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Abstract: This paper focused on the point-of-interest (POI) recommendation task. Recently, graph 
representation learning-based POI recommendation models have gained significant attention due to 
the powerful modeling capacity of graph structural data. Despite their effectiveness, we have found 
that recent methods struggle to effectively utilize information from POIs that have not been checked 
in, which could limit their performance. Hence, in this paper, we proposed a new model, named the 
multi-contextual graph contrastive learning (MCGCL) model, which introduces the contrastive 
learning into graph representation learning-based methods. First, MCGCL extracts interactions 
between POIs under different contextual factors from user check-in records using predefined graph 
structure information. Next, it samples important POI sets from different contextual factors using a 
random walk-based method. Then, it introduces a new contrastive learning loss that incorporates 
contextual information into traditional contrastive learning to enhance its ability to capture 
contextual information. Finally, MCGCL employs a graph neural network (GNN) model to learn 
representations of users and POIs. Extensive experiments on real-world datasets have demonstrated 
the effectiveness of MCGCL on the POI recommendation task compared to representative POI 
recommendation approaches. 

Keywords: POI recommendation; graph representation learning; contextual information; contrastive 
learning 
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1. Introduction  

Location-based social networks are widely prevalent in real-world applications, such as platforms 
like Yelp for food check-ins and Foursquare for social sharing. As one of the essential services in 
location-based social networks, POI recommendation [1,2] aims to suggest unvisited POIs that users 
may have the interest to visit, bringing significant economic benefits to various social platforms. To 
further enhance the quality of service provided by social platforms to users, researchers have been 
studying how to improve the accuracy of POI recommendation models in recent years. 

Early POI recommendation models [3–6] were based on methods like matrix factorization, 
collaborative filtering, or topic modeling. Although these methods can intuitively model the 
interactions between users and POIs, they are limited by the sparsity of data in POI recommendation 
scenarios, leaving much room for improvement in performance. 

In recent years, recommendation models based on graph representation learning [7–9] have 
gained significant attention from researchers. The core idea of these methods is to transform user 
check-in records into graph-structured data and enhance the model’s ability to mine user 
preferences [10,11] through the relationships between nodes in the graph.  

Despite their effectiveness, we find that such methods struggle to effectively utilize information 
from POIs that have not been checked in. Previous studies have shown that, in the field of POI 
recommendation, each user checks in to only a few POIs, leaving a large number unchecked. Fully 
leveraging the information from these unchecked POIs can help improve the model’s ability to capture 
user preferences. However, existing graph-based representation learning methods struggle to exploit 
this aspect. On the other hand, in the computer vision field, contrastive learning methods are widely 
used to improve the generalization of models. By introducing contrastive loss regarding positive and 
negative samples, models can effectively learn target data features from limited data. Inspired by this, 
we have introduced contrastive learning into graph-based representation learning models in this paper. 

In this paper, we propose a new model, named the multi-contextual graph contrastive learning 
(MCGCL) model, which consists of three core modules. First, the contextual information-aware 
sampling allows MCGCL to collect key nodes corresponding to each POI in different context scenarios, 
leveraging the defined graph structure data. Second, the contrastive loss based on context information 
enhances the model’s ability to capture context information by incorporating the context information’s 
influence into the original contrastive loss, based on the sampling results in different context 
environments. Finally, the representation learning module based on graph representation learning 
utilizes GNN to learn preference representations of POIs and users for the final recommendation task. 
We conducted extensive experiments on datasets from real scenarios. The results demonstrate that, 
compared to representative methods, MCGCL performs superiorly in the POI recommendation task. 

The contributions of this paper are summarized as follows: 
 We develop a context-aware sampling operation to construct the input sequences containing 

related POIs based on different contextual information for the target POIs. 
 We propose a new POI recommendation method called MCGCL, which introduces multi-level 

contrastive learning by constructing two-level positive and negative POI sequences to 
comprehensively leverage the constructed POI sequences to learn distinguishable representations 
of POIs. 

 MCGCL develops a graph attention-based module to adaptively learn final representations of POIs 
from different contextual information and leverage a time-delay strategy to estimate user preferences. 
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 We conduct extensive experiments on real-world datasets to validate the effectiveness of the 
proposed method for the POI recommendation task, compared to recent representative methods. 

2. Related work 

In this section, we provide a comprehensive review of recent studies from two perspectives: POI 
recommendation and contrastive learning recommendation. 

