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Abstract: This issue discusses the asymptotic synchronization and the exponential synchronization for
memristor-based quaternion-valued neural networks under the time-varying delays. Some criteria for
synchronization of the memristor-based quaternion-valued neural networks are given by exploiting the
set-valued theory, the differential inclusion theory, some analytic techniques, as well as constructing
novel controllers, It is worth noting that the synchronization problem about the memristor-based
quaternion-valued neural networks were studied by the direct analysis method in this paper. Finally, the
main theoretical results were verified by numerical simulations.
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1. Introduction

Memristor was proposed by Chua in [1], as the fourth basic electronic component besides resistors,
inductors, and capacitors. The memristor value changes with the circuit current, and after the circuit is
powered off, its resistance value is the value at the moment of power off. In other words, memristor
is a class of nonlinear resistors with memory functions. Due to the fact that nanotechnology was far
from mature at that time, the physical realization of memristors was extremely difficult. Therefore, the
research of memristors failed to achieve a major breakthrough. Until 2008, the Hewlett-Packard [2]
laboratory developed memristors. Since then, memristor and its applications have attracted the attention
of numerous scholars [3–18].
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Previous research results indicated that the memristors has the function of simulating brain synapses.
Due to the above properties of memristors, researchers use memristors as the connection weights of
traditional neural networks to obtain memristor-based neural networks [3–6]. Obviously, the model of
memristor-based neural networks is a special type of nonlinear system. Recently, the study about the
above system’s dynamical behavior attracted a lot of research attention and achieved many interesting
results. Currently, the research on memristor-based neural networks mainly concentrates in either the
real number domain or the complex number domain [7–18]. However, the related research in the field
of quaternion is relatively rare.

Quaternion, which is a class of divisible algebras, was proposed by Hamilton [19] in 1843. The
exchange law of quaternion multiplication is not, which makes the study of quaternion is slower than the
real number or the complex number, and is more difficult. However, due to the development of modern
mathematics, applications of quaternion in digital image processing, face recognition, quantum mechanics
and other fields have been discovered [20–24]. A series of results have been achieved, especially in
three-dimensional Data modeling and processing in space and four-dimensional space [21, 22]. For
example, for rotation and affine transformation in three-dimensional space, the quaternion representation
is not only more compact and effective, but also can effectively avoid the defects of matrix and Euler
representations. Therefore, quaternion is increasingly attracting the attention of scholars.

The quaternion was introduced into the traditional neural network, and quaternion-valued neural
networks (QVNNs) have been built. QVNNs show improved performances in color night vision [25],
3D wind forecasting [26, 27], image compression [28], and so on. As the extension of real-valued
neural networks(RVNNs) and complex-valued neural networks(CVNNs), QVNNs have some notable
advantages such as a low dimensionality and a high efficiency in handling multi-dimensional data. Using
the three imaginary parts of the quaternion to denote the three primary colors in the color space, QVNNs
not only do not need to deal with the three primary colors separately, but also show the correlation
between the three primary colors. Furthermore, QVNNs show an improved performance than RVNNs
or CVNNs in handling certain optimization and estimation problems [29].

By introducing the quaternion algebra into memristor-based neural networks(MNNs), the quaternion-
value memristor-based neural networks(QVMNNs) is obtained. The connection weights, state variables,
and activation function values of QVMNNs are all derived from the quaternion domain. Recently, some
interesting conclusions have been shown with the in-depth research of QVMNNs [30–36]. In [31],
exponential synchronization for QVMNNs with delayed was studied by quantized intermittent control
tactics. In [33], the synchronization for fuzzy QVMNNs was discuss by the Lexicographical order
method. Finite-time anti-synchronization about the inconsistent markovian QVMNNs under reaction-
diffusion terms was investigated in [34]. The exponential synchronization conditions of the delayed
inertial QVMNNs were given in the form of linear matrix inequality(LMIs) in [35]. In [36], Wei and
Cao studied fixed-time synchronization for the quaternion-valued memristor-based neural networks by
dividing the system into real and imaginary parts.

