable change of coordinates, we may assume that u′2 < p(z′, u′). Then the w-morphism
over this point can be given by a weighted blow-up with the weight vF(y1, ..., y4) = 1

4 (3, 5, 1, 2). One can

see that (Θ2) and (Ξ′−) hold. Hence, there exists a divisorial contraction Y1 → X such that Y
−

⇒
X

Y1. One
also has vF(x, y, z, u) = (3, 2, 2, 1), so Y1 → X is of type E3.

Assume that Y → X is of type E16. Consider the chart

Ut = (x′2 + y′3 + p(z′, u′) + g′(y′, z′, u′, t′) = q(y′, z′, u′) + t′ = 0) ⊂ A5
(x′,y′,z′,u′,t′)/

1
4

(3, 2, 1, 1, 3).

We choose (y1, ..., y5) = (y′, z′, u′, x′, t′) with δ4 = 4 and δ5 = 1 or 2. Then (Ξ) holds. Now the origin
of Ut is a cAx/4 point. After a suitable change of coordinates, we may assume that u′2 < p(z′, u′).
Then the weight vF(y1, ..., y5) = 1

4(2, 5, 1, 3, 3) defines a w-morphism over Ut. One can see that (Θ2)
holds. Hence, there exists a divisorial contraction Y1 → X such that Y ⇒

X
Y1. One can compute that

vF(x, y, z, u) = (3, 2, 2, 1), so again Y1 → X is of type E3.
Assume that Y → X is of type E17. Consider the chart

Uy = (x′2 + y′3 + z′3 + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
3

(0, 2, 1, 1).

We can choose (y1, ..., y4) = (y′, z′, u′, x′) with δ4 = 4. Then (Ξ′) holds. The origin of Uy is a cD/3
point. Notice that y′2u′2 ∈ g′(y′, z′, u′), so the w-morphism over Uy is given by the weighted blow-
up with the weight vF(y1, ..., y4) = 1

3(2, 4, 1, 3). One can see that (Θ2) and (Ξ′−) hold. One has that

vF(x, y, z, u) = (3, 2, 1, 1), so there exists Y1 → X which is of type E3 such that Y
−

⇒
X

Y1.
Finally, assume that Y → X is of type E18. Consider the chart

Ut = (x′2 + y′ + g′(y′, z′, u′, t′) = y′2 + p(y′, z′, u′) + t = 0) ⊂ A5
(x′,y′,z′,u′,t′)/

1
7

(5, 3, 2, 1, 6).

We choose (y1, ..., y5) = (y′, z′, u′, x′, t′) with δ4 = 4 and δ5 = 1. Then (Ξ) holds. The origin of Ut is a
cyclic quotient point. Let F be the exceptional divisor corresponding to the w-morphism over this
point. Then

vF(y1, ..., y5) =
1
7

(10, 2, 1, 5, 6)

(notice that the irreducibility of y2 + p(y, z, u) implies that p(0, z, u) , 0, so vF(t) = 6
7 ). One can see

that (Θ1) holds. Thus, there exists a divisorial contraction Y1 → X which extracts F so that Y ⇒
X

Y1.
One can compute that vF(x, y, z, u) = (5, 4, 2, 1), and so Y1 → X is of type E6. □

Now we study divisorial contractions over cE points with discrepancy greater than one. Those
divisorial contractions are given in Table 10.
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Table 10. Divisorial contractions to cE points with large disprepancies.

No. defining equations weight
type
a(X, E)

condition

E19 x2 + (y + p2(z, u))3+yu3 + g≥6(z, u) (3, 3, 2, 1)
cE6

2
z ∈ p(z, u)

E20
{

x2 + yt + g≥10(y, z, u)
y2 + p6(z, u) + t

(5, 3, 2, 2, 7)
cE7

2
gcd(p6, g10) = 1

E21 x2 + y3 + u7 + g≥14(z, u) (7, 5, 3, 2)
cE7,8

2
yz3, z5 or z4u ∈ g(z, u)

Proposition 4.17. Assume that Y → X is a divisorial contraction with discrepancy a > 1. Then there
exists a w-morphism Y1 → X such that Y ⇒

X
Y1.

Proof. Assume first that Y → X is of type E19. The chart Uy ⊂ Y is defined by

(x2 + (y + p(z, u))3 + u3 + g′(y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
3

(0, 1, 1, 2).

One can choose (y1, ..., y4) = (x, y + p, z, u) with δ4 = 1. Then (Ξ′) holds. The origin of Uy is a cD/3
point. The w-morphism over this point is given by the weighted blow-up with the weight

w(y1, ..., y4) = (3, 4, 1, 2) or (6, 4, 1, 5).

One can see that (Θ4) holds. Thus, there exists Y1 → X such that Y ⇒
X

Y1. A direct computation shows
that Y1 → X is a w-morphism.

Assume that Y → X is of type E20. The chart Ut ⊂ Y is defined by

(x2 + y + g′(y, z, u, t) = y2 + p(z, u) + t = 0) ⊂ A5
(x,y,z,u,t)/

1
7

(5, 3, 2, 2, 6).

We take (y1, ..., y5) = (y, z, u, x, t) with δ4 = 4 and δ5 = 1. Then (Ξ) holds. The w-morphism over the
origin of Ut is given by weighted blowing-up the weight w(y1, ..., y5) = 1

7 (5, 1, 1, 6, 3). One can see
that (Θ1) holds. Hence, there exists a divisorial contraction Y1 → X such that Y ⇒

X
Y1. One can compute

that Y1 → X is a w-morphism.
Finally assume that Y → X is of type E21. The chart Uy ⊂ Y is defined by

(x2 + y + u7 + g′(y, z, u) = 0) ⊂ A4
(x,y,z,u)/

1
5

(2, 4, 3, 2).

One can choose (y1, ..., y4) = (y, z, u, x). Then (Ξ′) holds. The w-morphism over Uy is given by the
weighted blow-up with the weight w(y1, ..., y4) = 1

5(2, 4, 1, 1). One can see that (Θ2) holds. Thus,
there exists a divisorial contraction Y1 → X such that Y ⇒

X
Y1. One can compute that Y1 → X is a

w-morphism. □

4.6. Divisorial contractions to cE/2 points

Finally, we need to study divisorial contractions over cE/2 points. All such divisorial contractions
are listed in Table 11.
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Table 11. Divisorial contractions to cE/2 points.

No. defining equations
(r; ai)
weight

type
a(X, E)

E22 x2 + y3 + g≥3(y, z, u)
(2; 1, 0, 1, 1)
1
2 (3, 2, 3, 1)

cE/2
1/2

E23 x2 + y3 + g≥5(y, z, u)
(2; 1, 0, 1, 1)
1
2 (5, 4, 3, 1)

cE/2
1/2

E24 x2 + xp 5
2
(y, z, u) + y3 + g≥6(y, z, u)

(2; 1, 0, 1, 1)
1
2 (7, 4, 3, 1)

cE/2
1/2

E25 x2 + y3 + g≥9(y, z, u)
(2; 1, 0, 1, 1)
1
2 (9, 6, 5, 1)

cE/2
1/2

E26 x2 + y3 + z4 + u8 + g≥8(y, z, u)
(2; 1, 0, 1, 1)
(4, 3, 2, 1)

cE/2
1

Proposition 4.18. Let Y → X be a divisorial contraction.

(1) Assume that there are two w-morphisms over X. Then:

(1–1) If Y → X is of type E22 and there exists another w-morphism Y1 → X, then Y1 → X is of
type E22 or E23 and Y ⇒

X
Y1.

(1–2) If Y → X is of type E23, then there are exactly two w-morphisms. The other one, Y1 → X, is
of type E22. Interchanging Y and Y1, we are back to Case (1–1).

(1–3) If Y → X is of type E24, then there are exactly two w-morphisms. They are both of type E24
and are negatively linked to each other.

(1–4) Y → X is not of type E25.

(2) Assume that Y → X is of type E26. Then there is a w-morphism Y1 → X which is of type E22 such
that Y

−

⇒
X

Y1.

Proof. The statement about the number of w-morphisms follows from [9, Section 10]. First, assume
that there exists two w-morphisms over X and Y → X is of type E22. Let F = exc(Y1 → X). The only
non-Gorenstein point on Y is the origin of Uz, which is a cD/3 point defined by

(x′2 + y′3 + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
3

(0, 2, 1, 1).

One can see that
1
2
= a(F, X) = a(F,Y) +

1
2

vF(z′),

hence a(F,Y) = vF(z′) = 1
3 . Thus, F corresponds to a w-morphism over Uz. From Table 6 we know that

vF(x′, y′, z′, u′ + λz′) =
1
3

(b, c, 1, 4)
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for some λ ∈ C, where (b, c) = (3, 2) or (6, 5). Now one can choose (y1, ..., y4) = (y′, u′ + λz′, u′ + ξz′, x′)
with δ4 = 4, where ξ ∈ C is a number so that u + ξz defines a Du Val section on X and ξ , λ. Thus, (Ξ′)
and (Θ2) hold and Y ⇒

X
Y1.

Now assume that Y → X is of type E24. The chart Ux ⊂ Y is defined by

(x′ + p(y′, z′, u′) + y′3 + g′(x′, y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
7

(5, 4, 3, 1).

The origin is a cyclic quotient point and there is only one w-morphism over this point. Let F be the
exceptional divisor corresponding to this w-morphism. By Lemma 3.13 we know that there exists a
divisorial contraction Y1 → X which extracts F such that Y

−

⇒
X

Y1. One can compute that a(F, X) = 1
2 .

Hence, Y1 → X is also a w-morphism.
Finally, assume that Y → X is of type E26. Consider the chart Uy ⊂ Y which is defined by

(x′2 + y′ + z′4 + u′8 + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
6

(1, 2, 5, 1).

One can take (y1, ..., y4) = (y′, z′, u′, x′) with δ4 = 4. One can see that (Ξ′) holds. Now, let F be
the exceptional divisor corresponding to the w-morphism over Ut. Then vF(y1, ..., y4) = 1

6 (2, 5, 1, 1).
Hence, (Θ2) and (Ξ′−) hold. Thus, there exists a divisorial contraction Y1 → X which extracts F so that
Y
−

⇒
X

Y1. One can compute that vF(x, y, z, u) = 1
2 (3, 2, 3, 1), so Y1 → X is of type E22. □

5. Estimating depths

We want to understand the change of singularities after running the minimal model program. The
final result is the following proposition.

Proposition 5.1.

(1) Assume that Y → X is a divisorial contraction between terminal and Q-factorial threefolds.

(1–1) If Y → X is a divisorial contraction to a point, then

gdep(X) ≤ gdep(Y) + 1 and dep(X) ≤ dep(Y) + 1.