2.1. POI recommendation  

POI recommendation [3], one of the most important tasks in location-based social services, has 
attracted great attention in the recent decade. In the past decade, many approaches involving matrix 
factorization-based [4], topic model-based [5], and graph representation learning-based [6] methods 
have been developed to improve the performance for the POI recommendation. Here, we briefly review 
recent efforts for this task. 

Wang et al. [4] introduce a novel successive POI recommendation method named SQPMF, a novel 
POI recommendation method that integrates user preferences, social relationships, and POI transition 
data for more precise recommendations. Ji et al. [5] propose a social period-aware topic model (SPATM), 
which automatically learns the influence weights of user interests and social preferences for each 
check-in time to address the issue in distinguishing between individual user interests and social 
preferences. Wang et al. [7] propose the intent-aware graph neural network-based model (IAGNN), 
which first represents user check-in sequences as graphs and utilizes graph neural networks to learn 
POI embeddings. Gan et al. [8] introduce a unique hypersphere interest model for modeling user 
preferences. Qin et al. [9] propose a disentangled representation learning model called DIG, which 
employs a geo-constrained negative sampling strategy to find reliable negative samples for 
geographical and user interest factors, and a geo-enhanced soft-weighted loss function to balance these 
factors in loss computation. Cai et al. [12] propose a griends-aware graph collaborative filtering 
method (FG-CF) that incorporates social information into a user-POI graph by estimating a user-POI 
correlation matrix and updating user embeddings accordingly. Chen et al. [13] propose a novel POI 
recommendation method, deep navigator (DeNavi), which incorporates time and distance irregularities 
into learning sequential transitions. Lang et al. [14] propose a POI recommendation method based on 
a multiple bipartite graph network model (MBR) to make dynamic recommendations over time. Chang 
et al. [15] propose a multi-attention n etwork (MANC), which first utilizes a multi-attention network 
to learn the contextual influence of users and their friends and then employs a feature-level attention 
network to capture latent features of neighborhood POIs and a POI-level attention network to capture 
geographical influence among POIs. Zhang et al. [16] propose GNN-POI to leverage GNNs to learn 
node representations from node information and topological structure, improving recommendation 
accuracy. Christoforidis et al. [17] propose a new recommendation method with multiple network 
embeddings termed RELINE, a unified model that jointly learns user and POI dynamics. RELINE 
incorporates social, geographical, and temporal influences, as well as user preference dynamics by 
embedding eight relational graphs into one shared latent space.  
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2.2. Contrastive learning recommendation 

Contrastive learning, whose goal is to learn distinct representations of input objects, has been 
widely used in the field of recommender systems [18], such as sequential-based recommendation [19] 
and session-based recommendation [20]. 

Yang et al. [21] propose a contrastive learning-based method called supervised contrastive 
learning (SCL), which employs self-supervised learning on the user-item graph to enhance the 
robustness of graph convolutional network (GCN) but highlights its shortcomings in fully addressing 
the specificity and uncertainty of user-item interactions. Wang et al. [22] propose a contrastive graph 
self-attention network for session-based recommendation which includes three distinct graph encoders 
to capture various item transition patterns and utilizes an attention-based fusion module to aggregate 
item representations related to the current session. Li et al. [23] propose a new contrastive learning 
method called dual-view co-contrastive learning (DCL), which aims to enhance multi-behavior 
recommendation by leveraging contrastive learning to mine additional supervision signals from raw 
data. Zhang et al. [24] propose contrastive learning with frequency domain for sequential 
recommendation (CLF4SRec), which introduces a learnable Fourier layer to provide frequency-based 
self-supervised signals. Xiao et al. [25] introduce a method based on a novel framework that combines 
graph contrastive embedding and multi-head cross-attention (GCE-MCAT), which combines graph 
contrastive embedding and multi-head cross-attention transfer to improve cross-domain 
recommendation. He et al. [26] propose a meta-path-based graph contrastive learning network 
(MPGCL) for learning more meaningful user and video embeddings, which uses a well-designed meta-
path-based random walk strategy to create homogeneous graphs for user and video types, allowing 
better capture of heterogeneity. Ji et al. [27] develop a model-agnostic contrastive learning framework 
called ReACL, which leverages relationship homophily among data to achieve a uniform distribution 
for nodes and align relevant features to preserve personalized features. Tang et al. [28] discuss two 
issues with contrastive learning loss in recommender systems and propose a ranking-based contrastive 
loss (RCL) function to address these issues. Zhuang et al. [29] create a contrastive learning-based 
graph convolution network for social recommendation that integrates information from both social and 
interaction graphs.  

