ERA, 32(5): 3457-3476.

EE Elect . DOI: 10.3934/era.2024160
AIMS ectronic Received: 21 February 2024

@ Research Archive Revised: 13 May 2024

Accepted: 20 May 2024
http://www.aimspress.com/journal/era Published: 28 May 2024

Research article

Stability of thermoelastic Timoshenko system with variable delay in the
internal feedback

Xinfeng Ge' and Keqin Su”*

' School of Electrical and Mechanical Engineering (Engineering Training Centre), Xuchang
University, Xuchang 461000, China

2 College of Information and Management Science, Henan Agricultural University, Zhengzhou
450046, China

* Correspondence: Email: sukeqin@henau.edu.cn.

Abstract: Based on the Fourier law of heat conduction, this paper was concerned with the thermoelas-
tic Timoshenko system with memory and variable delay in the internal feedback, which describes the
transverse vibration of a beam. By the Lummer-Phillips theorem and the variable norm technique suit-
able for the nonautonomous operator, the stability of the coupled system has been derived in space .77 .

Keywords: Timoshenko system; exponential stability; variable delay; memory

1. Introduction

In 1921, S. P. Timoshenko studied the transverse vibration of a beam, and found that the motion
could be described by a family of partial differential equations in which the bending moment and shear
stress were involved. Based on the constitutive laws in the mathematical elasticity theory, the following
system, called the Timoshenko system [1], was derived

P1@u(x, 1) — k(px + ¢)x(x,1) = 0, in (0, L) X RY, (L.1)
P2u(x, 1) = b (X, 1) + k(px + Y)(x, 1) = 0, in (0, L) X RY, '

where L > 0 is the length of beam, ¢ is the vertical displacement of beam, i denotes the rotation angle
of the filament of beam, and py, p», k, b are positive constants.

So far, many significative results on the dissipative Timoshenko system have been derived, involv-
ing the linear and nonlinear cases, dynamical behavior, stability, and so on. Regarding the exponential
stability of the dissipative Timoshenko system, the following equal speed condition is usually impor-
tant:
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To achieve the desired dissipation, damping terms are needed necessarily to system (1.1), and we
can refer to [2—4] and references therein, in which the frictional damping, indefinite damping, and
weak damping were involved. In general, the influence of thermal damping was usually considered
in research on Timoshenko system [5—12]. The coupled system, called the thermoelastic Timoshenko
system, is always combined with other damping terms, in which the heat conduction is ordinarily under
some law (7¢q; + g + B0, = 0), e.g., the Fourier law (7 = 0) and the Cattaneo law (7 # 0).

In 2009, H. D. Fernandez Sare and R. Racke studied the thermoelastic Timoshenko system with
memory under the Fourier law and obtained the exponential stability, which was not true for the case
of Cattaneo law [13]. The stability of thermoelastic system was also obtained in [14], in which the
thermal damping was in the shear moment, and it is different from [13]. Many good results could
be referred in [15—-18]. Furthermore, the influence of delay appears in economics, physics, and other
fields, the delay term could be constant delay, continuous delay, or the distributed delay, which is
important to the stability of system; We can refer to [19-21] for the results on fluid system with delay,
and see [22-24] for the Timoshenko system with delay.

In this paper, under the Fourier law we consider the thermoelastic Timoshenko system subject to
memory and variable time delay on (0, L) X R*

(1.2)

P1#u(x, 1) = k(px + ¥)o(x, 1) + api(x, 1 — p(1)) + dpi(x, 1) + 06, = 0,
P2, 1) = B (x, 1) + [ g(Wra(x, 1 = $)ds + k(g + Y)(x, 1) — 0760 = 0,
P30:(x, 1) + q.(x, 1) + o (px + Y)u(x,1) = 0,

q+p0, =0,

(1.3)

where 6 i1s the temperature, g is the heat flux vector, a,d, o, ps, b, B are positive constants satisfying
d > \2a, (x,1) € (0,L) x R*, the delay function p(+) : R* — [My, h] (h > M, > 0) is C' continuous

and satisfies that )

— , 2a —
O<M0<p(l‘)§l—?:M1<l,

and the positive exponentially decaying kernel function g satisfies for some constant k; > 0 that

b=b- f g(s)ds =b—Cy >0, g'(s) < —kig(s), s > 0. (1.4)
0

The primary characteristics of this article are different from the previous results, and details are
as follows:

1) Different from [13], the thermal damping o6, is in the shear moment term of this article, which
is similar with the case of [14]. Also, the continuous delay terms ap,(x,t — p(t)) and de,(x,t) are
considered in the shear moment term, which bring us some difficulties in deriving the dissipation
and stability.