If Y → X is a divisorial contraction to a curve, then

gdep(X) ≤ gdep(Y) and dep(X) ≤ dep(Y).

(1–2) depGor(X) ≥ depGor(Y) and the inequality is strict if the non-isomorphic locus on X contains
a Gorenstein singular point.

(2) Assume that X d X′ is a flip between terminal and Q-factorial threefolds.

(2–1)
gdep(X) > gdep(X′) and dep(X) > dep(X′).

(2–2) depGor(X) ≤ depGor(X′) and the inequality is strict if the non-isomorphic locus on X′ contains
a Gorenstein singular point.
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Corollary 5.2. Assume that
X0 d X1 d ...d Xk

is a process of the minimal model program. Then:

(1) ρ(X0/Xk) ≥ gdep(Xk) − gdep(X0) and the equality holds if and only if Xi d Xi+1 is a strict w-
morphism for all i.

(2) depGor(Xk) ≥ depGor(X0).

In particular, if X is a terminal Q-factorial threefold and W → X is a resolution of singularities, then
ρ(W/X) ≥ gdep(X) and the equality holds if and only if W is a feasible resolution of X.

Proof. Statement (2) easily follows from the inequalities in Proposition 5.1. Assume that the sequence
contains m flips, then ρ(X0/Xk) = k − m. On the other hand, we know that

gdep(Xi+1) ≤
{

gdep(Xi) − 1 if Xi d Xi+1 is a flip
gdep(Xi) + 1 otherwise

.

It follows that gdep(Xk) ≤ gdep(X0)+k−2m, hence gdep(Xk)−gdep(X0) ≤ ρ(X0/Xk). Now gdep(Xk)−
gdep(X0) = ρ(X0/Xk) if and only if m = 0 and gdep(Xi+1) = gdep(Xi) + 1 for all i, which is equivalent
to Xi d Xi+1 being a strict w-morphism for all i.

Now assume that X is a terminal Q-factorial threefold and W → X is a resolution of singularities.
We can run KW-MMP over X and the minimal model is X itself. Since gdep(W) = 0, one has that
ρ(W/X) ≥ gdep(X) and the equality holds if and only if W is a feasible resolution of X. □

The inequalities for the depth part are exactly Lemma 2.20. We only need to prove the inequalities
for the generalized depth and the Gorenstein depth.

Convention 5.3. Let S be a set consisting of birational maps between Q-factorial terminal threefolds.
We say that (∗)S holds if, for all Z d V inside S, one has that:

(1) If Z → V is a divisorial contraction to a point, then

depGor(V) ≥ depGor(Z) ≥ depGor(V) − (dep(Z) − dep(V) + 1).

(2) If Z → V is a divisorial contraction to a smooth curve, then

depGor(V) ≥ depGor(Z) ≥ depGor(V) − (dep(Z) − dep(V)).

(3) If Z d V is a flip, then

depGor(V) ≥ depGor(Z) ≥ depGor(V) − (dep(Z) − dep(V) − 1).

(4) If Z d V is a flop, then depGor(V) = depGor(Z).

Moreover, if there exists a Gorenstein singular point P ∈ V such that P is not contained in the isomorphic
locus of Z d V , then depGor(V) > depGor(Z) unless V d Z is a flop.

We say that (∗)(1)
S

holds if statement (1) is true, but statements (2) and (3) are unknown.
If V d Z is a flip or a divisorial contraction, we denote the condition (∗)VdZ = (∗)S where S is the

set containing only one element V d Z.
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It is easy to see that if Y → X is a divisorial contraction, then (∗)Y→X holds if and only if the
inequalities in Proposition 5.1 (1) hold. Likewise, if X d X′ is a flip, then (∗)XdX′ holds if and only if
the inequalities in Proposition 5.1 (2) hold.

Remark 5.4. If Z d V is a flop, then the singularities on Z and V are the same by [17, Theorem 2.4].
Hence, statement (4) is always true.

Convention 5.5. Given n ∈ Z≥0, we denote

Sn =

{
ϕ : Z d V

ϕ is a flip, a flop or a divisorial contraction between
between Q-factorial terminal threefolds, gdep(Z) ≤ n

}
.

Lemma 5.6. Assume that Y → X and Y1 → X are two divisorial contractions between terminal
threefolds, such that Y ⇒

X
Y1. If (∗)Sgdep(Y)−1 holds, then gdep(Y1) ≤ gdep(Y). Moreover, gdep(Y1) =

gdep(Y) if and only if Y1 ⇒
X

Y .

Proof. We have a diagram
Z1

//

��

... // Zk

��
Y

  

Y1

~~
X

such that Z1 → Y is a strict w-morphism and Zi d Zi+1 is a flip or a flop for all 1 ≤ i ≤ k − 1. Since
gdep(Z1) = gdep(Y) − 1 and (∗)Sgdep(Y)−1 holds, we know that gdep(Z2) ≤ gdep(Y) − 1. Repeating this
argument k − 2 times, one can say that gdep(Zk) ≤ gdep(Y) − 1. Again, since (∗)Sgdep(Y)−1 holds, we
know that gdep(Y1) ≤ gdep(Zk) + 1 = gdep(Y).

Now, gdep(Y1) = gdep(Y) if and only if all the inequalities above are equalities. This is equivalent
to Zk → Y1 being a strict w-morphism and Zi d Zi+1 being a flop for all i = 1, ..., k − 1, or k = 1. In
other words, we also have Y1 ⇒

X
Y . □

Corollary 5.7. Assume that Y → X is a strict w-morphism over P ∈ X and Y1 → X is another divisorial
contraction over P. If (∗)Sgdep(Y) holds, then there exist divisorial contractions Y1 → X, ..., Yk → X such that

Y1 ⇒
X
...⇒

X
Yk ⇒

X
Y.

Proof. By Proposition 4.1, we know that there exists Y1, ..., Yl, Y ′1, ..., Y ′l′ such that

Y1 ⇒
X
...⇒

X
Yl = Y ′l′ ⇐X

...⇐
X

Y ′1 ⇐X
Y.

One can apply Lemma 5.6 to the sequence Y ⇒
X

Y ′1 ⇒X
...⇒

X
Y ′l′ and conclude that gdep(Y ′i ) ≤ gdep(Y)

for all i. Since Y ′i → X ∈ Sgdep(Y) for all i = 1, ..., l′, one has gdep(Y ′i ) ≥ gdep(X) − 1 = gdep(Y). Thus,
gdep(Y ′i ) = gdep(Y) and Lemma 5.6 says that one has

Y ′l′ ⇒X
...⇒

X
Y ′1 ⇒X

Y.

Now we can take k = l + l′ − 1 and let Yi = Y ′l′−i+l for l < i ≤ k. □
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Corollary 5.8. Assume that (∗)Sn−2 holds. Assume that P ∈ X is a cA/r point or a cAx/r point such
that gdep(X) = n. Then every w-morphism over P is a strict w-morphism. In particular, one can always
assume that the morphism Y1 → X in Theorem 2.18 is a strict w-morphism.

Proof. Propositions 4.2 and 4.3 say that if Y → X and Y1 → X are two different w-morphisms over P,
then there exists Y2 → X, ..., Yk → X such that

Y1 ⇔
X

Y2 ⇔
X
...⇔

X
Yk = Y.

We can assume that Y → X is a strict w-morphism, so gdep(Y) = n − 1. Lemma 5.6 implies that Y1 is
also a strict w-morphism. Hence, every w-morphism over P is a strict w-morphism.

Now assume that X is in the diagram in Theorem 2.18 and P is a non-Gorenstein point in the
exceptional set of X → W. If P is a cA/r or a cAx/r point, then we already know that every w-morphism
over P is a strict w-morphism. Otherwise, by Remark 2.19 (2) we know that any w-morphism Y1 → X
over P induces a diagram in Theorem 2.18. Hence, we can choose Y1 → X to be a strict w-morphism. □

Convention 5.9. Let DV be the set of symbols

DV = {Ai,D j, Ek}i∈N, j∈N≥4,k=6,7,8.

One can define an ordering on DV by

Ai < Ai′ < D j < D j′ < Ek < Ek′ for all i < i′, j < j′, k < k′.

Given □ ∈ DV , define

T□ =

{
X is a terminal

Q-factorial threefold
GE(P ∈ X) ≤ □ for all

non-Gorenstein point P ∈ X

}
,

T□,n = {X ∈ T□ gdep(X) ≤ n}

and
Tn =

⋃
□∈DV

T□,n.

Here, GE(P ∈ X) denotes the type of the general elephant near P. That is, the type of a general Du Val
section H ∈ | − KX | near an analytic neighborhood of P ∈ X.

Convention 5.10. Let T be a set of terminal threefolds. We say that the condition (Π)T holds if
for all X ∈ T and for all strict w-morphisms Y → X over non-Gorenstein points of X, one has that
dep(Y) = dep(X) − 1.

Remark 5.11.

(1) Assume that Y → X is a w-morphism over a non-Gorenstein point P. Then the general elephant of
Y over X is better than the general elephant of X near P. This is because if H ∈ | − KX | near P, then
HY ∈ | − KY | and HY → H is a partial resolution by [3, Lemma 2.7].
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(2) One has that (Π)TA1
always holds since if GE(P ∈ X) = A1 for some non-Gorenstein point P, then P

is a cyclic quotient point of index two (cf. [7, (6.4)]). In this case, there is only one w-morphism
Y → X over P and Y is smooth over X. Hence,

gdep(P ∈ X) = dep(P ∈ X) = 1

and gdep(Y) = dep(Y) = 0 over X. Thus, Y → X is a strict w-morphism and also dep(Y) =
dep(X) − 1.

Lemma 5.12. Assume that Y → X is a strict w-morphism over a non-Gorenstein point P. If (∗)Sgdep(Y)

holds and (Π)T□ holds for all □ < GE(P ∈ X), then dep(Y) = dep(X) − 1.

Proof. By the definition we know that dep(Y) ≥ dep(X) − 1. Assume that dep(Y) > dep(X) − 1. Then
there exists Y1 → X such that dep(Y1) = dep(X) − 1 < dep(Y). Corollary 5.7 says that there exist
divisorial contractions Y2 → X, ..., Yk → X such that Y1 ⇒

X
Y2 ⇒

X
...⇒

X
Yk ⇒

X
Y . From Remark 5.11 (1)

we know that Yi ∈ T□ for some □ < GE(P ∈ X) for all i, hence, if

Zi,1
//

��

... // Zi,ki

��
Yi

  

Yi+1

}}
X

is the induced diagram of Yi ⇒
X

Yi+1, then dep(Zi,1) = dep(Yi) − 1. By Lemma 2.20 we know that

dep(Yi+1) ≤ dep(Zi,ki) + 1 ≤ dep(Zi,1) + 1 = dep(Yi)

for all i. Hence, dep(Y1) ≤ dep(Y). This leads to a contradiction as we assume that dep(Y) > dep(Y1). □

Lemma 5.13. Fix an integer n and assume that (∗)Sn−1 holds. Then (Π)Tn holds.

