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Abstract: Based on the Fourier law of heat conduction, this paper was concerned with the thermoelas-
tic Timoshenko system with memory and variable delay in the internal feedback, which describes the
transverse vibration of a beam. By the Lummer-Phillips theorem and the variable norm technique suit-
able for the nonautonomous operator, the stability of the coupled system has been derived in space H .
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1. Introduction

In 1921, S. P. Timoshenko studied the transverse vibration of a beam, and found that the motion
could be described by a family of partial differential equations in which the bending moment and shear
stress were involved. Based on the constitutive laws in the mathematical elasticity theory, the following
system, called the Timoshenko system [1], was derived ρ1φtt(x, t) − k(φx + ψ)x(x, t) = 0, in (0, L) × R+,

ρ2ψtt(x, t) − bψxx(x, t) + k(φx + ψ)(x, t) = 0, in (0, L) × R+,
(1.1)

where L > 0 is the length of beam, φ is the vertical displacement of beam, ψ denotes the rotation angle
of the filament of beam, and ρ1, ρ2, k, b are positive constants.

So far, many significative results on the dissipative Timoshenko system have been derived, involv-
ing the linear and nonlinear cases, dynamical behavior, stability, and so on. Regarding the exponential
stability of the dissipative Timoshenko system, the following equal speed condition is usually impor-
tant:
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k
ρ1
=

b
ρ2
. (1.2)

To achieve the desired dissipation, damping terms are needed necessarily to system (1.1), and we
can refer to [2–4] and references therein, in which the frictional damping, indefinite damping, and
weak damping were involved. In general, the influence of thermal damping was usually considered
in research on Timoshenko system [5–12]. The coupled system, called the thermoelastic Timoshenko
system, is always combined with other damping terms, in which the heat conduction is ordinarily under
some law (τqt + q + βθx = 0), e.g., the Fourier law (τ = 0) and the Cattaneo law (τ , 0).

In 2009, H. D. Fernández Sare and R. Racke studied the thermoelastic Timoshenko system with
memory under the Fourier law and obtained the exponential stability, which was not true for the case
of Cattaneo law [13]. The stability of thermoelastic system was also obtained in [14], in which the
thermal damping was in the shear moment, and it is different from [13]. Many good results could
be referred in [15–18]. Furthermore, the influence of delay appears in economics, physics, and other
fields, the delay term could be constant delay, continuous delay, or the distributed delay, which is
important to the stability of system; We can refer to [19–21] for the results on fluid system with delay,
and see [22–24] for the Timoshenko system with delay.

In this paper, under the Fourier law we consider the thermoelastic Timoshenko system subject to
memory and variable time delay on (0, L) × R+

ρ1φtt(x, t) − k(φx + ψ)x(x, t) + aφt(x, t − ρ(t)) + dφt(x, t) + σθx = 0,
ρ2ψtt(x, t) − b̃ψxx(x, t) +

∫ ∞
0

g(s)ψxx(x, t − s)ds + k(φx + ψ)(x, t) − σθ = 0,
ρ3θt(x, t) + qx(x, t) + σ(φx + ψ)t(x, t) = 0,
q + βθx = 0,

(1.3)

where θ is the temperature, q is the heat flux vector, a, d, σ, ρ3, b̃, β are positive constants satisfying
d >
√

2a, (x, t) ∈ (0, L) × R+, the delay function ρ(·) : R+ → [M0, h] (h > M0 > 0) is C1 continuous
and satisfies that

0 < M̃0 < ρ
′(t) ≤ 1 −

2a2

d2 = M̃1 < 1,

and the positive exponentially decaying kernel function g satisfies for some constant k1 > 0 that

b = b̃ −
∫ ∞

0
g(s)ds = b̃ −C0 > 0, g′(s) ≤ −k1g(s), s > 0. (1.4)

The primary characteristics of this article are different from the previous results, and details are
as follows:

1) Different from [13], the thermal damping σθx is in the shear moment term of this article, which
is similar with the case of [14]. Also, the continuous delay terms aφt(x, t − ρ(t)) and dφt(x, t) are
considered in the shear moment term, which bring us some difficulties in deriving the dissipation
and stability.

2) Since the operator A(t) generated in (1.3) is nonautonomous, the autonomous operator method
in [25] is invalid. So, the variable norm technique in [26] is used, which is suitable for the case of the
nonautonomous operator.
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The rest of this article is arranged as follows. In Section 2 we give the equivalent problem of (1.3),
and present a useful lemma concerning the perturbation theory and main results in Section 3. The
well-posedness of (1.3) is derived by the Lummer-Phillips theorem in Section 4. Four sufficient con-
ditions in Kato’s perturbation theory are verified in Section 5, and the exponential stability of (1.3) is
proved finally.

2. Equivalent problem

At first, we introduce a new variable for the delay feedback term

z(x, κ, t) = φt(x, t − κρ(t)), (κ, t) ∈ (0, 1) × R+, (2.1)

and we have
ρ(t)zt(x, κ, t) + (1 − κρ′(t))zκ(x, κ, t) = 0 in (0, L) × (0, 1) × R+. (2.2)

For the memory term, we present

η(x, t, s) = ψ(x, t) − ψ(x, t − s), t, s ≥ 0. (2.3)

Using the above transformation, we convert the system (1.3) to the following equivalent form:

ρ1φtt(x, t) − k(φx + ψ)x(x, t) + az(x, 1, t) + dφt(x, t) + σθx = 0,
ρ2ψtt(x, t) − bψxx(x, t) + k(φx + ψ)(x, t) −