2) Since the operator A(¢) generated in (1.3) is nonautonomous, the autonomous operator method
in [25] is invalid. So, the variable norm technique in [26] is used, which is suitable for the case of the
nonautonomous operator.
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The rest of this article is arranged as follows. In Section 2 we give the equivalent problem of (1.3),
and present a useful lemma concerning the perturbation theory and main results in Section 3. The
well-posedness of (1.3) is derived by the Lummer-Phillips theorem in Section 4. Four sufficient con-
ditions in Kato’s perturbation theory are verified in Section 5, and the exponential stability of (1.3) is
proved finally.

2. Equivalent problem

At first, we introduce a new variable for the delay feedback term
2x, &, 1) = o(x, t — kp(1)), (k,1) € (0,1) X R", (2.1)

and we have
oDz (x, k1) + (1 — k' ()2 (x,k,1) =0 in (0,L) x (0,1) x R*. (2.2)

For the memory term, we present
n(x,t,s) =Y(x, 1) —Y(x,t—s), t,s > 0. (2.3)

Using the above transformation, we convert the system (1.3) to the following equivalent form:

P10u(x, 1) = k(g + W).(x, 1) + az(x, 1,1) + dg(x,1) + 76, = 0,
Po(x,1) = DY (. 1) + k(@ + Y)(x, 1) = [ g()(8)ds — o0 = 0,

P30/, 1) = BO(x, 1) + 0 (@, + Y),(x,1) = 0, (24)
M+ ns— ¢, =0,

p(D)z(x, k1) + (1 = kp' (D)z(x, &, 1) = 0,

where (x,k,1) € (0,L) x (0,1) x R*. Also, the new equivalent system (2.4) is equipped with the
initial conditions

(,D(X, O) = ‘100()6)9 QO[(X, 0) = ‘pl(-x)7 (v[/(x’ 0) = lﬁo(x), wt(x7 0) = l/’l(X), (2 5)
Q(X’ O) = QO(X), Z(x’ K, 0) = (,03()(:, _Kp(o))7 U(x’ O’ S) = UO(X’ S), U(x’ t, O) = 0’ .
and the boundary conditions
@x(0,1) = (L, 1) = (0,1) = Y(L, 1) = 0(0,1) = O(L,1) = 0, z(x,0,7) = @(x, 1), (2.6)
n0,¢t,s) =n(L,t,s)=0. ’

To solve the problems (2.4)—(2.6), we write
L
L3(0,L) = {w € L*(0, L)| f w(x)dx = 0}, H,(0,L) = Hy(0,L) N L; (0, L),
0

Ly(R*, Hy(0, L)) = {u| v/gu € L*(R*, Hy(0, L))}.
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For the delay space L>((0, L) x (0, 1)), we define the following inner product and norm

1 L 1
(z1,22)e = ¢ f f 21(K)z2(K)dxdk, ||zlle = & f llz(0)lI7.dx,
0o Jo 0
where & = £(¢) satisfies

p()
1—p'(2)
We consider the phase (Hilbert) space

p(1)
1 —p'(5)

dp(1) — VA = p(0)d? - 262 < & < dp(t) + V(A = p(t)d? - 242

A =H,(0,L) x L},(0, L) x Hy(0, L) x L*(0, L) x L*(0, L) X L;(R*, Hy(0, L))
x L*((0, L) x (0, 1)) (2.7)

endowed with the norm

1Ulle = prll®I7. + ool + Kllgs + WlI7, + bliwll7, + osll6ll7

00 1
+f(; 8(S)||77x(s)||izd5+§£ l2(I[7.dk

and corresponding inner product (+,-) for all U = (¢, ®,¢,¥,0,n,2)7 € H, where ® = ¢, and
Y = y,. Basing on the equivalent equations, for any ¢ € R*, we define the operator A(¢) as the following:

