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Abstract: The upper bounds for the powers of the iteration matrix derived via a numerical method
are intimately related to the stability analysis of numerical processes. In this paper, we establish upper
bounds for the norm of the nth power of the iteration matrix derived via a fourth-order compact θ-
method to obtain the numerical solutions of delay parabolic equations, and thus present conclusions
about the stability properties. We prove that, under certain conditions, the numerical process behaves
in a stable manner within its stability region. Finally, we illustrate the theoretical results through the
use of several numerical experiments.
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1. Introduction

Mathematical scientists build partial differential equations to model nature phenomena in science
and engineering. To better understand the nature phenomena, not only is a reasonable qualitative
analysis about the solutions of the equations necessary (see, e.g., [1–5]), but, also, an efficient and
accurate numerical algorithm is required (see, e.g., low-dimensional space [6–10], high-dimensional
space [11–14]). Time delay phenomena appear in various fields such as signal transduction, population
dynamics, and control systems (see, e.g., [15–19]). Partial differential equations with delay can de-
scribe the dynamical systems more accurately, and thus have been receiving more attention. Generally,
obtaining an analytical solution for a delay system is challenging [20,21]. Researchers have developed
effective methods to solve these equations, including finite difference methods [22–26], finite element
methods [27–31] (discontinuous Galerkin method [32–35]), and many other methods [36–40].
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To avoid the propagation of the errors of the numerical solutions and control the numerical process,
many studies have been devoted to the stability analysis of numerical methods (see, e.g., [41–45]).
However, the stability analysis of a numerical method for solving partial differential equations with
delay has not been well investigated. A numerical method which is unconditionally stable for partial
differential equations, is probably no longer unconditionally stable for partial differential equations
with delay [46, 47]. Therefore, the stability analysis of a numerical method for solving partial differ-
ential equations with delay is a necessity. Our concern here is to investigate the stability estimates of a
fourth-order compact θ-method for the following delay parabolic equations

∂
∂t u(x, t) = k ∂2

∂x2 u(x, t) + r ∂2

∂x2 u(x, t − τ), x ∈ (0, π), t > 0,
u(x, t) = u0(x, t), x ∈ (0, π), − τ ≤ t ≤ 0,
u(0, t) = u(π, t) = 0, t ≥ −τ,

(1.1)

where k, r are diffusion coefficients, and τ is delay term. One can refer to Reference [48] for the
existence, uniqueness and continuation of problem (1.1). The fully discrete fourth-order compact θ-
method is constructed by performing the following steps: the spatial discretization is realized by using
a compact finite difference method (e.g., [49, 50]), and the time discretization is realized via a linear
θ-method (e.g., [51]).

The spectral radius condition is utilized as a tool for the stability of numerical methods. As for
problem (1.1), References [49, 50] investigated the asymptotic stability property by using a spectral
radius condition and established the sufficient and necessary condition for the method to be asymptot-
ically stable. For more details, please refer to Theorems 5.6 and 5.7 of Reference [49] and Theorems
1 and 2 of Reference [50]. The results obtained by using the spectral radius condition are very im-
portant in the determination of when numerical methods are asymptotically stable. However, scholars
have presented instructive examples to confirm that the spectral radius condition may give an unreli-
able information about the numerical stability estimates (see, e.g., [52–54]). Moreover, the examples
demonstrate that the norm of the powers of the iteration matrix could be obsessively large in the case
that the spectral radius condition is satisfied [55]. In view of these facts, it is interesting to consider
whether the numerical process will actually behave in a stable way within its stability region [56].

The upper bounds for the powers of matrices are intimately connected to the stability analysis
of numerical processes for solving initial(-boundary) value problems in ordinary and partial linear
differential equations [54]. Recently, scholars utilized the Kreiss resolvent condition to establish upper
bounds for the growth of errors in the numerical process for solving delay differential equations (see,
e.g., [51,53–58]). To the best of our knowledge, stability estimates about upper bounds for the powers
of the iteration matrix derived via the compact θ-method for problem (1.1) have not been studied. The
main contribution of this paper is that, based on the aforementioned results, we look into the upper
bounds for the norm of the nth power of the iteration matrix of the compact θ-method and detect
whether propagated errors occurring in the numerical process could be bounded. It is worth noting
that our stability results are essentially different from and, in some respects, complementary to those
obtained in References [49, 50].

Reference [51] demonstrated that the trivial solution of problem (1.1) is asymptotically stable if
k > r > 0. Throughout the paper, we investigate the stability of the proposed numerical method
under this condition. In addition, we assume that the solution u(x, t) of problem (1.1) satisfies that
u(x, t) ∈ C(6,4)

(
(0, π) × (0,T ]

)
.
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The rest of this paper is organized as follows. In Section 2, we briefly establish the fully discrete
compact θ-scheme. In Section 3, we present the solvability, asymptotic stability, and convergence
of the compact θ-method. In particular, we derive the upper bounds for the norm of the nth power
of the iteration matrix derived via the proposed method, and come to conclusions about the stability
properties. In Section 4, we conduct numerical experiments to illustrate the theoretical results. Finally,
we summarize the paper in Section 5.

2. The fully discrete numerical scheme

In this section, we give a brief derivation of the fully discrete compact θ-scheme for solving problem
(1.1).

