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Abstract: Biological experiments targeting the mammalian primary visual cortex have shown that
neuronal response to a preferred orientation grating is cross-inhibited by an orthogonal orientation
mask grating. The plaid formed by the overlap of the two gratings not only causes a decrease in
the neuronal firing rate but also shifts the gamma oscillation to a weaker oscillation at a higher fre-
quency. The mechanism for the above phenomena is unclarified. In this paper, a large-scale cortical
neuronal network model with biological details is constructed. In this model, two modes of connectiv-
ity that may contribute to cross-inhibition are considered: the thalamo-cortical feedforward pathway
and the push-pull organization of cortical layer 4. Based on this model, the modulation of firing rate
and gamma oscillation by a plaid stimulation are successfully reproduced, which is consistent with
biological experiments and suggests that it is the thalamo-cortical feedforward pathway that leads to
cross-inhibition. Furthermore, our analysis of the neuronal spike clusters and current fluctuations sug-
gests that the push-pull organization leads to an increase in gamma frequency during the transition of
visual stimuli from grating to plaid by modulating the source of synaptic inhibition in local neuronal
populations. Such results will help to understand the visual processing under multi-input integration.

Keywords: primary visual cortex; cross-inhibition; gamma oscillation; push-pull organization;
computational model

1. Introduction

Neurons in the primary visual cortex (V1) show cross-inhibition: sinusoidal gratings in the preferred
orientation provide a strong synchronized feed-forward drive to the neurons, resulting in strong neural
responses, but when gratings orthogonal to the preferred orientation are presented at the same time to
form a plaid, the neurons firing is significantly suppressed, even though this orthogonal grating causes
almost no reaction when presented alone [1–4]. At the same time, the plaid will increase the firing rate
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of the other neurons, as the additional gratings will be closer to their preferred orientation [5–7]. In
addition, some non-orientation-tuned V1 neurons respond strongly to plaids [8, 9]. How do neurons
combine responses in one-dimensional directions to characterize two-dimensional composite patterns?
What is the structure of the neural circuit for this combination? Explaining these questions could help
us better understand visual processing processes. The local-field potential (LFP) in V1 can also be
observed to exhibit gamma oscillation when grating stimuli are presented, and the properties of gamma
oscillation depend on the grating parameters. When superimposed with orthogonal gratings forming
a plaid, the strong and sustained gamma oscillation induced by such gratings is transformed into a
weaker oscillation at a higher frequency [6, 10–12]. It is widely accepted that gamma oscillations
are important indicators of neural processing related to visual perception and cognition and play an
important role in visual stimulus representation, selection, processing, and transmission [13–17], but
how gamma oscillations vary with plaid has not been systematically investigated.

The source of cross-inhibition in V1 remains controversial, with the prevailing views being cor-
tical synaptic inhibition dominance [11, 18, 19], feedforward dominance [3, 9, 20], or a combination
of the two [21, 22]. For example, Priebe and Ferster [3] found in intracellular recordings from sim-
ple cells that orthogonal stimuli inhibited both synaptic inhibition and synaptic excitation, suggesting
that cross-inhibition does not arise from synaptic inhibition between populations with different ori-
entation preferences. In contrast, Perry [11] failed to find evidence of cross-orientation inhibition in
the initial pattern of onset-evoked responses, which contradicts the idea that cross-inhibition originates
from feedforward inputs. At the same time, numerous models have been proposed to simulate and
explain this phenomenon: Koelling et al. [22] demonstrated that a model incorporating retinal contrast
gain control and inhibitory cortical networks could account for the phenomenon of cross-inhibition;
Carandini et al. [23] and Heeger et al. [24] used the normalization model to simulate the suppression
effect after the appearance of the second grating, since in this strategy, any increase in the contrast of
either grating increases the normalization factor. The stabilized supralinear network (SSN) of Rubin et
al. [19] relies on intracortical suppression to account for cross-inhibition while successfully modeling
the facilitation of the firing rate by the superposition of two low-contrast gratings. Barbera et al. [20]
reproduced the multiple effects of plaid modulation with a feedforward model and demonstrated that
the heterogeneity of neuronal responses to plaids can be explained by interactions between stimulus
geometry and orientation tuning without the need for intracortical interactions. The above studies
can model and explain a wide range of neural phenomena, including cross-inhibition, but the network
structure of these computational models rarely includes biological details, making it difficult to reflect
the real intracortical situation.

As for gamma oscillation, some studies have shown that gamma and multi-unit activity (MUA) re-
sponse patterns can be simultaneously fitted by normalized models [12,25]. And Wang et al. [12] con-
cluded that the neural mechanisms of gamma inhibition and firing activity are different. There has been
a wealth of modeling work for gamma oscillations. A lot of network modeling work has simulated and
explained the modulation of gamma oscillation by grating parameters such as angle, contrast, temporal
frequency, and size [24, 26–29]. The modulation of gamma oscillation by different neural elements
such as feedforward, feedback, lateral connections, and neuron types has also been explored [30–33].
However, modeling work related to superimposed gratings is still lacking, let alone the explanation of
how and why the properties of gamma oscillation vary with superimposed grating parameters.