@
ﬁwﬁw»—idh—i®—£@
P1 P1 P1 P1
¥
1 0 k o
AU = | 00+ fo LML)~ (i 40) + T o8
By T +w
P3 P3
Y- 1s
L =kp'(n)
p)

with domain
D(A(1) = {U € #) ¢ € H*(0,L), ¢, € Hy(0,L), ® € H,(0,L), ¥ € Hy(0, L), byr+
Liﬁ%@ﬂewwixMﬁﬂ&@ﬂﬁ@i%%ﬁﬁﬂ&ﬁLmQDX@D»
From the definition of D(A(#)) we know
D(A(1) = D(A(0)), t € R,
and the new system (2.4) can be written as the following abstract form

dt (2.9)

dUu
— =AU, t>0,
U(0) = Uy = (g9, @, Yo, Yo, 80, 105 20)" -
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3. A useful lemma and main results

To study the nonlinear system (2.9) with nonautonomous operator, we introduce here the perturba-
tion theory (see [26]) suitable for the case of the nonautonomous operator.

Lemma 3.1. Suppose that for any t € R, there holds

(P-1) The domain D(A(t)) is dense in the phase space €, and D(A(t)) = D(A(0)).

(P-1I) In space F€, the operator A(t) generates a Cy semigroup {S ax(8)}s=0 for any t € [0,T], where
T > 0 is some fixed constant.

(P-I11) There exist positive constants K, K, independent of t € [0, T] satisfying

1S A () Upllw < K15 Ull e

(P-1V) The operator A(t) : [0,T] — B(D(A(0)), 7€) is essentially bounded and strongly measurable.
Then, for any Uy € F, the solution U to system (2.9) is unique and satisfies

U € C([0,T], D(A(0))) N C'([0,T], 7).

Theorem 3.1. For any fixed t € [0,T] and any Uy € FZ, the solution U to the system (2.9) exists
uniquely, generates a Cy semigroup of contraction {S ) (S)}s=0 in J, whose infinitesimal generator is
A(t), and there holds that

U € C°([0, T], D(A(0))) N C'([0, T], 7).

To prove Theorem 3.1, we apply the Lummer-Phillips theorem, and need to show for any fixed
t € [0, T] that O € o(A(?)) (spectral set of A(?)) and the dissipation of A(?).

Theorem 3.2. For any U, € JZ, there exist constants C, s > 0, being independent of Uy, such that for
any s € R*,
NU ()L < CllUollLwre™”,

which means the system (2.9) is exponentially stable.

To prove Theorem 3.2, we use the well-known characterization of exponential stability for Cy semi-
group as follows, and we can refer to [25] for a detailed process of proof.

Theorem 3.3. For any fixed t € [0,T], let S 44(s) = €2 be a Cy semigroup of contraction in space
FC. Then, the semigroup is exponentially stable if and only if

iR C o(A(?)), (3.1
lim sup ||(iAl — A(5))™'|| < co. (3.2)
|A] >0

4. Proof of Theorem 3.1

Basing on the Lummer-Phillips theorem, we need to derive the following lemmas to get the well-
posedness, and we can also see [24] for reference.
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Lemma 4.1. For any fixed t € [0, T], the operator A(t) has the property of dissipation.
Proof. For any U = (¢, D, ¥, ¥, 60,n,2)" € D(A(t)), we have

L
AU, U)p = f [k(@yx + U )P — az(1)® — de,® — 06, D]dx
0
L
+ f [wax‘ll - ngx\P - klﬁl}l + O'H‘I’]dx
0L
+ f [kD. o, + kDY + kYo, + kY + bYW, |dx
0

L L
[/30”9 — 00,0 —o¥Y0)dx + f g(s)(Y — ny)mdsdx
0

+ ¢ f ( f - Kp (t)zkzdx)dk,

L L 00
(AWNU, V) = f [0, — az(1)® — d,D]dx + % f f g/ ()lIn|Zdsdx
0 0

+§f [f 1_Kp (t)Zkde]dK
- B f 0 + 1 f f ¢ (S)ladsdx - a f et = p)gdx - d f o

and it follows that

-3 (t)f[z (x, 1,8) = 22(x, 0, 1)]dx +'§;p(())f[ x 1, —f 2(x, k, NdK]dx
Z—ﬁfo |0x|2+_f f g’(s)llnxllizdsdx—af @it — p()pidx
740 go'® (",
-d _2_(0)f lo:|*d % 2p(t))f 2 0 z(x,K,t)dex
_ 2 _ ki &p' (1)
o[t E [ [ oo 0, [
720

1
2
7°(x, &, )dk]dx < 0.
20(1) Jo

Lemma 4.2. For any fixed t € [0,T], 0 € o(A(t)).

