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Abstract: To assure operational safety in the airport apron area and track the process of ground service, 
it is necessary to analyze key targets and their activities in the airport apron surveillance videos. This 
research shows an activity identification algorithm for ground service objects in an airport apron area 
and proposes an improved YOLOv5 algorithm to increase the precision of small object detection by 
introducing an SPD-Conv (spath-to-depth-Conv) block in YOLOv5’s backbone layer. The improved 
algorithm can efficiently extract the information features of small-sized objects, medium-sized objects, 
and moving objects in large scenes, and it achieves effective detection of activities of ground service 
in the apron area. The experimental results show that the detection average precision of all objects is 
more than 90%, and the whole class mean average precision (mAP) is 98.7%. At the same time, the 
original model was converted to TensorRT and OpenVINO format models, which increased the 
inference efficiency of the GPU and CPU by 55.3 and 137.1%, respectively. 
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1. Introduction  

In recent years, China’s civil aviation industry has experienced rapid development. The CAAC 
(Civil Aviation Administration of China) has put forward the “Plan of the Civil Aviation Development 
of China”. The plan aims to take full advantage of airport and other civil aviation construction facilities, 
combining them with big data and new generation information technology, such as artificial 
intelligence. The goal is to transition from a large civil aviation country to a strong one, with a focus 
on building a smart civil aviation system. Smart travel is a crucial component of this technology system. 
The “Plan of the Civil Aviation Development of China” places great emphasis on how to achieve this. 
The development of artificial intelligence technology and enhanced computability have led to 
increased interest in intelligent monitoring of video data streams using machine learning and deep 
learning algorithms across various fields. The use of digital and intelligent technology to improve 
digital perception, data decision-making, and lean management capabilities of civil aviation is a topic 
worthy of in-depth study in the field. The “Roadmap for the Construction of Intelligent Civil Aviation” 
issued by the CAAC in 2022 proposes focusing on the construction of four types of airports; 
strengthening the service capacity of airport flights, passengers, and freight transportation; promoting 
the development of airport operational synergies, operational intelligence, and digital infrastructure 
construction; and enhancing the supportability of airports, service levels, and operational efficiency. 
Using intelligent algorithms to automatically identify the nodes of ground protection from airport 
monitoring videos and track the chronological status of protection operations is an effective approach 
to improving the lean management of flight protection. This is also an important direction for 
developing smart airports. 

The process of ground service during flight transit refers to the taxiing of the aircraft to the parking 
space after it enters the harbor. The process begins with setting the wheel block and ends with its 
removal after a series of services have been performed on the aircraft. The flight transit ground 
monitoring video contains various airport scene objects, such as aircraft, staff, tractor-trailers, etc. The 
airport involves various ground service activities, including wheel blocking, baggage loading and 
unloading, refueling, loading of flight food, etc. These activities affect the allocation of airport 
personnel, the scheduling of airport resources, and passengers’ travel routes. Additionally, they reflect 
the economic and operational efficiency of the airport, as well as the passengers’ experience. These 
factors reflect the airport’s economic efficiency, operational effectiveness, and passenger experience. 