Inspired by the above research, it is worth discussing the asymptotic synchronization and the
exponential synchronization for the QVMNNs under time delays. Different from the above research
methods, this issue directly tackles the quaternion memristive neural network, which naturally poses
a problem when determining which quaternion is big or small. To solve this problem, this paper will
adopt the vector ordering approach, which supplies the theoretical basis to determine the “magnitude”
of two different quaternions. On this basis, we propose a direct method to discuss the asymptotic
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synchronization and the exponential synchronization for memristor-based quaternion-valued neural
networks under the time-varying delays, which simplifies the proof process.

The main works about this issue are arranged as follows. In Section 2, the model is built and
the basics that will be used later are introduced. Several conditions are obtained for the asymptotic
synchronization and the exponential synchronization for the QVMNNs under time-varying delays
through the controllers in Section 3. Two numerical examples are used to verify the accuracy for the
conclusions in Section 4. The last section draws a conclusion.

Notations: In this article, R is the real field and Q is the quaternion field. co[a, b] expresses the
closure for the convex hull Q manufactured by the quaternion a, b. C(1)([ς, 0],Rn) shows the class of
continuous functions from [ς, 0] to Rn.

2. Model and preliminaries

The quaternion is the hypercomplex number consisting of one real part and three imaginary parts.
For u ∈ Q, this is written as

u = uR + uIi + uJ j + uKk

where uR, uI , uJ, uK ∈ R. Moreover, i, j, k are the imaginary parts, which follow the Hamilton principle:

i2 = −1, j2 = −1, k2 = −1, i j = − ji =, ki = −ik = jk, jk = −k j = i.

The conjugate of u is denoted byu = uR − uIi − uJ j − uKk. The modulus of u is written as

|u| =
√

uu =
√

(uR)2
+
(
ul)2 + (ul)2 + (uK)2.

∥u∥1 =
∑n

m=1 |um| is the norm of x. For two quaternions u1 = uR
1 + uI

1i + uJ
1 j + uK

1 k and u2 = uR
2 + uI

2i +
uJ

2 j + uK
2 k, the addition between them is defined as

u1 + u2 = uR
1 + uR

2 +
(
ul

1 + ul
2

)
i +
(
uJ

1 + uJ
2

)
j +
(
uK

1 + uK
2

)
k.

According to the Hamilton rule, the product of two quaternions is

u1u2 = (uR
1 uR

2 − ul
1ul

2 − uJ
1uJ

2 − uK
1 uK

2 ) + (uR
1 ul

2 + ul
1uR

2 + uJ
1uK

2 − uK
1 uJ

2)i
+(uR

1 uJ
2 + uJ

1uR
2 + uK

1 uI
2 − uI

1uK
2 ) j + (uR

1 uK
2 + uK

1 uR
2 + uI

1uJ
2 − uJ

1uI
2)k.

Consider the QVMNNs under time-varying delays as follows:

ω̇p(t) = −cpωp(t) +
n∑

q=1

apq(ωp(t)) fq(ωq(t))

+

n∑
q=1

bpq(ωp(t)) fq(ωq(t − τ(t))) + I, t ≥ 0, (2.1)

where ωp(t) ∈ Q stands for the state vector, p = 1, 2, . . . , n,. C is the self-feedback matrix, C =
diag{c1, c2, . . . , cn}, and bpq(ωp(t)), apq(ωp(t)) are the connection weight matrices. f (ω(t)) : Qn → Qn

denotes the activation function. I ∈ Qn is the external input. Moreover, τ(t) denotes a transmission delay
0 ≤ τ(t) ≤ τ. The initial conditions of system (2.1) are selected as ω(s) = ϕ(s),−τ ≤ s ≤ 0 , where
ϕ(s) ∈ C(1) ([−τ, 0],Qn) .
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Assumption 2.1. There are some positive numbers lq, Fq ∈ R that satisfy

| fq(v) − fq(u)| ≤ mq|v − u|, | fq(u)| < Fq,

for all u, v ∈ Q.