Proof. We need to show that for all X ∈ Tn and for all strict w-morphism Y → X over a non-
Gorenstein point, one has that dep(Y) = dep(X) − 1. By Remark 5.11 (2) we know that (Π)TA1

holds,
hence (Π)TAm ,n

and (Π)TD4 ,n
hold for all m ∈ N by Lemma 5.12 and by induction on m. Then, one can

prove that (Π)TDm ,n
and (Π)TE6 ,n

hold by again applying Lemma 5.12 and by induction on m. Statements
(Π)TE7 ,n

and (Π)TE8 ,n
can be proved in the same way. □

Lemma 5.14. Fix an integer n and assume that (∗)Sn−1 holds. Assume that we have a diagram

Y1

��

// · · · // Yk

��
X

!!

X′

}}
W

such that gdep(X) = n, Y1 → X is a strict w-morphism, Yi d Yi+1 is a flip or a flop for i = 1, ..., k − 1,
and Yk → X′ is a divisorial contraction. Then,
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(1) depGor(X) = depGor(Y1) ≤ depGor(X′) and gdep(X′) ≤ gdep(X).

(2) (∗)YidYi+1 holds for i = 1, ..., k − 1.

(3) (∗)Yk→X′ holds.

Moreover, if the non-isomorphic locus of X d X′ on X′ contains a Gorenstein singular point, then
depGor(X) < depGor(X′).

Proof. Since (∗)Sn−1 holds, we know that (Π)Tn holds by Lemma 5.13. Hence, depGor(Y1) = depGor(X).
We know that gdep(Y) = n − 1. Since (∗)Sn−1 holds, one can prove that gdep(Yi) ≤ gdep(Y1) ≤ n − 1
for all i and hence (∗)YidYi+1 and (∗)Yk→X′ hold. Thus,

gdep(X′) ≤ gdep(Yk) − 1 ≤ gdep(Y1) − 1 ≤ gdep(X)

and
depGor(X) = depGor(Y1) ≤ ... ≤ depGor(Yk) ≤ depGor(X′).

Now, if the non-isomorphic locus of X d X′ on X′ contains a Gorenstein singular point, then either the
non-isomorphic locus of Yi d Yi+1 on Yi+1 contains a Gorenstein singular point or the non-isomorphic
locus of Yk → X′ on X′ contains a Gorenstein singular point. Hence, at least one of the above inequalities
is strict. Thus, one has depGor(X) < depGor(X′). □

Lemma 5.15. Assume that (∗)Sn−1 holds. Then (∗)(1)
Sn

holds.

Proof. Let Y → X be a divisorial contraction to a point which belongs to Sn. We know that
gdep(Y) = n. Assume first that Y → X is a strict w-morphism over a point P ∈ X. Notice that
dep(Y) ≥ dep(X) − 1 by Lemma 2.20. If P is a non-Gorenstein point, then depGor(Y) = depGor(X)
by Lemma 5.13, hence (∗)Y→X holds. If P is a Gorenstein point, then

depGor(X) = gdep(X) − dep(X) = gdep(Y) + 1 − dep(X) = depGor(Y) + dep(Y) − dep(X) + 1.

Moreover, since dep(P ∈ X) = 0, dep(Y) − dep(X) ≥ 0, hence

depGor(X) > depGor(Y) = depGor(X) − (dep(Y) − dep(X) + 1).

Thus, (∗)Y→X holds.
In general, by Corollary 5.7 there exist Y1 → X, ..., Yk → X such that Yk → X is a strict w-morphism

and one has Y ⇒
X

Y1 ⇒
X
...⇒

X
Yk. By induction on k we may assume that (∗)Yi→X holds for all i (notice

that gdep(Yi) ≤ gdep(Y) = n for all i by Lemma 5.6). Now we have a diagram

Z1
//

��

... // Zk

��
Y

  

Y1

~~
X

.

By Lemma 5.14 we know that depGor(Y) ≤ depGor(Y1) and (∗)ZidZi+1 , (∗)Zk→Y1 hold. Since (∗)Y1→X

holds, we know that depGor(X) ≥ depGor(Y1) ≥ depGor(Y) and
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depGor(Y) + (dep(Y) − dep(X) + 1) = depGor(Z1) + (dep(Z1) − dep(X) + 2)
≥ gdep(Z1) − dep(X) + 2
≥ gdep(Zk) − dep(X) + 2
≥ gdep(Y1) − dep(X) + 1
≥ depGor(Y1) + (dep(Y1) − dep(X) + 1)
≥ depGor(X).

Moreover, if Y → X is a divisorial contraction to a Gorenstein point, then Y1 → X is also a divisorial
contraction to a Gorenstein point. Hence, depGor(Y1) < depGor(X) and we also have depGor(Y) <

depGor(X). □

Proof of Proposition 5.1. We need to say that (∗)Sn holds for all n and we will prove this by induction
on n. If n = 0, then S0 consists only smooth blow-downs and smooth flops. One can see that (∗)S0

holds. In general, assume that (∗)Sn−1 holds. By Lemma 5.15 we know that (∗)(1)
Sn

holds. Hence, it
is enough to show that, given a flip X d X′ or a divisorial contraction to a curve X → V such that
gdep(X) = n, (∗)XdX′ or (∗)X→V holds.

If X → V is a smooth blow-down, then depGor(X) = depGor(V), and so there is nothing to prove. In
general, we have a diagram as in Theorem 2.18:

Y1

��

// · · · // Yk

��
X

!!

X′

}}
V

.

By Lemma 5.14 we know that depGor(X) ≤ depGor(X′) and (∗)YidYi+1, (∗)Yk→X′ hold. One has that

depGor(X) + (dep(X) − dep(X′)) = gdep(X) − dep(X′)
= gdep(Y1) − dep(X′) + 1
≥ gdep(Yk) − dep(X′) + 1
≥ gdep(X′) − dep(X′) = depGor(X′).

Moreover, if X d X′ is a flip, then either one of Yi d Yi+1 is a flip or Yk → X′ is a divisorial contraction
to a curve by [3, Remark 3.4]. This implies that either gdep(Y1) > gdep(Yk) or gdep(Yk) ≥ gdep(X′). If
X → V is a divisorial contraction to a curve, then Yk → X′ is a divisorial contraction to a curve, hence
one always has that gdep(Yk) ≥ gdep(X′). In conclusion, we have

depGor(X) ≥ depGor(X′) − (dep(X) − dep(X′) − 1).

If X d X′ is a flip, then one can see that (∗)XdX′ holds. Now assume that X → V is a divisorial
contraction to a curve. Then X′ → V is a divisorial contraction to a point. We know that (∗)X′→V holds since
(∗)(1)

Sn
holds and gdep(X′) ≤ n by Lemma 5.14. One can see that depGor(X) ≤ depGor(X′) ≤ depGor(V) and
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depGor(X) ≥ depGor(X′) − (dep(X) − dep(X′) − 1)
≥ depGor(V) − (dep(X′) − dep(V) + 1) − (dep(X) − dep(X′) − 1)
= depGor(V) − (dep(X) − dep(V)).

Thus, (∗)X→V holds. □

6. Comparing different feasible resolutions

In this section, we describe the difference between two different feasible resolutions of a terminal
Q-factorial threefold. The final result is the diagrams in Theorem 1.1.

6.1. General discussion

Lemma 6.1. Assume that X is a terminal threefold and Y → X, Y1 → X are two different strict
w-morphisms over P ∈ X such that Y ⇒

X
Y1. Let

Z1
//

��

... // Zk

��
Y

  

Y1

~~
X

be the corresponding diagram. Then one of the following holds:

(1) Y
−

⇒
X

Y1
−

⇒
X

Y and k = 1.

(2) k = 2 and Z1 d Z2 is a smooth flop.

(3) k = 2, Z1 d Z2 is a singular flop, P ∈ X is of type cA/r and both Y → X and Y1 → X are of type A1
in Table 2.

Proof. Since Y → X and Y1 → X are both strict w-morphisms, we know that gdep(Y) = gdep(Y1).
Hence, Zi d Zi+1 can not be a flip. Thus, if Y

−

⇒
X

Y1, then k = 1.

Now assume that Y ̸
−

⇒
X

Y1. According to the result in Section 4, one has that:

(i) If P is of type cA/r, then by Proposition 4.2 we know that Y → X and Y1 → X are both of type
A1. Since Y ̸

−

⇒
X

Y1, we know that f ◦4 = η4 = y is irreducible. Hence, there is only one KZ1-trivial
curve on Z1 and so k = 2.

(ii) P is not of type cAx/r since one always has that Y
−

⇒
X

Y1 if Y → X and Y1 → X are two different
w-morphisms over P by Proposition 4.3.

(iii) P is not of type cD by Proposition 4.5.
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(iv) P is not of type cD/3 by Proposition 4.7.

(v) If P is of type cD/2, then by Propositions 4.8 and 4.9 we know that Y → X is of type D17 in Table 6.
We know that Z1 → Y is a w-morphism over the origin of

Ut = (x′2 + y′ + g′(z′, u′, t′) = z′u′ + y′3 + t′ = 0) ⊂ A5
(x′,y′,z′,u′,t′)/

1
5

(3, 1, 1, 2, 3)

and we take (y1, ..., y5) = (y′, u′, y′ + z′, x′, t′). One can see that there are two curves contained in
y3 = y5 = 0, namely Γ1 = (x′2+g′(0, u′, 0) = y′ = y′+z′ = u′ = 0) and Γ2 = (x′2+g′(−y′,−y′2, 0) =
u′ + y′2 = y′ + z′ = t′ = 0). We know that (Θ1) holds. When computing the intersection number
for Γ2 one can take δ4 = 4 and δ5 = 2, hence (Ξ−) holds in this case. This implies that the proper
transform Γ2,Z1 of Γ2 on Z1 is a KZ1-trivial curve and is not contained in exc(Z1 → Y). Thus,
Zi d Zi+1 is a flip along Γ2,Zi for some i, and hence gdep(Y1) < gdep(Y). This is a contradiction.
Thus, this case will not happen.

(vi) If P is of type cE, then by Proposition 4.15 and Proposition 4.16 we know that Y → X is of type
E14, E16, or E18 in Table 9. In those cases, Y → X are five-dimensional weighted blow-ups. Let
Γ ⊂ Y be a curve contained in exc(Y → X) such that the proper transform ΓZ1 of Γ on Z1 is a
possibly KZ1-trivial curve. From the proof of Proposition 4.16, one can see that:

(vi–i) Y → X is of type E14. In this case, Z1 → Y is a w-morphism over the origin of

Ut = (x′2 + y′3 + z′ + g′(y′, z′, u′, t′) = p(x′, y′, z′, u′) + t′ = 0)

⊂ A5
(x′,y′,z′,u′,t′)/

1
5

(3, 2, 1, 1, 4).