With the recovery of civil aviation traffic after the epidemic and the trend of increasing year by 
year [1], the increase in the number of outbound flights leads to the increase in the security pressure 
of airport flights over the station. Some airports have reached capacity, and their existing facilities 
cannot meet development needs. As a result, the issue of inadequate flight protection management at 
airports has become more prominent. The airspace resources at busy airports and on busy air routes 
are limited, resulting in restricted flight operations and increased delays. This has impacted the overall 
performance of airport facilities and systems, hindering their full utilization. Flight transit security 
delays account for 15.45% of all delays at large hub airports in China. In developed countries like 
those in Europe and the United States, flight transit security delays are the second largest cause of 
airport delays, accounting for 25% of all delays. Flight grounds have a direct impact on the punctuality 
of flights, the operational efficiency of airports, and the overall passenger experience of airport services. 
Currently, the data for each protection operation node is recorded manually, resulting in excessive 
manual intervention and inadequate automation. As a result, completion of each protection operation 
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link and resource scheduling cannot be obtained in a timely manner. This leads to inappropriate ground 
protection operation process connection and time planning, reducing the efficiency of flight transit 
protection and resulting in the wastage of protection resources and increased operation costs. Flight 
delays result in economic losses for airlines and cause passenger anxiety. Ground service in the apron 
area has a significant impact on airport operational efficiency. Inefficient ground service often leads to 
flight delays. The efficient use of limited transit time and airport security resources to reduce flight 
delays caused by ground service is a crucial issue to be addressed in current airport operations and 
security. This can help improve the punctuality of transit flights. 

This paper proposes a new algorithm for monitoring ground service processes in airport apron 
areas using service activity recognition. We analyze how to divide the monitoring video of the airport’s 
apron area, including the docking of the aircraft food delivery truck, the docking of the aircraft 
pushback tug, and the opening/closing of the cargo door. An improved, optimized small object 
detection algorithm is used to protect key actions throughout the process and extract the iconic 
behavioral actions of aircraft. The flowchart of the algorithm in this paper is shown in Figure 1. In this 
study, we first collected the actual surveillance video of the ground service process and annotated the 
object detection dataset. Second, we divided the dataset into the training dataset and the test dataset. 
Lastly, we improved the YOLOv5 algorithm network and trained the improved algorithm to get the 
object detection model. 

 

Figure 1. The process of the whole algorithm. 

The information extracted from the monitoring video can effectively support and guarantee the 
deployment and allocation of resources at the airport. The main contributions of this paper and the 
differences from other papers are shown below: 

• In comparison to similar studies, this paper shifts the focus of image labelling from the objects 
present in the field, such as people and types of cars, to the specific activities delineated by the ground 
service nodes. This approach avoids the consumption of computational resources and the loss of 
computational time caused by the need for secondary analysis of the detected objects in similar studies 
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to identify the process node. At the same time, it is more closely aligned with the method of ground 
service node delineation outlined in the CAAC’s regulatory documents. 

• This paper presents an improved algorithm network based on YOLOv5s for efficient and precise 
extraction of information related to ground service nodes in the apron area. The algorithm is 
specifically designed for small object detection, making it more suitable for this task. 

2. Related works 

Detection algorithms are commonly categorized into two types: two-stage algorithms and single-
stage algorithms. Both types take a set of images and corresponding object labels as input and output 
a set of bounding boxes. The two-stage object detection algorithm divides the detection problem into 
a stage of generating candidate regions and a stage of obtaining the final bounding box based on the 
secondary correction of the candidate regions. Although it is more precise than the single-stage 
algorithm, it is also slower. Single-stage object detection algorithms require only one feature extraction 
to achieve object detection, providing a speed advantage over two-stage algorithms. With a suitable 
dataset, their precision performance is comparable to that of two-stage algorithms. YOLO (You Only 
Look Once) [2] uses the entire graph as input to the network and global features to improve object 
detection, all within the convolutional neural network (CNN). To perform the object detection task, 
the CNN directly regresses the location of the bounding box and its class. CornerNet [3] detects a pair 
of corners of the bounding box and groups them to form the final detected bounding box. FCOS (Fully 
Convolutional One-Stage) [4] predicts the bounding box by using all the points in the real bounding 
box. The industry prefers single-stage object detection algorithms over two-stage object detection 
algorithms because they are fast and precise. Among them, the YOLO series of algorithms are 
particularly popular object detection algorithms due to their lightness and efficiency. For example, Liu 
et al. [5] detected leather defects based on YOLOv5 and had some success. Choi et al. [6] proposed a 
new approach called Gaussian YOLOv3, which is suitable for autonomous driving applications. Li et 
al. [7] suggested using YOLOv3 for detecting foreign object debris on airport runways, which is of 
significant importance for ensuring flight safety. Shi et al. [8] combined a channel attention mechanism 
and YOLOv5 to finish small object detection, enabling wide-range detection of birds during aircraft 
flight in airport airspace. Cai et al. [9] proposed real-time detection of surface cracks on bridges based 
on YOLOv3. 