Proof. For any V = (v{, v2, V3, V4, Vs, Vs, V7)| € S, we study the equations
AU =V,
that is,
D=y,

k 1 d o
— (et )y — —az(l) — —¢; — —0, =y,
P1 P1 P1 P1

4.1)

4.2)

4.3)

4.4)
4.5)
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¥ =v;, (4.6)
b k o

— Y — — (o +Y) + —0 = vy, “4.7)
P2 P2 P2

Eexx - z((Dx +¥) =vs, 4.8)
P3 P3

¥ -1, = ve, (4.9)

1 —«xp'(?)
- % =V (4.10)
p(t) !

By (4.4) and (4.6), we get
® =v, € H,(0,L), ¥ = v; € Hy(0, ).
From (4.10), we know

o —p(t o —p(t
2(k) = z(0) + f Awdr =v + f Awdt‘ e L*((0,1) x (0, L)). (4.11)
o 1—10'(0) o 1=7p'(1)
It follows that
1
—p(1)
= ————vdr. 4.12
z(D) V1+f0 1—Tp'(l‘)V7 T ( )
Here, some equalities could be rewritten as
k(s + ) = 06 + p1va + dvy + az(l), (4.13)
bt [ eI = Ky + )~ 00+ (4.14)
0
BOxx = p3vs + o(vix + v3). (4.15)

As to (4.15), we use the conclusion that p3vs + o"(v, + v3) € L*(0, L) together with the standard
elliptic theory, and we obtain that
6 € H)(0,L) N H*0,L).

It follows from (4.13) that
1 X
O+ = T f (06, + p1vy + dvy + az(1))dt € Hy(0, L).
0

In addition, we use the standard elliptic theory again and the relation k(¢ +)—06+p,vs € L*(0, L),
and we derive that

by + f g(s)n(s)ds € Hy(0,L) N H*0, L).
0
Using the same technique as shown as in [13], we can obtain that
n e L:R*; Hy), y € Hy(0, L), ¢, € Hy(0,L).

In summary, the system (4.3) is solved uniquely and U = (p, ®,, ¥, 0,1,2)" € D(A(?)). From the
above derivation process, we can show that there exists a positive constant C such that

Ul < ClIVIle,
which means 0 € p(A(?)) for any fixed t € R*. According to the Lummer-Phillips Theorem, we finish
the proof of Theorem 3.1.
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5. Verification of conditions in Lemma 3.1

In order to be able to use the autonomous operator theory to the nonautonomous case, we need
to verify the conditions in the Kato’s perturbation theory, and we can also refer to [27] and draw
inspiration.

Lemma 5.1. D(A(0)) =

Proof. Suppose that U; = (¢, @1, 41, ¥1,61,1m1,21)7 L D(A(0)), then there holds for any U =
(¢, D, ¢, ¥, 0,n,2)" € D(A(0)) that

L L
U, Uy = Plch(DdX"‘sz‘P‘de-Fk (@i1x + Y1)y + Y)dx

+bf l,lllxl//xdx-i-pgf 919dx+f f g(s)nmdsdx+§f f 21(K)z(k)dxdk = 0. 5.1

When U = (0,0,0,0,0,0,z)" and z € Cy((0,L) x (0,1)), U € D(A(0)), and from (5.1) we have

1 L
3 f f 21(K)z(K)dxdk = 0
o Jo

The fact that C;’((0, L) X (0, 1)) is dense in L*((0, L)% (0, 1)) leads to z;(x, k,#) = 01in (0, L) x (0, 1) X
R*. Using the same technique, we can show that

"] :O,q)l :O,lﬂl :O,lPl :0,91 :0,771 =0.

It follows that D(A(0)) = 27, and the condition (P-I) is verified.
Lemma 5.2. For any t € [0, T], the operator family {A(t)} is stable in F.