Recently, there are also studies [30,31] that leverage contrastive learning to enhance the model 
performance in the POI recommendation task. The main difference between the proposed MCGCL 
method and previous studies is that MCGCL develops a contextual-aware contrastive learning 
framework that comprehensively leverages the information from different contextual feature spaces to 
develop the strategy of generating positive and negative sequences and designs a new contextual-aware 
loss function to fully preserve the influence of different contextual information. 

3. Notations and definitions 

This section introduces several notations and definitions used in this paper. 
Given a location-based social network, we have the user set 𝑈 ൌ ሼ𝑢ଵ, … , 𝑢௡ሽ and the POI set 

𝑃 ൌ ሼ𝑝ଵ, … , 𝑝௠ሽ, where 𝑛 and 𝑚 are the number of users and POIs. A users’ check-in record is 
represented as c௨ ൌ ሼ𝑝, 𝑙, 𝑡ሽ, where 𝑙 denotes the location information of the check-in record and 
𝑡  denotes the corresponding check-in timestamp. Given the above notations, we have the 
following definitions: 
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Definition 1 (Temporal-aware interaction graph). A temporal-aware interaction graph 𝐺் ൌ
ሺ𝑉, 𝐸்ሻ describes the interactions between POIs under the temporal contextual information, where 𝑉 
denotes the node set containing all POIs and 𝐸் denotes the edge set. If two POIs are checked by the 
same user in the same timestamp or adjacent timestamps, there will be an edge between them in 𝐺். 

Definition 2 (Geographical-aware interaction graph). A geographical-aware interaction graph 
𝐺௅ ൌ ሺ𝑉, 𝐸௅ሻ describes the interactions between POIs under the geographical contextual information, 
where 𝑉 denotes the node set containing all POIs and 𝐸௅ denotes the edge set. If the locations of 
two POIs are in the same or adjacent districts, there will be an edge between them in 𝐺௅. 

Definition 3 (POI recommendation task). Given all check-in records of a user C௨ ൌ ሼc௨
ଵ, … , 𝑐௨

௡ೠሽ, 
the goal of the POI recommendation task is to generate the recommended POI list R௨ ൌ ሼ𝑝ଵ, … , 𝑝௞ሽ, 
where 𝑘 is the length of the recommendation list. 

4. Methodology 

This section introduces MCGCL in detail. Specifically, MCGCL contains three main stages: 
contextual information-aware sampling, multi-context contrastive learning, and recommendation score 
generation. Figure 1 shows the overall framework of the proposed method. 

 

Figure 1. The overall framework of MCGCL. 

4.1. Contextual information-aware sampling 

Different contextual information can reflect various associations between POIs. Effectively 
capturing the associations between POIs from different contextual information is key to enhancing 
POI recommendation services. In this paper, we construct two types of POI association graphs based 
on time and geography contextual information 𝐺்and 𝐺௅. These two graphs depict the associations 
between different POIs from the perspectives of temporal and geographical contexts, respectively. The 
connectivity in the graphs indicates the strength of associations between POIs, where POIs with strong 
associations often appear in the vicinity of the target POI. Thus, the topological structure of the graph 
can express the importance of different POIs.  

To capture the different interactions of POIs under different contextual scenarios, we propose a 
contextual information-aware sampling strategy. Specifically, after generating the context-aware 
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graphs, we obtain the adjacency matrices associated with them.  
Taking the temporal context aware graph 𝐺்  as an example, its adjacency matrix is 𝐀் . 

Subsequently, we employ a personalized PageRank-based sampling method to sample associated POIs 
from 𝐺்: 

𝐬 ൌ α ⋅ 𝐌𝐬 ൅ ሺ1 െ αሻ ⋅ 𝐪,                            (1) 

where 𝐌 is the transition matrix. In this paper, we utilize the normalized adjacency matrix to represent 
𝐌 ൌ 𝐃ି𝟏𝐀். 𝐬  denotes the personalized vector and 𝐪  denotes the restart vector. α  is the hyper-
parameter to control the probability of the restart process. In this paper, we adopt the power iteration 
strategy to approximately calculate the values of the personalized vector 𝐬. The rationale of PageRank 
sampling is that the constructed contextual information-aware graphs preserve the relations between 
POIs in different contextual feature spaces. Hence, conducting a random walk-based sampling 
operation on the contextual-aware graph can effectively extract the related POIs in the corresponding 
contextual feature space for the target POI. Due to the popularity of PageRank sampling in the random 
walk-based approaches, we adopt this strategy to sample POIs from the constructed graph. 