Assumption 2.2. [37] It can be defined that:

apq

(
up(t)
)
=

{
âpq = aR

1pq + aI
1pqi + aJ

1pq j + aK
1pqk, |up(t)| ≤ Tp

ǎpq = aR
2pq + aI

2pqi + aJ
2pq j + aK

2pqk, |up(t)| < Tp
,

bpq

(
up(t)
)
=

 b̂pq = bR
1pq + bI

1pqi + bJ
1pq j + bK

1pqk, |up(t)| ≤ Tp

b̌pq = bR
2pq + bI

2pqi + bJ
2pq j + bK

2pqk, |up(t)| < Tp
,

where the positive number Tp is the switching jumps.

Remark 1. According to Assumption 2.2, bpq(up(t)) and apq(up(t)) are piecewise functions; therefore,
the Quaternion-Valued Memristor-Based neural networks of system (2.1) is a discontinuous system.

Lemma 2.1. [38] Let u, v ∈ Q, ϵ > 0 be a constant. Then, the following inequality is true:

vu + ūv̄ ≤ ϵūu +
1
ϵ

vv̄.

From the theory of the set valued map and differential inclusion [39], system (2.1) could be rewritten
as follows:

ω̇p(t) ∈ −cpωp(t) +
n∑

q=1

co[a−pq, a
TT
pq ] fq

(
ωq(t)

)
+

n∑
q=1

co[bT
pq, b

TT
pq ] fq

(
ωq(t − τ(t))

)
+ Jp (2.2)

where ãpq = max
{
|âpq|, |ǎpq|

}
, aTT

pq = max
{
âpq, ǎpq

}
, aT

pq = min
{
âpq, ǎpq

}
, b̃pq = max

{
|b̂pq|, |b̌pq|

}
,

bTT
pq = max

{
b̂pq, b̃pq

}
, and bT

pq = min
{
b̂pq, b̃pq

}
.

Then, there are a′pq ∈ co[aT
pq, a

TT
pq ], b′pq ∈ co[bT

pq, b
TT
pq ], which satisfies the following:

ω̇p(t) = −cpωp(t) +
n∑

q=1

a′pq fq

(
ωq(t)

)
+

n∑
q=1

b′pq fq

(
ωq(t − τ(t))

)
+ J. (2.3)

Considering (2.1) as a drive system, then the following system can be used as a response system:

v̇p(t) = −cpvp(t) +
n∑

q=1

apq(vp(t)) fq(vq(t)) +
n∑

q=1

bpq(vp(t)) fq(vq(t − τ(t))) + up(t) + J, t ≥ 0, (2.4)

where up(t) is the controller.
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From the differential inclusion and theory of the set valued map, system (2.4) can also be rewritten as:

v̇p(t) ∈ −cpvp(t) +
n∑

q=1

co[aT
pq, a

TT
pq ] fq

(
vq(t)
)

+

n∑
q=1

co[bT
pq, b

TT
pq ] fq

(
vq(t − τ(t))

)
+ Jp + up(t). (2.5)

Equivalently, there are a
′′

pq ∈ co[aT
pq, a

TT
pq ], b

′′

pq ∈ co[bT
pq, b

TT
pq ], which satisfies the following:

v̇p(t) = −cpvp(t) +
n∑

q=1

a
′′

pq fq

(
vq(t)
)
+

n∑
q=1

b
′′

pq fq

(
vq(t − τ(t))

)
+ Jp + up(t). (2.6)

Let e(t) = (e1(t), . . . , en(t))T = v(t) − ω(t), the following error system can be obtained:

ėp(t) = −cpep(t) +
n∑

q=1

[a
′′

pq fq(vq(t)) − a
′

pq fq(ωq(t))]

+

n∑
q=1

[b
′′

pq fq(vq(t − τ(t))) − b
′

pq fq(ωq(t − τ(t)))] + up(t). (2.7)

Definition 2.1. If there are two constants π > 0 and γ ≥ 1 that satisfy the following inequality,

∥e(t)∥ ≤ γe−πt sup
−τ≤s≤0

∥e(t − τ(t))∥, t ≥ 0.

then the systems (2.1) and (2.4) are globally exponentially synchronized.