∫ ∞
0

g(s)ηxx(s)ds − σθ = 0,
ρ3θt(x, t) − βθxx(x, t) + σ(φx + ψ)t(x, t) = 0,
ηt + ηs − ψt = 0,
ρ(t)zt(x, κ, t) + (1 − κρ′(t))zκ(x, κ, t) = 0,

(2.4)

where (x, κ, t) ∈ (0, L) × (0, 1) × R+. Also, the new equivalent system (2.4) is equipped with the
initial conditionsφ(x, 0) = φ0(x), φt(x, 0) = φ1(x), ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

θ(x, 0) = θ0(x), z(x, κ, 0) = φ3(x,−κρ(0)), η(x, 0, s) = η0(x, s), η(x, t, 0) = 0,
(2.5)

and the boundary conditionsφx(0, t) = φx(L, t) = ψ(0, t) = ψ(L, t) = θ(0, t) = θ(L, t) = 0, z(x, 0, t) = φt(x, t),
η(0, t, s) = η(L, t, s) = 0.

(2.6)

To solve the problems (2.4)–(2.6), we write

L2
⋆(0, L) = {w ∈ L2(0, L)|

∫ L

0
w(x)dx = 0}, H1

⋆(0, L) = H1
0(0, L) ∩ L2

⋆(0, L),

L2
g(R+,H1

0(0, L)) = {u|
√

gu ∈ L2(R+,H1
0(0, L))}.
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For the delay space L2((0, L) × (0, 1)), we define the following inner product and norm

(z1, z2)ξ = ξ
∫ 1

0

∫ L

0
z1(κ)z2(κ)dxdκ, ∥z∥ξ = ξ

∫ 1

0
∥z(κ)∥2L2dκ,

where ξ = ξ(t) satisfies

dρ(t) −
ρ(t)

1 − ρ′(t)

√
(1 − ρ′(t))d2 − 2a2 ≤ ξ ≤ dρ(t) +

ρ(t)
1 − ρ′(t)

√
(1 − ρ′(t))d2 − 2a2.

We consider the phase (Hilbert) space

H =H1
⋆(0, L) × L2

⋆(0, L) × H1
0(0, L) × L2(0, L) × L2(0, L) × L2

g(R+,H1
0(0, L))

× L2((0, L) × (0, 1)) (2.7)

endowed with the norm

∥U∥H = ρ1∥Φ∥
2
L2 + ρ2∥Ψ∥

2
L2 + k∥φx + ψ∥

2
L2 + b∥ψx∥

2
L2 + ρ3∥θ∥

2
L2

+

∫ ∞

0
g(s)∥ηx(s)∥2L2ds + ξ

∫ 1

0
∥z(κ)∥2L2dκ

and corresponding inner product (·, ·)H for all U = (φ,Φ, ψ,Ψ, θ, η, z)T ∈ H , where Φ = φt and
Ψ = ψt. Basing on the equivalent equations, for any t ∈ R+, we define the operator A(t) as the following:

A(t)U =



Φ
k
ρ1

(φx + ψ)x −
a
ρ1

z(1) −
d
ρ1
Φ −

σ

ρ1
θx

Ψ
1
ρ2

(bψ +
∫ ∞

0
g(s)η(s)ds)xx −

k
ρ2

(φx + ψ) +
σ

ρ2
θ

β

ρ3
θxx −

σ

ρ3
(Φx + Ψ)

Ψ − ηs

−
1 − κρ′(t)
ρ(t)

zκ



(2.8)

with domain

D(A(t)) = {U ∈H | φ ∈ H2(0, L), φx ∈ H1
0(0, L), Φ ∈ H1

⋆(0, L), Ψ ∈ H1
0(0, L), bψ+∫ ∞

0
g(s)η(s)ds ∈ H2(0, L), θ ∈ H1

0(0, L) ∩ H2(0, L), η(·, 0) = 0, zκ ∈ L2((0, L) × (0, 1))}.

From the definition of D(A(t)) we know

D(A(t)) = D(A(0)), t ∈ R+,

and the new system (2.4) can be written as the following abstract form
dU
dt
= A(t)U, t > 0,

U(0) = U0 = (φ0,Φ0, ψ0,Ψ0, θ0, η0, z0)T .
(2.9)
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3. A useful lemma and main results

To study the nonlinear system (2.9) with nonautonomous operator, we introduce here the perturba-
tion theory (see [26]) suitable for the case of the nonautonomous operator.

Lemma 3.1. Suppose that for any t ∈ R+, there holds
(P-I) The domain D(A(t)) is dense in the phase space H , and D(A(t)) = D(A(0)).
(P-II) In space H , the operator A(t) generates a C0 semigroup {S A(t)(s)}s≥0 for any t ∈ [0,T ], where
T > 0 is some fixed constant.
(P-III) There exist positive constants K1,K2 independent of t ∈ [0,T ] satisfying

∥S A(t)(s)U0∥H ≤ K1eK2 s∥U0∥H .

(P-IV) The operator A(t) : [0,T ]→ B(D(A(0)),H ) is essentially bounded and strongly measurable.
Then, for any U0 ∈H , the solution U to system (2.9) is unique and satisfies

U ∈ C([0,T ],D(A(0))) ∩C1([0,T ],H ).

Theorem 3.1. For any fixed t ∈ [0,T ] and any U0 ∈ H , the solution U to the system (2.9) exists
uniquely, generates a C0 semigroup of contraction {S A(t)(s)}s≥0 in H , whose infinitesimal generator is
A(t), and there holds that

U ∈ C0([0,T ],D(A(0))) ∩C1([0,T ],H ).