After running the personalized PageRank sampling operation, we obtain an n-dimensional vector 
𝐬௩

் for the node 𝑣. The values in the vector reflect the degree of topological association between node 
𝑣 and other nodes in the graph. Therefore, to select highly associated nodes, we employ a top-k 
selection strategy. Specifically, we select the top 𝑛௞ nodes with the highest values in the vector 𝐬௩

் to 
construct the important node set for node 𝑣 in the graph:  

𝑁௩
் ൌ ሼ𝑣௜ | 𝑣௜ ∈ Topሺ𝐬௩

்ሻሽ,                             (2) 

where Topሺ⋅ሻ denotes the top-k selection strategy. Similar to 𝐺், we can obtain the important node 
set 𝑁௩

௅ of the node 𝑣. 

4.2. Multi-context contrastive learning 

After constructing the important node set for each POI, we further use a contrastive learning 
approach to learn the representations of POIs. The key point of contrastive learning lies in the 
construction of negative sample sets. Different from traditional contrastive learning strategies, which 
directly consider POIs not appearing in the important node set as negative samples, we propose a multi-
context contrastive learning strategy in this paper. Specifically, for each node 𝑣, we first extract the 
intersection of the two important node sets, 𝑁௩

்and 𝑁௩
௅, to create a new node set 𝑁௩

ு: 

𝑁௩
ு ൌ ሼ𝑣௜ | 𝑣௜ ∈  𝑁௩

் and 𝑣௜ ∈  𝑁௩
௅ሽ.                       (3) 

Intuitively, if a POI appears in both 𝑁௩
் and 𝑁௩

௅, then this POI is considered to be one of the 

most important POIs to the target node. Then, for each POI 𝑣௝ in 𝑁௩
ு, our proposed multi-context 

contrastive learning strategy is defined as follows: 

𝐿௠௖ ൌ  െlog
ୣ୶୮൫𝐇ೡ⋅𝐇ೡೕ/ఛ൯

∑ ୣ୶୮ሺ𝐇ೡ⋅𝐇ೡೖ/ఛሻ
ೡೖ∈ಿೡ

೅
െ 𝛽 ⋅ log

ୣ୶୮൫𝐇ೡ⋅𝐇ೡೕ/ఛ൯

∑ ୣ୶୮ሺ𝐇ೡ⋅𝐇ೡೖ/ఛሻ
ೡೖ∈ಿೡ

ಽ
,             (4) 

where 𝐇 is the initial features of the POIs. In practice, we first utilize a linear layer to obtain the 
hidden representations of the POIs for model training. 𝜏 is the temperature coefficient and 𝛽 is the 
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trade-off weight. 
Equation (4) indicates that we select the intersection of the POI lists sampled from temporal and 

geographical contexts as positive samples, while the remaining POIs are considered negative samples. 
The key idea of Eq (4) is to generate the positive POI sequences based on the constructed sequences 
from different contextual features. The rationale of Eq (4) is that if a POI appears simultaneously in 
two sequences, it will be more important compared to other POIs in the sampling sequences. The 
representation of the target POI should be more similar to these POIs than to others only appearing in 
one sequence. Additionally, we introduce weighted coefficients to control the influence of different 
contextual features on the representation of the POIs. 

Moreover, we also introduce the standard loss function of contrastive learning, i.e., noise 
contrastive estimation, to leverage the information of other POIs to learn representations: 

𝐿௡௖ ൌ  െlog
ୣ୶୮൫𝐇ೡ⋅𝐇ೡೕ/ఛ൯

∑ ୣ୶୮ሺ𝐇ೡ⋅𝐇ೡೖ/ఛሻ
ೡೖ∉ಿೡ

೅
.                         (5) 

Equation (5) denotes the contrastive loss via the sampled 𝑁௩
்  set. We can obtain the similar loss 

function via the 𝑁௩
௅ set. The rationale of Eq (5) is that POIs appearing in one sequence are more 

important to other POIs which have not been sampled. Hence, we consider these POIs in one sequence 
as positive samples and other POIs as negative samples in Eq (5). By combining Eqs (4) and (5), 
MCGCL established a two-level contrastive learning that comprehensively leverages the information 
of check-in records under different contextual information to learn distinguishable representations 
of POIs. 