In this paper, we build a large-scale V1 cortical neural network with biological features to simu-
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late the gamma oscillation and cross-inhibition induced by superimposed gratings. The model is built
on anatomical data from a cat’s primary visual cortex; a biologically realistic approach to converting
drifting sinusoidal grating stimuli into neural activity is adopted; and two practical connectivity modes,
the thalamo-cortical feedforward pathway and the push-pull organization of layer 4 (L4) [34–36], that
may act on cross-inhibition, are considered. The model successfully simulates the inhibition of fir-
ing and the high-frequency low-power transition of the gamma oscillation after the superposition of
orthogonally oriented gratings. Furthermore, the simulation results show that cross-inhibition origi-
nates from the feed-forward inputs, and the push-pull organization does not affect the magnitude of
inhibition. Through individual-specific neuronal firing analyses and biologically realistic connectivity
patterns, we provide new insights into the mechanisms behind plaid modulation of the gamma oscil-
lation in V1: the push-pull organization leads to an increase in gamma frequency during the transition
of a visual stimulus from grating to plaid through modulation of the source of synaptic inhibition in a
local population.

2. Materials and methods

To simulate the plaid-induced gamma oscillation and cross-inhibition, we built a large-scale V1
model as shown in Figure 1. The model corresponds to the visual information pathway in which
visual stimuli reach L4 of V1 via the lateral geniculate nucleus of the thalamus. LGN neurons provide
excitatory feedforward inputs to L4 neurons based on specific visual stimuli, and L4 contains 8000
excitatory neurons and 2000 inhibitory neurons, with neuronal connectivity determined by distance,
type, and receptive field. A detailed description of the model is shown in the following sections.

Figure 1. Model structure. Visual stimuli are convolved with the LGN receptive field to
obtain the LGN input current, and cortical neurons receive feedforward inputs from the LGN
layer according to their respective Gabor receptive fields, with the Gabor receptive fields
corresponding one-to-one with the L4 example neurons in the figure; L4 neuronal connec-
tivity follows the push-pull organization, so that excitatory inputs to the vertical preference
population (red circle) come from itself, with a portion of inhibitory inputs coming from the
neighboring populations (blue and green circles).
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2.1. Visual stimuli

In this paper, the visual stimulus is a plaid pattern formed by the superposition of two mutually
orthogonal drifting sinusoidal gratings, with the luminance g of a single grating pixel point defined as:

g(x, y, t, c, o) = l (1 + c · sin (2π fsθ (x, y) + 2π ftt))

θ (x, y) = sin (π/2 − o) x + cos (π/2 − o) y,
(2.1)

where g(x, y, t, c, o) is the luminance of a grating with contrast c and orientation o at position (x, y)
and moment t, the background luminance l = 50, the spatial frequency fs = 0.8, and the temporal
frequency ft = 4. In the following simulation, we define the vertical primary grating g1, which evokes
strong neuronal activity, and the horizontal secondary grating g2, which serves as a mask. When they
superimpose, gplaid = g1 + g2 − l. That is, the luminance of the corresponding pixels of the two gratings
is summed, and then the background luminance is subtracted. The contrast c1 of the primary grating is
always 50%, and the mask contrast of the secondary grating c2 is between 0 and 50%. When c2 = 0,
this corresponds to the case where only the primary grating g1 is presented. A constant value of gplaid

is presented in each experiment, and c2 is the main variable of the plaid across experiments.

2.2. LGN layer

LGN neurons are mediators of visual stimuli to V1, divided into two types, ON-center and OFF-
center, which are sensitive to bright areas surrounded by shade and shade areas surrounded by bright,
respectively [37, 38]. The number of both types of neurons in this model is set as 450, randomly
distributed within a 5 mm × 5 mm plane. The only role of LGN layer neurons is to provide excitatory
feedforward inputs to cortical neurons, and there are no synaptic connections between them. Based on
the work of Kremkow et al. [35], neurons are modeled as the g’wegrate-and-firegw model: Cm

dV
dt =

−gL(V − EL) + Iin,Cm = 0.29, gL = 0.029, EL = −70 mV, the refractory period is 2 ms. The input
current Iin is obtained by convolving the receptive field with the stimulus movie, where the ON center
neuron receptive field RFON is defined as [37]:

RFON (x, t) = Fc (x) Gc (t) − Fs (x) Gs (t)
Fc (x) = Ac exp

(
− x2

2σ2
c

)
, Fs (x) = As exp

(
− x2

2σ2
s

)
Gc (t) = K1

(c1 (t − t1))n1 exp (−c1 (t − t1))
nn1

1 e−n1
− K2

(c2 (t − t2))n2 exp (−c2 (t − t2))
nn2

2 e−n2

Gs (t) = Gc (t − td).