To prove Theorem 3.1, we apply the Lummer-Phillips theorem, and need to show for any fixed
t ∈ [0,T ] that 0 ∈ ϱ(A(t)) (spectral set of A(t)) and the dissipation of A(t).

Theorem 3.2. For any U0 ∈H , there exist constants C, ς > 0, being independent of U0, such that for
any s ∈ R+,

∥U(s)∥H ≤ C∥U0∥H e−ςs,

which means the system (2.9) is exponentially stable.

To prove Theorem 3.2, we use the well-known characterization of exponential stability for C0 semi-
group as follows, and we can refer to [25] for a detailed process of proof.

Theorem 3.3. For any fixed t ∈ [0,T ], let S A(t)(s) = eA(t)s be a C0 semigroup of contraction in space
H . Then, the semigroup is exponentially stable if and only if

iR ⊂ ϱ(A(t)), (3.1)
lim sup
|λ|→∞

∥(iλI − A(t))−1∥ < ∞. (3.2)

4. Proof of Theorem 3.1

Basing on the Lummer-Phillips theorem, we need to derive the following lemmas to get the well-
posedness, and we can also see [24] for reference.
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Lemma 4.1. For any fixed t ∈ [0,T ], the operator A(t) has the property of dissipation.

Proof. For any U = (φ,Φ, ψ,Ψ, θ, η, z)T ∈ D(A(t)), we have

(A(t)U,U)H =
∫ L

0
[k(φxx + ψx)Φ − az(1)Φ − dφtΦ − σθxΦ]dx

+

∫ L

0
[bψxxΨ − kφxΨ − kψΨ + σθΨ]dx

+

∫ L

0
[kΦxφx + kΦxψ + kΨφx + kΨψ + bΨxψx]dx

+

∫ L

0
[βθxxθ − σΦxθ − σΨθ]dx +

∫ L

0
g(s)(Ψ − ηs)xηxdsdx

+ ξ

∫ 1

0
(
∫ L

0
−

1 − κρ′(t)
ρ(t)

zkzdx)dκ, (4.1)

and it follows that

(A(t)U,U)H =
∫ L

0
[−βθxxθ − az(1)Φ − dφtΦ]dx +

1
2

∫ L

0

∫ ∞

0
g′(s)∥ηx∥

2
L2dsdx

+ ξ

∫ 1

0
[
∫ L

0
−

1 − κρ′(t)
ρ(t)

zkzdx]dκ

= −β

∫ L

0
|θx|

2 +
1
2

∫ L

0

∫ ∞

0
g′(s)∥ηx∥

2
L2dsdx − a

∫ L

0
φt(t − ρ(t))φtdx − d

∫ L

0
|φt|

2dx

−
ξ

2ρ(t)

∫ L

0
[z2(x, 1, t) − z2(x, 0, t)]dx +

ξρ′(t)
2ρ(t)

∫ L

0
[z2(x, 1, t) −

∫ 1

0
z2(x, κ, t)dκ]dx

= −β

∫ L

0
|θx|

2 +
1
2

∫ L

0

∫ ∞

0
g′(s)∥ηx∥

2
L2dsdx − a

∫ L

0
φt(t − ρ(t))φtdx

− (d −
ξ

2ρ(t)
)
∫ L

0
|φt|

2dx − (
ξ

2ρ(t)
−
ξρ′(t)
2ρ(t)

)
∫ L

0
z2(x, 1, t)dx −

ξρ′(t)
2ρ(t)

∫ 1

0
z2(x, κ, t)dκdx

≤ −β

∫ L

0
|θx|

2 −
k1

2

∫ L

0

∫ ∞

0
g(s)∥ηx∥

2
L2dsdx − (

ξ

4ρ(t)
−
ξρ′(t)
4ρ(t)

)
∫ L

0
z2(x, 1, t)dx

−
ξρ′(t)
2ρ(t)

∫ 1

0
z2(x, κ, t)dκ]dx < 0. (4.2)

Lemma 4.2. For any fixed t ∈ [0,T ], 0 ∈ ϱ(A(t)).

Proof. For any V = (v1, v2, v3, v4, v5, v6, v7)T ∈H , we study the equations

A(t)U = V, (4.3)

that is,

Φ = v1, (4.4)
k
ρ1

(φx + ψ)x −
1
ρ1

az(1) −
d
ρ1
φt −

σ

ρ1
θx = v2, (4.5)
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Ψ = v3, (4.6)
b
ρ2
ψxx −

k
ρ2

(φx + ψ) +
σ

ρ2
θ = v4, (4.7)

β

ρ3
θxx −

σ

ρ3
(Φx + Ψ) = v5, (4.8)

Ψ − ηs = v6, (4.9)

−
1 − κρ′(t)
ρ(t)

zκ = v7. (4.10)

By (4.4) and (4.6), we get

Φ = v1 ∈ H1
⋆(0, L), Ψ = v3 ∈ H1

0(0, L).

From (4.10), we know

z(κ) = z(0) +
∫ κ

0

−ρ(t)
1 − τρ′(t)

v7dt = v1 +

∫ κ

0

−ρ(t)
1 − τρ′(t)

v7dt ∈ L2((0, 1) × (0, L)). (4.11)

It follows that

z(1) = v1 +

∫ 1

0

−ρ(t)
1 − τρ′(t)

v7dτ. (4.12)

Here, some equalities could be rewritten as

k(φx + ψ)x = σθx + ρ1v2 + dv1 + az(1), (4.13)

(bψ +
∫ ∞

0
g(s)η(s)ds)xx = k(φx + ψ) − σθ + ρ2v4, (4.14)

βθxx = ρ3v5 + σ(v1x + v3). (4.15)

As to (4.15), we use the conclusion that ρ3v5 + σ(v1x + v3) ∈ L2(0, L) together with the standard
elliptic theory, and we obtain that

θ ∈ H1
0(0, L) ∩ H2(0, L).