4.3. User preference estimation 

Estimating user preferences is also a key step in POI recommendation. Intuitively, user 
preferences are reflected by the POIs they have checked in. The representations of POIs are deeply 
related to contextual factors. Therefore, in this paper, we first calculate the representations of POIs 
through different contextual information, and then calculate the user preferences. 

To calculate the representations of POIs from different contextual factors, we introduce graph 
neural networks to compute the representation of POIs from the constructed context-aware interaction 
graph. Take the temporal-aware interaction graph as an example. We use the following strategy to 
calculate the representations of POIs on 𝐺்: 

𝐇்௉ሺ௟ାଵሻ ൌ σሺ𝐀்𝐇்௉ሺ௟ሻ𝐖ሺ௟ሻሻ,                           (6) 

where 𝐇்௉ሺ௟ሻ denotes the representations of POIs learned from 𝐺் at the l-th neural network layer 
and 𝐇்௉ሺ଴ሻ ൌ 𝐇 are the initial features of the POIs. 𝐖ሺ௟ሻ is the corresponding learnable parameter 
matrix. Similar to 𝐇்௉, we can obtain the representations of POIs 𝐇௅௉ from 𝐺௅. 

Considering that different contextual information has varying impacts on the representation of 
POIs, in this paper, we adopt a weighted aggregation method to compute the final representations of 
POIs from different contextual factors: 

𝐇௉ ൌ 𝛾 ⋅ 𝐇்௉ ൅ ሺ1 െ 𝛾ሻ ⋅ 𝐇௅௉,                         (7) 

where 𝐇௉ represents the final representations of the POIs and 𝛾 is the aggregation weight. 
Finally, user preferences are calculated as follows: 
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𝐇௨
௎ ൌ ∑ ଵ

ఋሺ௧ି௧೛ሻ
⋅ 𝐇௣

௉
ሺ௨,௣ሻ∈஼ೠ

,                           (8) 

where 𝑡, 𝑡௣ are the timestamps of the current time and the checked time. 𝛿ሺ⋅ሻ denotes the sigmoid function.  

4.4.  Recommendation generation and model optimization 

After obtaining the user’s preference features, we need to calculate the recommendation score 
between the user and the POIs. In this paper, we use the dot product strategy to calculate the 
recommendation score between the user and the POI: 

𝑆𝑐𝑜𝑟𝑒ሺ𝑢, 𝑝ሻ ൌ 𝐇௨
௎ ⋅ 𝐇௣

௉்
.                               (9) 

When generating a recommendation list for the user, we calculate the recommendation score 
between the user and all unvisited POIs, then sort them in descending order of the recommendation 
score, and recommend the top k POIs to the user. 

As for the model training, the loss function of the proposed method contains two parts: 
recommendation-based loss and contrastive learning-based loss. In this paper, we adopt the widely 
used Bayesian personalized ranking (BPR) to calculate the recommendation-based loss: 

𝐿஻௉ோ ൌ െ ∑ ln σ ቀ𝑆𝑐𝑜𝑟𝑒ሺ𝑢, 𝑣௜ሻ െ 𝑆𝑐𝑜𝑟𝑒൫𝑢, 𝑣௝൯ቁ൫௨,௩೔,௩ೕ൯∈஽ ,                (10) 

where 𝑣௜, 𝑣௝ represent the positive and negative samples, and 𝐷 denotes the training set. The total 
loss function of the proposed method is defined as follows: 

𝐿୑େୋେ୐ ൌ 𝐿஻௉ோ ൅ 𝜆ଵ ⋅ 𝐿ெ஼ ൅ 𝜆ଶ ⋅ 𝐿௡௖,                       (11) 

where 𝜆ଵ and 𝜆ଶ are the regularization coefficients. 
Here, we discuss the computational analysis of the proposed method. The computation of 

MCGCL could be divided into two parts: pre-processing and model training. In the pre-processing, 
MCGCL utilizes the PageRank-based approach to sample POIs, resulting in 𝑂ሺ𝐸ሻ  computational 
complexity, where 𝐸 denotes the number of edges in the generated contextual graph. In the model 
training stage, MCGCL leverages the contrastive learning-based methods and GNN-based method to 
learn representations of POIs, resulting in 𝑂ሺ𝑛𝑛௞ሻ + 𝑂ሺ𝐸ሻ computational complexity, respectively. 
Here, we use 𝑛௞ to denote the total sampling size of POIs for simplified description. 