(2.2)

The specific parameter settings refer to Allen and Freeman [37]. For OFF center neurons, the
receptive field RFOFF = −RFON.

2.3. Cortical neuron model

We mainly model L4, which is the input layer in V1, and it covers a 5◦ × 5◦ field of view with 8000
excitatory and 2000 inhibitory neurons randomly distributed on a 3 mm × 3 mm plane. Con-
sidering the biological details as well as the simplicity and ease of computation of the model, the
single-compartment exponential integrate-and-fire (Exp-IF) model is chosen to model cortical neu-
rons. Exp-IF neurons add an exponential term ∆T exp ((V − VT ) /∆T ) to integrate-and-fire (IAF) neu-
rons. Fourcaud-Trocmé et al. [39] have demonstrated that the firing rate response to constant or noisy
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currents of the Exp-IF model is closer to the Wang-Buzsáki (WB) model in a broad range of firing
rates than the IAF neuron model and other variations of the IAF model. Moreover, the subthreshold
membrane potential trajectories of the Exp-IF model and the WB model are almost indistinguishable,
and the I-V curves are very similar near the threshold voltage because the activation curve of the fast
sodium current in the WB model can be well approximated by the exponential term. The time course
of the membrane potential V(t) of an Exp-IF neuron is:

τm
dV
dt
= − (V − EL) + ∆T exp

(
V − VT

∆T

)
+ wexc (Eexc − V) + winh (Einh − V) , (2.3)

where wexc and winh are the excitatory and inhibitory synaptic weights, respectively. When the mem-
brane potential v crosses the threshold VT = −53 mV, the neuron fires and resets the membrane poten-
tial to the resting value Vr = −70 mV. The time constants τm of excitatory(E) neurons and inhibitory(I)
neurons are 10 ms and 15 ms, respectively, and the refractory periods are 2 ms and 0.5 ms, respectively.
Other parameters are set as EL = −70 mV, reversal potentials Eexc = 0 mV, and Einh = −80 mV. The
values of the threshold slope factor ∆T = 0.8 mV are taken to fit the pyramidal neurons [38]. The
spatial location of a neuron determines its orientation preference property [40]. In this paper, we place
a population containing 200 vertical preference neurons at the center, and our study will focus on this
population.

2.4. Synaptic connection probability

Binzegger et al. [41] have developed a quantitative description of the circuits formed in cat V1.
When only the internal connections of layer 4 are considered, the number of excitatory synaptic inputs
received by both E neurons and I neurons accounts for 65% of the total number of synaptic inputs.
However, L4 neurons receive a large amount of excitatory input from L6, and when this component
is taken into account, 79.4% of the synapses received by E neurons are excitatory, and for I neurons,
it is 82.9%. We, therefore, specify that each E neuron receives 800 synaptic inputs and each I neuron
receives 640 synaptic inputs due to its smaller size, of which 80% are excitatory (10% from the LGN
layer, 70% from the E neurons) and 20% are inhibitory. After determining the number of synapses, the
connection probability has to be specified. For each neuron, we reproducibly sample the inputs from
potential presynaptic neurons according to a certain probability distribution. Strategies for calculating
the probability of different types of synaptic connections are presented as follows:

The shape of a cortical neuron’s receptive field determines the arrangement of the LGN neurons
that provide feed-forward inputs, which in turn determines their orientation preference. In this paper,
we model the cortical neuron’s receptive field with the Gabor distribution [34]:

g (x, y, θ, ψ) = exp
(
−

x′2 + y′2γ2

2σ2

)
cos (2πx′λ + ψ)

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ,

(2.4)

where g is the connection probability, (x, y) is the difference in coordinates of the pre- and post-synaptic
neurons, θ is the preferred orientation of the post-synaptic neuron, and ψ is the preferred phase, which
is randomly set in this paper [38]. Other parameters are set as σ = 0.17, λ = 0.8, γ = 2.5. Posi-
tive and negative regions of Gabor correspond to connections from ON and OFF-center feedforward
neurons, respectively.
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The probability of connection between L4 neurons is determined by distance d and push-pull orga-
nization (determined by the correlation c of their receptive fields). First, the connections formed by L4
neurons are mostly localized, and Antolik et al. [38] fit the anatomical data from Stepanyants et al. [42]
with the zero mean hyperbolic distribution, i.e., gdist (d). Meanwhile, L4 neurons follow a push-pull or-
ganization in generating connections, with excitatory and inhibitory neurons preferentially connecting
with neurons with correlated and anti-correlated Gabor receptive fields, i.e., gpush - pull (c, d) [34–36,38].
The final probability is calculated as the multiplication of the two components:

g (c, d) = gpush - pull (c) · gdist (d)