It follows from (4.13) that

φx + ψ =
1
k

∫ x

0
(σθt + ρ1v2 + dv1 + az(1))dt ∈ H1

0(0, L).

In addition, we use the standard elliptic theory again and the relation k(φx+ψ)−σθ+ρ2v4 ∈ L2(0, L),
and we derive that

bψ +
∫ ∞

0
g(s)η(s)ds ∈ H1

0(0, L) ∩ H2(0, L).

Using the same technique as shown as in [13], we can obtain that

η ∈ L2
g(R+; H1

0), ψ ∈ H1
0(0, L), φx ∈ H1

0(0, L).

In summary, the system (4.3) is solved uniquely and U = (φ,Φ, ψ,Ψ, θ, η, z)T ∈ D(A(t)). From the
above derivation process, we can show that there exists a positive constant C such that

∥U∥H ≤ C∥V∥H ,

which means 0 ∈ ϱ(A(t)) for any fixed t ∈ R+. According to the Lummer-Phillips Theorem, we finish
the proof of Theorem 3.1.
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5. Verification of conditions in Lemma 3.1

In order to be able to use the autonomous operator theory to the nonautonomous case, we need
to verify the conditions in the Kato’s perturbation theory, and we can also refer to [27] and draw
inspiration.

Lemma 5.1. D(A(0)) =H .

Proof. Suppose that U1 = (φ1,Φ1, ψ1,Ψ1, θ1, η1, z1)T ⊥ D(A(0)), then there holds for any U =
(φ,Φ, ψ,Ψ, θ, η, z)T ∈ D(A(0)) that

(U1,U)H = ρ1

∫ L

0
Φ1Φdx + ρ2

∫ L

0
Ψ1Ψdx + k

∫ L

0
(φ1x + ψ1)(φx + ψ)dx

+ b
∫ L

0
ψ1xψxdx + ρ3

∫ L

0
θ1θdx +

∫ L

0

∫ ∞

0
g(s)η1ηdsdx + ξ

∫ 1

0

∫ L

0
z1(κ)z(κ)dxdκ = 0. (5.1)

When U = (0, 0, 0, 0, 0, 0, z)T and z ∈ C∞0 ((0, L) × (0, 1)), U ∈ D(A(0)), and from (5.1) we have

ξ

∫ 1

0

∫ L

0
z1(κ)z(κ)dxdκ = 0.

The fact that C∞0 ((0, L)× (0, 1)) is dense in L2((0, L)× (0, 1)) leads to z1(x, κ, t) = 0 in (0, L)× (0, 1)×
R+. Using the same technique, we can show that

φ1 = 0,Φ1 = 0, ψ1 = 0,Ψ1 = 0, θ1 = 0, η1 = 0.

It follows that D(A(0)) =H , and the condition (P-I) is verified.

Lemma 5.2. For any t ∈ [0,T ], the operator family {A(t)} is stable in H .

Proof. For any U ∈H , we write ∥U∥2t = ∥(φ,Φ, ψ,Ψ, θ, η,
√
ρ(t)z)T ∥2H . From assumptions on ρ(t),

we know that for any t ∈ [0,T ] there holds

M0ξ

∫ 1

0

∫ L

0
z2(κ)dκdx < ρ(t)ξ

∫ 1

0

∫ L

0
z2(κ)dκdx < hξ

∫ 1

0

∫ L

0
z2(κ)dκdx. (5.2)

If we choose C′ = min{M0, 1}, C′′ = max{h, 1}, then

C′∥(φ,Φ, ψ,Ψ, θ, η, z)T ∥2H ≤ ∥(φ,Φ, ψ,Ψ, θ, η,
√
ρ(t)z)T ∥2H ≤ C′′∥(φ,Φ, ψ,Ψ, θ, η, z)T ∥2H .

It follows that ∥U∥2t = ∥(φ,Φ, ψ,Ψ, θ, η,
√
ρ(t)z)T ∥2H is an equivalent norm of space H , and we

claim here that

∥U∥t ≤ ∥U∥t0e
M̃1

2M0
|t−t0 |. (5.3)

In fact, for any 0 ≤ t0 ≤ t ≤ T , there holds

∥U∥2t ≤ ∥U∥
2
t0e

M̃1
2M0

(t−t0)
= (1 − e

M̃1
2M0

(t−t0))·
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(ρ1∥Φ∥
2
L2 + ρ2∥Ψ∥

2
L2 + k∥φx + ψ∥

2
L2 + b∥ψx∥

2
L2 + ρ3∥θ∥

2
L2 +

∫ ∞

0
g(s)∥ηx(s)∥2L2ds)

+ (ρ(t) − ρ(t0)e
M̃1

2M0
(t−t0))ξ

∫ 1

0
∥z(κ)∥2L2dκ.

From the properties of ρ(t), we know for any ϑ ∈ (t0, t) there holds

ρ(t) = ρ(t0) + ρ′(ϑ)(t − t0) ≤ ρ(t0) + M̃1(t − t0),

which means
ρ(t)
ρ(t0)

≤ 1 +
M̃1

M0
(t − t0) ≤ e

M̃1
M0

(t−t0)
.

From the fact that 1 − e
M̃1

2M0
(t−t0)
≤ 0, we derive the conclusion, which means the condition (P-III)

is verified.

Lemma 5.3. For any t ∈ [0,T ], the operator A(t) ∈ L∞⋆ ([0,T ], B(D(L(0)),H )).

