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Abstract: The central focus of our investigation revolved around the convergence of agents’ behavior 
toward a particular invariant distribution and determining the characteristics of the optimal strategies’ 
distribution within the framework of a dynamical Multi-Local-Worlds complex adaptive system. This 
system was characterized by the co-evolution of agent behavior and local topological configuration. 
The study established a representation of an agent’s behavior and local graphic topology configuration 
to elucidate the interaction dynamics within this dynamical context. As an illustrative example, we 
introduced three distinct agent types—smart agent, normal agent, and stupid agent—each associated 
with specific behaviors. The findings underscored that an agent’s decision-making process was 
influenced by the evolution of random complex networks driven by preferential attachment, coupled 
with a volatility mechanism linked to its payment—a dynamic that propels the evolution of the 
complex adaptive system. Through simulation, we drew a conclusive observation that even when 
considering irrational behaviors characterized by limited information and memory constraints, the 
system’s state converges to a specific attractor. This underscored the robustness and convergence 
properties inherent in the dynamical Multi-Local-Worlds complex adaptive system under scrutiny. 
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1. Introduction  

Generally, there are several different kinds of individuals in economic and management systems; 
they are homogenous individuals if they are the same, otherwise they are called in-homogenous ones. 
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The interaction can be divided into two categories: One happened between homogenous individuals, 
and the other happened between in-homogenous individuals, which makes the corresponding system 
more complex. In this system, the random and dynamic state, behavior, and configuration cannot only 
be influenced by the environment but also effect the property of the environment, which makes the 
system a complex adaptive system, then, more important problems should be focused on: Under 
evolution of this complex adaptive system, what properties would be about the individual behavior, 
and what could the distribution of the corresponding optimal strategy be? These problems are of 
much interest. 

Over the past two decades, the study of complex adaptive systems has become a major field [1,2]. 
A very broad range of complex adaptive systems have been studied, from abstract ones, such as the 
evolution of economic systems [3,4] and theory of emergence [5,6], to physical ones, such as social [7,8], 
epidemic [9,10], characteristic of bifurcation [11], which means a minor perturbation may escalate into 
tectonic shifts in the system, or even abrupt changes in the property and function of the system [12], 
resulting in symmetry-breaking [13]. In essence, the spontaneous switches in group behavior derive 
from interactions between individuals [14], during which some behaviors are learned [15] or 
propagate [16,17], causing the structure and behaviors of the system (or of the collective) to change [18] 
or even to reach the critical state [19]. All have in common the property that their detailed structure 
cannot be explained exactly from a mathematical viewpoint. At the beginning of the 21st century, a 
wealth of stochastic differential game theory has emerged [20,21], which describes the interaction 
behavior of agents and the optimal strategy coupled with temporary deterministic structure and 
stochastic complex networks [22]. Kinds of literature in different fields have described the evolution 
law under various agent interaction rules [23]. Jiang [24] demonstrated the importance of balancing 
both parties’ interests within an ecological compensation agreement while reducing uncertainty around 
unobserved environmental factors during ex-ante negotiations. 

In this paper, a multi-agent model is constructed to analyze the evolution law of economic and 
management complex adaptive systems. Based on experimental analysis, it has been found that in the 
most of cases, the system behavior conforms to a specific distribution when agents work according to 
this model. Furthermore, some strategies for economic issues, politic events, social questions, and 
environmental influence would be made scientifically once this distribution law is determined. 
Compared with the existing works, the main contributions of the paper are summarized as follows: 

1) Both the diverse behaviors of agent and the configuration of the system are all changed 
randomly with time, and the classic analysis method cannot deal with this dual randomness. There 
have been few results to discover what the system’s behavior would be converged to, as time tends to 
infinity or a relatively large number under classic methods. We consider not only the growth of the 
random complex networks, but also the decline. Furthermore, in our model, the network is regarded 
as a multi-local-event network, and each Multi-Local-World can be regarded as a relative independent 
subsystem. This case is closer to reality; however, it has not been discussed before. 

2) Most research results have either considered the mixed interaction of non-
cooperative/cooperative games in Multi-Local-Worlds stable graph or considered the random Multi-
Local-Worlds complex networks with the Boolean game between individuals, which are far away from 
the property of the real economic and management complex adaptive system. In this sense, new 
modeling methods should be introduced. 

3) Furthermore, in classic research, the interaction between individuals is set as a preferential 
attachment with degree. In our study, this preferential attachment is designed from both income 
coupled with certain strategy and the local configuration, and the phase transfer equations are modeled 
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as a similar mechanism. So, we consider not only the behavior and adaptability of an agent, but also 
the interaction between environment and system, which could interpret more accurately the economic 
and management complex adaptive system. 

The paper is organized as follows. In Section 3, the characteristics of a complex adaptive system 
are analyzed and a hypothesis is proposed. In Section 4, the model coevolving with both strategy and 
local topological structure of individual interaction is constructed, where agent behavior in the system 
is described as 6 subprocesses. In Section 5, a computational experiment was conducted to verify the 
above analysis. Section 6 provides the conclusion of this paper.  