Lemma 2.2. [40] Assume α1 and α2 are two constants such that λ1 > λ2 > 0. y(t) is a nonnegative
continuous function, which is defined on [t0 − τ,+∞). The following inequality is true:

D+(y(t)) ≤ −λ1y(t) + λ2ȳ(t), for all t ≥ t0,

where ȳ(t) = supt−τ≤s≤t y(s), and D+(y(t)) = lim
h→0+

y(t+h)−y(t)
h is the upper-right Dini derivative. For ∀t ≥ t0,

one can get y(t) ≤ ȳ(t0)e−γ(t−t0). , which is the only positive solution to γ = λ1 − λ2eγτ.

3. Main results

In the following section, some sufficient criterion are acquired about the global exponential
stability for the memristor-based neural network under time-varying delays. Then, the following
main results are established.

Theorem 3.1. Under the Assumptions 2.1 and 2.2, the systems (2.1) and (2.4) are exponentially
synchronized by the controller (3.1):

up(t) = −kp(t)ep(t) − ηp. (3.1)
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If there are two constants ε1 > 0, ε2 > 0, then the following is satisfied:

2cp + 2kp − 1 − ε1m2
p −

1
ε1

ãpq ¯̃apq −
1
ε2

b̃pq
¯̃bpq > 0,

ε2 max
p

m2
p < 1 − τ′,

where kp(t) ∈ Rn,

ηp =

n∑
q=1

(aTT
pq − aT

pq)Fq +

n∑
q=1

(bTT
pq − bT

pq)Fq.

Proof. Construct the following auxiliary function:

V(t) =
n∑

p=1

ēp(t)ep(t) +
∫ t

t−τ(t)
ēp(s)ep(s)ds. (3.2)

Before continuing, the following estimation of ėp(t) and ˙̄ep(t) can be given:

ėp(t) = −cpep(t) +
n∑

q=1

[a
′′

pq(t) fq(vq(t)) − a
′

pq(t) fq(ωq(t))]

+

n∑
q=1

[b
′′

pq(t) fq(vq(t − τ(t))) − b
′

pq(t) fq(ωq(t − τ(t)))] + up(t)

= −cpep(t) +
n∑

q=1

(a
′′

pq(t) − a
′

pq(t)) fq(ωq(t)) +
n∑

q=1

a
′′

pq(t)[ fq(vq(t)) − fq(ωq(t))]

+

n∑
q=1

b
′′

pq(t)[ fq(vq(t − τ(t))) − fq(ωq(t − τ(t)))]

+

n∑
q=1

(b
′′

pq(t) − b
′

pq(t)) fq(ωq(t − τ(t)))] − kp(t)ep(t) − ηp

˙̄ep(t) = −cpēp(t) +
n∑

q=1

[ f̄q(vq(t))ā
′′

pq(t) − f̄q(ωq(t))ā
′

pq(t)]

+

n∑
q=1

[ f̄q(vq(t − τ(t)))b̄
′′

pq(t) − f̄q(ωq(t − τ(t)))b̄
′

pq(t)] + ūp(t)

= −cpēp(t) +
n∑

q=1

f̄q(vq(t))[ā
′′

pq(t) − ā
′

pq(t)] +
n∑

q=1

[ f̄q(vq(t)) − f̄q(ωq(t))]ā
′

pq(t)

+

n∑
q=1

[ f̄q(vq(t − τ(t)))b̄
′′

pq(t) − f̄q(ωq(t − τ(t)))b̄
′

pq(t)] − kp(t)ēp(t) − η̄p.
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Next, the derivative of V(t) along (1.7) is computed as follows:

V̇(t) =
n∑

p=1

˙̄ep(t)ep(t) +
n∑

p=1

ēp(t)ėp(t) +
n∑

p=1

ēp(t)ep(t)

−(1 − τ̇(t))
n∑

p=1

ēp(t − τ(t))ep(t − τ(t))

=

n∑
p=1

{
− cpēp(t) +

n∑
q=1

[ f̄q(vq(t))ā
′′

pq(t) − f̄q(ωq(t))ā
′

pq(t)]

+

n∑
q=1

[ f̄q(vq(t − τ(t)))b̄
′′

pq(t) − f̄q(ωq(t − τ(t)))b̄
′

pq(t)]

+ūp(t)
}
ep(t) +

n∑
p=1

ēp(t)
{
− cpep(t)

+

n∑
q=1

[a
′′

pq(t) fq(vq(t)) − a
′

pq(t) fq(ωq(t))] +
n∑

q=1

[b
′′

pq(t) fq(vq(t − τ(t)))

−b
′

pq(t) fq(ωq(t − τ(t)))] + u(t)
}
+

n∑
p=1

ēp(t)ep(t)

−(1 − τ̇(t))
n∑

p=1

ēp(t − τ(t))ep(t − τ(t))

≤

n∑
p=1

{
− cpēp(t) +

n∑
q=1

(āTT
pq − āT

pq)Fq

+

n∑
q=1

[ f̄q(vq(t)) − f̄q(ωq(t))]ā
′′

pq(t) +
n∑

q=1

(b̄TT
pq − b̄T

pq)Fq + ūp(t)

+

n∑
q=1

[ f̄q(vq(t − τ(t))) − f̄q(ωq(t − τ(t)))]b̄
′′

pq(t)
}
ep(t)

+

n∑
p=1

ēp(t)
{
− cpep(t) +

n∑
q=1

(aTT
pq − aT

pq)Fq

+

n∑
q=1

a
′′

pq(t)[ fq(vq(t)) − fq(ωq(t))] +
n∑

q=1

(bTT
pq − bT

pq)Fq + up(t)

+

n∑
q=1

b
′′

pq(t)[ fq(vq(t − τ(t))) − fq(ωq(t − τ(t)))]
}

+

n∑
p=1

ēp(t)ep(t) − (1 − τ′)
n∑

p=1

ēp(t − τ(t))ep(t − τ(t)). (3.3)
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Lemma 2.1 shows that there are two positive constants ε1, ε2, which satisfy the following:

[ f̄q(vq(t)) − f̄q(ωq(t))]ā
′′

pq(t)e(t) + ē(t)a
′′

pq(t)[ fq(vq(t)) − fq(ωq(t))]

≤ ε1[ f̄q(vq(t)) − f̄q(ωq(t))][ fq(vq(t)) − fq(ωq(t))] +
1
ε1

ē(t)ãpq ¯̃apqe(t)

≤ ε1m2
qēq(t)eq(t) +

1
ε1

ē(t)ãpq ¯̃apqe(t) (3.4)

[ f̄q(vq(t − τ(t))) − f̄q(ωq(t − τ(t)))]b̄
′′

pq(t)e(t) + ē(t)b
′′

pq(t)[ fq(vq(t − τ(t))) − fq(ωq(t − τ(t)))]
≤ ε2[ f̄q(vq(t − τ(t))) − f̄q(ωq(t − τ(t)))]

[ fq(vq(t − τ(t))) − fq(ωq(t − τ(t)))] +
1
ε2

ē(t)b̃pq
¯̃bpqe(t)

≤ ε2m2
qēq(t − τ(t))eq(t − τ(t)) +

1
ε2

ē(t)b̃pq
¯̃bpqe(t). (3.5)

Therefore, together with systems (3.4) and (3.5), the following can be obtained:

V̇(t) ≤ −
n∑

p=1

{
2cp + 2kp − 1 − ε1m2

p −
1
ε1

ãpq ¯̃apq

−
1
ε2

b̃pq
¯̃bpq

}
ēp(t)ep(t) +

[
ε2 max

p
m2

p − (1 − τ′)
]

ēq(t − τ(t))eq(t − τ(t))

< 0. (3.6)

Then, the error variable e(t) will exponentially converge to zero; in other words, systems (2.1) and (2.4)
will achieve exponentially synchronized synchronization.