Proof. For any U = (φ,Φ, ψ,Ψ, θ, η, z)T ∈H , from (2.8), we know

A(t) =



0 1 0 0 0 0 0
k
ρ1

∂2

∂x2 − d
ρ1

k
ρ1

∂
∂x 0 − σ

ρ1

∂
∂x 0 − a

ρ1
|κ=1

0 0 1 0 0 0 0
− k
ρ2

∂
∂x 0 b

ρ2

∂2

∂x2 0 σ
ρ2

1
ρ2

∫ ∞
0

g(s) ∂2

∂x2 ds 0
0 − σ

ρ3

∂
∂x 0 − σ

ρ3

β

ρ3

∂2

∂x2 0 0
0 0 0 1 0 − ∂

∂s 0
0 0 0 0 0 0 −

1−κρ′(t)
ρ(t) ∂κ


. (5.4)

It follows that

At(t)U =



0
0
0
0
0
0

κ(ρ(t)ρ′′(t) − ρ′2(t)) + ρ′(t)
ρ2(t)

zκ


, (5.5)

which is bounded for t ∈ [0,T ], and the conclusion is finished, which means the condition (P-IV)
is verified.

To sum up, basing on the result in Theorem 3.1, we confirm the four conditions in Lemma 3.1.

6. Proof of Theorem 3.2

6.1. Proof of (3.1)

Assume that iR ⊂ ϱ(A(t)) is not true. Therefore, there is a constant C∗, a sequence {βn} satisfying
0 < βn → C∗ and iβn ∈ ϱ(A(t)), and a sequence of functions

Un = (φn,Φn, ψn,Ψn, θn, ηn, zn)T ∈ D(A(t)), ∥Un∥H = 1, (6.1)
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such that

iβnUn − A(t)Un → 0 in H . (6.2)

That is,

iβnφn − Φn → 0 in H1
⋆(0, L), (6.3)

iβnΦn −
k
ρ1

(φnx + ψn)x +
1
ρ1

azn(1) +
d
ρ1
Φn +

σ

ρ1
θnx → 0 in L2

⋆(0, L), (6.4)

iβnψn − Ψn → 0 in H1
0(0, L), (6.5)

iβnΨn −
1
ρ2

(bψn +

∫ ∞

0
g(s)ηn(s)ds)xx +

k
ρ2

(φnx + ψn) −
σ

ρ2
θn → 0 in L2(0, L), (6.6)

iβnθn −
β

ρ3
θnxx +

σ

ρ3
(Φnx + Ψn)→ 0 in L2(0, L), (6.7)

iβnηn − Ψ + ηs → 0 in L2
g(R+; H1

0(0, L)), (6.8)

iβnzn +
1 − κρ′(t)
ρ(t)

znκ → 0 in L2(0, 1; H1
0(0, L)). (6.9)

Lemma 6.1. For any t ∈ R+, we have, as n→ ∞,

θn → 0 in H1
0(0, L), (6.10)∫ L

0

∫ ∞

0
g(s)∥ηx∥

2
L2dsdx→ 0 in L2

g(R+; H1
0(0, L)), (6.11)

zn(1)→ 0 in L2(0, L), (6.12)
zn(x, κ, t)→ 0 in L2(0, 1; L2(0, L)). (6.13)

Proof. Multiplying (6.2) by Un in H yields that

−Re(A(t)Un,Un)H = β
∫ L

0
|θnx|

2 + Rea
∫ L

0
φnt(t − ρ(t))φntdx + (d −

ξ

2ρ(t)
)
∫ L

0
|φnt|

2dx

+ (
ξ

2ρ(t)
−
ξρ′(t)
2ρ(t)

)
∫ L

0
z2

n(x, 1, t)dx +
ξρ′(t)
2ρ(t)

∫ 1

0
z2

n(x, κ, t)dκdx→ 0, (6.14)

which means

β

∫ L

0
|θx|

2 +
k1

2

∫ L

0

∫ ∞

0
g(s)∥ηx∥

2
L2dsdx + (

ξ

4ρ(t)
−
ξρ′(t)
4ρ(t)

)
∫ L

0
z2(x, 1, t)dx

+
ξρ′(t)
2ρ(t)

∫ 1

0
z2(x, κ, t)dκdx→ 0, (6.15)

and the conclusion holds finally.
Thus, the system (6.2) could be reduced into the following simplified form:
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iβnφn − Φn → 0 in H1
⋆(0, L), (6.16)

iβnρ1Φn − k(φnx + ψn)x + azn(1) + dΦn → 0 in L2
⋆(0, L), (6.17)

iβnψn − Ψn → 0 in H1
0(0, L), (6.18)

iβnρ2Ψn − (bψn +

∫ ∞

0
g(s)ηn(s)ds)xx + k(φnx + ψn)→ 0 in L2(0, L), (6.19)

iβnρ3θn − βθnxx + σ(Φnx + Ψn)→ 0 in L2(0, L), (6.20)
iβnηn − Ψ + ηs → 0 in L2

g(R+; H1
0(0, L)), (6.21)

iβnzn +
1 − κρ′(t)
ρ(t)

znκ → 0 in L2(0, 1; H1
0(0, L)). (6.22)

Lemma 6.2. For any t ∈ R+, we have, as n→ ∞,

Φn → 0 in L2(0, L). (6.23)

Proof. Multiplying (6.22) by zn and considering the real part, we obtain∫ 1

0

1 − κρ′(t)
2ρ(t)

d
dκ
∥zn(κ)∥2L2dκ → 0, (6.24)

which means

1
2ρ(t)

∫ 1

0

d
dκ
∥zn(κ)∥2L2dκ −

ρ′(t)
2ρ(t)

∫ 1

0
κ

d
dκ
∥zn(κ)∥2L2dκ

=
1

2ρ(t)
(∥zn(1)∥2L2 − ∥zn(0)∥2L2) −

ρ′(t)
2ρ(t)

∫ 1

0
κd(∥zn(κ)∥2L2)→ 0,

and

(1 − ρ′(t))(∥zn(1)∥2L2 − ∥zn(0)∥2L2)→ 0.