5. Experiments 

In this section, we evaluate the performance of our proposed MCGCL through extensive 
experiments on real-world datasets. We start by discussing the experimental settings, including the 
datasets, baselines, and evaluation metrics, in Sections 5.1–5.3. Then, we compare the model 
performance of all methods on the POI recommendation task in Section 5.4. Finally, we investigate 
how the performance of MCGCL is affected by different design hyperparameters in Section 5.5. 
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5.1. Datasets 

We adopt two real-world datasets, Foursquare and Yelp, which are extracted from the famous 
location-based social networks. The Foursquare dataset covers check-ins within the United States from 
April 2012 to September 2013. We remove users with fewer than 20 check-in POIs and POIs with 
fewer than 20 visitors. The Yelp dataset comprises a large number of POIs and corresponding review 
information. Similarly, we filter out users with fewer than 20 check-ins and POIs with fewer than 20 
visitors. Table 1 provides a summary of the statistics for these datasets. 

Table 1. Statistics of datasets. 

 Foursquare Yelp 
#Users 24,941 30,887 
#POIs 28,593 18,995 
#Records 1,196,248 860,888 
Sparsity 99.83% 99.85% 

We sort the check-in records of each dataset according to the check-in timestamps. Then, each 
dataset is divided into three subsets: training, validation, and test sets. Specifically, the earliest 60% of 
check-ins are regarded as the training set, while the most recent 20% are the test data. The remaining 20% 
are used as the validation set.  

5.2. Baselines 

In this paper, we adopt the following representative approaches as baselines: 
GeoSoCa [32] incorporates three types of influence—geographical, social, and categorical—to 

estimate the representations of POIs and users. 
POI2Vec [33] employs a latent representation model that incorporates geographical influence, 

which uses a binary tree to cluster nearby POIs into the same region, enhancing their spatial influence. 
STGCN [34] is an augmented long short-term memory (LSTM) spatiotemporal gating network, 

which introduces spatiotemporal gates to capture the relationships between POIs. 
GPR [35] is a graph-based geographic latent representation model designed to capture highly 

nonlinear geographic influences from interactions between users and POIs. 
GSTN [36] is a novel module that focuses on explicitly capturing complex geographical 

influences by utilizing graph embedding techniques. 
ST-RNN [37] utilizes RNN to model a user's previous check-in sequence, which captures both 

spatial and temporal contexts using time and distance transition matrices. 
SLS-REC [38] leverages the spatiotemporal Hawkes attention hypergraph neural network to 

capture users’ dynamic preferences in different contextual feature spaces. 
LTPM-TRSP [39] utilizes the temporal recency (TR) measure in the visits along with the location-

aware recommendation based on spatial proximity (SP) to the user’s location. 

5.3. Evaluation metrics 

In this paper, we adopt two widely used evaluation metrics, Precision@k and Recall@k, to 
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evaluate the performance of all methods on the POI recommendation task. The calculations of the 
above metrics are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 ൌ ଵ

|஽೟೐ೞ೟|
∑ |்ሺ௨ሻ∩ோሺ௨ሻ|

௞௨∈஽೟೐ೞ೟
,                     (12) 

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 ൌ ଵ

|஽೟೐ೞ೟|
∑ |்ሺ௨ሻ∩ோሺ௨ሻ|

்ሺ௨ሻ௨∈஽೟೐ೞ೟
,                       (13) 

where 𝐷௧௘௦௧  denotes the test set. 𝑇ሺ𝑢ሻ  denotes the POI set that the user 𝑢  has visited. 𝑅ሺ𝑢ሻ 
represents the recommendation POI set. 𝑘 is the length of the recommendation list. In this paper, we 
vary 𝑘 from 5 to 15. 

5.4. Performance comparison 

In this subsection, we compare the performance of the proposed MCGCL with other POI 
recommendation methods on real-world datasets. Specifically, for each model, we conduct 10 runs on 
each dataset and report the average results. Tables 2–5 present all of the experimental results. 