Surveillance video contains a wide variety of scene information, such as the subject of 
surveillance and its activities. With the iteration of computer hardware and the rapid development of 
artificial intelligence technology, more and more researchers are adopting computer vision technology 
to analyze surveillance images and videos, and use the information obtained from the analysis method 
to finish the tasks about resource scheduling and safety support for airports, governmental and 
corporate organizations, roads, and other areas [10,11]. Therefore, the development of intelligent 
monitoring technology for specific scenarios has become the current research direction of many 
scholars and application engineers. For example, Cai et al. [12] combined deep learning and traffic 
surveillance to design a vehicle counting and classification model for intelligent transportation systems 
(ITS). Kumar et al. [13] used computer vision technology to detect human movement activity based 
on thermal surveillance video. Raza et al. [14] proposed a novel system based on machine learning 
and image processing to provide an efficient surveillance system for pedestrian detection and tracking 
at night. 
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Table 1. Research progress on airport apron area analysis algorithm. 

Related work Description Methods Feature

James et al. [11]
A comprehensive airport apron scene 
automatic visual monitoring system. 

The integration of scene tracking, motion detection, 
object tracking, data fusion, and video event 
recognition methods enables scene understanding 
and video event recognition, thereby improving the 
effectiveness of airport apron monitoring. 

The system uses bottom up feature tracking 
methods, such as the Kanade Lucas Tomasi 
(KLT) algorithm. It also includes a data fusion 
module and dynamic context. Cognitive vision 
techniques based on spatio-temporal reasoning 
are employed.

Sabine et al. [15]

A comprehensive framework for 
assessing the overall risk of airport 
ground operations, taking into account 
the actions of all relevant stakeholders.

A process model for surface operations was 
developed, which implemented triangulation. A 
reference dataset was used to determine the 
database. A macroscopic scenario tool was 
introduced to support SMS change management, 
training and education, and safety communication 
functionalities.

Developing and implementing an effective 
safety management system. 

Lu et al. [16] 
Improve aircraft turnaround service 
processes by analyzing and monitoring 
airport gate activity. 

Applying machine learning and computer vision 
techniques to airport camera video surveillance data 
processing. 

Detects a variety of gate events/activities 
including aircraft arrivals, aircraft departures, 
and aircraft taxi starts. Real time monitoring 
mode.

Ying et al. [17] 

A comprehensive analysis and 
evaluation have been conducted on the 
personnel and equipment involved in 
ramp control operations, the 
environmental factors encountered 
during ramp control operations, and the 
existing ramp control procedures.

The analytic hierarchy process (AHP) and expert 
rating method have been utilized to establish an 
evaluation method suitable for assessing the 
operational support capabilities of civil aviation 
airport ramp control. 

The proposed method can provide guidance 
and reference for ensuring the orderly 
operation of ramp control. 

   

Continued on next page 
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Related work Description Methods Feature 

Van Phat et al. 
[18] 

Predicting aircraft transit times based 
on vision algorithms for monitoring 
turnaround process analysis. 

Monitoring of aircraft turnaround process (object 
detection, object tracking, activity detection, and 
push-back prediction) using a video analytics 
framework based on convolutional neural networks.

Video analysis framework. Aircraft model 
identification. Real time activity detection and 
display. 

Gorkow [19] 
Aircraft turnaround management 
application based on computer vision.

Deep learning based object detection method. Detection of overflight activities and objects. 

Wang et al. [20]
Improvement of aircraft ground service 
efficiency by tracking ground service 
equipment. 