It follows from (6.12) that the conclusion is finished.

Lemma 6.3. For any t ∈ R+, we have, as n→ ∞,

− ρ1∥Φn∥
2
L2 − ρ2∥Ψn∥

2
L2 + k∥φnx + ψn∥

2
L2 + b∥ψnx∥

2
L2 → 0. (6.25)

Proof. Multiplying (6.16) and (6.17) by ρ1Φn and φn, respectively, we get

iβnρ1(φn,Φn) − ρ1∥Φn∥
2
L2 → 0 (6.26)

and

iβnρ1(Φn, φn) − k((φnx + φn)x, φn) + a(zn(1), φn) + d(Φn, φn)→ 0. (6.27)

Adding (6.26) and (6.27), and taking the real part, we have

− ρ1∥Φn∥
2
L2 − Rek((φnx + φn)x, φn) + Rea(zn(1), φn) + Red(Φn, φn)→ 0, (6.28)
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and from Lemmas (6.1) and (6.2), we derive that

− ρ1∥Φn∥
2
L2 − Rek((φnx + φn)x, φn)→ 0. (6.29)

Multiplying (6.18) and (6.19) by ρ2Ψn and ψn, respectively, we get

iβnρ2(ψn,Ψn) − ρ2∥Ψn∥
2
L2 → 0 (6.30)

and

iβnρ2(Ψn, ψn) − ((bψn +

∫ ∞

0
g(s)ηn(s)ds)xx, ψn) + k(φnx + ψn, ψn)→ 0. (6.31)

Adding (6.30) and (6.31), we have

− ρ2∥Ψn∥
2
L2 − (bψnxx, ψn) + (

∫ ∞

0
g(s)ηn(s)ds)xx, ψn) + Rek(φnx + ψn, ψn)→ 0, (6.32)

and

− ρ2∥Ψn∥
2
L2 + b∥ψnx∥

2
L2 + Rek(φnx + ψn, ψn)→ 0. (6.33)

Using (6.29) and (6.33), we derive that

− ρ1∥Φn∥
2
L2 − ρ2∥Ψn∥

2
L2 + k∥φnx + ψn∥

2
L2 + b∥ψnx∥

2
L2 → 0, (6.34)

and the result is obtained.
From the Lemma 2.5 in [14], we know

∥Ψnx∥
2
L2 + ∥ψnx∥

2
L2 → 0. (6.35)

Combining (6.2), (6.34), and (6.35), from the fact that ∥Un∥
2
H = ρ1∥Φn∥

2
L2 + ρ2∥Ψn∥

2
L2 + k∥φnx +

ψn∥
2
L2 + b∥ψnx∥

2
L2 = 1, we can show that

k∥φnx + ψn∥
2
L2 → 1. (6.36)

Multiplying (6.17) and (6.19) by b
κ
ψnx and φnx + ψn, respectively, we get

iβn
ρ1b
κ

(ψnx,Φn) − b(ψnx, (φnx + ψn)x) +
ab
κ

(ψnx, zn(1)) +
db
κ

(ψnx,Φn)→ 0 (6.37)

and

iβnρ2(Ψn, φnx + ψn) + ((bψn +

∫ ∞

0
g(s)ηn(s)ds)x, (φnx + ψn)x) + k∥φnx + ψn∥

2
L2 → 0. (6.38)

Adding (6.37) and (6.38), we have
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iβnρ2(Ψn, φnx + ψn) + iβn
ρ1b
κ

(ψnx,Φn) + k∥φnx + ψn∥
2
L2

+
ab
κ

(ψnx, zn(1)) +
db
κ

(ψnx,Φn)→ 0. (6.39)

Multiplying (6.16) and (6.18) by Ψn and iβnρ2ψn, respectively, we get

iβnρ2(Ψn, φnx) − ρ2(Ψn,Φnx)→ 0 (6.40)

and

β2
nρ2∥ψn∥

2
L2 + iβnρ2(Ψn, ψn)→ 0. (6.41)

Adding (6.40) and (6.41), we have

iβnρ2(Ψn, φnx + ψn) − ρ2(Ψn,Φnx) + β2
nρ2∥ψn∥

2
L2 → 0. (6.42)

Adding (6.39) and (6.42), we have

iβn
ρ1b
κ

(ψnx,Φn) + k∥φnx + ψn∥
2
L2 +

ab
κ

(ψnx, zn(1)) +
db
κ

(ψnx,Φn)

− ρ2(Ψn,Φnx) + β2
nρ2∥ψn∥

2
L2 → 0. (6.43)

Multiplying (6.18) by ρ2Φnx, we get

iβnρ2(ψn,Φnx) − ρ2(Ψn,Φnx)→ 0. (6.44)

Adding (6.43) and (6.44), we get

iβnρ2(ψn,Φnx) + iβn
ρ1b
κ

(ψnx,Φn) + k∥φnx + ψn∥
2
L2

+
ab
κ

(ψnx, zn(1)) +
db
κ

(ψnx,Φn) − β2
nρ2∥ψn∥

2
L2 → 0. (6.45)

From the equal speed condition, we have

k∥φnx + ψn∥
2
L2 +

ab
κ

(ψnx, zn(1)) +
db
κ

(ψnx,Φn) − β2
nρ2∥ψn∥

2
L2 → 0, (6.46)

and there holds

k∥φnx + ψn∥
2
L2 → 0. (6.47)