gpush - pull =
1

σ
√

2π
exp

(
−(c − µ)2/2σ2

)
gdist (d) = exp

(
−α
√
θ2 + d2

)
,

(2.5)

where α and θ in distance components gdist depend on the type of synapse: α = 0.0139, θ = 207.7
for synapses from E neurons to E neurons; α = 0.0148, θ = 191.8 for synapses from E neurons to I
neurons; α = 0.0126, θ = 237.5 for synapses from I neurons to E neurons; and α = 0.0119, θ = 256.4
for synapses from I neurons to I neurons. In the push-pull component gpush-pull, the correlation c is
related to both the orientation and the distance of the receptive fields: for two receptive fields, the
larger the distance, the smaller the correlation; the correlation is positive when the gap between the
orientations is small, and the correlation is negative when the orientations are almost orthogonal [34,
38]. µ takes 1 and -1 for excitatory and inhibitory synapses, respectively. The smaller σ indicates
the stronger push-pull effect, and it is set as 1.4 in the initial simulation, which will be modified in
subsequent experiments.

2.5. Synaptic model

The time evolution of synaptic weights is modeled as an exponential difference model of AMPA,
NMDA, and GABA types [43, 44]. The time course of inhibitory synaptic weights for neuron n in
Eq (2.2) is defined as:

winh,n (t) =
∑
σ

wσ

∑
m∈Pre

k∑
j=1

GGABA

(
t −

(
t j,m + tdelay

))
GGABA (t) =

exp
(
−t/τd,GABA

)
− exp

(
−t/τr,GABA

)
τd,GABA − τr,GABA

,

(2.6)

where σ is the presynaptic neuron species, wσ is the basic weight, Pre is the set of presynaptic neurons,
and k is the number of spikes that have been generated by neuron m. Neuron m produces the jth spike
at moment t j,m and affects the synaptic weight of neuron n after a delay of tdelay. GGABA(t) describes
the time course of synaptic weights when the fire of neuron n is transmitted to neuron m at moment
0, τr is the rise time constant, and τd is the decay time constant. AMPA and NMDA synapses are
defined similarly. The excitatory synaptic weight Gexc contains both AMPA and NMDA components.
The percentage of AMPA is 0.8 when the postsynaptic neuron is an E neuron and 0.67 when it is an I
neuron. The rise and fall time constants for GABA-type synapses are 2 ms and 3 ms, respectively; for
AMPA-type they are 0.5 ms and 2 ms; and for NMDA-type are 2 ms and 40 ms.
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Synaptic delay is proportional to distance: tdelay(x) = ax + b, where a = 10/3, and b is related
to synapse type. The values are 1 for inhibitory synapses, 1.4 for synapses from E neurons to E
neurons, and 0.5 for synapses from E neurons to I neurons [38]. The synaptic basic weights in Eq (2.3)
are set as follows: 0.08 for E neurons accepting feedforward inputs, 0.04 for I neurons accepting
feedforward inputs, 0.05 for synapses from E neurons to E neurons, 0.08 for synapses from E neurons
to I neurons, 0.20 for synapses from I neurons to E neurons, and 0.14 for synapses from I neurons to I
neurons. Under the current network structure, the above parameter settings will ensure that the model
produces fire activity consistent with biological reality.

2.6. PSD analysis

The local-field potential (LFP) is an easily accessible measure of the activity of local neuronal
populations that primarily reflects the synaptic activity of excitatory neurons [45–48]. In most studies
on gamma oscillation, LFP signals are used for spectral analysis. The traditional modeling approach
is to consider the membrane potential of the central E component as the LFP because the membrane
potential fluctuation of the central E component responds to the activity of other E components in the
local region [26, 28]. Mazzoni et al. [49] argue that the weighted sum of AMPA currents and GABA
currents in the LIF network responds well to the time course of the LFP signal. Other than that, Rangan
and Young [50] propose that “multiple firing events (MFEs)” affect the gamma oscillation of the LFP:
during an MFE, the net synaptic effect of the firing population significantly reduces the subthreshold
voltage of the non-firing population, and these lowered membrane potentials are elevated during the
interval between MFEs. The similarity between the analyses for MFEs and LFPs in the gamma band
has been confirmed in related modeling studies [44, 51].