Real time high precision tracking device consisting 
of a kinematic (RTK) unit and a heading unit. 

Real time tracking of ground service 
equipment, collision detection, and scheduling 
of ground service equipment.

Wang et al. [21]

Real time Onboard Positioning and 
Heading System (ROPHS) design to 
obtain real time status of various types 
of ground service equipment (e.g., 
multi car logistics trains) through 
equipment. 

ROPHS hardware with geometry-based recursive 
algorithms to compute tractor-trailer position. Model
based tracking algorithms to compute position and 
real time velocity. 

Real time status, including the exact position 
and speed of any point on the multi car 
logistics train, as well as the variable number of 
traction vehicles and the order in which they 
are connected at any given time of travel. 

Yıldız et al. [22]

Turnaround control system for 
automatic detection and monitoring of 
airport ground service movements. & 
Deep learning and computer vision 
based approach for airport ground 
service detection and tracking.

Deep learning and computer vision based approach 
for airport ground service detection and tracking. 

High precision target tracking and service 
detection. Real time data processing/analysis. 
Time-stamped cycles for ground service. 

Ours 

Automatic monitoring, analysis and 
alerting of airport ground service status 
based on airport transit surveillance 
video. 

Detection and tracking of airport ground services 
based on big data vision methods. 

Real time data processing and analysis. High 
precision status labeling. 
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Airport apron area analysis and safety problems are key research issues in the civil aviation 
industry. The application of intelligent technology in the airport apron area has become a hot research 
direction in recent years. It mainly improves the airport apron area operating efficiency through 
assessing hardware equipment and facilities parameters, collating and analyzing text-based data, and 
monitoring video data and other various data. This paper will explore these research directions, as 
shown in Table 1.  

In addition to the papers described in the table above, Thai et al. [23] used convolutional neural 
networks for airport-airside surveillance. Liu et al. [24] used CNN to identify small objects in airport 
clearances, such as unmanned aerial vehicles (UAVs) and bird flocks. These researchers studied the 
aircraft turnaround process in monitoring videos of airport apron areas for different objects. However, 
in the existing studies on airport apron ground service surveillance algorithms, most researchers tend 
to divide the algorithm into two parts or add some preprocessing methods to the algorithm to optimize 
the analysis result. For example, the algorithm is divided into the object detection stage and the activity 
analysis stage of the detection object, and some researchers choose to divide the regions in the video 
to limit the scope of detection to obtain more effective detection results and active analysis objects. 
For example, Van Phat et al. [18] analyzed the running time of transit aircraft activities and predicted 
aircraft launching time by detecting targets such as aircraft, fuel trucks, fuel lines, and baggage carriers. 
They also analyzed boarding time by considering the position and speed of the aircraft, and by 
detecting targets such as aircraft and passenger elevator trucks. Gorkow M. et al. [19] determined 
critical conditions by detecting targets such as aircraft and passenger elevator cars. For example, when 
there are at least two people on the stairs, it is considered that boarding has started. 

The “Technical Specification for Airport Collaborative Decision Making System” [25] document, 
proposed by the Civil Aviation Administration of China and released on February 18, 2022, identifies 
forty-five nodes during the ground service period. These include aircraft arrival, cargo door open/close, 
and refuel, among others. Compared to directly detecting the object and its state (such as aircraft, 
refueling truck, corridor bridge, etc.), the document proposed by CAAC suggests specific activities to 
divide the nodes of ground service, such as opening and closing passenger doors, cargo load, and more. 
Therefore, to differentiate from currently commonly used annotation methods, this paper chooses to 
annotate the activities rather than just annotate the main objects when annotating the surveillance video 
dataset. Compared with the common methods, this annotation method is more suitable for the division 
of processes in documents, on the one hand. On the other hand, it can save the computing resources of 
the whole process because it does not need to conduct a secondary analysis of activities. 