Proof. For any U € JZ, we write |U|I} = [l(¢, @, 4, ¥, 6,1, \p()2)"|1%,. From assumptions on p(¢),
we know that for any ¢ € [0, T'] there holds

1 L 1 L 1 L
Myé f f 2(K)dkdx < p(t)é f f 2 (K)drdx < h& f f 2(K)dxdx. (5.2)
0 0 0 0 0 0

If we choose C’' = min{M,, 1}, C” = max{h, 1}, then

C'll(p, @, 4, ¥, 6,0, 2" I, < ll(p, @, ¢, ¥, 6,1, o025, < C”li(@, .0, ¥, 6,7.2)" I,

It follows that [|U|l7 = (¢, @, ¢, ¥, 6,1, \p1)2)"|I%, is an equivalent norm of space .7, and we
claim here that

My
WUIl; < [|Ull;, e ™. (5.3)
In fact, forany O < 7y <t < T, there holds
”U”tZ < ”U”tZOe%(t—lo) =(1- eZMo(t to))
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EIIDI, + 2l I, + Kll + Wi, + Bl + pslill7. + f g(®)In.(s)II7.ds)
0

W 1
+ (p(0) = pltg)e™ )¢ f I di.
0
From the properties of p(¢), we know for any ¢ € (¢, t) there holds
p(0) = plio) + p' W)t = 1) < plio) + M (& = to),

which means
P

_1+—(t—t)<eMo(’ )
P(fo) M,

M ) . ) ..
From the fact that 1 — ¢2% ™™ < 0, we derive the conclusion, which means the condition (P-III)
is verified.

Lemma 5.3. For any t € [0, T], the operator A(t) € L ([0, T, B(D(L(0)), 7).
Proof. For any U = (¢, ®,y, ¥, 0,n,2)" € A, from (2.8), we know

0 1 0 0 0 0 0
2 o a
pﬁl(?? —;il p%% 0 —p—]% 0 _p_llkzl
0 0 1 0 0 0 0
2 00
A() = —piz(% 0 p%% 0 ﬂ%z piz fo g(s)szds 0 _ (5.4)
o o B
0 -Z& 0 -2 &5 0 0
0 0 o 1 0 -2 0
0 0 0 0 0 0 — L0 ® gy
p(0)
It follows that
0
0
0
0
AU = 0 , (5.5)
0
k(p(t)p" (1) — p"*(1)) + p' (1)
2 L

p*(1)

which is bounded for ¢t € [0,T], and the conclusion is finished, which means the condition (P-IV)
is verified.
To sum up, basing on the result in Theorem 3.1, we confirm the four conditions in Lemma 3.1.

6. Proof of Theorem 3.2

6.1. Proofof (3.1)

Assume that iR C o(A(?)) is not true. Therefore, there is a constant C,, a sequence {8,} satisfying
0 < B, — C. and iB, € o(A(t)), and a sequence of functions

= (@n> Pns Yns Ps 00 s 20)" € DAWD), Ullr = 1, (6.1)
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such that
iBU, — AU, - 0in 2.
That is,
iBupn — @, — 0in H.(0, L),
. k 1 d o . 9
lﬁnq)n - _(‘;Onx + wn)x + _azn(l) + _(Dn + _gnx - O m L*(O, L),
P1 P1 P1 P1

iBa, — ¥, — 0in Hy(0, L),

iB, Y, - piaawn - f ) g()Nu($)ds)  + (gonx + ) — 9 — 0in L*(0, L),
2 0

lﬁn n ﬁ nxx Z((I)nx + lI’n) — 01n LZ(O’ L)a
P3 P3
iBan — ¥ + 1y — 0in LX(R*; Hy(0, L)),
1 —«o'(t
iBnzn + %()zm — 0in L*(0, 1; Hy(0, L)).
P

Lemma 6.1. For any t € R*, we have, as n — oo,
6, — 0in Hy(0, L),

L 00
f f g Padsdx — 0 in L2R*; HY0, L),
0 0

za(1) = 0in L*0, L),
Za(x, k, 1) = 0 in L*(0, 1; L*(0, L)).

Proof. Multiplying (6.2) by U, in  yields that

L L
—Re(AOU,, Up)w = B f 6,.l” + Rea f Pult = p(1)pudx + (d = 5 ()) f Il dx

&p' (1)

(_ '@
2p(1)

2p(r)  2p(t)

x,1,0)dx +

which means

L k L 00
B fo o+ fo fo e(niladsdix + (M‘i 8) f (x, 1, Ddx

L P
2p(1)

and the conclusion holds finally.
Thus, the system (6.2) could be reduced into the following simplified form:

1
2(x, &, dkdx — 0,
0

Z,%(x, K, H)dkdx — 0,
0

(6.2)

(6.3)
(6.4)
(6.5)
(6.6)

(6.7)
(6.8)
(6.9)

(6.10)

(6.11)

(6.12)
(6.13)

(6.14)