Because of the similar model structure, we adopt the MFE analysis, and SD is a measure of MFE.
Due to the similarity of the models, the same method as Chariker et al. [44] is chosen, i.e., power
spectral density (PSD) analysis of the spike density (SD), an important parameter for determining the
MFEs. The SD is defined as the ratio of all spikes in the neuron population to the total number of
neurons in the population within a time bin. Consider the firing activity of a population containing N
neurons during the period (t, t + T ), divide this period equally into n = T/∆t time windows, define the
total number of discharges in the ith time window Bi as mi, and then the SD within Bi is defined as
dn = mn/(N∆t). In this way, the PSD of SD is defined as:

d̂ ( f ) =
1
√

T

∑T/∆t

n=1
dn∆t exp (−2πi f n∆t) . (2.7)

We set T = 200 ms and ∆t = 4 ms, and the periods are set as (0,T ), (∆t,∆t+T ), ..., (n∆t, n∆t+T )....
The sliding time bins allow us to obtain the temporal evolution of gamma oscillations, but at this stage
we mainly consider PSDs averaged over time. We consider the peak frequency and spectral power of
gamma oscillations, where the peak frequency is the frequency corresponding to the maximum power
and the spectral power is calculated as the summed power in the range of 30–80 Hz [26].
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3. Results

3.1. Neuronal response modulated by the orthogonal mask grating

Figure 2. Firing activity with grating and plaids as visual stimuli. (a) Oscillatory PSD anal-
ysis of vertical preference populations at different contrasts of horizontal mask gratings. (b)
Cross-inhibition during contrast enhancement of horizontal mask gratings. (c) Band power
(blue line on the left axis) and peak frequency (red line on the right axis) of gamma oscilla-
tion modulated by horizontal grating contrast. The solid line stands for the average of five
independent experiments, while the light-colored area surrounded by the dotted line shows
the standard deviation.

Numerous biological experiments have summarized the effect of grating superposition on the re-
sponse of V1 neurons: the superposition of mask gratings leads to a decrease in the firing rate of
the majority of neurons, i.e., cross-inhibition, as compared to the primary grating when presented
alone [2, 3, 7]. At the same time, the strong and sustained gamma oscillations induced by the main
grating shift to weaker oscillations at a higher frequency [6, 10–12]. We have successfully simulated
these phenomena in our model: When a vertically drifting sinusoidal grating with 50% contrast is pre-
sented as a visual stimulus, the vertically preferred neuron population produces continuous and strong
synchronized oscillation in the gamma band. In this population, the average discharge rate is 13.7/s,
and the peak frequency of gamma oscillations is 37 Hz. Based on this, we further select a horizontal
mask grating with a contrast of 10% to 50% to superimpose on the original grating. With the increasing
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contrast, the stability of gamma oscillation decreases, with significant differences in peak frequency
between the 20% and 40% ranges, while the oscillation becomes weaker but relatively stable when the
contrast is greater than 40%, as shown in Figure 2(a). The results show that the rise in contrast of the
mask grating leads to a decrease in the firing rate, as shown in Figure 2(b), a decrease in the gamma
band power, and an increase in the peak frequency, as shown in Figure 2(c). When the contrast of the
two gratings is equal, the appearance of the mask grating decreases the firing rate by 60% and the band
power by 70%, while the peak frequency increases from 37 Hz to 44 Hz.

3.2. Cross-inhibition in this model originates from the feed-forward pathway

It is generally accepted that synaptic inhibition within the cortex and feed-forward inputs lead to
cross-inhibition, so the two aspects of the model are discussed in this section.

Feedforward inputs to neurons in this model come from LGN neurons, which receive excitatory
inputs from visual stimuli via a spatiotemporal receptive field based on the difference of Gaussian;
an individual LGN neuron does not have an orientation preference, whereas the spatial distribution
of thalamo-cortical connections determines the preferred orientation of cortical neurons. We consider
an ideal situation and set 21 LGN neurons with receptive field centers on a vertical line to provide
feed-forward inputs to a vertically preferred cortical neuron and probe the responses of the LGN and
cortical neurons with a vertical grating, a horizontal grating, and the plaid formed by overlapping
them as stimuli, respectively. An LGN neuron is randomly selected, and its input current is plotted,
which shows that the input current to LGN neurons under sinusoidally drifting grating stimulation also
exhibits the sinusoidal waveform (see Figure 3(a)), so we mainly consider the current peak. Since there
is no orientation preference for a single LGN neuron, the magnitude of currents triggered by gratings
of two orientations is equal, whereas the magnitude of currents under plaid stimulation varies with the
grating phase, and the peaks are smaller than the single grating case at most positions (see Figure 3(b)).
There is no phase difference between the two gratings at the center, but there is limited current growth
in this LGN neuron. This is due to the fact that the LGN neuron receptive field possesses the Difference
of Gaussian (DOG) structure (see Eq (2.2)): after the superposition of orthogonal gratings, while the
luminance of the positive region in the center of the receptive field increases, the luminance of the
surrounding negative region increases as well, and the two counteract each other, resulting in a small
current rise. Concurrently, the synaptic weight of V1 neurons under the three stimuli shows a large
difference (see Figure 3(c)). The stripe orientation of the vertical gratings matches the arrangement of
the LGN neurons, resulting in strong synchronization of their spikes, which instantaneously provide
large inputs to the cortical neurons and trigger intense firing activity (see blue lines in Figure 3(c)).
Although the horizontal grating causes single LGN neurons to produce the same firing rate, presynaptic
neurons fire sequentially in alternating light and dark stripes, providing a constant small input current
to the cortical neurons, thus leading to weak firing activity, which underlies the generation of the
orientation preference in the model (see red lines in Figure 3(c)). The current under plaid stimulation is
slightly stronger than the horizontal grating, but still not enough to allow the cortical neurons to obtain
a high firing rate (see yellow lines in Figure 3(c)). In the actual model, the LGN neurons are more
widely and randomly distributed; thus, the feedforward pathway is sufficient to produce significant
cross-inhibition.
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Figure 3. Changes in LGN neuron input current and cortical feedforward weights under
three types of stimuli in the ideal model consisting of 21 LGN neurons lined up in a straight
line and cortical neurons receiving feedforward input from them (blue: vertical grating, red:
horizontal grating, yellow: two gratings superimposed to form a plaid). (a) Input currents to
a randomly selected LGN neuron. (b) The maximum value of sinusoidal current fluctuations
for all 21 LGN neurons in terms of position as a horizontal coordinate. (c) The synaptic
weight changes of the cortical neuron. (d) Modified the current calculation strategy to elimi-
nate cross-suppression from the feedforward.