2. Literature review, need and relevance 

Generally, each agent in a complex adaptive system could interact just with local agents, not 
global ones, meaning that an arbitrary agent can just act with limited agents in the system; their 
interaction relies on the system’s local topological configuration [25]，Furthermore, each agent in the 
system can change its interacting targets (i.e., its “neighbors”) to obtain more benefits; there are 
complex nonlinear interactions among subjects and between subjects and environments, which lead to 
the phenomenon of “emergence in large numbers” of the system [26–28]. Schlüter [26] has found the 
emergence that behavior of collective with large enough individuals is far beyond the sum of 
individuals behavior in social-economical systems, Steffen et al. [27] have studied the emergence in 
each system by invoking a similar method and draw a same conclusion, and Maia et al. [28] have 
studied the emergence of societal bubbles, that is, the evolution of microscopic individuals makes the 
macro system display a new state and a new structure [29,30]. Zhang et al. [29] have proven that the 
structure, property and function of supply chain is time-varied randomly, and Zou et al. [30] have 
proven this by introducing a complex networks model. In this sense, the local topological configuration 
is not stable but dynamic [31,32]. Liang et al. [31] have constructed an avalanche model to describe 
that the configuration of wiring-economical modular networks could be destroyed without any warning, 
and Fulker et al. [32] have constructed a dynamic networks model to describe the property of the 
economic system. Obviously, most complex adaptive systems have two characteristics: complex 
networks and games. Therefore, it is necessary to introduce new methods to study the properties of 
optimal agent strategies in complex adaptive systems. A master stability approach for a large class of 
adaptive networks has been developed [33]; this approach allows for reducing the synchronization 
problem for adaptive networks to a low-dimensional system by decoupling topological and dynamical 
properties. An effective new technique called the regulative norms detection technique (RNDT) to 
detect norms by analyzing odd events that trigger reward or penalty is demonstrated [34]. The test 
results showed that the RNDT performed well, although the success rate relied on the settings of the 
environmental variables. Some results claimed that macroeconomics should consider the economy as 
a complex evolving system whose far-from-equilibrium interactions continuously changed the 
structure of the system and that the complex interactions of agents led to the emergence of new 
phenomena and hierarchical structure at the macro level, having constructed a bottom-up model to 
describe the emergence property of multi-hierarchical structure complex systems [35]. 

Generally, a system can be divided into multiple subsystems, and interactions between individuals 
occur not only within a subsystem, but across different subsystems [36,37]. The interactions occur not 
merely between neighboring individuals, and the long-range interactions in spatial dimension have 
significant effects on the critical phase transition of the system [38–40]. Furthermore, in addition, the 
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rules met by the interactions between individuals within an economic or management system are far 
more complex than the rules regulating interactions between individuals in the natural world, such as 
the conservation of momentum that regulates collisions of particles and the black box of biology (such 
as the behavior adjustment strategies defined by the Ising model and Vicsek model) [41–44]. Moreover, 
it has been scientifically proven that the system structure determined by interactions between 
individuals is a key contributing factor to the function and nature of the system [45], so the multi-
layered structure of economic and management systems leads to a strong cascade effect of collective 
behaviors [46–48]. Furthermore, when individuals interact in varied structures, such as sparse graphs 
and dense graphs, random graphs and complete graphs, scale-free networks, and small-world 
networks [49–52], the diverse and random structures of economic and management systems, due to 
the dependence on the structure [53–55], make the phase transition in these systems far more complex 
than the critical phase transitions in physical systems comprised of mono-dimensional and simple 
interactions between individuals [56]. 

However, the economic and management system cannot be described by random complex 
networks models because the Boolean interaction defined in random complex networks models is 
much simpler than the reality, nor can it be defined by different game models because the configuration 
of interaction between agents is changed dynamically. So, these two properties must be considered. If 
this problem is resolved, a universal conclusion would be drawn and many similar economic and 
management events would be explained by this theory. Furthermore, there are many unknown and 
unseen scenarios in reality. Due to the lack of real-world data, the conclusions regarding concerted 
changes in collective behavior reached by classical analysis methods do not apply to unknown 
scenarios. So, it is necessary to draw a universal conclusion for invariable distribution about the 
system’s behavior. In this paper, co-evolutionary complex adaptive systems with agent behavior and 
local topological configuration are constructed to describe the property of economic and management 
systems. In this paper, a Multi-Local-Worlds economic and management complex adaptive system 
with agent behavior and local configuration is considered. This partially complements the gap between 
reality and the results of previous studies. 

3. Characteristic analysis of co-evolutional complex adaptive systems 

A complex adaptive system can adjust its behaviors and structure according to the environment 
changing dynamically; on the contrary, its behaviors, functions, and structure can also react to the 
environment and make the environment change adaptively [57–59]. This property makes the complex 
adaptive system multi-hierarchical, intelligent, social, and autonomous [60]. There are several “Local-
Worlds” in this system, as shown in Figure 1. 

From Figure 1(1), the multi-hierarchical topological structure can be seen clearly. The details can 
be shown in Figure 1(2), and the topological structure of a complex adaptive system driven by the 
interaction between agents can be divided into several subsystems; similarly, the topological structure 
of each Sub-system can be divided into several sub-subsystems; and so on. In this sense, a definition 
of Local-World is introduced here. 