Table 2. Performances of all of the methods on Foursquare in terms of precision. 

Foursquare Precision@5 Precision@10 Precision@15 
GeoSoCa 
POI2Vec 
ST-RNN 
STGCN 
GPR 
GSTN 

 

0.021 
0.061 
0.066 
0.074 
0.078 
0.085 

0.018 
0.052 
0.058 
0.064 
0.072 
0.078 

0.016 
0.043 
0.051 
0.063 
0.066 
0.071 

SLS-REC 0.083 0.074 0.068 
LTPM-TRSP 0.069 0.061 0.059 
MCGCL 0.089 0.086 0.082 

Table 3. Performances of all of the methods on Foursquare in terms of recall. 

Foursquare Recall@5 Recall@10 Recall@15 
GeoSoCa 
POI2Vec 
ST-RNN 
STGCN 
GPR 
GSTN 

 

0.025 
0.077 
0.095 
0.091 
0.099 
0.122 

0.033 
0.086 
0.112 
0.124 
0.131 
0.138 

0.042 
0.091 
0.121 
0.149 
0.158 
0.164 

SLS-REC 0.118 0.135 0.161 
LTPM-TRSP 0.092 0.119 0.128 
MCGCL 0.126 0.149 0.171 

From the experimental results in the tables, it can be observed that MCGCL outperforms all 
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baseline methods on two datasets, demonstrating the effectiveness of the proposed approach. Moreover, 
compared to other models utilizing graph representation learning methods, such as STGCN, GPR, 
SLS-REC, etc., MCGCL exhibits superior performance. This is attributed to the incorporation of a 
contrastive learning approach based on contextual factors in MCGCL, enabling it to effectively learn 
representations of POIs and users from the sparse check-in records. We can also observe that sequential 
model-based methods, such as POI2Vec and ST-RNN, obtain poor performance. This is because 
sequential model-based methods require successive check-in records to learn user preferences. 
However, these methods can suffer from the data sparsity issue, which further hurts the model performance.  

Table 4. Performances of all of the methods on Yelp in terms of precision. 

Yelp Precision@5 Precision@10 Precision@15 
GeoSoCa 
POI2Vec 
ST-RNN 
STGCN 
GPR 
GSTN 

 

0.016 
0.054 
0.056 
0.065 
0.105 
0.098 

0.015 
0.046 
0.051 
0.061 
0.092 
0.082 

0.013 
0.041 
0.046 
0.054 
0.077 
0.074 

SLS-REC 0.101 0.084 0.075 
LTPM-TRSP 0.052 0.048 0.043 
MCGCL 0.108 0.095 0.083 

Table 5. Performances of all of the methods on Yelp in terms of recall. 

Yelp Recall@5 Recall@10 Recall@15 
GeoSoCa 
POI2Vec 
ST-RNN 
STGCN 
GPR 
GSTN 

 

0.027 
0.084 
0.087 
0.124 
0.134 
0.128 

0.042 
0.091 
0.098 
0.138 
0.147 
0.139 

0.049 
0.099 
0.105 
0.159 
0.166 
0.162 

SLS-REC 0.131 0.142 0.163 
LTPM-TRSP 0.079 0.095 0.102 
MCGCL 0.151 0.164 0.181 

5.5. Ablation study 

Contextual information-aware contrastive learning is the key module of the proposed MCGCL. 
To validate the gain of this module on model performance, we develop a variant of MCGCL, called 
MCGCL-C. In this version, the contextual information-aware contrastive learning is removed. Only 
the BPR loss and the normal contrastive learning loss are preserved. We run this variant model on two 
datasets. The results are summarized in Tables 6–9. 
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Table 6. Performances of MCGCL and its variant on Foursquare in terms of precision. 

Foursquare Precision@5 Precision@10 Precision@15 
MCGCL-C 0.076 0.068 0.065 
MCGCL 0.089 0.086 0.082 
Gain +0.013 +0.018 +0.017 

The experimental results demonstrate that our proposed contextual information-aware contrastive 
learning model consistently improves the model performance across different datasets. This 
phenomenon indicates the effectiveness of our design in the POI recommendation scenario. 

Table 7. Performances of MCGCL and its variant on Foursquare in terms of recall. 