Theorem 3.2. For two given Assumptions 2.1 and 2.2, the systems (2.1) and (2.4) can achieve asymp-
totically synchronization with the controller (3.7), if there are some constants ε1, ε2 that satisfy the
following inequality:

up(t) = −kpep(t) − ηp, (3.7)

where

2kp ≥ −2cp + ε1m2
p +

1
ε1

n∑
q=1

ãpq ¯̃apq +
1
ε2

n∑
q=1

b̃pq
¯̃bpq,

ηp =

n∑
q=1

(aTT
pq − aT

pq)Fq +

n∑
q=1

(bTT
pq − bT

pq)Fq.

Moreover, the control gains satisfy the following:

ρ1 = min
p

(
2cp + 2kp − ε1m2

p −
1
ε1

n∑
q=1

ãpq ¯̃apq −
1
ε2

n∑
q=1

b̃pq
¯̃bpq

)
,

ρ2 = ε2 max
p

m2
p, ρ1 > ρ2 > 0.
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Proof. Construct the suggested function V(t), which is defined by

V(t) =
n∑

p=1

ēp(t)ep(t).

The derivative of V(t) along (2.7) is computed as follows:

V̇(t) =
n∑

p=1

˙̄ep(t)ep(t) +
n∑

p=1

ēp(t)ėp(t)

=

n∑
p=1

{
− cpēp(t) +

n∑
q=1

[ f̄q(vq(t))ā
′′

pq(t) − f̄q(ωq(t))ā
′

pq(t)]

+

n∑
q=1

[ f̄q(vq(t − τ(t)))b̄
′′

pq(t) − f̄q(ωq(t − τ(t)))b̄
′

pq(t)]

+ū(t)
}
ep(t) +

n∑
p=1

ēp(t)
{
− cpep(t) +

n∑
q=1

[a
′′

pq(t) fq(vq(t)) − a
′

pq(t) fq(ωq(t))]

+

n∑
q=1

[b
′′

pq(t) fq(vq(t − τ(t))) − b
′

pq(t) fq(ωq(t − τ(t)))] + u(t)
}

≤ −

n∑
p=1

(
2cp + 2kp − ε1m2

p −
1
ε1

n∑
q=1

ãpq ¯̃apq −
1
ε2

n∑
q=1

b̃pq
¯̃bpq

)
ēp(t)ep(t)

+ε2

n∑
p=1

m2
pēq(t − τ(t))eq(t − τ(t))

≤ −ρ1V(t) + ρ2V(t − τ(t)). (3.8)

where ρ1, ρ2 are two constants.
According to Lemma (2.2), it can be inferred that

V(t) = max
−τ≤θ≤0

V(θ) exp−γt (3.9)

where γ is the solution of Eq (3.10)

x − y exp−γθ −γ = 0. (3.10)

Consequently, error system (2.7) is globally asymptotically stable. In other words, the stabilization
control of the systems (2.1) and (2.4) can be achieved by controller (3.7).

Remark 2. The QVMNNs was divided into a real part and three imaginary parts in the existing
work [36]. Moreover, the direct method is used to discuss the QVMNNs in this paper, which is more
realistic. The results are presented in the shape of easily verifiable algebraic inequalities.