Definition 1. The connected subgraph , 1,2,...,iG i m  of the topological structure of the complex 

adaptive system G, where iG G , is called Local-World. 
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Figure 1. The universal topological structure of a complex adaptive system. 

Because there are several hierarchies and there are several Local-Worlds in each corresponding 
system (system, subsystem and so on), the behavior of the system is more complex. Without loss of 
generality, we suppose that there are two hierarchies in this system. According to the dynamical 
property of the configuration of a complex adaptive system, the system configuration can be described 
in Figure 2. 

 

Figure 2. Interaction between agents in the dynamic topology of the complex adaptive system. 

Figure 2 describes the dynamic property of the complex adaptive system with co-evolving 
behavior and local configuration, where C represents “Cooperation games” that happen in agents and 
N represents “noncooperation games” that happen in agents. There are two local worlds in this system. 
At time t , agents 1–4 stand in Local-World 1, and agents 5–8 are in Local-World 2. This interactive 
configuration is presented on the left side of Figure 2. However, at time 1t , agent 9 takes part in this 
system and interacts with agent 8, which leads to a change in the system configuration, as seen on the 
right side of Figure 2. There is a totally different structure, where agents 1–4 and 7 are in Local-World 1, 
and agents 5, 6, 8 and 9 are in Local-World 2. 
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Consider the complex adaptive system that satisfies the following properties: 
1) There exist more than enough Local-Worlds such that the system holds in the spatial dimension. 

The radius is small enough from the macro spatial scale such that there are more than enough Local-
Worlds existing in the system and interacting with each other. Meanwhile, from a micro spatial scale, 
the radius is large enough such that there are more than enough individuals existing in it and interacting 
with each other. Both the number of Local-Worlds and the relationships between them are constant, 
from a macro spatial scale, such that the system structure and function are stable. However, 
individuals would waver randomly from one Local-World to another, from a micro spatial scale, so 
that they are variable. 

2) On a relatively short time scale, the interactivities of cooperative stochastic differential games 
between agents in a certain Local-World are defined. Conversely, the interactions of noncooperative 
stochastic differential games between agents standing in different Local-Worlds are also defined. 
Furthermore, the system’s topology configuration determines the states, properties, and characters of agents.  

3) On a small time scale, under preferential attachment, growth, and decline mechanisms with 
agents’ intellective, autonomous, and social properties, agents in the system can adjust adaptively to 
its topological configuration such that the complex adaptive system innovates. Furthermore, on a large 
time scale, the interactivities between agents can be produced by pursuing more payoffs by improving 
the interaction structure, which consists of 6 subprocesses: self-improvement strategy; creating a new 
game in the same Local-World with agents with whom they have not interacted before; creating a new 
game relationship with agents in other Local-Worlds with whom they have not interacted before; 
deleting an old game relationship; creating a new game relationship with a new agent, or withdrawing 
from the system. 

In a small time scale, an arbitrary agent should not pursue the maximum payoff but rather pursue 
the payoff maximized for that particular time scale. This means that an agent can give up the transitory 
benefit that is described by a certain integral of the objectivity function [61,62]. Furthermore, the 
behavior of an agent will be decided due to the corresponding resource it holds. However, there exists 
a dynamics equation for resources changing with time for each agent such that the objectivity of agents 
will change together, which should be described by some certain discount function of time.  

On a long time scale, for each agent in the system, there exist 6 behaviors to be selected as a 
certain probability vector. Its behaviors can be controlled by the mechanisms of both preferential 
attachment and growth coupled with strategies, trajectory, and topological configuration coevolved 
together [63]. An agent can adjust its strategy according to a deterministic probability by considering 
its historical strategies and its neighbor’s strategies—a deterministic dynamics, which makes the 
marginal probability of pure strategy that the agent uses proportional to the marginal income [64]. It is 
the preferential attachment probability that decides whether an agent creates a new link with another 
agent or not, and the probability relies on the ratio of the payoff for creating the new game to the payoff 
of the Local-World. Creating a new game relationship between different Local-Worlds is similar to 
creating a new game relationship within the same Local-World, except for the differences in parameters. 
In this sense, we consider both a cooperative and noncooperative stochastic differential game 
according to Property (2), which describes the system evolution mechanism in detail. The preferential 
attachment probabilities, in fact, satisfy the Logit properties for the last 5 of the 6 subprocesses. 

This co-evolutional complex adaptive system consists of two kinds of randomness. One is the 
agent’s behavior is random, and the other is his local topological configuration driven by the interaction 
is also random. Furthermore, the state would be changed dynamically. In this sense, it is a stochastic 
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process. Suppose that homogenous agents interact in the system, i.e., the number of Local-World is 
equal to 1, as the system has been studied [65]. As analyzed above, the topological structure of a real 
economic and management complex adaptive system is a stochastic multi-hierarchical, so this model 
must be revised. An arbitrary agent can select each behavior from 6 subprocesses with a certain 
probability 1 6,...,p p , respectively, and at the next one, he could select another behavior.  