We choose (y1, ..., y5) = (x′, y′, u′, z′, t′) with δ4 = 1 and δ5 = 2 or 4, or δ4 = 2 and
δ5 = 1 or 4. We also know that (Θ4) holds. If both δ4 and δ5 , 4, then (Ξ−) holds,
which implies that Y

−

⇒
X

Y1. This contradicts our assumption. Hence, δ5 = 4. Now,

Γ = (x′2 + y′3 = z′ = u′ = t′ = 0).

(vi–ii) Y → X is of type E16. In this case Z1 → Y is a w-morphism over the origin of

Ut = (x′2 + y′3 + p(z′, u′) + g′(y′, z′, u′, t′) = q(y′, z′, u′) + t′ = 0)

⊂ A5
(x′,y′,z′,u′,t′)/

1
4

(3, 2, 1, 1, 3).

As in the proof of Proposition 4.16, we choose (y1, ..., y5) = (y′, z′, u′, x′, t′) with δ4 = 4 and
δ5 = 1 or 2. We know that (Θ2) holds. Hence, if δ5 = 1, then (Ξ−) holds, and so Y

−

⇒
X

Y1.

This leads to a contradiction. Thus, δ5 = 2 and one has Γ = (x′2 + y′3 = z′ = u′ = t′ = 0).

(vi–iii) Y → X is of type E18. In this case, Z1 → Y is a w-morphism over the origin of

Ut = (x′2 + y′ + g′(y′, z′, u′, t′) = y′2 + p(y′, z′, u′) + t = 0)

⊂ A5
(x′,y′,z′,u′,t′)/

1
7

(5, 3, 2, 1, 6).
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We choose (y1, ..., y5) = (y′, z′, u′, x′, t′) with δ4 = 4 and δ5 = 1. We know that (Θ1) holds.
If z′3 ∈ p, then we can choose δ5 = 2. Then, since (Θ1) holds, we know that (Ξ−) holds,
and so Y

−

⇒
X

Y1. This contradicts our assumption. Hence, z′3 < p. In this case, u divides p

and X has cE8 singularities, so z′5 ∈ g′. One can see that Γ = (x′2 + z′5 = y′ = u′ = t′ = 0).

Now the origin of Ut is a cyclic quotient point and the w-morphism over this point is a weighted
blow-up with weights vF(x′, y′, z′, u′, t′) = 1

5(3, 2, 6, 1, 4), 1
4(3, 2, 5, 1, 3) and 1

7(5, 10, 2, 1, 6),
respectively. An easy computation shows that ΓZ1 does not pass through any singular point of Z1,
hence Z1 d Z2 is a smooth flop. Since there is only one KZ1-trivial curve, we know that k = 2.

(vii) If P is of type cE/2, then by Proposition 4.18 we know that Y → X is of type E22 or E23 in
Table 11. Moreover, if Y → X is of type E23, then Y1 → X is of type E22. Thus, interchanging
Y and Y1 if necessary, we can always assume that Y → X is of type E22. As in the proof of
Proposition 4.18, we know that Z1 → Y is a w-morphism over the origin of Uz ⊂ Y , which is a
cD/3 point defined by

(x′2 + y′3 + g′(y′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
3

(0, 2, 1, 1).

The only possible KZ1-trivial curve ΓZ1 is the lifting of the curve Γ = (x′2 + y′3 = z′ = u′ = 0) on
Z1. Moreover, Z1 → Y is defined by a weighted blow-up with the weight

vF(x′, y′, z′, u′ + λz′) =
1
3

(b, c, 1, 4)

for some λ ∈ C, where (b, c) = (3, 2) or (6, 5). If (b, c) = (6, 5), then one can see that (Ξ−) holds by
considering the function y, hence Y

−

⇒
X

Y1, which contradicts our assumption. Hence, (b, c) = (3, 2).
In this case, an easy computation shows that ΓZ1 does not pass through any singular point of Z1, so
Z1 d Z2 is a smooth flop. Since there is only one KZ1-trivial curve, we know that k = 2.

□

We need to construct a factorization of the flop in Lemma 6.1 (3). Assume that

X = (xy + f (z, u) = 0) ⊂ A4
(x,y,z,u)/

1
r

(β,−β, 1, 0)

is a cA/r singularity with f (z, u) = zrk+g(z, u) and Y → X, Y1 → X are two different strict w-morphisms
with the factorization

Z1
//

��

Z2

��
Y

��

Y1

��
X

such that Z1 d Z2 is a flop.
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Remark 6.2. One always has that k > 1 since, if k = 1, then there is only one w-morphism over X by
classification Table 2.

Lemma 6.3. Z1 d Z2 is a flop over

V = (x̄ȳ + ū f1(z̄, ū) = 0) ⊂ A4
(x̄,ȳ,z̄,ū)/

1
r

(β,−β, 1, 0),

where f1 = f (zu
1
r , u)/uk. Moreover, Z1 = Bl(x̄,ū)V and Z2 = Bl(ȳ,ū)V .

Proof. We may assume that Y → X is a weighted blow-up with the weight w(x, y, z, u) = 1
r (b, c, 1, r)

with b > r. The chart Uu ⊂ Y is defined by

(x1y1 + f1(z1, u1) = 0) ⊂ A4
(x1,y1,z1,u1)/

1
r

(b, c, 1, r)

and the chart Ux ⊂ Y is defined by

(y2 + f2(x2, z2, u2) = 0) ⊂ A4
(x2,y2,z2,u2)/

1
b

(b − r, c, 1, r)

for some f2. As in the proof of Proposition 4.2, we know that Z1 → Y is a weighted blow-up over the
origin of Ux with the weight w′(x2, y2, z2, u2) = 1

b (b − r, rk, 1, r). The flopping curve Γ of Z1 → Z2 is the
strict transform of the curve ΓY ⊂ Y such that ΓY |Uu = (y1 = z1 = u1 = 0) and ΓY |Ux = (x2 = y2 = z2 = 0).
One can see that Γ intersects exc(Z1 → Y) at the origin of U′u ⊂ Z1, which is defined by

(y′ + f ′(x′, z′, u′) = 0) ⊂ A4
(x′,y′,z′,u′)/

1
r

(b, 0, 1,−b).

It is easy to see that Γ is contained in U′u ∪ Uu, and on U′u we know that Γ is defined by (x′ = z′ = 0).
We have the following change of coordinates formula:

x = x1u
b
r
1 , y = y1u

c
r
1 , z = z1u

1
r
1 , u = u1, and

x = x
b
r
2 , y = y2x

c
r
2 , z = z2x

1
r
2 , u = u2x2.

Also,
x2 = x′u′

b−r
b , y2 = y′u′

rk
b , z2 = z′u′

1
b , u2 = u′

r
b .

One can see that

x = x′
b
r u′

b−r
r , y = y′x′

c
r u′

rk
b +

c
r−

c
b = y′x′

c
r u′

c
r+1, z = z′x′

1
r u′

1
r and u = x′u′.

It follows that
u1 = x′u′, z1 = z′, y1 = y′u′ and x1 = u′−1.

If we choose an isomorphism

U′u � (y1 + u′ f ′(x′, z′, u′) = 0) ⊂ A4
(x′,y1,z′,u′)/

1
r

(b,−b, 1,−b),

then Uu ∪ U′u = Bl(x′,u1)V , where

V = (x′y1 + u1 f1(z1, u1) = 0) ⊂ A4
(x′,y1,z1,u1)/

1
r

(b,−b, 1, 0)

by noticing that
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f ′(x′, z′, u′) = f2(x′u′
b−r

b , z′u′
1
b , u′

r
b )/u′

rk
b

= f (z2x
1
r
2 , u2x2)/xk

2u′
rk
b

= f (z′x′
1
r u′

1
r , x′u′)/x′ku′k

= f (z1u
1
r
1 , u1)/u1

k

= f1(z1, u1).

Now we can choose (x̄, ȳ, z̄, ū) = (x′, y1, z1, u1).
Finally, we know that Y1 → X is a weighted blow-up with the weight 1

r (b − r, c + r, 1, r) and Z2 → Y1

is a w-morphism over the origin of U1,y ⊂ Y1. Hence, the local picture of Z2 → V can be obtained by a
similar computation, but interchanging the role of x and y. One then has that Z2 = Bl(ȳ,ū)V . □

6.2. Explicit factorization of flops

In this subsection, we assume that

V = (xy + u f (z, u) = 0) ⊂ A4
(x,y,z,u)/

1
r

(β,−β, 1, 0)

with f (z, u) = zrk + g(z, u) for some k > 1. Let Z1 = Bl(x,u)V and Z2 = Bl(y,u)V such that Z1 d Z2 is a
Q-factorial terminal flop. Let w be the weight w(z, u) = 1

r (1, r) and m = w( f (z, u)). Then m ≤ k. Let
U1,x ⊂ Z1 be the chart

(y + u1 f1(z, u1) = 0) ⊂ A4
(x,y,z,u1)/

1
r

(β,−β, 1,−β)

and U1,u ⊂ Z1 be the chart

(x1y + f (z, u) = 0) ⊂ A4
(x1,y,z,u)/

1
r

(β,−β, 1, 0)

with the relations u = u1x, x = x1u and f1 = f (z, xu1). Similarly, let U2,y ⊂ Z2 be the chart

(x + u2 f2(z, u2) = 0) ⊂ A4
(x,y,z,u2)/

1
r

(β,−β, 1, β)

and U2,u ⊂ Z2 be the chart

(xy2 + f (z, u) = 0) ⊂ A4
(x,y2,z,u)/

1
r

(β,−β, 1, 0)

with the relations u = u2y, y = y2u and f2 = f (z, yu2).

Lemma 6.4. Let ϕ : V ′ → V be a strict w-morphism. Then:

(1) The chart U′u ⊂ V ′ is Q-factorial.

(2) If m = k then U′z ⊂ V ′ is smooth. Otherwise, U′z contains exactly one non-Q-factorial cA point
which is defined by xy + u f ′′(z, u) = 0 where f ′′ = f (z

1
r , zu)/zm. One then has that w( f ′′) < m.

(3) All other singular points on V ′ are cyclic quotient points.