In L4 of this model, the push-pull organization determines that excitatory and inhibitory neurons
preferentially make connections with neurons that possess correlated and anti-correlated Gabor re-
ceptive fields [34–36]. Neurons preferring similar orientations in the layer cluster into populations,
whereas neighboring populations differ greatly in preferred orientations [40, 52]. This determines that
the excitatory connections of a particular cluster come primarily from itself, while the inhibitory con-
nections come from other nearby populations. The stronger the push-pull effect, the more specific the
source of such excitatory-inhibitory connections. In order to explore the effect of the push-pull organi-
zation on cross-inhibition, i.e., whether the appearance of the orthogonal grating suppresses the firing
of neurons in the local population by increasing the firing rate of the surrounding orthogonal preference
population, the superposition strategy of gratings is modified here: instead of letting the two gratings
be presented simultaneously, the sum of the LGN input currents generated by the two gratings is cal-
culated individually (see Figure 3(d)). The results show that when there is no connection within the
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cortex, the firing rates of the vertically-preferred and horizontally-preferred populations are identical
and close to the level when a single vertical grating is presented, and the cross-inhibitory effect of the
feed-forward is eliminated, suggesting that cross-inhibition caused by the feed-forward is eliminated.

The strength of the push-pull effect (push-pull strength) in this model is determined byσ in Eq (2.5),
and the larger the σ, the weaker the push-pull effect. Here we consider the cases with the value of σ
being 1, 1.4, 2, and no push-pull effect (denoted as inf), respectively. The results show that the grating-
induced firing rate is slightly higher than that induced by the plaid, and as the push-pull effect becomes
weaker, the grating- and plaid-induced firing rates decrease almost synchronously, and no obvious
suppression occurs (see Figure 4). When no push-pull organization exists, the plaid firing rate is 70%
of the grating, whereas the ratio increases to 90% for σ = 1, suggesting that the overpowering push-
pull even obstructs cross-inhibition. This is due to the fact that with the current parameter settings,
push-pull organization similarly enhances excitatory current connections within the population, and
this enhancement is sufficient to counteract the inhibitory effects from other neuronal populations. The
sharp rise in the firing rate when σ changes from 1.4 to 1 also results from this. The decrease in firing
rate due to the plaid in the absence of push-pull similarly suggests that push-pull organization is not a
necessary condition for cross-inhibition in this model, which is consistent with Priebe and Ferster [3]
that synaptic inhibition between neurons with different preferred orientations is not responsible for
cross-inhibition.

Figure 4. Changes in firing rate when 50% vertical grating (blue) and 50% vertical + 50%
horizontal grating superimposed plaid (green) are used as visual stimuli, respectively, when
the push-pull strength varies after eliminating feed-forward factors.

3.3. Push-pull organization leads to the increase of gamma frequency

The appearance of the horizontal mask grating and its contrast enhancement lead to a decrease in
the gamma band power and an increase in the peak frequency of the vertical preference population.
Both the difference in the moment of feedforward current arrival and the decrease in cortical neuron
firing rate presented in Figure 3(c) lead to difficulties in maintaining synchronized firing within the
population, thus decreasing gamma band power. As for the frequency, rapid excitation and delayed
inhibition in the EI network are alternating [53, 54], and it is questionable how the inhibited firing
activity can achieve rapid state transitions to generate a larger oscillation frequency. In this part, by
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adjusting the push-pull strength, we prove that it is the push-pull organization that shapes this trend in
the oscillation frequency.