 

Figure 2. Sample image of airport apron area surveillance dataset. 
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3. Data processing 

3.1. Data collection 

This paper uses actual surveillance video of ground service process from multiple high throughput 
airports in China. The experiment includes diverse datasets to ensure the reliability and usability of the 
collected monitoring data, such as different weather conditions (sunny/rainy) and light conditions 
(day/night/dusk/early morning). The collected dataset cases are shown in Figure 2. A dataset of 12 
flights was collected experimentally. As the apron surveillance video involves a lengthy waiting 
process, there may be a significant number of duplicated images in the saved images after frame 
extraction. To address this, we filtered out the duplicated images by randomly selecting one frame 
every 5 seconds. The filtered images were then grouped together after disruption and used for testing. 
The dataset consisted of a total of 15,118 images, with 12,105 used for training and 3013 for testing. 
The resolution of the images is 1920 × 1080. The distribution and production of the dataset is shown 
in Figure 3.  

 

Figure 3. Data collection processing. 

3.2. Data annotation approach based on service activity 

Regarding labeling methods, most researchers use the target labeling method, which can cause 
issues when analyzed by algorithms in the future. This is because the appearance of the main target in 
the surveillance video does not necessarily mean that the corresponding service activity has begun. For 
example, when a tank refueller appears around the aircraft or in the work area but the fuel line is not 
yet connected to the aircraft, the refueling process has not truly started. Therefore, this type of labelling 
method based on targets typically requires numerous algorithms to determine the primary monitoring 
area or to identify the target in the observation area visually. Subsequently, other judgement algorithms 
are used for further division, which inevitably results in a significant waste of computational resources, 
either directly or indirectly. To address the aforementioned issues, this paper classifies ground service 
activities based on the judgement conditions of different nodes during the ground service period. 
Table 2 below shows the 16 categories that can be directly determined by the activity detection results. 
Figure 4 illustrates the dataset’s labelling cases. Figure 5 shows the cases of each category. 
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Table 2. Activity categories and judgment characteristics table. (The label name in the 
figure is the label name, not the exclusive noun of this category.) 

Category number Label name Category description

1 Bridge Connected Boarding bridges connect with passenger door 
2 Cargo Back Door Open Cargo back door (external) opens/closes 45 degrees
3 Cargo Front Door Open Cargo front door (external) opens/closes 45 degrees
4 Passenger Door Open Passenger door opens/closes 45 degrees 
5 Catering Truck Connected Aircraft catering vehicle raised to visibility 
6 Cargo Loading Lifting platform vehicle raises to level with hatch door
7 Push Back Tractor Connected A Tow bar overlaps wheels
8 Push Back Tractor Connected B Clamp overlaps wheels

9 Baggage Loading 
Front section of self-propelled conveyer-belt loader 
raises closely to hatch door

10 Fueling A Fuel line connection
11 Cone Cone is placed
12 Airplane Aircraft head appears 
13 Cargo Back Door Open B Cargo back door (inner) opens/closes 45 degrees
14 Cargo Front Door Open B Cargo front door (inner) opens/closes 45 degrees
15 Baggage Loading B Baggage towing tractor raises to level with hatch
16 Fueling B Fuel stepladder connection

 

Figure 4. Annotation sample of the dataset. 
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Figure 5. Cases of airport for each category. 

4. Improved YOLOv5 algorithm 

The algorithms used for apron area surveillance analysis are typically deployed on surveillance 
cameras or cloud computing servers for high-volume computation. Therefore, the model must be 
simple to use, fast, and precise. It should also support acceleration schemes such as ONNX or 
TensorRT as much as possible. In summary, this paper’s benchmark model selection of single-stage 
object detection algorithms in the YOLOv5 series is based on its precision, speed, and hardware/cloud 
computing server deployment needs for object detection. The YOLOv5 models, including YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x, come in four different sizes. As the model deepens, the 
detection precision improves, but the detection speed decreases. To achieve a balance between 
detection precision and speed, this paper adopts the YOLOv5s network as the basic network. The 
network structure of YOLOv5s is divided into five parts: input, backbone, neck layer, detection head, 
and output. The backbone layer extracts features, the neck layer fuses features, and the head layer 
analyzes and predicts types. 