Proof. From Table 2, we know that V ′ → V is a weighted blow-up with the weight 1
r (b, c, 1, r) with

b + c = r(m + 1). Statement (3) follows from direct computations. One can compute that
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U′u � (xy + f ′(z, u) = 0) ⊂ A4
(x,y,z,u)/

1
r

(β,−β, 1, 0)

with f ′ = f (zu
1
r , u)/um. By [18, 2.2.7] we know that U′u is Q-factorial if and only if f ′ is irreducible

as a Z/rZ-invariant function. If U′u is not Q-factorial, then f ′ = f ′1 f ′2 for some non-unit Z/rZ-invariant
functions f ′1 and f ′2 . Write

f ′1 =
∑

(i, j)∈Z2
≥0

ξi, jzriu j and f ′2 =
∑

(i, j)∈Z2
≥0

ζi, jzriu j.

Let

m1 = −min
ξi, j,0
{ j − i}, m2 = −min

ζi, j,0
{ j − i}.

Notice that if f ′ =
∑

(i, j) σi, jzriu j, then j + m − i ≥ 0 if σi, j , 0 because f ′ = f (zu
1
r , u)/um. Hence, we

have the relation m1 + m2 ≤ m. Now let

f1 =
∑
(i, j)

ξi jziru j−i+m1 and f2 =
∑
(i, j)

ζi jziru j−i+m2 .

Then f1 and f2 can be viewed as Z/rZ-invariant functions on V such that ϕ∗ fi = umi f ′i for i = 1, 2.
This means that f = um−m1−m2 f1 f2 is not irreducible. Nevertheless, the chart U1,u ⊂ Z1 is defined by
x1y + f (z, u) = 0 and has Q-factorial singularities. This leads to a contradiction. Thus, U′u is Q-factorial.

The chart U′z is defined by xy + u f ′′(z, u) = 0. When m = k, we know that f ′′ is a unit along
u = 0, hence U′z is smooth. If m < k, then f ′′(z, u) is a non-unit. In this case, the origin of U′z is a
non-Q-factorial cA singularity. □

From the construction in [19], for any strict w-morphism V ′ → V we have the following diagram

Z′1

��

V ′′1oo

  

V ′′2 //

~~

Z′2

��
Z1

((

V ′

��

Z2

vvV

.

where V′′i → V′ is a Q-factorization and V′′i d Z′i is a composition of flips for i = 1, 2. By Lemma 6.4,
we know that if m = k, then V ′′1 = V ′ = V ′′2 . Otherwise, V ′′1 d V ′′2 is a flop over the singularity
xy + u f ′′(z, u) = 0.

First we discuss the factorization of V ′′1 d Z′1. If m = k, then V ′′1 = V ′ is covered by four affine charts
U′x, U′y, U′z and U′u. The origin of U′x and U′y are cyclic quotient points and all other singular points are
contained in U′u. When m < k, the chart U′z has a non-Q-factorial point and there are two charts U′′1,x and
U′′1,u over this point. We fix the following notation for the latter discussion.
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• Ū′′1 = U′x = (y′′1 + u′′1 f ′′1 (x′′1 , z
′′
1 , u

′′
1 ) = 0) ⊂ A4

(x′′1 ,y
′′
1 ,z
′′
1 ,u
′′
1 )/

1
b (b − r, c, 1, r)

with x = x′′1
b
r , y = y′′1 x′′1

c
r , z = z′′1 x′′1

1
r , u = u′′1 x′′1 and f ′′1 = f (z′′1 x′′1

1
r , u′′1 x′′1 )/x′′1

m.
• Ū′′2 = U′y = (x′′2 + u′′2 f ′′2 (y′′2 , z

′′
2 , u

′′
2 ) = 0) ⊂ A4

(x′′2 ,y
′′
2 ,z
′′
2 ,u
′′
2 )/

1
c (b, c − r, 1, r)

with x = x′′2 y′′2
b
r , y = y′′2

c
r , z = z′′2 y′′2

1
r , u = u′′2 y′′2 and f ′′2 = f (z′′2 y′′2

1
r , u′′2 y′′2 )/y′′2

m.
• Ū′′3 = U′u = (x′′3 y′′3 + f ′′3 (z′′3 , u

′′
3 ) = 0) ⊂ A4

(x′′3 ,y
′′
3 ,z
′′
3 ,u
′′
3 )/

1
r (b, c, 1, r)

with x = x′′3 u′′3
b
r , y = y′′3 u′′3

c
r , z = z′′3 u′′3

1
r , u = u′′3 and f ′′3 = f (z′′3 u′′3

1
r , u′′3 )/u′′3

m.
If m = k, define Ū′′4 = U′z. In this case this chart is smooth. When m < k we define
• Ū′′4 = U′′1,x = (y′′4 + u′′4 f ′′4 (x′′4 , z

′′
4 , u

′′
4 ) = 0) ⊂ A4

(x′′4 ,y
′′
4 ,z
′′
4 ,u
′′
4 )

with x = x′′4 z′′4
b
r , y = y′′4 z′′4

c
r , z = z′′4

1
r , u = x′′4 u′′4 z′′4 and f ′′4 = f (z′′4

1
r , x′′4 u′′4 z′′4 )/z′′4

m.
• Ū′′5 = U′′1,u = (x′′5 y′′5 + f ′′5 (z′′5 , u

′′
5 ) = 0) ⊂ A4

(x′′5 ,y
′′
5 ,z
′′
5 ,u
′′
5 )

with x = x′′5 u′′5 z′′5
b
r , y = y′′5 z′′5

c
r , z = z′′5

1
r , u = u′′5 z′′5 and f ′′5 = f (z′′5

1
r , u′′5 z′′5 )/z′′5

m.
On the other hand, we will see later that it is enough to assume that Z′1 → Z1 is a divisorial

contraction over the origin of U1,u ⊂ Z1. This means that Z′1 is covered by five affine charts U1,x, U′1,x,
U′1,y, U′1,z and U′1,u where the latter four charts correspond to the weighted blow-up Z′1 → Z1. Notice that
exc(Z′1 → Z1) and exc(V ′ → V) are the same divisor since V ′′1 and Z′1 are isomorphic in codimension
one. One can see that Z′1 → Z1 is a weighted blow-up with the weight w′(x1, y, z, u) = 1

r (b − r, c, 1, r).
Again, we use the following notation:
• Ū′1 = U′1,x = (y′1 + f ′1(x′1, z

′
1, u

′
1) = 0) ⊂ A4

(x′1,y
′
1,z
′
1,u
′
1)/

1
b−r (b − 2r, c, 1, r)

with x = x′1
b
r u′1, y = y′1x′1

c
r , z = z′1x′1

1
r , u = u′1x′1 and f ′1 = f (z′1x′1

1
r , u′1x′1)/x′1

m.
• Ū′2 = U′1,y = (x′2 + f ′2(y′2, z

′
2, u

′
2) = 0) ⊂ A4

(x′2,y
′
2,z
′
2,u
′
2)/

1
c (b − r, c − r, 1, r)

with x = x′2y′2
b
r u′2, y = y′2

c
r , z = z′2y′2

1
r , u = u′2y′2 and f ′2 = f (z′2y′2

1
r , u′2y′2)/y′2

m.
• Ū′3 = U′1,u = (x′3y′3 + f ′3(z′3, u

′
3) = 0) ⊂ A4

(x′3,y
′
3,z
′
3,u
′
3)/

1
r (b − r, c, 1, r)

with x = x′3u′3
b
r , y = y′3u′3

c
r , z = z′3u′3

1
r , u = u′3 and f ′3 = f (z′3u′3

1
r , u′3)/u′3

m.
• Ū′4 = U1,x = (y′4 + u′4 f ′4(z′4, u

′
4) = 0) ⊂ A4

(x′4,y
′
4,z
′
4,u
′
4)/

1
r (β,−β, 1,−β)

with x = x′4, y = y′4, z = z′4, u = u′4x′4 and f ′4 = f (z′4, u
′
4x′4).

• Ū′5 = U′1,z = (x′5y′5 + f ′5(z′5, u
′
5) = 0) ⊂ A4

(x′5,y
′
5,z
′
5,u
′
5)

with x = x′5z′5
b
r u′5, y = y′5z′5

c
r , z = z′5

1
r , u = u′5z′5 and f ′5 = f (z′5

1
r , u′5z′5)/z′5

m.

Lemma 6.5. Assume that Z′1 → Z1 is a divisorial contraction over the origin of U1,u. Then:

(1) gdep(Z′1) = gdep(V ′′1 ) − 1.

(2) All the singular points on the non-isomorphic loci of V ′′1 d Z′1 on both V ′′1 and Z′1 are cyclic quotient
points.

(3) The flip V ′′1 d Z′1 is of type IA in the convention of [20, Theorem 2.2].

Proof. It is easy to see that Ū′i � Ū′′i for i = 2, 3 and i = 5 if m < k. Since Ū′4 is smooth, the only
singular point contained in the non-isomorphic locus of V ′′1 d Z′1 on V ′′1 is the origin of Ū′′1 . This point
is a cyclic quotient point of index b, so it has generalized depth b − 1.

On the other hand, singular points on the non-isomorphic locus of V ′′1 → Z′1 on Z′1 are origins of Ū′1
and Ū′4. They are cyclic quotient points of indices b − r and r, respectively. One can then see that

gdep(V ′′1 ) − gdep(Z′1) = b − 1 − (b − r − 1 + r − 1) = 1.
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Now we know that that the flipping curve contains only one singular point which is a cyclic quotient
point. Also, the general elephant of the flip is of A-type since it comes from the factorization of a flop
over a cA/r point. Thus, the flip is of type IA by the classification from [20, Theorem 2.2]. □

Lemma 6.6. Assume that
T

((
T ′

vvV
is a flip of type IA. Assume that

S 1
//

��

... // S k

��
T // T ′

is the factorization in Theorem 2.18. Then:

(1) If S 1 d S 2 is a flop, then it is a Gorenstein flop.

(2) If S 1 d S 2 is a flip, or S 1 d S 2 is a flop and S 2 d S 3 is a flip, then the flip is of type IA.

Proof. Let C ⊂ T be the flipping curve. Since T d T ′ is a type IA flip, there is exactly one non-
Gorenstein point which is contained in C, and this point is a cA/r point. From the construction, we
know that S 1 → T is a w-morphism over this cA/r point. Also, there exists a Du Val section H ∈ | − KT |

such that C 1 H. We know that HS 1 ∈ | − KS 1 | by [3, Lemma 2.7 (2)]. Hence, all non-Gorenstein point
of S 1 is contained in HS 1 . Now assume that CS 1 contains a non-Gorenstein point. Then HS 1 intersects
CS 1 non-trivially. Since CS 1 1 HS 1 , we know that HS 1 .CS 1 > 0, hence CS 1 is a KS 1-negative curve and
so S 1 d S 2 is a flip. Thus, if S 1 d S 2 is a flop, then it is a Gorenstein flop.