(6.15)
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iBugn — D, — 0in HL(0, L),
iﬁnplq)n - k(San + wn)x + azn(l) + dq)n - O in Li(O, L)7
iB, — ¥, — 0in H)(0, L),

iﬁnp2\Pn - (bwn + f g(s)n,,(s)ds)xx + k(%x + lﬁn) — 01in LZ(O’ L)a
0

i,Bnp39n _ﬁgnxx + O-((an + \Iln) - O in LZ(O’ L)»

iButtn — ¥ + 1, — 0in LX(R*; Hy(0, L)),

1 —xp' (1)
p()

Lemma 6.2. For anyt € R*, we have, as n — oo,

iBnzn + Zue — 0in L*(0, 1; Hy(0, L)).

®, — 0in L*(0,L).

Proof. Multiplying (6.22) by z,, and considering the real part, we obtain

1
1 —«xp'(t) d 5
—— |z, .d 0,
fo 7o) ae Ol >
which means

1 b d ) o (' d s
— | —llz®)IP.dk - — |z, (O d.
2p(t)f0 Jellen(ll 2k 0 o KMl dk

1 rw (!
= (DI = e O)IZ:) -
2p(t)(llz (DII72 = 1z (O)ll72) 200 Jo

kd(||z,(0I17,) = O,

and

(1 = o' O)lza(DI7> = lIz4(O)I72) — 0.
It follows from (6.12) that the conclusion is finished.

Lemma 6.3. For anyt € R*, we have, as n — oo,
— pUll@ull7> = P2l Wall7: + Kligns + Will72 + Bldl7. — 0.
Proof. Multiplying (6.16) and (6.17) by p;®, and @,, respectively, we get

iﬁnPl(‘Pn,ch) —PIHCDn”iz -0

and

1Bup1(Pns n) = k((Pnx + @n)x> Pn) + a(za(1), @) + d( Dy, 1) — 0.
Adding (6.26) and (6.27), and taking the real part, we have

- pl”q)n”iz - Rek((‘an + ()Dn)x’ ()Dn) + Rea(zn(l)a San) + Red(q)n’ QDn) - 0’

(6.16)
(6.17)
(6.18)

(6.19)

(6.20)
6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
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and from Lemmas (6.1) and (6.2), we derive that
— pill®ull: — Rek((@nx + @n)sx» @n) = O. (6.29)
Multiplying (6.18) and (6.19) by p,'¥,, and ,,, respectively, we get
iBup2 (Y, ¥n) = P2l Wull7, = 0 (6.30)
and
B2 (¥, ) — (b, + fo i 8N ($)S) s Yn) + k(@px + Y, ) = 0. (6.31)

Adding (6.30) and (6.31), we have

_pZH\PnllIz] - (bl//nxx, wn) + (f g(s)nn(s)ds)xx, wn) + Rek(‘pnx + wm l/’n) - 07 (632)
0
and

— P2llWull72 + Bl + Rek(@nx + W, ) = O. (6.33)

Using (6.29) and (6.33), we derive that

~ pill @7, = P2l Pull7 + kllns + Wll7 + bl — O, (6.34)

and the result is obtained.
From the Lemma 2.5 in [14], we know

I¥all2> + WaallZ> — 0. (6.35)

Combining (6.2), (6.34), and (6.35), from the fact that (U3, = pill®ul2, + pa2lWall2, + Klign: +
lpn”iz + b”lpnx”iz = 1, we can show that

kllgns + wally> — 1. (6.36)

Multiplying (6.17) and (6.19) by 2¢,,, and @, + ¥, respectively, we get

b b db
iﬁn%(wnm (Dn) - b(l‘//}’l){’ (‘)Dl’lx + wn)x) + a?(l//ﬂx, Zﬂ(l)) + T(wnm Q}’l) - 0 (6'37)

and

1Bup2 (Y, @ + ) + (b + fo &(IN()dS) s (P + Yn)y) + Kllpns + Yll7, = 0. (6.38)

Adding (6.37) and (6.38), we have
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: ., P1b
lﬁan(le Pnx + '//n) + lﬁn%(‘/’nm (Dn) + k“‘an + lr//n”iz