Foursquare Recall@5 Recall@10 Recall@15 
MCGCL-C 0.095 0.128 0.152 
MCGCL 0.126 0.149 0.171 
Gain +0.031 +0.021 0.019 

Table 8. Performances of MCGCL and its variant on Yelp in terms of precision. 

Yelp Precision@5 Precision@10 Precision@15 
MCGCL-C 0.092 0.078 0.069 
MCGCL 0.108 0.095 0.083 
Gain +0.016 +0.017 +0.014 

Table 9. Performances of MCGCL and its variant on Yelp in terms of recall. 

Yelp Recall@5 Recall@10 Recall@15 
MCGCL-C 0.122 0.134 0.159 
MCGCL 0.151 0.164 0.181 
Gain +0.029 +0.030 +0.022 

5.6. Analysis of the aggregation weight 

As mentioned before, learning the representations of POIs is the key step of POI recommendation. 
In this paper, we extract the representations of POIs from temporal and geographical factors. The value 
of 𝛾  is the key parameter to determine the final representations of POIs. Hence, we analyze the 
influence of 𝛾  on model performance. Specifically, we vary 𝛾  in ሼ0, 0.2, 0.4, 0.6, 0.8, 1ሽ  and 
observe the model performance. Figures 2 and 3 show the experimental results. 

The graph clearly shows that the model performs poorly when the value of 𝛾 is at two endpoints. 
This suggests that learning the representation of POIs solely from one piece of contextual information 
is not accurate enough. The model achieves optimal performance when 𝛾 is set to 0.8, indicating that, 
on the Foursquare dataset, the temporal factor has a greater impact on the representation of POIs than 
the geographical factor. 
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Figure 2. Performance with different 𝛾 in terms of precision on Foursquare. 

 

Figure 3. Performance with different 𝛾 in terms of recall on Foursquare. 

5.7. Analysis of the regularization coefficient 

 

Figure 4. Performance with coefficient weights in terms of precision on Foursquare. 

The regularization coefficient weights 𝜆ଵ  and 𝜆ଶ  in Eq (11) control the contributions of 
different contrastive learning items to the final loss functions, further influencing the learning of 
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representations of users and POIs. To explore the influence of coefficient weights on the model 
performance, we vary 𝜆ଵ and 𝜆ଶ in ሼ0.5, 1, 1.5ሽ and observe the changes in the model performance. 
The results are shown in Figures 4 and 5. 

 

Figure 5. Performance with coefficient weights in terms of recall on Foursquare. 

From Figures 4 and 5, we can observe that the model achieves the worst performance when two 
coefficient weights are set at 0.5. This situation indicates that the contrastive learning loss items are 
important for learning representations of POIs and users. Moreover, we can observe that the model 
achieves the best performance when 𝜆ଵ  and 𝜆ଶ  are 1.5 and 1. This situation means that the 
contextual-aware contrastive learning item is more important than the normal contrastive learning. 

5.8. Analysis of the sampling size 

The sampling size k is also an important parameter that determines the model input. Here, we 
explore the influence of k on the model performance. Specifically, we vary k in ሼ3, 5, 7, 9, 11ሽ and 
evaluate the model performance. Table 10 reports the corresponding results. 

Table 10. Performances of MCGCL with different sampling size on Foursquare. 

k 3 5 7 9 11 
Precision@10 0.066 0.072 0.078 0.086 0.075 
Recall@10 0.125 0.132 0.138 0.149 0.136 

We can observe that the model performance first increases and then decreases with the increase of 
k. This situation indicates that increasing the size of the sampling sequence can effectively enhance the 
model performance. However, a large value of k can hurt the model performance since a long sampling 
sequence can involve several irrelevant POIs that affect the learning of the POIs’ representations. 

6. Conclusions 

In this paper, we proposed a novel POI recommendation model called MCGCL. First, it extracts 
the interactions between POIs in different contextual factors from user check-in records using 
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predefined graph structure information. Next, it samples important POI sets from different contextual 
factors using a random walk-based method. Then, MCGCL introduces a new contrastive learning loss, 
which incorporates contextual information into traditional contrastive learning to enhance its ability to 
capture contextual information. Finally, MCGCL employs a GNN model to learn representations of 
users and POIs. Extensive experiments on real-world datasets demonstrated the effectiveness of 
MCGCL on the POI recommendation task, compared to representative POI recommendation approaches.  
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