Seen as property of the system, for a certain system configuration, there must exist an optimal 
strategy trajectory; however, because the configurations are always changed randomly, the optimal 
strategies are changed with changed configuration. So, we hope these optimal strategies should satisfy 
certain laws, described as the following hypotheses.  

Hypothesis 1. The occurring-time of optimal strategy satisfies an invariable distribution if both 
behavior and local configuration of each agent in the complex adaptive system are all changed randomly. 

Hypothesis 2. The holding-time of each optimal strategy satisfies another invariable distribution 
if both behavior and local configuration of each agent in the complex adaptive system are all 
changed randomly. 

Although similar hypotheses are given by Staudigi [65], the interaction between agents is set 
according to the rule of prison dilemma with four discrete strategies, but not set according to universe 
strategies with a continuous change state. 

4. Model 

In practical economic management systems, such as real estate, supply chain, regional economy, 
financial markets, etc., they are all complex economic management systems with the following 
characteristics: (i) The interaction between people changes the system structure and is influenced by 
the system structure, forming a trend of co evolution between behavior and topology structure; (ii) 
there are several subsystems in complex systems, including cooperation and competition; and (iii) an 
optimal strategy can be found in the system. If these economic management systems can be abstracted 
into a universal system model, with clear system characteristics and optimal strategies of members and 
their changing characteristics, then these results can be extended to more specific economic 
management systems. 

For each agent in the system, there exist 6 behaviors to be selected as a certain probability vector. 
Their behaviors can be controlled by the mechanisms of both preferential attachment and growth 
coupled with strategies, trajectory, and topological configurations that have coevolved. Their behavior 
is as follows:  

4.1. Adjust behavior 

An arbitrary agent,
ij  , will change its strategy as probability 

1( ) [0,1]q    . The probability 
, ( )ijb    of the agent changing its behavior in a certain system configuration should satisfy 

   ( ) arg max ,i i v i

i v
v

j j a j
r r j a

a
b a a    


 

A
g                  (1) 

where 
ra is the most effective strategy within the game radius r , 

va  is the strategy space, A  is 

the strategy space collection,  ij    is the payoff of agent
ij  , A is the strategy of agent

ij   in the 
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strategy space, and   is noise. Equation (1) means that an agent transferring from one strategy to 
another is decided because the expected payoff coupled with the new strategy could make maximize 
agent

ij ‘s payoff, which can be regarded as random selection for strategy in a deterministic hybrid 

game. Furthermore, this decision relies on not only the neighbor’s strategy and the topological structure 
g , but also on the environment  . 

, ( ) * * *
10

limlog ( ) ( , ( , )) ( , , ( , ))i i i

i i i i

j j t j t t
j j j jb a c a v t x t x 


  


  g                 (2) 

where strategy  * *,
i i

t
j jt x  for time t  and state tx  refers to the optimal strategy vector for a specific 

pure strategy,         1 1 2 2

* * * * * * * *, , , , , , ,
i i

T
t t t t

j j j j j j j jt x t x t x t x
 

    , and   is the spatial dimension of 

agent ij . 

4.2. Create a new game relationship with another agent in the same Local-World 

Suppose that arbitrary agent
ij creates a new game with a new agent who is not its neighbors with 

probability (sub-process2) , ( )ijw   (sub-process2) , (sub-process2) (sub-process2)( ( )) ( ) / ( )i i

i i

j j
k kw       I

, which relies 

on ration function (sub-process2) :ij   that satisfies ( ) 1 ( ) 0i ij j
iN        and 

  (sub-process2) ( ){ , } * * * * * *

( )

( )( ) : exp , , , ( , ), ( , ) /i i i

i i i i i i
ji

i

j t j k t t t t
i j k j j k j

k

j W t x x t x t x

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

     
N

I      (3) 

  

(sub-process 2) ,(sub-process 2)

( ){ , } * * * * * *

,

( )

exp , , , ( , ), ( , ) / (1 )

i

i

i i i

i i i i i i i

i i i

j

j

t j k jt t t t
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



  
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



 




I

g
       (4) 

(sub-process 2) , (sub-process 2) ,ˆ( , ) : ( ) ( )(1 )i i

i i i i

k k
i i j j j kj k w w     I g  

The probability of agent 
ij   creating a new game with agent 

ik   is defined as 
(sub-process2) (sub-process2)( ) / ( )ij    , which means that payoff of coalition of agent 

ij  and agent 
ik  is 

larger or equal to the other coalition’s payoff affected by noise 
( )

( )i i
jii i

j j
k k 

 



N

. In this sense, we have 

 
  

( ){ , } * * * * * *

( ){ , } * * * * * *
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          (5) 

and 

 
 

(sub-process2) ,
2

0
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( )( ) : lim log ( ) ( , ( , ( , )))

, , ( , ), ( , ), ( , )

, , ( , ), ( , ), ( , )

i i

i

i i

i i i i i i

i i

i i i i i i

j j
i k i i

t j k t t t
j k j j k k i i

t j l t t t
j l j j l l i i

j w c a g j k

W t x t x t x g j k

W t x t x t x g j l








   

 

 


      






I

( )ji
il 

N

     (6) 



2832 

Electronic Research Archive  Volume 32, Issue 4, 2824–2847. 