+ %(%x, z(1)) + db(lﬂnx, ®,) — 0. (6.39)

s
Multiplying (6.16) and (6.18) by P,, and iB, 0., respectively, we get
iBro2(F s @nx) = p2 (¥, @) — 0 (6.40)
and
Bapallnll7 + iBup2(¥n. ) = 0. (6.41)
Adding (6.40) and (6.41), we have
Bap2(¥s @u + ) = p2(¥, @) + Bapallill > — 0. (6.42)
Adding (6.39) and (6.42), we have
iﬁn/%b(t/fnx, D,) + Kllpns + Wally> + %(wnmzn(l)) + %(lpnm ,)
= p2(¥, ©u) + Brpallglly. — 0. (6.43)
Multiplying (6.18) by p,®,,, we get
1Bup2(Wns Pux) — P2 (P, @) — 0. (6.44)

Adding (6.43) and (6.44), we get

. ) b
lﬁan(wn’ (an) + lﬁn%(wnm (Dn) + k”(;ﬂnx + wn”%z

b db
+ “7<¢nx,zn<1>> + = W ©) = B2l 0. (6.45)

From the equal speed condition, we have

Kligns + Yall72 + a—f(wm,zn(l)) + %(://m, D,) - Bapallally. = O, (6.46)
and there holds
kligny + Yl = 0. (6.47)
This is a contradiction with (6.36), and we prove that iR C o(A(?)).
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6.2. Proof of (3.2)

To achieve the goal, for any V = (v, v2, v3, V4, Vs, Vs, v7)| € S, we consider the resolvent equation

(AL — AU = V., (6.48)
that is,
ilp— D =vy, (6.49)
1
i@ - X rw+ Laz)+ Lo+ Lo, = v, (6.50)
P1 P1 P1 P1
i — ¥ = v, (6.51)
. 1 0 k o
i — —(by + f g(M($)ds)x + — (@ + 1)) — —0 = vy, (6.52)
P2 0 P2 P2
i0-Lo + Z@. +9) = s, (6.53)
P3 P3
im—Y+ns=vs, (6.54)
1 — kp/(f
P, LA O (6.55)
p(1)

Lemma 6.4. For any t € R*, there exists a constant C independent of V such that

L 00 1
16:117, + f f gl .dsdx + ff llzCx, &, D72 < CollUILl IV e (6.56)
0 0 0

Proof. Multiplying (6.48) by U in ¢, combining Lemma 6.1, and taking the real part, we de-

rive that
L 00 1
16,/17, + f f g()ml2.dsdx + & f 12, (x, &, D)II2,
0 0 0

< CRe(V,U) v < CollUll IVl
Lemma 6.5. For A large enough and any t € R*, there holds that
Kllex + ¥l < U1, + CAIVIE, (6.57)
Proof. Combining (6.49), (6.51), and (6.53), we have
30 — B0y + iAo (@x + §) = p3vs + 0 (Vix + V3). (6.58)

Multiplying (6.58) by k(¢ + ) in L*(0, L), we have

L L L
ilok f loy + lPdx = - f 0.k(p + ) dx + p3k f 0id(py + ¥)dx
0 0 0

L
+ kf (03vs + o(vix + v3))(@y + ¥)dx. (6.59)
0
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In the following way, we estimate each term of (6.59). From (6.50), we derive that
L L L L
5 [ ok rond=itgr [ 0.0dx-por [ t0fdx-pa [ o.0dx
0 0 0 0

L L
- ﬁdf 0. ®dx + Bp; f 0. vrdx.
0 0

Next, from (6.49) and (6.51), we derive

L
P3kf Oid(py + Y)dx = —P3kf
0 0

and it follows that

L

L L
0, Ddx + pgkf O0Vdx + pgkf vy, + v3dx,
0 0

L L L L
idoklle, + Yli7,dx =idBp; f 0,Ddx — Bo f |0[*dx — Ba f 60.z(1)dx — Bd f 0, Ddx
0 0 0 0

L L L
- p3kf 60, Ddx + pgkf O0VYdx + pgkf Bvi, + v3dx
0 0 0

L L
+k f (p3vs + 0 (Vi +v3))(ex + ¥)dx + Bp f Oxvadx.
0 0

We see that

Aokl + YliT.dx <ABplIBNI2 NIl + ClIOI UL + CHUILAIVIL + CllBl2 VL,

that is,

Bp:

klig, + 7 dx <=—
o

and Young’s inequality leads to the conclusion finally.

C C C
1Ol Pllz> + 10NNVl + ULV + 20l 1V e

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

Lemma 6.6. For A large enough, any t € R*, and any & > 0, there exists a constant C, > 0 satisfying

pill®lI7, < ellUIE, + CAIVIE,.