We consider a 50% vertical grating stimulus and a plaid stimulus formed by the superposition of
two 50% orthogonal gratings, adjusting σ within 1.2 to 2.0, which does not overly affect the original
firing rate. The results in Figure 5(a) indicate that the peak frequency under plaid stimulation is always
stabilized at 44 Hz, with no fluctuation even in multiple independent simulations, while on the contrary,
the peak frequency under grating stimulation gradually rises from 38 Hz to 44 Hz with decreasing push-
pull strength, with a large disparity between simulations. That is, the push-pull organization causes a
relative increase in gamma oscillation frequency under plaid stimulation by decreasing the oscillatory
frequency of the second grating.

Figure 5. Modulation effect of push-pull strength on peak frequency of gamma oscillation.
(a) The trend of peak frequency changes when 50% vertical grating (blue) and 50% vertical
+ 50% horizontal grating superimposed on plaid (green) are the stimuli. (b) Relationship be-
tween firing cluster events (yellow bars) and fluctuations in normalized input currents (blue:
inhibitory current; red: total current) of E neurons. The three phases are identified by arrows
and numbers in the corresponding colors. (c) Change in elapsed time (normalized) for the
excitation phase (red), the inhibition phase (blue), and the inhibition decay phase (green) of
the network when 50% vertical grating is used as the visual stimulus. The solid line in (a)
and (c) stands for the average of five independent experiments, while the light-colored area
surrounded by the dotted line shows the standard deviation.

To quantify this frequency variation, we first define spike clustering events as a period in which the
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total number of spikes within the population at each moment is greater than one-half of the expected
value [50, 51]. Next, by analyzing the spike clusters and population-normalized input currents, we de-
fine three phases for each gamma cycle that most affect the oscillation frequency (see Figure 5(b)): 1)
Excitatory phase: the time since a small number of E neurons cross the threshold to shift the network
from resting to active, corresponding to the phase when the total input current is minimized to the be-
ginning of a spike cluster; 2) Inhibitory phase: the time since active I neurons inhibit the synchronized
firing of the population, corresponding to the phase in which the I current within a spike cluster rises
to the end of this spike cluster; 3) Inhibition decay phase: the time since the inhibition of E neuron
activity leads to a decrease in excitatory input to I neurons and a decrease in overall inhibition within
the population, corresponding to the I current decay phase.

In order to clarify the cause of the increase in the frequency of single grating-induced gamma
oscillations due to the decrease in push-pull strength, we plotted the average elapsed time of these
three phases as a function of σ in Figure 5(c). Because of the differences in the duration of the three
phases, we normalized them to compare which phase had the most significant change. As shown in
Figure 5(c), the elapsed time in the inhibitory phase (blue) decreases with increasing σ, i.e., decreasing
push-pull strength, and the decrease is larger than that in the excitatory phase (red) and inhibition decay
phase (green). This phenomenon suggests that neuronal populations become more easily inhibited with
decreasing push-pull strength, resulting in an increase in oscillation frequency.

Initially, when the push-pull effect is strong, the central population is primarily inhibited by adja-
cent populations because inhibitory neurons under the push-pull organization prefer to connect neurons
with anti-correlated receptive fields (i.e., different preference orientations). The stronger the push-pull
effect, the more pronounced this tendency is. These adjacent populations do not prefer the orienta-
tion of a single grating and provide limited inhibition to the central population. As the strength of the
push-pull effect (push-pull strength) diminishes, for central populations and adjacent populations with
different preferred orientations, the weakening of push-pull strength results in more excitatory synapses
from the central population connecting to the adjacent populations, and more inhibitory synapses from
the central population connecting within the central population. This leads to a decrease in the ac-
tivity of the central population, while adjacent populations become more active. This further leads to
increased suppression from adjacent populations, while the central population is more susceptible to
suppression, so that an increase occurs in the frequency of oscillations. This can likewise explain why
the contrast enhancement of the mask grating leads to a rise in the oscillation frequency, i.e., the neural
activity of the neighboring populations becomes stronger, enough to accelerate the suppression of the
central population activity.

4. Discussion

Koelling et al. [22] similarly use LGN neurons with spatiotemporal receptive fields and IAF cortical
neurons to model cross suppression, but they did not observe inhibition of the LGN response by the
plaid pattern. This is due to the fact that the spatial frequency of their gratings is much larger and
the grating stripes cover the entire receptive field rather than the positive regions in the receptive field,
so that the superimposed gratings do not lead to the involvement of more negative regions of the
receptive field, as in our work. The spatial frequency of gratings may affect the principle of cross-
suppression generation, which needs to be taken into account in further work. The work of Rubin
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et al. [19], Carandini et al. [23], and Heeger et al. [24] actually allows the two components of the
plaid to act on neuronal populations with corresponding preferred orientations at the same time, rather
than the two gratings being directly superimposed. This is certainly good practice when the effect
of intracortical connectivity on cross-inhibition needs to be considered separately, since inhibition
from neuronal populations with other preferred orientations underlies “normalization.” Whereas in our
model, neuronal populations that do not prefer the vertical orientation do not receive sufficient feed-
forward inputs at all, and until the push-pull effect diminishes, excitatory connections from the central
population make up for this deficiency. The feedforward model of Barbera et al. [20] obtained similar
conclusions as this work, where the phase of the plaid pattern exerted a strong influence on the firing
activity of the LGN neurons. The two drifting sinusoidal gratings forming the plaid have the same
temporal frequency at this stage, so that the firing pattern does not change throughout the experiment
for LGN neurons at a specific location. The superposition of gratings at different temporal frequencies
leads to changes in the firing pattern of the LGN over time, and it is interesting to see what effect this
will have on cortical activity. We considered the effect of grating superposition on gamma oscillations,
and in contrast to previous modeling studies on the stimulus-dependence of gamma oscillations [24,
26–29], we explained the reason for the change in oscillatory properties not mathematically but in
terms of tangible patterns of synaptic connectivity, which is more conducive to the understanding of
how gamma oscillations characterize visual stimuli in V1.