That is,  { , } { , }* *, , ( , ) ( , ) 1i i l i lj j k j kt t
l l lk k k W t x W t x

     N  must be satisfied to create a new game 

relationship with agents from 
ii jN N  with whom agent ij  did not interact. It is the link probability, 

also called preferential attachment mechanism, that states an agent prefers to select a game partner 
who can bring them more payoff than another. This causes each agent to be selected prior to their 
payoff coupled with the optimal strategy in the corresponding short time interval. This probability is a 
multi-dimension logit function, which means there exists a critical point of probability ( ){ , }

0
i it j kW  

coupled with the agent’s payoff in the selected process, such that the probability a certain agent will 
be selected is far smaller than 0.5 if the agent’s payoff is smaller than ( ){ , }

0
i it j kW , but the selecting 

probability is far larger than 0.5 and close to 1 if the agent’s payoff is larger than ( ){ , }
0

i it j kW . 

4.3. Create a new game relationship with another agent in a different Local-World 

Similar to subprocess 2, the case where agent ij  creates a new game with agent 'ik  must satisfy 

the following conditions: 
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4.4. Delete an existing game relationship 

If an agent interacts with another one but cannot obtain the expected payoff, it will delete the 
game relationship without hesitation. Two kinds of agents can be deleted: one standing in the same 
Local-World and the other standing in another Local-World, who is denoted by ik . Furthermore, only 

the weakest links are deleted as a maximum probability, which means that the probability of deleting 
an existing game relationship is a preferential attachment—preferential abbreviation. In this sense, 
suppose that an arbitrary link '( , )i ij k  will disappear as probability 0  . That is, if this link exists as 

probability ( )h o h   during a small enough time interval [ , ]t t h , the expected time of existence will 
be 1/ . Therefore, starting from system state ( , )g  , the probability that system transit system 

state 'ˆ ( , ( , ))i ig j k    must be (Sub-process 4) ˆ( )      is 
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An agent always adjusts their interactive environment to maximize their payoff by adaptively 
adjusting the local game topological configuration, which can be expressed as adding a new link and 
deleting an old link with preferential attachment mechanisms. This adaptive behavior on the part of the 
agent, showing their intelligence by adding or deleting links, is the essence of the complex adaptive system. 

It is easier to decide the probability of deleting a link than it is to decide the probability of adding 
a link because when considering deleting a link, only agent 

'ik   is considered and the required 

calculation is reduced considerably. Furthermore, the probability of deleting a link is smaller than the 
probability of creating links either within same Local-World or between different Local-Worlds, 
because one agent can get the maximum payoff when they create a game relationship with a certain 
agent, and the payoff cannot decrease sharply with time except in the case where they can obtain more 
payoff if they interact with other agents (a small probability event). 
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4.5. Create a game relationship with a new agent in the system 

Because a complex adaptive system is a dissipative system, a new agent can enter the system and, 
of course, it can withdraw from the system. When an agent enters the system, the first thing is to select 
a Local-World for it to stand in, and then it must select an agent to interact with.  

In this paper, when an agent enters the system, it enters an arbitrary Local-World as an identical 
probability; therefore, the first step of this subprocess should be omitted. The other steps are similar to 
those of subprocess 2 and should be omitted, too. Therefore, when agent 1N   enters the complex 
adaptive system, it will enter Local-World i   as probability 1/ m   and will be reordered to 1iN   , 

then it will create a game relationship with an arbitrary agent ij  with probability 
(sub-process 5), ,

1
i

i

j
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4.6. An agent is deleted from the system 

As mentioned above, several agents are allowed to be deleted from the system, which reflects the 
property of survival of the fittest of the complex adaptive system. Obviously, when an agent is deleted, 
the links that expressed its game relationships must be deleted.  
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Reconsidering the case of long time-scale, the binary tuple of an agent’s strategy and the local 
topology would be considered as the system’s state. The system evolves according to a state transition 
equation matched with the 6 subprocesses, which forms a stochastic process, a weak Markov process. 
By analyzing this process, the invariable distribution can be determined. 

Utilizing a dynamical model on a large time-scale, the complex adaptive system exhibits distinct 
properties as follows: (i) The behavior of any given agent within the system necessitates 
synchronization with the behaviors of its neighboring agents. (ii) Decisions made by arbitrary agents, 
identifiable within a relatively short time-scale, should persist within this temporal interval. Notably, 
only a single property undergoes modification during each innovation event. (iii) This intricate process 
is bifurcated into two levels: a macro level delineating the system’s evolution law and a micro-level. 
This dynamic interplay unfolds through six events triggered by alterations in behavior configuration, 
local topological configuration, or simultaneous changes in both aspects. Furthermore, at the macro 
level, the 6 basic events are observable, and they occur as an independent probability that emerges 

from the micro-level. Set 
(sub-process 2) (sub-process 3) (sub-process 5)

(sub-process 4)


  



  


   to describe whether the system 

grows or declines. If it is far larger than 1, then the topological structure of the complex network 
decides the system developing, so the focus of the study is on the evolution law of complex networks. 
On the other hand, if it is far smaller than 1, then the changed behaviors control the system, making 
the stochastic differential games between agents the focus. If it is equal to or approximately equal to 1, 
the configuration can be regarded as stable. 