If S 1 d S 2 is a flip, then CS 1 passes through a non-Gorenstein point since 0 > KS 1 .CS 1 > −1
by [21, Theorem 0]. Since C ⊂ T passes through exactly one non-Gorenstein point, CS 1 passes through
exactly one non-Gorenstein point and this point is contained in E = exc(S 1 → T ). Since S 1 → T is
a w-morphism over a cA/r point, an easy computation shows that E contains only cA/r singularities.
Also, we know that HS 1 is a Du Val section which does not contain CS 1 . Thus, S 1 d S 2 is also a flip of
type IA by the classification [20, Theorem 2.2].

Now assume that S 1 d S 2 is a flop and S 2 d S 3 is a flip. Then the flipping curve Γ of S 2 d S 3 is
contained in ES 2 since all KS 2-negative curves over V are contained in ES 2 . Since S 1 d S 2 is a flop, we
know that ES 2 contains only cA/r singularities [17, Theorem 2.4] and HS 2 ∈ | − KS 2 | is also a Du Val
section. If Γ 1 HS 2 , then S 2 d S 3 is a flip of type IA by the classification from [20, Theorem 2.2].

Thus, we only need to prove that Γ 1 HS 2 . Assume that Γ ⊂ HS 2 ∩ ES 2 . Then, since HS 1 does
not intersect CS 1 (otherwise CS 1 is a KS 1-negative curve and then S 1 d S 2 is not a flop), we know
that Γ does not intersect the flopping curve C′S 2

⊂ S 2. Let B ⊂ ES 2 be a curve which intersects C′S 2

non-trivially. Then ΓS 1 ≡ λBS 1 for some λ ∈ Q since the both curves are contracted by S 1 → T .
Hence, for all divisors D ⊂ S 2 such that D.C′S 2

= 0, we know that D.Γ = λD.B. On the other hand,
S 1 d S 2 is a KS 1 + E-anti-flip since CS 1 is not contained in E. By Corollary 2.22 we know that
(KS 2 + ES 2).BS 2 > (KS 1 + E).BS 1 , hence ES 2 .BS 2 > E.BS 1 . Now we know that ρ(S 2/V) = 2 and B is not
numerically equivalent to a multiple of C′S 2

, hence we may write Γ ≡ λB + µC′S 2
for some µ ∈ Q. Since

ES 2 .Γ = ES 1 .ΓS 1 = λE.BS 1 < λES 2 .BS 2

and ES 2 .C
′
S 2
< 0, we know that µ > 0. Hence, Γ is not contained in the boundary of the relative effective

cone NE(S 2/V). Thus, Γ cannot be the flipping curve of S 2 d S 3. This leads to a contradiction. □
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Lemma 6.7. Assume that T d T ′ is a three-dimensional terminal Q-factorial flip which satisfies
conditions (1)–(3) of Lemma 6.5. Then, the factorization in Theorem 2.18 for T d T ′ is one of the
following diagrams:

(1)
S 1

//

��

S 2

��
T // T ′

where S 1 d S 2 is a flip which also satisfies conditions (1)–(3) of Lemma 6.5 and S 2 → T ′ is a
strict w-morphism.

(2)
S 1

//

��

S 2
// S 3

��
T // T ′

where S 1 d S 2 is a smooth flop and S 2 d S 3 is a flip which also satisfies conditions (1)–(3) of
Lemma 6.5 and S 3 → T ′ is a strict w-morphism.

(3)
S 1

//

��

S 2

��
T // T ′

where S 1 d S 2 is a smooth flop and S 2 = BlC′T ′ where C′ is a smooth curve contained in the
smooth locus of T ′.

Proof. We have the factorization
S 1

//

��

... // S k

��
T // T ′

such that S 1 d S 2 is a flip or a flop and S i d S i+1 is a flip for all 2 ≤ i ≤ k − 1. One has that

gdep(S k) ≤ gdep(S 1) = gdep(T ) − 1 = gdep(T ′) ≤ gdep(S k) + 1.

If gdep(S k) = gdep(S 1), then k = 2 and S 1 d S 2 is a flop. By [3, Remark 3.4] we know that S 2 → T ′

is a divisorial contraction to a curve. Since singular points on the non-isomorphic locus of T d T ′ are
all cyclic quotient points and there is no divisorial contraction to a curve which passes through a cyclic
quotient point [8, Theorem 5], we know that S 2 → T ′ is a divisorial contraction to a curve C′ contained
in the smooth locus. Now, we also have that gdep(S 2) = gdep(T ′), hence S 2 is smooth over T ′ and so
C′ is also a smooth curve.

Now assume that gdep(S k) < gdep(S 1). Then gdep(S k) = gdep(S 1) − 1 = gdep(T ′) − 1, hence either
k = 2 or k = 3 and S 1 d S 2 is a flop. Also, S k → T ′ is a w-morphism. Since singular points on the
non-isomorphic locus of T d T ′ are all cyclic quotient points, singular points on the exceptional divisor
of S k → T ′ are all cyclic quotient points. Since flops do not change singularities [17, Theorem 2.4], we
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know that the singular points on the non-isomorphic locus of S i d S i+1 are all cyclic quotient points for
i = 1, ..., k − 1. If S 1 d S 2 is a flop, then by Lemma 6.6 we know that it is a Gorenstein flop. Since
cyclic quotient points are not Gorenstein, we know that the flop is in fact a smooth flop. Now assume
that S i d S i+1 is a flip for i = 1 or 2. Then again, by Lemma 6.6 we know that it is a flip of type IA.
Hence, conditions (1)–(3) of Lemma 6.5 are satisfied for this flip. □

Corollary 6.8. Assume that T d T ′ is a three-dimensional terminal Q-factorial flip which satisfies
conditions (1)–(3) of Lemma 6.5. Then we have a factorization

T̃

��

// T̄ ′

��
T̃ ′

��
T // T ′

where T̃ → T and T̃ ′ → T are feasible resolutions, T̄ ′ = BlC′T̃ ′ where C′ ⊂ T̃ ′ is a smooth curve, and
T̃ d T̄ ′ is a sequence of smooth flops.

Proof. For convenience we denote the diagram

T̃

��

// T̄ ′
��

T̃ ′
��

T // T ′

by (A)TdT ′ .

We know that the factorization of T d T ′ is of the form (1)–(3) in Lemma 6.7. Notice that, since
the only singular points on the non-isomorphic locus of T d T ′ are cyclic quotient points, the feasible
resolutions T̃ and T̃ ′ are uniquely determined. Hence, T̃ is also a feasible resolution of S 1. If the
factorization of T d T ′ is of type (3) in Lemma 6.7, then the non-isomorphic locus of S 1 d T ′ contains
no singular points. This means that S 2 → T ′ induces a smooth blow-up T̄ ′ → T̃ ′ on T̃ ′, and S 1 d S 2

induces a smooth flop T̃ d T̄ ′. Thus, (A)TdT ′ exists.
Now, if the factorization of T d T ′ is of type (1), then T̃ ′ is a feasible resolution of S 2. Since

gdep(S 1) = gdep(T ) − 1, we may utilize induction on gdep(T ) and assume that (A)S 1dS 2 exists, and
then (A)TdT ′ can be induced by (A)S 1dS 2 . If the factorization of T d T ′ is of type (2), then again by
induction we may assume that

(A)S 2dS 3 =

S̃ 2

��

// S̄ 3

��
S̃ 3

��
S 2

// S 3

exists. Since S 3 → T ′ is a strict w-morphism, we know that S̃ 3 = T̃ ′. Also, since S 1 d S 2 is a smooth
flop, it induces a smooth flop T̃ = S̃ 1 d S̃ 2. If we let T̄ ′ = S̄ 3 and let T̃ d T̄ ′ be the composition
T̃ d S̃ 2 d T̄ ′, then we get the diagram (A)TdT ′ . □
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Definition 6.9. Let W1 d W2 be a birational map between smooth threefolds. We say that W1 d W2

is of type Ω0 if it is a composition of smooth flops. We say that W1 d W2 is of type Ωn if there exists
the diagram

W̄1

��

W̄ ′
1

oo // W̄ ′
2

// W̄2

��
W1 W2

such that:

(1) W̄i = BlCiWi for some smooth curve Ci ⊂ Wi for i = 1, 2.

(2) W̄ ′
i d W̄i is a composition of smooth flops for i = 1, 2.

(3) W̄ ′
1 d W̄ ′

2 has the factorization

W̄ ′
1 = W̄ ′

1,1 d W̄ ′
1,2 d ...d W̄ ′

1,m = W̄ ′
2

such that W̄ ′
1, j d W̄ ′

1, j+1 is a birational map of type Ωm j for some m j < n.

Example 6.10. In the following diagrams, dashmaps stand for smooth flops and all other maps are
blowing-down smooth curves.

(1)
W̄1

��

// W̄2

��
W1 W2

.

(2)
W̄ ′

1

��

// W̄ ′
2

��
W̄1

��

// W ′
1 W ′

2 W̄2
oo

��
W1 W2

.

(3)
W̄ ′

1

��

W̄ ′′
1

%%

oo W̄ ′′
2

//

zz

W̄ ′
2

��
W̄1

��

// W ′
1 W ′′ W ′

2 W̄2
oo

��
W1 W2

.

In diagram (1), W1 d W2 is of type Ω1. In both diagram (2) and (3), W1 d W2 is of type Ω2.

Definition 6.11. Let W d W ′ be a birational map between smooth threefolds. We say that W d W ′

has an Ω-type factorization if there exists birational maps between smooth threefolds

W = W1 d W2 d ...d Wk = W ′

such that Wi d Wi+1 is of type Ωni for some ni ∈ Z≥0.
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Proposition 6.12. Assume that X is a Q-factorial terminal threefold and W → X, W ′ → X are two
different feasible resolutions. Then the birational map W d W ′ has an Ω-type factorization.

Proof. First, notice that if gdep(X) = 1, then X has either a cyclic quotient point of index 2, or a cA1

point defined by xy + z2 + un for n = 2 or 3 by [22, Corollary 3.4]. In those cases, there is exactly one
feasible resolution (which is obtained by blowing-up the singular point). Hence, one may assume that
gdep(X) > 1. Let Y → X (resp. Y ′ → X) be the strict w-morphism which is the first factor of W → X
(resp. W ′ → X). If Y = Y ′, then W and W ′ are two different feasible resolutions of Y . In this case, the
statement can be proved by induction on gdep(X). Thus, we may assume that Y , Y ′.

Since both Y and Y ′ are strict w-morphisms, by Corollary 5.7 there exists a sequence of strict
w-morphisms Y1 = Y → X, Y2 → X, ..., Yk = Y ′ → X such that Yi ⇒

X
Yi+1 for i = 1, ..., k − 1. For

each 2 ≤ i ≤ k − 1, let Wi → Yi be a feasible resolution. Then Wi is also a feasible resolution of X and
it is enough to prove that our statement holds for Wi and Wi+1, for all i = 1, ..., k − 1. Thus, we may
assume that Y ⇒

X
Y ′.