4.1. Small object detection improvements based on SPD-Conv 

One drawback of current convolutional neural network designs is the loss of information and 
increased difficulty in learning feature representations when using stride convolution and pooling 
layers. When the object’s size has high resolution and a certain size, there may be redundant 
information. In traditional convolutional neural networks, these objects would still be detected even if 
some feature information is lost. The model can still be well trained and learn features through the 
remaining information. However, if the target is a small object, there will be minimal redundant 
information. Using this approach may cause the model to lose its ability to learn features. 

There are challenges in monitoring in the airport apron area, which involves processing a large 
amount of visual information. The main targets are small objects and rich in detailed information such 



3579 

Electronic Research Archive  Volume 32, Issue 5, 3569-3587. 

as cones, objects with connected states, etc. Therefore, the effectiveness of the airport field monitoring 
video is highly dependent on the ability to capture details completely. To improve the precision of 
detection results, it is important to minimize information loss. In this network, a non-stride convolution 
(SPD-Conv) [26] is introduced to the YOLOv5 architecture.  

The structure of SPD-Conv is shown in Figure 6. For an input image of 𝑆 ൈ 𝑆 ൈ 𝐶ଵ, it is divided 

into several sub-blocks, and the size of the sub-block is 
ௌ

௦௧ௗ
ൈ ௌ

௦௧ௗ
ൈ 𝐶ଵ. After concatenating sub-

blocks along channels to get the final feature map, its size is  
ௌ

௦௧ௗ
ൈ ௌ

௦௧ௗ
ൈ 𝐶ଵ

ଶ. The SPD-Conv 

structure can reduce the spatial resolution of the input feature map and increase the number of channels 
without losing spatial information, providing a richer feature representation for networks. This 
approach addresses the issues of loss of fine grained information and low efficiency of feature learning 
that arise from the use of stride convolution and pooling layers in the CNN architecture. 

   

Figure 6. SPD-Conv structure when scale = 2. 

Figure 7 below shows the overall network architecture of the approach proposed in this paper, 
which includes basic YOLOv5s network architecture and the SPD-Conv module for small object detection. 

 

Figure 7. Algorithm architecture figure of YOLOv5s-SPD-Conv. 
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4.2. CPU and GPU accelerated inference solution 

Once the model has been trained and tested, it must be deployed on hardware equipment and 
facilities, such as cloud computing platforms or development boards. However, the equipment and 
facilities used in the actual production environment are often less powerful than those used in training 
models in terms of computational performance. Many enterprises and deep learning framework 
researchers have proposed high performance deep learning inference optimizers or inference libraries. 
Examples include TensorRT by NVIDIA, OpenVINO by Intel, and ONNX by Microsoft and Facebook. 
These optimization solutions offer targeted optimization for different types of graphic image 
processing algorithms, thereby expanding the range of applications for arithmetic hardware such as 
CPU/GPU and related accelerators. Using TensorRT as an example, this optimization tool is 
particularly effective for convolutional and anti-convolutional layers with many channels. This is due 
to the fact that GPUs are capable of performing intensive operations in parallel, resulting in higher 
efficiency when processing large matrix operations. 

5. Experiments 

5.1. Environments 

Our running environment for experimentation entails the following factors: The CPU of this 
experiment was an Intel (R) Core (TM) i9-10900X. The memory was 96GB. The GPU used an Nvidia 
GeForce RTX 3090. The environment for running was Win 11 + Python 3.8 + PyTorch 1.10.0. 