4. Numerical examples

Then, the following two numerical simulations are dedicated to verify the validity of the given
theoretical results.
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Example 1. Consider the two-neuron quaternion-valued memristor-based neural networks (2.1) with
c1 = c2 = 1; the connection weights are as follows:

a11(ω1(t)) =
{

2.1 − 2.7i + 1.9 j − 2.5k, |ω1(t)| < 1,
2.2 − 1.6i + 2.2 j − 1.5k, |ω1(t)| ≥ 1,

a12(ω1(t)) =
{
−0.2 − 0.4i − 0.2 j − 0.3k, |ω2(t)| ≥ 1,
−0.6 − 0.9i − 0.5 j − 0.8k, |ω2(t)| < 1,

a21(ω2(t)) =
{

1.5 − 0.3i + 1.6 j − 0.4k, |ω2(t)| ≥ 1,
1.0 + 0.7i + 1.1 j + 0.6k, |ω2(t)| < 1,

a22(ω2(t)) =
{
−1.3 − 0.1i − 1.2 j − 0.3k, |ω2(t)| ≥ 1,
−0.7 − 0.3i − 0.8 j − 0.2k, |ω2(t)| < 1,

,

b11(ω1(t)) =
{
−1.6 + 2.5i − 1.5 j + 2.3k, |ω1(t)| ≥ 1,
−0.1 + 3.0i − 1.4 j + 2.9k, |ω1(t)| < 1,

b12(ω1(t)) =
{
−1.4 − 0.9i − 0.1 j − 0.6k, |ω1(t)| ≥ 1,
−0.5 − 1.5i − 0.3 j − 1.7k, |ω1(t)| < 1,

b21(ω2(t)) =
{
−1.0 − 1.2i − 1.3 j − 1.3k, |ω2(t)| ≥ 1,
−0.9 − 0.3i − 0.6 j − 0.1k, |ω2(t)| < 1,

b22(ω2(t)) =
{

1.2 − 0.6i + 1.1 j − 0.4k, |ω2(t)| ≥ 1,
0.6 − 0.7i + 0.4 j − 0.8k, |ω2(t)| < 1,

.

In the response system (2.4), the activation functions are selected as f (ω) = 0.1tanh(ω). Obviously,
when F1 = F2 = 0.1, the activation functions satisfy Assumption 2.1. Figures 1 and 2 show trajectories for
the error variables eπ1, eπ2, π = R, I, J,K about systems (2.1) and (2.4) without a controller. The error system
cannot converge to zero. Thus, the systems (2.1) and (2.4) cannot be synchronized in this situation.

According to the above parameters, the following is directly calculated from Theorem 3.1:

2∑
q=1

(a+1q − a−1q)Fq +

2∑
q=1

(b+1q − b−1q)Fq = 0.21 + 0.2i + 0.14 j + 0.33k,

2∑
q=1

(a+2q − a−2q)Fq +

2∑
q=1

(b+2q − b−2q)Fq = 0.18 − 0.02 j + 0.23 j + 0.05k.

Therefore, with controller (3.1), it can pick out η1 = 0.21 + 0.2i + 0.14 j + 0.33k, η2 = 0.18 − 0.02 j +
0.23 j+ 0.05k, k1 = k2 = 1, ε1 = ε2 = 2 τ(t) = 0.65− 0.25cos(t). Then, the conditions for the Theorem 3.1
are held. Figures 3 and 4 depict the error variables eπ1, eπ2, π = R, I, J,K between systems (2.1) and (2.4)
under the controller (3.1). Hence, the error system tends to 0. That is to say that systems (2.1) and (2.4)
achieve asymptotic synchronization.
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Figure 1. The error state variables eπ1, π = R, I, J,K, without controller.
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Figure 2. The error state variables eπ2, π = R, I, J,K, without controller.
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Figure 3. The error state variableseπ1, π = R, I, J,K, with the controller.
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Figure 4. The error state variables eπ2, π = R, I, J,K, under the controller.
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Example 2. Consider the two-neuron QVMNNs (2.1) with the following:

a11(ω1(t)) =
{

2.0 − 2.7i + 2.0 j − 2.5k, |ω1(t)| < 1,
2.3 − 1.6i + 2.3 j − 1.5k, |ω1(t)| ≥ 1,

a12(ω1(t)) =
{
−0.1 − 0.4i − 0.1 j − 0.3k, |ω2(t)| ≥ 1,
−0.5 − 0.9i − 0.5 j − 0.7k, |ω2(t)| < 1,