We have the diagram
Z1

//

��

... // Zk

��
Y

  

Y ′

~~
X

Lemma 6.1 says that there are three possibilities. If k = 1, then W and W′ are two different feasible
resolutions of Z1. Since gdep(Z1) = gdep(X) − 2, again by induction on gdep(X) we know that W d W′

has an Ω-type factorization. Assume that k = 2 and Z1 d Z2 is a smooth flop. Then it induces a smooth
flop Z̃1 d Z̃2 where Z̃i → Zi is a feasible resolution of Zi for i = 1, 2. Also, we know that W and Z̃1 are two
feasible resolutions of Y, and W′ and Z̃2 are two feasible resolutions of Y′. Again, by induction on gdep(X),
we know that both W d Z̃1 and Z̃2 d W′ have Ω-type factorizations, hence W d W′ does as well.

Finally, assume that we are in the case of Lemma 6.1 (3), namely that X has a cA/r singularity and
Z1 d Z2 is a singular flop. By Lemma 6.3 we know that Z1 d Z2 is a flop over

V = (xy + u f (z, u) = 0) ⊂ A4
(x,y,z,u)/

1
r

(β,−β, 1, 0).

We have the factorization of the flop Z1 d Z2

Z′1

��

V ′′1oo

  

V ′′2 //

~~

Z′2

��
Z1

((

V ′

��

Z2

vvV

.

We use the notation at the beginning of this subsection. Assume that m > 1. Then we can choose
V ′ → V to be the weighted blow-up with the weight w′(x, y, z, u) = 1

r (β + r,mr − β, 1, r). In this case,
Z′i → Zi is a divisorial contraction over the origin of Ui,u for i = 1, 2 since both w′(x1) and w′(y2) > 0.
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When m = 1, let V ′ → V be the weighted blow-up with the weight w′(x, y, z, u) = 1
r (r + β, r − β, 1, r).

Then, Z′1 → Z1 is a divisorial contraction over the origin of U1,u, but Z′2 → Z2 is a divisorial contraction
over the origin of U2,y. Since m = 1 and k > 1 by Remark 6.2, we know that f (z, u) = λu + zrk for
some unit λ. If we let ū = λu + zrk, then we can write the defining equation of V as xy + ū f̄ (z, ū) where
f̄ = 1

λ
(ū − zrk). One has that Z2 � Bl(x,ū)V , and under this notation one also has that Z′2 → Z2 is a

divisorial contraction over the origin of U2,ū. In conclusion, Corollary 6.8 holds for both V ′′1 d Z′1 and
V ′′2 d Z′2.

Let Z̃′i → Z′i be a feasible resolution. If V ′′1 = V ′′2 , then one can see that Z̃′1 d Z̃′2 is of type Ω1.
Assume that V ′′1 d V ′′2 is a flop. Notice that Z′i → Zi is a w-morphism since a(E,Zi) = a(E,V) where
E = exc(Z′i → Zi) = exc(V ′ → V). One has that

gdep(V ′′i ) = gdep(Z′i ) + 1 = gdep(Zi)

where the second equality follows from Corollary 5.8. Now we know that V ′′1 d V ′′2 is a flop over V ′

with gdep(V ′) < gdep(V). By induction on gdep(V), we may assume that Ṽ ′′1 d Ṽ ′′2 has an Ω-type
factorization where Ṽ ′′i → V ′′i is a feasible resolution corresponding to the diagram in Corollary 6.8.
One can see that Z̃′2 d Z̃′2 can be connected by a diagram of the form Ωn for some n ∈ N. Finally, we
know that W and Z̃′1 (resp. W ′ and Z̃′2) are feasible resolutions of Y (resp. Y ′). Again, by induction on
gdep(X), we may assume that W d Z̃′1 and W ′ d Z̃′2 have Ω-type factorizations. Hence, W d W ′ has
an Ω-type factorization. □

Remark 6.13. Assume that X = (xy + zm + uk = 0) ⊂ A4 is a cA singularity. Then there exists feasible
resolutions W and W ′ such that the birational map W d W ′ is connected by Ωn for n = ⌈ m

k−m⌉.

7. Minimal resolutions of threefolds

In this section, we prove our main theorems. First, we recall some definitions which are defined in
the introduction section.

Definition 7.1. Let X be a projective variety. We say that a resolution of singularities W → X is a
P-minimal resolution if for any smooth model W ′ → X one has that ρ(W) ≤ ρ(W ′).

Definition 7.2. Let W d W ′ be a birational map between smooth varieties. We say that this birational
map is a P-desingularization of a flop if there exists a flop X d X′ such that W → X and W ′ → X′ are
P-minimal resolutions.

Proposition 7.3. Assume that X is a threefold. Then, W → X is a P-minimal resolution if and only
if W is a feasible resolution of a terminalization of X. In particular, if X is a terminal and Q-factorial
threefold, then P-minimal resolutions of X coincide with feasible resolutions.

Proof. Let W → X be a resolution of singularities and let W d XW be the KW-MMP over X. Then XW is
a terminalization of X. We know that ρ(W/XW) ≥ gdep(XW) by Corollary 5.2. Assume first that W → X
is P-minimal. Let W1 → XW be a feasible resolution of XW , then ρ(W1/X) = gdep(XW) ≤ ρ(W/XW).
Since W1 is also a smooth resolution of X, the inequality is an equality. Therefore, ρ(W/XW) = gdep(XW),
which implies that W d XW is a sequence of strict w-morphisms by Corollary 5.2, or, equivalently,
W → XW is a feasible resolution.
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Conversely, assume that W → X is not P-minimal, but it is a feasible resolution of some XW which is
a terminalization of X. There exists a P-minimal resolution W ′ → X such that ρ(W/X) > ρ(W ′/X). From
the above argument, there exists a terminalization XW′ of X such that W ′ → XW′ is a feasible resolution.
Hence, ρ(W ′/X) = gdep(X′). However, since terminalizations are connected by flops [23, Theorem 1]
and flops do not change singularities by [17, Theorem 2.4], we know that gdep(XW) = gdep(XW′). This
means that ρ(W/XW) > gdep(X), so W can not be a feasible resolution of XW . This is a contradiction. □

Proof of Theorem 1.1. Let X be a threefold and W → X, W ′ → X be two P-minimal resolutions. By
Proposition 7.3, we know that W (resp. W ′) is a feasible resolution of a terminalization XW → X (resp.
XW′ → X). If XW � XW′ , then XW and XW′ are connected by flops [23, Theorem 1], hence W d W ′ is
connected by P-desingularizations of terminal Q-factorial flops.

Now assume that XW = XW′ . Then W and W ′ are two different feasible resolutions of XW . The
first two paragraphs in the proof of Proposition 6.12 and Lemma 6.7 imply that W d W ′ can be also
connected by P-desingularizations of terminal Q-factorial flops. Moreover, Proposition 6.12 says that
those P-desingularizations of flops can be factorized into compositions of diagrams of the form Ωi. This
finishes the proof. □

Remark 7.4. Assume that X is a terminal Q-factorial threefold and W → X, W ′ → X are two different
P-minimal resolutions. We know that W and W ′ can be connected by P-desingularizations of flops. Let
Wi d Wi+1 be a P-desingularization of a flop Xi d Xi+1 which appears in the factorization of W d W ′.
Then, from the construction we know that gdep(Xi) < gdep(X).

Now we compare an arbitrary resolution of singularities to a P-minimal resolution.

Definition 7.5. Let W d X be a birational map where W is a smooth threefold and X is a terminal
threefold. We say that the birational map has a bfw-factorization if W d X can be factorized into a
composition of smooth blow-downs, P-desingularizations of flops, and strict w-morphisms.

Remark 7.6. If X2 → X1 is a strict w-morphism and X1 d X is a smooth blow-down or a
P-desingularization of a flop, then on X1 the indeterminacy locus of X1 d X is disjoint to the
indeterminacy locus of X1 d X2 since the former one lies on the smooth locus of X1 and the latter one
is a singular point. Hence, there exists X2 d X′1 → X where X2 d X′1 is a smooth blow-down or a
P-desingularization of a flop, and X′1 → X is a strict w-morphism. In other words, W d X has a
bfw-factorization if and only if there exists a birational map W d X̄ which is a composition of smooth
blow-downs and P-desingularization of flops, where X̄ is a feasible resolution of X.

Proposition 7.7. Assume that a birational map W d X has a bfw-factorization where W is a smooth
threefold and X is a terminal threefold.

(1) If X d X′ is a flop, then there is a birational map W d X′ which has a bfw-factorization.

(2) If Y → X is a strict w-morphism, then there exists a birational map W d Y which also has a
bfw-factorization.

(3) If X d X′ is a flip or a divisorial contraction, then the induced birational map W d X′ has a
bfw-factorization.
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Proof. Assume first that X d X′ is a flop. By Remark 7.6 we know that there exists a bfw-map W d X̄,
where X̄ is a feasible resolution of X. Let X̄′ → X′ be a feasible resolution of X′. Then X̄′ → X′ is a
composition of strict w-morphisms and the induced birational map X̄ d X̄′ is a P-desingularization of
the flop X d X′. It follows that the composition

W d X̄ d X̄′ → X′

is a bfw-map. This proves (1).
We will prove (2) and (3) by induction on gdep(X). If gdep(X) = 0, then X is smooth. In this case,

there is no strict w-morphism Y → X or flip X d X′. Assume that X → X′ is a divisorial contraction. If
X′ is smooth, then it is a smooth blow-down by [22, Theorem 3.3, Corollary 3.4], and if X′ is singular,
then X → X′ should be a strict w-morphism since in this case X′ is terminal Q-factorial and X is a
P-minimal resolution of X′. Now we may assume that gdep(X) > 0 and statements (2) and (3) hold for
threefolds with generalized depth less then gdep(X).

Let
W = Xk d Xk−1 d ...d X1 d X0 = X

be a sequence of birational maps so that Xi+1 d Xi is a smooth blow-down, a P-desingularization of a
flop, or a strict w-morphism for all 1 ≤ i ≤ k − 1. By Remark 7.6 we can assume that X1 → X is a strict
w-morphism. Now, given a strict w-morphism Y → X, if Y � X1, then there is nothing to prove. Otherwise,
by Corollary 5.7 there exists a sequence of strict w-morphisms Y2 → X, ..., Ym−1 → X such that

X1 = Y1 ⇒
X

Y2 ⇒
X
...⇒

X
Ym−1 ⇒

X
Ym = Y.

For each 1 ≤ i ≤ m − 1, one has the factorization

Zi,1
//

��

... // Zi,ki

��
Yi

  

Yi+1

}}
X

such that Zi,1 d Zi,ki is a composition of flops, Zi,1 → Yi is a strict w-morphism, and

gdep(Zi,ki) = gdep(Zi,1) < gdep(Yi) < gdep(X).