5.2. Evaluation indicators 

The algorithm for object detection uses average precision (AP) as an evaluation metric. Mean 
average precision (mAP) is the average of all classes’ AP values. It is then divided into two more 
precision metrics based on IoU (Intersection over Union): AP50 and AP50:95. The metrics are 
calculated as shown below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்

்ାி
                                        (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
்

்ାிே
                                     (2) 

𝑚𝐴𝑃 ൌ
∑ ൫ோೣమିோೣభ൯

సభ ൈெ௫ೝೞ


                            (3) 

5.3. Experiment and results 

The training parameters are the following. The batch size is 64, the epoch value is 300, the 
weight decay is 0.0005, the learning rate is 0.01, and the optimizer is SGD. 

Table 3 compares the overall results of each object between the original YOLOv5s network and 
the YOLOv5s network with the SPD-Conv block introduced to improve the detection precision of 
small objects. 



3581 

Electronic Research Archive  Volume 32, Issue 5, 3569-3587. 

Table 3. Single category detection precision comparison table. 

Label name YOLOv5s YOLOv5s-SPD-Conv
Bridge Connected 99.5 99.5 
Cargo Back Door Open 99.5 99.5 
Cargo Front Door Open 99.5 99.5 
Passenger Door Open 99.5 99.5 
Catering Truck Connected 99.5 99.5 
Cargo Loading 99.5 99.2 (-0.3%) 
Push Back Tractor Connected A 84.2 92.4 (+8.2%) 
Push Back Tractor Connected B 99.4 98.8 (-0.6%) 
Baggage Loading 99.5 99.5 
Fueling A 98.9 99.4 (+0.5%) 
Cone 97.5 97.9 (+0.4%) 
Airplane 96.6 96.7 (+0.1%) 
Cargo Back Door Open B 99.5 99.5 
Cargo Front Door Open B 99.5 99.5 
Baggage Loading B 99.5 99.5 
Fueling B 99.5 99.5 

The PT models of YOLOv5s-SPD-Conv were converted into TensorRT, ONNX, OpenVINO, and 
TorchScript formats to improve model inference efficiency and facilitate deployment in production 
environments. Table 4 displays the inference efficiency of each model. Table 5 compares the mean 
average precision of our method and some common object detection algorithms. Figure 8 illustrates 
the schematic diagram of the model detection results. 

Table 4. Comparison table of inference efficiency of hardware-accelerated inference schemes. 

Approach CPU (ms) GPU (ms) 
Origin (PT) 181.4 16.0
TorchScript 333.8 -
ONNX 155.9 15.9
OpenVINO 76.5 (+137.1%) -
TensorRT - 10.3 (+55.3%) 

Table 5. Detection result comparison table. 

Method/Metrics 
mean average precision 
(AP50/AP50:95) 

Speed (ms) 

Faster R-CNN ResNet50 [27] 98.3/92.9 45.8 
SSD300 [28] 98.7/85.7 20.0 
Efficientdet [29] 98.2/79.6 56.9 
Cascade-Mask-R-CNN [30] 98.6/94.7 115.0 
YOLOv5s 98.2/84.8 16.0 
YOLOv5s-SPD-Conv (Ours) 98.7/90.0 16.0 (origin) / 10.3 (Tensor RT) 
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Figure 8. The schematic figure of detection algorithm result. (The category name in the 
figure is the label name, not the exclusive noun of this category.) 

Table 3 shows that the original YOLOv5s is less effective in detecting small objects or objects with 
more tiny details. For example, the precision values of Push Back Tractor Connected A and Cone are 
particularly low. However, the detection precision is higher for the door open/close situation, bridge 
connect, and baggage load, which involve medium or large size objects or objects with more obvious 
features. This is likely due to the similarities between easy-to-distinguishable categories, while some 
of the key features of the confusable categories show less differences. As detailed in Figure 9, the 
similarities between some of the easily distinguish categories are demonstrated in Figure 9(a), using 
Cargo Back Door Open and Fueling B as examples. In Figure 9(b), Push Back Tractor Connected A 
and Push Back Tractor Connected B are used as examples to demonstrate the differences between 
some of the easily confused categories. 