On a long time scale, the system’s evolution process should be defined as a continuous stochastic 
process analyzed above, in which each short time should be reordered to the new order of the 
continuous-time point in the system evolution process on a long time scale. We introduce a new 
preferential attachment mechanism in which each agent interacts with another as a probability that 
relies on the attractor of its payoff converged in the corresponding short time interval to the complex 
adaptive system, which is an innovation of this paper. The evolution law of this complex adaptive 
system must be mined if, and only if, the state transition equation of the complex adaptive system is 
determined and the law of the system evolution is found. 

5. Example 

Let’s consider an example with three agents, a smart agent, a normal agent, and a stupid agent; 
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each agent consists of enough individuals; they interact with a homogenous individual or 
inhomogeneous individual in order to achieve their goal achieved. Smart individuals always have 
selective competitive behavior, and they are good at distributing resources, but stupid individuals have 
not; the normal individuals are in the middle. Furthermore, smart individuals make a decision 
according to Eqs (2), (6), (9), (15), (18) and (22) with larger N  and their behavior is denoted by 
behavior x; the stupid individual would not select behavior with a maximum payoff with smaller N , 
and their behavior is denoted by behavior z ; the behavior of normal individual is denoted by behavior 

y. We construct a multi-agent computation simulation model to analyze this system. 

 

  

Figure 3. Average payoff distribution and strategies evolution under a different vision. 

This model is adapted from Epstein & Axtell’s “Sugarscape” model. Each patch has several 
resources and a resource capacity (the number of resources) coupled with behavior. Individuals collect 
resources from the program and consume some resources to survive; this amount is called their 
metabolism. Each individual has a fixed vision; the larger the vision is, the smarter the individual is. 
Furthermore, an arbitrary individual’s vision comes from both N  and the predictive ability of the 
future, which relies on the noise he receives. Each individual who has the percentage of the best 
resources should be focused on; generally speaking, the smart one is always willing to struggle for the 
best resources. In our work, we consider five computational experiments in NetLogo. In the first 
computation experiment, we consider how different visions affect the system’s behaviors. Set the 
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minimum vision of the individual as 1, and the maximum vision as 15; we select 2, 3, 5, 10 and 15 to 
do this experiment, set the minimum expectation as 1, the maximum expectation 85, and the percent 
of best resource is 10%. So, the payoff of the average payoff of the system and the evolution process 
of these three strategies are shown in Figure 3. 

In the second computation experiment, we consider how different metabolisms affect the system’s 
state and behavior. Set the maximum metabolisms as 5, 10, 15, 20 and 25, respectively, and set the 
minimum expectation as 1, the maximum expectation as 85, the percent of best resource as 10%, and 
the maximum vision as 1. The payoff of the average payoff of the system and the evolution process of 
these three strategies are shown in Figure 4. 

 

 

Figure 4. Average payoff distribution and strategies evolution under different metabolism. 

In the third computation experiment, let’s consider how different minimum expectations affect 
the system’s state and behavior. Set the minimum expectations to be 10, 25, 50 and 70, respectively, 
and set the metabolisms to be 15, the maximum expected to be 85, the percent of best resource is 10%, 
and the maximum vision as 5. The payoff of the average payoff of the system and the evolution process 
of these three strategies are shown in Figure 5. 
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Figure 5. Average payoff distribution and strategies evolution under different minimum expectations. 

 

 

Figure 6. Average payoff distribution and strategies evolution under different minimum 
expectations and different maximum expectations. 
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In the fourth computation experiment, let’s consider how both different maximum expectations 
and minimum expectations affect the system’s state and behavior. Set the maximum expectations 
as 70, 75, 80, 85 and 100, respectively, the minimum expectations to be 40, 50, 60 and 70, respectively, 
set the metabolisms as 15, the percent of best resource as 10%, maximum vision as 5. The payoff of 
the average payoff of the system and the evolution process of these three strategies are shown in 
Figure 6. 

In the fifth computation experiment, let’s consider how both different best resources affect the 
system’s state and behavior. Set the best resources are 5, 15, 20 and 25%, respectively, set the 
metabolisms as 15, the maximum expectation as 85, the minimum expectation as 1, and the maximum 
vision as 5. The payoff of the average payoff of the system and the evolution process of these three 
strategies are shown in Figure 7. 

 

 

Figure 7. Average payoff distribution and strategies evolution under different best resources. 

It is concluded that from Figures 3–7, the payoff of the system and the population using different 
strategies have been converted into a narrow interval, which means that there must exist an invariable 
distribution for these behaviors. Agent’s decision-making process is influenced by the evolution of 
random complex networks driven by preferential attachment, coupled with a volatility mechanism 
linked to its payment—a dynamic that propels the evolution of the complex adaptive system. 

It is suggested from this example that, although there are different agents coupled with certain 
behaviors that are reflected by different parameters, collective behavior is converged into a certain 
attractor. Furthermore, one or few behaviors are selected for the collective behavior; otherwise, other 
behaviors are abandoned, which reflects that the invariable distribution has emerged under the 
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interaction between agents. 
So, let’s consider the corresponding process in this example. Observing the reachable time and 

holing time of this process, the following results can be described as Table 1. 