a21(ω2(t)) =
{

1.6 − 0.3i + 1.5 j − 0.4k, |ω2(t)| ≥ 1,
1.1 + 0.7i + 1.0 j + 0.6k, |ω2(t)| < 1,

a22(ω2(t)) =
{
−1.2 − 0.1i − 1.3 j − 0.2k, |ω2(t)| ≥ 1,
−0.8 − 0.3i − 0.7 j − 0.3k, |ω2(t)| < 1,

b11(ω1(t)) =
{
−1.5 + 2.6i − 1.5 j + 2.3k, |ω1(t)| ≥ 1,
−0.1 + 3.1i − 1.4 j + 3.0k, |ω1(t)| < 1,

b12(ω1(t)) =
{
−1.4 − 0.9i − 0.1 j − 0.6k, |ω1(t)| ≥ 1,
−0.5 − 1.5i − 0.5 j − 1.6k, |ω1(t)| < 1,

b21(ω2(t)) =
{
−1.2 − 1.1i − 1.3 j − 1.3k, |ω2(t)| ≥ 1,
−0.8 − 0.2i − 0.6 j − 0.1k, |ω2(t)| < 1,

b22(ω2(t)) =
{

1.3 − 0.5i + 1.2 j − 0.4k, |ω2(t)| ≥ 1,
0.5 − 0.8i + 0.4 j − 0.7k, |ω2(t)| < 1,

.

Moreover, c1 = c2 = 2, the time-delays are chosen as τ(t) = 0.6 + 0.3sin(t), and the active function is
fq(ωq(t)) = 0.1tanh(ωq(t)), which satisfy the requirements in Assumption 2.1 with Fq = 0.1, mq = 0.1,
q = 1, 2. Figures 5 and 6 depict the error variables eπ1, eπ2, π = R, I, J,K between systems (2.1) and (2.4)
without a controller. Set ε1 = ε2 = 5; then, from the conditions of Theorem 3.2 and the above given
parameters, the following results can be obtained:

2k1 ≥ −2c1 + ε1m2
1 +

1
ε1

2∑
q=1

ã1q ¯̃a1q +
1
ε2

2∑
q=1

b̃1q
¯̃b1q = 5.776,

2k2 ≥ −2c2 + ε1m2
2 +

1
ε1

2∑
q=1

ã2q ¯̃a2q +
1
ε2

2∑
q=1

b̃2q
¯̃b2q = 1.862.

Therefore, one could select k1 = 3, k2 = 1 and the controller can be designed as follows:

ρ1 = min
p

(
2cp + 2kp − ε1m2

p −
1
ε1

n∑
q=1

ãpq ¯̃apq −
1
ε2

n∑
q=1

b̃pq
¯̃bpq

)
= 0.138,

ρ2 = ε2 max
p

m2
p = 0.05,

which means ρ1 > ρ2 > 0.
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Figure 5. The error state variables eπ1, π = R, I, J,K, without controller.
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Figure 6. The error state variables eπ2, π = R, I, J,K, without controller.

From the above calculation results, it can be seen that all conditions of Theorem 3.2 are met.
Figures 7 and 8 depict the error variables eπ1, eπ2, π = R, I, J,K between systems (2.1) and (2.4) under the
controller (3.7). It can be seen from the above discussion that the drive system (2.1) and the response
system (2.4) are synchronized, which means that the control technique achieves the desired effect.
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Figure 7. The error state variables eπ1, π = R, I, J,K, with the controller.
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Figure 8. The error state variables eπ2, π = R, I, J,K, with the controller.

5. Conclusions

In this paper, by using analytical techniques, and constructing two novel controllers, several control
strategies were obtained to investigate the asymptotic synchronization and the exponential synchro-
nization of quaternion-valued memristor-based neural networks. At the same time, the direct analysis
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method was given to discuss the synchronization problem, which simplified the proof process. In the
end, numerical simulations were supplied to display the main theoretical results.
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