 

Figure 9. Similarities between the easily distinguishable category and micro-differences 
between the easily confusable categories. 



3583 

Electronic Research Archive  Volume 32, Issue 5, 3569-3587. 

After adding the SPD-Conv algorithm to improve the YOLOv5s algorithm, the overall precision 
has improved significantly, despite a slight decrease in precision for some objects (possibly due to 
training randomness). As shown in Figure 10, by merging the feature information, which will be sent 
to the detection head, with the original inputting image to construct a visual heatmap, it can be clearly 
observed that after adding the SPD-Conv module, the redundant and irrelevant information in the 
image has been reduced. (In the heatmap, the color closer to red means the algorithm will pay more 
attention to this area, and the detected objects are also likely to be in this area). The improved YOLOv5-
SPD-Conv algorithm’s precision for all detection classes is now above 90%, which effectively addresses 
the issue of the original network’s lack of precision in recognizing small or detail-lacking objects. 

   

Figure 10. Visualized heatmaps of categories at different scales. 

Table 4 shows that the introduction of hardware acceleration architecture improves model 
inference efficiency by 137.1% on CPU and 55.3% on GPU, making it more suitable for deployment 
in a product environment. 

Table 5 shows that the algorithm proposed in this paper is more suitable for airport apron area 
service activity detection than the detection current advanced object algorithms, considering the 
comprehensive computational efficiency and computational precision. At the same time, compared to 
the original YOLOv5s framework, the improved algorithm proposed in this paper has improved the 
precision of detection while ensuring the speed of the overall structure does not decrease. 
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6. Conclusions 

This paper demonstrates our research on using computer vision technologies for detecting ground 
service activities from airport apron surveillance videos. The algorithm recognizes the operational 
information of the key monitoring objects and activities involved in each ground service process in the 
monitoring video. Unlike the commonly used object specific detection algorithms, the algorithm in 
this paper can be more relevant to the production application of detecting the activity of the airport 
apron surveillance videos. At the same time the algorithm proposed in this paper requires no 
delineation of the area of activity and secondary analyses of the results of the object detection algorithm. 
So, the algorithm proposed in this paper is more efficient in terms of computational efficiency. The 
mean average precision result of the proposed approach is 98.7%, and the approach can be deployed 
on CPU and GPU devices with higher efficiency. The approach provides effective information for 
optimizing resources at civil aviation airports, such as personnel, equipment, and facilities. 

There could be future improvements to the algorithm. As shown in Figure 11(a), the categories in 
different surveillance scenarios have similarities in outline, shape, size, etc., which implies that there 
is some correlation between different categories. This means the study of algorithms with few-shot 
object detection and transfer learning is also a good direction. This direction can be a good solution 
when the airports are in the phase of renovation and expansion or new construction and cannot provide 
sufficient datasets for training models. On the other hand, as shown in Figure 11(b), there is some 
similarity in the categories from scene to scene though. More than that, however, there are differences 
in the appearances of different airlines’ equipment, differences in lighting, differences in working 
positions, etc. These cause the precision of the model to be extremely affected by scenes of the 
surveillance. For example, if the scenes of the surveillance video appear in both the training dataset 
and the testing dataset, then the precision of this surveillance will be improved. This may be due to the 
large variability in airport construction, as well as the constraints of the size of the surveillance range 
and the requirements of the job. It is difficult to show all the poses of each target in the surveillance 
video, which can lead to a more homogeneous dataset and may result in overfitting and lower 
robustness during the experiment. How to overcome these differences to improve model precision or 
trying to explore zero-sample learning of the model are good directions for research. 

 

Figure 11. The similarities and differences in categories. 
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