Biological experiments have demonstrated that some neurons are sensitive to plaids. Bartolo et
al. [6] found that plaid pattern presentation resulted in higher firing rates than the grating case at al-
most all sites. Muir et al. [8] and Guan et al. [9] both reported that many non-directionally regulated
V1 neurons responded strongly to plaids. Barbera et al. [20] implemented the modeling of such plaid-
preferring neurons in their proposed feedforward model through a special arrangement of LGNs. These
plaid-preferring neurons would simplify the interpretation of some visual processes related to texture,
and phase sensitivity to plaids would yield new implications for firing patterns, but at the same time,
these neurons are easily ignored by traditional methods of mapping receptive fields using oriented
stimuli. How to determine the distribution of such neurons within the layer, whether their plaid prefer-
ence can come from the directionless arrangement of LGN neurons, and what effect it will have on the
cross-inhibition and gamma modulation of the remaining orientation-preference neurons are all issues
worth discussing.

Although the push-pull organization in the present model does not produce more inhibitory effects
on neurons under plaid stimulation, it is equally important not to ignore the role of recurrent connec-
tions within the cortex. The normalization neuro-computational model is thought to operate throughout
the visual system as well as in many other sensory modalities and brain regions. In this framework, only
the optimal grating increases the excitatory input to the neuron as the numerator, whereas both gratings
increase the normalization factor as the denominator, and thus the masked grating leads to diminished
firing activity [23, 24]. The stable superlinear network (SSN) model also relies on intracortical sup-
pression to account for cross-inhibition, and in addition, this strategy simulates the superlinearization
of the firing rate when two low-contrast gratings are superimposed, where the dominant input source
shifts from the feed-forward to the intralaminar loop as the stimulus intensity is increased, resulting
in the inputs becoming increasingly suppressive [19]. Taking the above into account, the network
structure behind these mechanisms needs to be considered and integrated with existing anatomical
studies of intracortical connectivity. Questions such as how to generate the desired circuit structure
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with known connection rules, how these cross-inhibition strategies will affect the gamma property, and
what kind of neural computation is represented by a change in the gamma property are equally worthy
of consideration.

5. Conclusions

To investigate the cross-inhibition in V1, we build a large-scale spiking neural network that takes
biological details into account. This model successfully simulates the modulation of cortical neuronal
responses by the contrast of orthogonal mask gratings: the superimposed gratings lead to a decrease
in the firing rate and a large decrease in the gamma band power along with an increase in the peak
frequency, which is consistent with the conclusions obtained from previous biological experiments
[2, 3, 6, 7, 10–12]. In this paper, we focus on two components that may induce cross-inhibition: the
feedforward from LGN and the push-pull organization within L4. The results suggest that the receptive
field structure of LGN neurons and the spatial arrangement of cortical neurons receiving feed-forward
inputs work together to result in cross-inhibition. Furthermore, to eliminate feedforward effects, we let
the two orthogonal gratings that make up the plaid be presented individually and summed the currents
so that populations preferred by both orientations obtain the same level of response when their optimal
grating is presented alone. We modify the push-pull strength parameterσ, and the results show that, the
higher the push-pull strength the higher the neuron firing rate, and at the same time, the network does
not produce a cross-inhibition phenomenon, which demonstrates that the push-pull organization alone
is not enough to cause a decrease in the firing rate when the gratings are superimposed. Although push-
pull organization does not lead to changes in firing rate, it does affect changes in gamma oscillation
frequency. Increased push-pull strength leads to fewer inhibitory synapses in this population and more
inhibition in neighboring populations with other preferred orientations. Thus, when a single grating
is presented, the inhibition within the population is too weak, leading to low oscillation frequencies.
Whereas mask gratings lead to an increase in inhibition from neighboring populations resulting in a
high oscillation frequency. These results will help to understand the visual processing under multi-
input integration and how gamma oscillation characterizes complex texture information.
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