This is a contradiction with (6.36), and we prove that iR ⊂ ϱ(A(t)).
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6.2. Proof of (3.2)

To achieve the goal, for any V = (v1, v2, v3, v4, v5, v6, v7)T ∈H , we consider the resolvent equation

(iλId − A(t))U = V, (6.48)

that is,

iλφ − Φ = v1, (6.49)

iλΦ −
k
ρ1

(φx + ψ)x +
1
ρ1

az(1) +
d
ρ1
Φ +

σ

ρ1
θx = v2, (6.50)

iλψ − Ψ = v3, (6.51)

iλΨ −
1
ρ2

(bψ +
∫ ∞

0
g(s)η(s)ds)xx +

k
ρ2

(φx + ψ) −
σ

ρ2
θ = v4, (6.52)

iλθ −
β

ρ3
θxx +

σ

ρ3
(Φx + Ψ) = v5, (6.53)

iλη − Ψ + ηs = v6, (6.54)

iλz +
1 − κρ′(t)
ρ(t)

zκ = v7. (6.55)

Lemma 6.4. For any t ∈ R+, there exists a constant C0 independent of V such that

∥θx∥
2
L2 +

∫ L

0

∫ ∞

0
g(s)∥ηx∥

2
L2dsdx + ξ

∫ 1

0
∥z(x, κ, t)∥2L2 ≤ C0∥U∥H ∥V∥H . (6.56)

Proof. Multiplying (6.48) by U in H , combining Lemma 6.1, and taking the real part, we de-
rive that

∥θnx∥
2
L2 +

∫ L

0

∫ ∞

0
g(s)∥ηx∥

2
L2dsdx + ξ

∫ 1

0
∥zn(x, κ, t)∥2L2

≤ CRe(V,U)H ≤ C0∥U∥H ∥V∥H .

Lemma 6.5. For λ large enough and any t ∈ R+, there holds that

k∥φx + ψ∥
2
L2 ≤ ε∥U∥2H +Cε∥V∥2H . (6.57)

Proof. Combining (6.49), (6.51), and (6.53), we have

iλρ3θ − βθxx + iλσ(φx + ψ) = ρ3v5 + σ(v1x + v3). (6.58)

Multiplying (6.58) by k(φx + ψ) in L2(0, L), we have

iλσk
∫ L

0
|φx + ψ|

2dx = − β
∫ L

0
θxk(φx + ψ)xdx + ρ3k

∫ L

0
θiλ(φx + ψ)dx

+ k
∫ L

0
(ρ3v5 + σ(v1x + v3))(φx + ψ)dx. (6.59)
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In the following way, we estimate each term of (6.59). From (6.50), we derive that

−β

∫ L

0
θxk(φx + ψ)xdx =iλβρ1

∫ L

0
θxΦdx − βσ

∫ L

0
|θx|

2dx − βa
∫ L

0
θxz(1)dx

− βd
∫ L

0
θxΦdx + βρ1

∫ L

0
θxv2dx. (6.60)

Next, from (6.49) and (6.51), we derive

ρ3k
∫ L

0
θiλ(φx + ψ)dx = −ρ3k

∫ L

0
θxΦdx + ρ3k

∫ L

0
θΨdx + ρ3k

∫ L

0
θv1x + v3dx, (6.61)

and it follows that

iλσk∥φx + ψ∥
2
L2dx =iλβρ1

∫ L

0
θxΦdx − βσ

∫ L

0
|θx|

2dx − βa
∫ L

0
θxz(1)dx − βd

∫ L

0
θxΦdx

− ρ3k
∫ L

0
θxΦdx + ρ3k

∫ L

0
θΨdx + ρ3k

∫ L

0
θv1x + v3dx

+ k
∫ L

0
(ρ3v5 + σ(v1x + v3))(φx + ψ)dx + βρ1

∫ L

0
θxv2dx. (6.62)

We see that

λσk∥φx + ψ∥
2
L2dx ≤λβρ1∥θx∥L2∥Φ∥L2 +C∥θx∥L2∥U∥H +C∥U∥H ∥V∥H +C∥θx∥L2∥V∥H ,

(6.63)

that is,

k∥φx + ψ∥
2
L2dx ≤

βρ1

σ
∥θx∥L2∥Φ∥L2 +

C
λ
∥θx∥L2∥U∥H +

C
λ
∥U∥H ∥V∥H +

C
λ
∥θx∥L2∥V∥H ,

(6.64)

and Young’s inequality leads to the conclusion finally.

Lemma 6.6. For λ large enough, any t ∈ R+, and any ε > 0, there exists a constant Cε > 0 satisfying

ρ1∥Φ∥
2
L2 ≤ ε∥U∥2H +Cε∥V∥2H . (6.65)

Proof. Multiplying (6.50) by −φ in L2(0, L) and using (6.49), we have

ρ1

∫ L

0
|Φ|2dx = k

∫ L

0
|φx + ψ|

2dx − k
∫ L

0
(φx + ψ)ψdx +

ia
λ

∫ L

0
z(1)Φ + v1dx

+
id
λ

∫ L

0
ΦΦ + v1dx +

iσ
λ

∫ L

0
θxΦ + v1dx − ρ1

∫ L

0
(Φv1 + v2φ)dx. (6.66)

From Lemma 6.4, we can derive that

Re(
ia
λ

∫ L

0
z(1)Φ + v1dx +

id
λ

∫ L

0
ΦΦ + v1dx) ≤

C
λ
∥U∥1/2H ∥V∥

1/2
H (∥U∥H + ∥V∥H ), (6.67)
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Re
iσ
λ

∫ L

0
θxΦ + v1dx ≤

C
λ
∥U∥1/2H ∥V∥

1/2
H (∥U∥H + ∥V∥H ), (6.68)

and

Reρ1

∫ L

0
(Φv1 + v2φ)dx ≤ C∥U∥H ∥V∥H . (6.69)

It follows from Lemma 6.5 and Young’s inequality that we can derive the conclusion.