Table 1. Distribution of behavior. 

Experiment 
Reachable time Holing time 

Behavior x Behavior y Behavior z Behavior x Behavior y Behavior z 
1-1 22 20 17 249 260 260 
1-2 44 30 50 239 230 237 
1-3 35 26 24 244 233 263 
1-4 26 26 21 295 295 277 
1-5 13 12 12 308 308 306 
2-1 92 88 24 174 147 217 
2-2 46 41 16 260 254 252 
2-3 22 16 23 282 273 288 
2-4 15 13 5 275 283 280 
2-5 15 13 4 270 273 270 
3-1 20 19 4 277 279 273 
3-2 63 47 22 258 259 267 
3-3 42 42 14 244 237 251 
3-4 40 38 36 256 254 251 
3-5 41 35 16 258 258 251 
3-6 20 20 7 171 149 240 
4-1 19 24 13 224 198 239 
4-2 31 30 11 254 248 269 
4-3 53 53 45 253 243 249 
4-4 63 30 18 183 182 213 
4-5 40 30 10 248 242 266 
4-6 67 62 29 202 216 214 
4-7 18 20 6 279 278 287 
5-1 26 22 3 294 294 262 
5-2 23 31 18 265 262 258 
5-3 53 53 9 238 234 243 
5-4 37 38 27 162 153 202 

6. Results and discussion 

Moreover, the model incorporates the ratios of owned best resources (representing the critical 
resources currently possessed by agents and anticipated in the future, constituting a pivotal constraint 
in decision-making) and the maximum metabolism (reflecting the agility of agents in adjusting their 
strategies and adaptively changing partners, thereby characterizing their volatility and stability). It is 
noteworthy that, due to the inherent irrationality of agents and their inability to precisely predict future 
system states, the minimum vision emerges as the least influential factor in behavioral collection. There 
are three types of agents now, and I would like to know which irrational factors influence the behavior 
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of these three types of agents. So, we did a regression and when choosing we consider two order 
parameters for irrational behavior: the reachable time and duration of this behavior. We initially 
speculated that it was a generalized linear model. In this sense, two regressions were made. The result 
shows that it is basically satisfied. The square value of R is 0.87. Upon conducting a thorough statistical 
analysis, the principal findings are succinctly summarized in the ensuing Tables 2 and 3. 

Table 2. The result of the generalized linear model of reachable time of behaviors x, y and z. 

Parameter 

Behavior x Behavior y Behavior z 

B importance B importance B importance 

(Intercept) 13.583  47.491  35.867  

minimum vision -1.523 0.0971 -1.065 0.0199 -0.670 0.1129 

minimum expectation 0.212 0.1058 0.133 0.1145 0.069 0.1419 

maximum expectation 0.496 0.2272 -0.026 0.1539 -0.186 0.1448 

best resource 267.909 0.2395 316.388 0.2013 74.690 0.2253 

maximum metabolism -2.901 0.3304 -2.936 0.5104 -0.505 0.3751 

(Scale) 186.639a  132.032a  127.743a  

Likelihood Ratio Chi-Square 14.397  17.041  2.069  

Sig. 0.013  0.004  0.840  

Table 3. The result of generalized linear models of holding time of behaviors x, y and z. 

Parameter 

Behavior x Behavior y Behavior z 

B importance B importance B importance 

(Intercept) 211.758  150.397  204.926  

minimum vision 5.103 0.1373 5.158 0.1276 3.999 0.1482 

minimum expectation -0.400 0.2014 -0.459 0.2049 -0.266 0.2007 

maximum expectation 0.625 0.2052 1.246 0.2093 0.591 0.204 

best resource -692.174 0.2062 -805.665 0.2132 -468.154 0.2104 

maximum metabolism 2.784 0.2499 3.953 0.2449 2.391 0.2367 

(Scale) 551.218a  748.422a  194.528a  

Likelihood Ratio Chi-Square 19.361  18.537  24.142  

Sig. 0.002  0.002  0.000  

Based on the analysis presented in Tables 2 and 3, the following key insights emerge: Maximum 
metabolism reflected by the variable *

.( )tx  (describing the transferring resource abilities and sources 

quantity) stands out as the paramount factor influencing the agent’s behavior. Notably, it exerts an 
indirect negative impact on the reachable time of arbitrary behavior, but demonstrates a positive 
influence on the corresponding holding time. The ratio of an agent’s best resources reflected by the 
variable *

.
tx (describing the absorbing-resource abilities and sources quantity) emerges as the second 

pivotal factor shaping strategy. This factor exhibits an indirect positive impact on the reachable time 
of arbitrary behavior while concurrently exerting a negative influence on its holding time. Additionally, 

the maximum expectation determined by   max ,i v i

i v
v

j a j
j a

a
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g   in Eq (1) and 
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  ( ){.} * * *
. . ., , ( , ) /t t tW t x t x     in Eqs (2)–(22) ranks as the third critical factor affecting behavior, 

manifesting positive influences on both the reachable time and holding time of arbitrary behavior—
this is because the classic irrational behavior of “every people pursue the expectation, but not the 
experience”. In contrast, minimum vision driven by local configuration   is identified as the least 
consequential factor in shaping behavior, with an indirect negative impact on the reachable time of 
arbitrary behavior and a positive impact on its holding time. However, the effects are significant 
difference among smart collective, normal collective and stupid collective. 