By the induction hypothesis, we know that if there exists a bfw-map W d Yi, then there exists a
bfw-map W d Yi+1. Now one can prove statement (2) by induction on m.

Assume that X d X′ is a flip. Then we have a factorization

Y1
//

��

... // Yk

��
X X′

as in Theorem 2.18. Since Y1 → X is a strict w-morphism by Corollary 5.8, there exists a bfw-map
W d Y1. Since

gdep(Yk) ≤ ... ≤ gdep(Y1) < gdep(X),
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the induction hypothesis implies that there exists a bfw-map W d X′.
Finally, assume that X → X′ is a divisorial contraction. If it is a smooth blow-down or a strict

w-morphism, then there is nothing to prove. Otherwise, there exists a diagram

Y1
//

��

... // Yk

��
X

  

Z

~~
X′

such that Y1 → X is a strict w-morphism and Yi d Yi+1 is a flip or a flop for all 1 ≤ i ≤ k− 1. One has that

gdep(Yk) ≤ ... ≤ gdep(Y1) < gdep(X),

hence there exists a bfw-map W d Z. If X → X′ is a divisorial contraction to a curve, then Yk → Z is a
divisorial contraction to a curve as in Theorem 2.18. In this case, we also have gdep(Z) ≤ gdep(Yk) <
gdep(X), so there exists a bfw-map W d X′. If X → X′ is a divisorial contraction to a point, then the
discrepancy of Z → X′ is less than the discrepancy of X → X′ unless X → X′ is a w-morphism. Also,
when X → X′ is a w-morphism, we know that gdep(Z) < gdep(X) by Lemma 5.6. Thus, we can prove
statement (3) by induction on the generalized depth and the discrepancy of X over X′. □

One can easily see the following corollary:

Corollary 7.8. Assume that W is a smooth threefold and W d X is a birational map which is a
composition of steps of MMP. Then, this birational map can be factorized into a composition of smooth
blow-downs, P-desingularizations of flops, and strict w-morphisms.

Proof of Theorem 1.2. By Corollary 7.8 and Remark 7.6 we know that there exists a feasible resolution
X̃W → XW such that W d X̃W is a composition of smooth blow-downs and P-desingularizations of flops,
where XW is a minimal model of W over X. By Proposition 7.3 we know that X̃W is also a P-minimal
resolution of X, hence the birational map X̃W d X̃ is connected by P-desingularizations of flops. Thus, the
composition W d X̃W d X̃ is connected by smooth blow-downs and P-desingularizations of flops. □

Proof of Corollary 1.3. Let
W = X̃k d ...d X̃1 d X̃0 = X̃

be a sequence of smooth blow-downs and P-desingularization of flops as in Theorem 1.2. We only need
to show that if X̃i+1 d X̃i is a P-desingularization of a flop Xi+1 d Xi, then b j(X̃i+1) = b j(X̃i) for all
j = 0, ..., 6.

By [24, Lemma 2.12] we know that b j(Xi+1) = b j(X j) for all j. Since Xi and Xi+1 have the same
analytic singularities [17, Theorem 2.4], there exists a feasible resolution X̃′i+1 → Xi+1 such that
b j(X̃i) = b j(X̃′i+1) for all j. Now, X̃′i+1 and X̃i+1 are two different P-minimal resolutions of Xi+1, so they
can be connected by P-desingularizations of flops with smaller generalized depth by Remark 7.4. By
induction on the generalized depth, one can see that b j(X̃′i+1) = b j(X̃i+1). Hence, b j(X̃i+1) = b j(X̃i) for all
j = 0, ..., 6. □
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8. Further discussion

This section is dedicated to exploring minimal resolutions for singularities in higher dimensions and
the potential applications of our main theorems.

8.1. Higher-dimensional minimal resolutions

In three dimensions, P-minimal resolutions appear to be a viable generalization of minimal
resolutions for surfaces. However, in higher dimensions, P-minimal resolutions are not good enough.
For example, let X d X′ be a smooth flip (eg. a standard flip [1, Section 11.3]). Then, X and X′ are
both P-minimal resolutions of the underlying space, but X′ is better than X. It is reasonable to assume
that X′ is a minimal resolution, while X is not. Inspired by Corollary 1.3, we define a new kind of
minimal resolution:

Definition 8.1. Let X be a projective variety over complex numbers. We say that a resolution of
singularities W → X is a B-minimal resolution if for any smooth model W ′ → X one has that
bi(W) ≤ bi(W ′) for all 0 ≤ i ≤ 2 dim X.

As stated in Corollary 1.3, B-minimal resolutions coincide with P-minimal resolutions in dimension
three. Our main theorems say that B-minimal resolutions of threefolds satisfy certain nice properties. It is
logical to anticipate that B-minimal resolutions of higher-dimensional varieties share similar properties.

Conjecture. For any projective variety X over the complex numbers, one has that:

(1) B-minimal resolutions of X exist.

(2) Two different B-minimal resolutions are connected by desingularizations of Q-factorial terminal flops.

(3) If X̃ → X is a B-minimal resolution and W → X is an arbitrary resolution of singularities, then
W d X̃ can be connected by smooth blow-downs, smooth flips, and desingularizations ofQ-factorial
terminal flops.

8.2. The strong factorization theorem

Let
X3 = { smooth threefolds }/ ∼,

where W1 ∼ W2 if W1 d W2 is connected by P-desingularizations of Q-factorial terminal flops. For
η1, η2 ∈ X3 we say that η1 > η2 if there exist W1 and W2 so that ηi = [Wi] and W1 → W2 is a smooth
blow-down. Then, Theorems 1.1 and 1.2 imply the following.

Corollary 8.2. Given a threefold X, let

X3,X =
{

[W] ∈ X3 There exists a birational morphism W → X
}
.

Then X3,X has a unique minimal element.

In other words, if we consider the resolution of singularities inside X3, then there is a unique minimal
resolution, which behaves similarly to the minimal resolution of a surface.

As a consequence, inside the space X3 the following strong factorization theorem holds.
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Theorem 8.3 (Strong factorization theorem for X3). Assume that W1 and W2 are smooth threefolds
which are birational to each other. Then there exists a smooth threefold W̄ such that inside X3 one has
[W̄] ≥ [Wi] for i = 1, 2.

Proof. Let W1 ← W̄ → W2 be a common resolution. Then [W̄] ∈ X3,Wi for i = 1, 2. Since the minimal
element of X3,Wi is [Wi] itself, one has that [W̄] ≥ [Wi] for i = 1, 2. □

8.3. Essential valuations

One can characterize a surface singularity by the information of exceptional curves on the minimal
resolution. One may ask, does a similar phenomenon happen for higher-dimensional singularities?
Since for higher-dimensional singularities there is no unique minimal resolution, what we really want to
study is the following object.

Definition 8.4. Let X be a projective threefold over the complex numbers. We say that a divisorial
valuation vE over X is an almost essential valuation if for any P-minimal resolution X̃ → X one has that
CenterX̃E is an irreducible component of the exceptional locus of X̃ → X.

This name comes from the “essential valuation” in the theories of arc spaces.

Definition 8.5. Let X be a variety. We say that a divisorial valuation vE over X is an essential valuation
if for any resolution of singularities W → X one has that CenterW E is an irreducible component of the
exceptional locus of W → X.

From the definition, one can see that essential valuations are almost essential, but an almost essential
valuation may not be essential.

Example 8.6. Let X = (xy+ z2 + u2n+1) ⊂ A4 for some n > 2. There is exactly one w-morphism X1 → X
over the singular point, which is obtained by blowing-up the origin. There is only one singular point on
X1, which is defined by xy + z2 + u2(n−1)+1. Blowing-up the singular point n − 1 more times, we get a
resolution of singularities X̃ → X. From the construction we know that X̃ is a unique feasible resolution
of X. Since X is terminal and Q-factorial, X̃ is the unique P-minimal resolution of X. Hence, almost
essential valuations of X are those divisorial valuations which appear on X̃. One can compute that
exc(X̃ → X) = E1 ∪ ... ∪ En such that vEi(x, y, z, u) = (i, i, i, 1). On the other hand, by [25, Lemma 15]
we know that essential valuations of X are vE1 and vE2 . Hence, vE3 , ..., vEn are almost essential valuations
which are not essential.

Notice that the set of essential valuations does not really characterize the singularity since it is
independent of n. The set of almost essential valuations carries more information of the singularity.

8.4. Derived categories

Let X be a smooth variety. The bounded derived category of coherent sheaves of X, denoted by
Db(X), is an interesting subject of investigation. One possible method to study Db(X) is to construct a
semi-orthogonal decomposition of Db(X) (refer to [26] for more information). Orlov [27] proved that a
smooth blow-down yields a semi-orthogonal decomposition. In particular, if X is a smooth surface, then
the KX-MMP is a series of smooth blow-downs, thereby resulting in a semi-orthogonal decomposition
of Db(X).
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Now assume that X is a smooth threefold and let

X = X0 d X1 d ...d Xk

be the process of KX-minimal model program. According to Corollary 7.8 and Remark 7.6, X̃i d X̃i+1

can be factored into a composition of smooth blow-downs and P-desingularizations of flops, where
X̃i → Xi is a P-minimal resolution of Xi. If every P-desingularizations of flops that appears in the
factorization is a smooth flop, then the sequence induces a semi-orthogonal decomposition of Db(X)
since smooth flops are derived equivalent [28].

Example 8.7. Let X1 d X2 be the flip which is a quotient of an Atiyah flop by an Z/2Z-action [16,
Example 2.7]. Then X2 is smooth and X1 has a 1

2(1, 1, 1) singular point. Let X → X1 be the smooth
resolution obtained by blowing-up the singular point. Then X → X1 d X2 is a sequence of MMP.

The factorization of the flip is exactly diagram (3) in Lemma 6.7, namely the diagram

X

��

// X′

��
X1

// X2

where X d X′ is a smooth flop and X′ → X2 is a blow-down of a smooth curve. We know that
there exists an equivalence of category Φ : Db(X′) → Db(X) and a semi-orthogonal decomposition
Db(X′) = ⟨D−1,Db(X2)⟩. Hence, Db(X) = ⟨Φ(D−1),Φ(Db(X2))⟩ is a semi-orthogonal decomposition.

In general, a P-desingularization of a flop X̃i d X̃i+1 may not be derived equivalent since X̃i and
X̃i+1 may not be isomorphic in codimension one. Nevertheless, due to the symmetry between X̃i and
X̃i+1, one might expect that a semi-orthogonal decomposition on Db(X̃i) will result in a semi-orthogonal
decomposition on Db(X̃i+1). It still hopeful that our approach will be effective for all smooth threefolds.
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