Proof. Multiplying (6.50) by —g in L*(0, L) and using (6.49), we have

L L L _ ia L
o1 f |D[dx = kf lo, + YlPdx — kf (@x + Y)dx + Ef 2D + vidx
0 0 0 0
id (* —— ic (* — L
+ — DD + vidx + — 0.D + vidx — p; (Dv] + vrp)dx.
A 0 7 0 0

From Lemma 6.4, we can derive that

iCl L _— ld L S C 1/2 1/2
Re(; Z(D® +vidx + 7 QO + vidx) < ZIIUIIE;@IIVIIC%G(IIUIW + VI,
0 0

(6.65)

(6.66)

(6.67)
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Re'Z f 0, + vidx < —||U||”2||V||”2<||U||% +IVIL#), (6.68)
and
L
Rep, f (DV; + va@)dx < CllUIL#|IV] e (6.69)
0

It follows from Lemma 6.5 and Young’s inequality that we can derive the conclusion.

Lemma 6.7. For A large enough, any t € R*, and any & > 0, there exists a constant C, > 0 satisfying
P27, < &llUIE, + CAIVIE,. (6.70)

Proof. Multiplying (6.52) by [~ g(s)n(s)ds in L*(0, L), we have

L 00 L ) L 00
- P2 f f g(s)Yian(s)dsdx — o f f g(s)@%dsdx+b f f g(s)n (s dsdx
0 Jo 0o Jo 0 Jo
L 00 L 00 -
+ fo | j; g()m(s)ds*dx + k fo fo 8(s) @y + YIn(s)dsdx

L b —_—
:pz‘fo L g(s)van(s)dsdx. (6.71)

By (6.54), we obtain

L 00
%) f f g(s)Vidn(s)dsdx
0 Jo
00 L L 00 L 0o
:—pzf g(s)dsf |‘I’|2dx—p2ff g(s)‘I‘v_édsdx+p2f f g(s)¥Yn,dsdx, (6.72)
0 0 0 Jo 0o Jo

and integration by parts leads to

L 00 00
loa f f g()¥sdsdx| < prCy 1P|l ( f (=g’ (s)lmsIPds)" 2. (6.73)
0 0 0

Using (6.49) and (6.51), we show that

L 00
k f f 2() (@ + WIT)dsd

- & f f ¢(5) (1, + va)T(dsdx — = f f 8(s)¥n(s)dsdx

+ zf f g(8)Pn.(s)dsdx| < zllnlng(IICDII + I+ [[vix + 3], (6.74)
0 0

and from the Holder inequality we get

L ] L 00 0o
j(;lj(; g(S)Ux(S)dSIZSL(j; g(S)dS)j; g(s)lnx(snzdeXSCO”””ié- (6.75)
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Combining Lemmas 6.4 and 6.6, and (6.71)—(6.75), and using the Holder inequality and the Young
inequality, we can derive the conclusion. We can also refer to [14] for excellent details.

Lemma 6.8. For A large enough, any t € R*, and any € > 0, there exists a constant C, > 0 satisfying
bl < elUIE, + CAVIE,. (6.76)

Proof. Multiplying (6.19) by ¢ in L?(0, L), we have

L L L 00
o f Wilgdx + b f WP + f f (I (ndsdx
0 0 0 0

L L L
+k | (pp+¥Wdx—o f Oydx = p, f vadx. (6.77)
0 0 0

From (6.51), we have

f o dx = — f f g()m.(s)pdsdx — k f (o + Y)pdx
+p2f ‘Pz/hﬁdx+0'f 9wdx+p2f vadx
f f ()N (W xdsdx — = f (x + Y)Wdx — — f (@x + Y)vsdx

+ P2 f [\Pldx + pa f Pvsdx + o f Ordx + ps f vadx, (6.78)
0 0
and using Lemmas 6.6 and 6.7 leads to
bl < CIU LAV + CIULnll2 + CIU L0z + Cl6dl2 VIl (6.79)

It follows from Lemma 6.4 and the Young inequality that the conclusion is derived.
In summary, combination of Lemmas 6.4—6.8 help us to obtain

NUllw < ClIVIe,
and (3.2) is finished finally.
7. Further research
In this article, we study the exponential stability of thermoelastic Timoshenko with variable delay
in the internal feedback. If the variable delay is replaced by the distributed delay, the relating problem
is still open, which is our next objective.
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