This example explains our model well, and the behaviors of individuals and collectives are all co-
evolved with local topological structure coming from individual interaction. In this model, according 
to the principle of “like attracts like”, there occurs certain stochastic and dynamical Local-Worlds, and 
every individual selects the partners to pursue to maximum payment. Because the payment and 
location of all individuals are changed dynamically, the partners are all changed as Eqs (2)–(22). 
Similarily because each individual’s payment relies on  , because   is changed dynamically and 
randomly, and because there are many different individuals in the system, payment is a stochastic 
process, and the minimum and maximum expectation are more important to set goals and strategies. 
Once the goal is set for each kind of people, smart individual, normal individual, and stupid individual 
in this example, the arbitrary individual should try their best to implement the corresponding goal by 
selecting the optimal strategies from his own strategies set. In this sense, a coevolutional system with 
behavior and local configuration is produced, as described as the model. In this model, a parameter 
named game radius is introduced, which is reflected by the rank of set N  , to describe the local 
configuration. In this example, the parameter of vision is equal to game radius. Generally, the larger 
the vision, the more information he has to make an accurate decision. So, the vision size determines 
how smart an individual is and describes how rational a person is. As described in this example, it is 
concluded that the minimum vision has a negligible impact on the behavior and benefits different 
intelligent agents. However, the maximum vision is quite the opposite; it has a very significant impact 
on the behavior and benefits different intelligent agents.  

In classical research, the various irrational behaviors of agents have not been discussed in depth. 
This paper supplements this issue, which is one of the main contributions of this study. In this example, 
we discussed the coexistence of individuals with different rationalities in the system, interacting with 
each other according to their own set rules and the model provided in this paper. We found that in any 
situation, there is a polarization of behavior. In other words, as the interactions continue, agents 
gradually form behavioral inertia and relatively fixed local structures. Consequently, behaviors with 
different attributes will converge to a relatively stable attractor, and the system’s behavior, function, 
and properties will become more stable. However, this conclusion, which has been proven to be correct 
by evidence, has not yet been discovered in existing research. This is enough to demonstrate the 
correctness of our model and the value of the research presented in this paper. 

7. Conclusions 

Our research is notably intriguing, as the results seamlessly align with diverse social systems 
encompassing economic, management, political, and social domains. The system investigated in this 
study closely mirrors reality, offering practical solutions to numerous physical problems and yielding 
profound and general conclusions. Leveraging insights from the behavior evolution process and the 
law of invariant distribution in collective behavior enables rational decision-making. In the context of 
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managing complex adaptive systems, the efficacy of optimal management strategies hinges upon the 
inherent functionality of the system. A pivotal consideration for managers is whether specific states 
within the complex adaptive system should be rapidly achieved or prolonged. This decision is 
particularly crucial for scenarios such as epidemic control, where expeditious attainment of certain 
states is imperative. In such cases, prioritizing the allocation of optimal resources followed by setting 
a high maximum expectation proves to be the most effective approach. Conversely, for situations 
requiring the perpetuation of specific states, such as sustainable production and political election 
campaigns, permitting maximum metabolism alongside establishing high maximum expectations is 
advised. The broad applicability and significance of this research underscores its universality, 
constituting a noteworthy contribution. 

The emergence of a stable distribution is contingent upon the strength of decay in a complex 
adaptive system. A robust decay amplifies the likelihood of an invariant distribution, while a weaker 
decay diminishes this probability. Consequently, the stability of the complex adaptive system is 
inherently influenced by the noise inherent in agent behaviors. Moreover, the introduction of random 
changes in the properties of arbitrary agents augments the complexity of the invariant distribution. 
With specified parameters, the invariant distribution assumes a deterministic nature. An illustrative 
example is presented to elucidate the evolution of diverse behaviors, demonstrating their convergence 
to corresponding attractors contingent on the system’s initial conditions or scenarios. Irrespective of 
scenario changes, our defined conditions ensure system behavior stability. 

However, the introduction of irrational behaviors engenders a different behavioral pattern, a 
subject beyond the current scope, warranting consideration in future research. The present analysis, 
while comprehensive, has not delved into the intricacies of individual irrational behaviors such as 
preferential selection, laziness, prejudgment, and other related factors. This represents a significant 
and pressing area for future investigation. Understanding the nuanced dynamics of these specific 
irrational behaviors is paramount for a comprehensive grasp of the complex adaptive system under 
consideration. As these behaviors can wield substantial influence on decision-making processes and 
overall system dynamics, their detailed examination is warranted to enhance the depth and scope of 
our understanding. Consequently, delving into the impact and interplay of preferential selection, 
laziness, prejudgment, and similar behaviors is identified as a crucial avenue for future research within 
the context of this study. Addressing these individual irrational behaviors will undoubtedly contribute 
to a more nuanced and holistic comprehension of the overarching complex adaptive system dynamics, 
offering valuable insights for both theoretical and practical applications. 
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