Lemma 6.7. For λ large enough, any t ∈ R+, and any ε > 0, there exists a constant Cε > 0 satisfying

ρ2∥Ψ∥
2
L2 ≤ ε∥U∥2H +Cε∥V∥2H . (6.70)

Proof. Multiplying (6.52) by
∫ ∞

0
g(s)η(s)ds in L2(0, L), we have

− ρ2

∫ L

0

∫ ∞

0
g(s)Ψiλη(s)dsdx − σ

∫ L

0

∫ ∞

0
g(s)θη(s)dsdx + b

∫ L

0

∫ ∞

0
g(s)ηx(s)ψxdsdx

+

∫ L

0
|

∫ ∞

0
g(s)ηx(s)ds|2dx + k

∫ L

0

∫ ∞

0
g(s)(φx + ψ)η(s)dsdx

= ρ2

∫ L

0

∫ ∞

0
g(s)v4η(s)dsdx. (6.71)

By (6.54), we obtain

− ρ2

∫ L

0

∫ ∞

0
g(s)Ψiλη(s)dsdx

= −ρ2

∫ ∞

0
g(s)ds

∫ L

0
|Ψ|2dx − ρ2

∫ L

0

∫ ∞

0
g(s)Ψv6dsdx + ρ2

∫ L

0

∫ ∞

0
g(s)Ψηsdsdx, (6.72)

and integration by parts leads to

|ρ2

∫ L

0

∫ ∞

0
g(s)Ψηsdsdx| ≤ ρ2C

1/2
0 ∥Ψ∥L2(

∫ ∞

0
(−g′(s))∥ηs∥

2ds)1/2. (6.73)

Using (6.49) and (6.51), we show that

|k
∫ L

0

∫ ∞

0
g(s)(φx + ψ)η(s)dsdx|

= | −
ik
λ

∫ L

0

∫ ∞

0
g(s)(v1x + v3)η(s)dsdx −

ik
λ

∫ L

0

∫ ∞

0
g(s)Ψη(s)dsdx

+
ik
λ

∫ L

0

∫ ∞

0
g(s)Φηx(s)dsdx| ≤

C
λ
∥η∥L2

g
(∥Φ∥ + ∥Ψ∥ + ∥v1x + v3∥), (6.74)

and from the Hölder inequality we get∫ L

0
|

∫ ∞

0
g(s)ηx(s)ds|2 ≤

∫ L

0
(
∫ ∞

0
g(s)ds)

∫ ∞

0
g(s)|ηx(s)|2dsdx ≤ C0∥η∥

2
L2

g
. (6.75)
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Combining Lemmas 6.4 and 6.6, and (6.71)–(6.75), and using the Hölder inequality and the Young
inequality, we can derive the conclusion. We can also refer to [14] for excellent details.

Lemma 6.8. For λ large enough, any t ∈ R+, and any ε > 0, there exists a constant Cε > 0 satisfying

b∥ψx∥
2
L2 ≤ ε∥U∥2H +Cε∥V∥2H . (6.76)

Proof. Multiplying (6.19) by ψ in L2(0, L), we have

− ρ2

∫ L

0
Ψiλψdx + b

∫ L

0
|ψx|

2dx +
∫ L

0

∫ ∞

0
g(s)ηx(s)ψxdsdx

+ k
∫ L

0
(φx + ψ)ψdx − σ

∫ L

0
θψdx = ρ2

∫ L

0
v4ψdx. (6.77)

From (6.51), we have

b
∫ L

0
|ψx|

2dx = −
∫ L

0

∫ ∞

0
g(s)ηx(s)ψxdsdx − k

∫ L

0
(φx + ψ)ψdx

+ ρ2

∫ L

0
Ψiλψdx + σ

∫ L

0
θψdx + ρ2

∫ L

0
v4ψdx

≤ −

∫ L

0

∫ ∞

0
g(s)ηx(s)ψxdsdx −

ik
λ

∫ L

0
(φx + ψ)Ψdx −

ik
λ

∫ L

0
(φx + ψ)v3dx

+ ρ2

∫ L

0
|Ψ|2dx + ρ2

∫ L

0
Ψv3dx + σ

∫ L

0
θψdx + ρ2

∫ L

0
v4ψdx, (6.78)

and using Lemmas 6.6 and 6.7 leads to

b∥ψx∥
2 ≤ C∥U∥H ∥V∥H +C∥U∥H ∥η∥L2

g
+C∥U∥H ∥θx∥H +C∥θx∥H ∥V∥H . (6.79)

It follows from Lemma 6.4 and the Young inequality that the conclusion is derived.
In summary, combination of Lemmas 6.4–6.8 help us to obtain

∥U∥H ≤ C∥V∥H ,

and (3.2) is finished finally.

7. Further research

In this article, we study the exponential stability of thermoelastic Timoshenko with variable delay
in the internal feedback. If the variable delay is replaced by the distributed delay, the relating problem
is still open, which is our next objective.
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