Let ∆t = τ
m and ∆x = π

N , where m and N are two positive integers. Set Ω∆t = {tn|n ≥ −m} as a
partition on the time interval [−τ,∞), where tn = n∆t (n ≥−m). Set Ω∆x = {x j|0 ≤ j ≤ N} as a mesh on
the space interval Ω = [0, π], where x j = j∆x (0 ≤ j ≤ N). Let un

j denote the numerical approximation
of u(x j, tn). We define the following notations:

δtun
j =

un+1
j − un

j

∆t
, δ2

xu
n
j =

un
j+1 − 2un

j + un
j−1

∆x2 ,

and introduce the compact operator [49, 50]

Aun
j =


un

j−1+10un
j+un

j+1

12 , j = 1, 2, · · · ,N − 1,
un

j j = 0, N.

Next, employing the compact operator to approximate the diffusion term, and applying the linear
θ-method to the semi-discrete system, the fully discrete compact θ-scheme reads as follows:

Aδtun
j =k[(1 − θ)δ2

xu
n
j+θδ

2
xu

n+1
j ]+r[(1 − θ)δ2

xu
n−m
j +θδ

2
xu

n−m+1
j ],

1 ≤ j ≤ N−1, n ≥ 0,
un

j = u0(x j, tn), 1 ≤ j ≤ N−1, − m ≤ n ≤ 0,
un

0 = un
N = 0, n ≥ −m.

(2.1)

Remark 2.1. If the discretization of the spatial diffusion term is achieved by using the standard cen-
tral difference method, then we get the typical linear θ-method. It is worth noting that the convergence
order of the compact θ-method in space is 4, while that for the linear θ-method is 2 [49,50]. Moreover,
the coefficient matrices for the compact θ-method and linear θ-method are both tridiagonal matrices.
Thus, the compact finite difference method shows a better convergence result in space without increas-
ing the computational cost, making it a popular method to approximate the spatial term [59–63].

Rewrite the compact θ-method in the following matrix form:

ϕ0(S )Un+1 = ϕ1(S )Un − ϕm(S )Un+1−m − ϕm+1(S )Un−m, (2.2)

where

Un = (un
1, u

n
2, ..., u

n
N−1)T , µ =

k∆t
∆x2 , ν =

r∆t
∆x2 ,

Electronic Research Archive Volume 32, Issue 4, 2805–2823.
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ϕ0(ξ) =
10
12
+ 2µθ + (

1
12
− µθ)ξ,

ϕ1(ξ)=
10
12
−2µ(1−θ)+[

1
12
+µ(1 − θ)]ξ,

ϕm(ξ)=2νθ−νθξ, ϕm+1(ξ)=2ν(1−θ)−ν(1−θ)ξ,

and the (N−1)-by-(N−1) matrix S is given by

S =



0 1 0 . . . 0 0
1 0 1 . . . 0 0

. . .
. . .

. . .
. . .

0 0 . . . 1 0 1
0 0 . . . 0 1 0


with its eigenvalues λ j = 2cos( j∆x), 1 ≤ j ≤ N−1.

3. Main results

In this section, we will present the solvability, asymptotic stability, and convergence of the compact
θ-method. In particular, we will derive the upper bounds for the norm of the nth power of the iteration
matrix derived via the compact θ-method. We will prove that, under certain conditions, the numerical
process actually behaves in a stable way within its stability region.

3.1. Consistence and solvability

Theorem 3.1 [49, 50]. The compact θ-method (2.1) is consistent and has a unique solution.

3.2. Stability

Definition 3.2 [51]. A numerical method applied to problem (1.1) is called asymptotically stable
with respect to the trivial solution if its approximate solution un

j corresponding to any function u0(x, t)
satisfies

lim
n→∞

max
1≤ j≤N

|un
j | → 0.

From the recurrence relation in (2.2), we obtain an equivalent vector form

Un+1 = CUn, n = 0, 1, 2, · · · .

Here
Un =

[
(Un)T , (Un−1)T

, . . . , (Un−m)T
]T
∈ R(m+1)×(N−1),

and C is a block matrix of order (m + 1)(N−1), defined as

C =



ψ1(A) O . . . O ψm(A) ψm+1(A)
I O . . . O O O

. . .
. . .

. . .
. . .

O O . . . O O O

O O . . . O I O


,

Electronic Research Archive Volume 32, Issue 4, 2805–2823.
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where the elements of C are defined as follows:

A=S −2I,

ψ1(ξ) = [1+(
1

12
−µθ)ξ]−1{1+ [

1
12
+µ(1 − θ)]ξ},

ψm(ξ) = [1+ (
1

12
−µθ)ξ]−1νθξ,

ψm+1(ξ) = [1+ (
1

12
−µθ)ξ]−1ν(1−θ)ξ,

and the symbols I and O stand for the identity and zero blocks of order N−1, respectively. We shall
introduce a vector norm | · | for Un and a matrix norm ∥ · ∥ induced by the vector norm | · | for Cn (n ≥ 1)
(see, e.g., [51, 55]), defined as

|Un| = max
0≤n≤m

|Un|2 = max
0≤n≤m

√√√N−1∑
j=1

∣∣∣∣un
j

∣∣∣∣2, ∥Cn
∥ :=
|CnU0|

|U0|
,

where U0 = (1, 1, ..., 1)T ∈ R(m+1)(N−1).

In order to investigate the stability property, it is necessary to consider the perturbed problem,
i.e., the numerical computation is performed by using a different initial vector Ũ0. Let Ũn denote the
perturbed numerical solutions, and let Wn = Ũn − Un be the propagated errors. Therefore,

Wn = CnW0, n ≥ 1. (3.1)

Our aim is to seek bounds for the propagated errors, given by |Wn| ≤ L|W0| (n ≥ 1), where | · | stands
for a vector norm, and L is a constant. Noticing (3.1), we arrive at

|Wn| ≤ ∥Cn
∥ |W0|, n ≥ 1. (3.2)

If there exist upper bounds on ∥Cn
∥ for every natural number n, then the numerical process (2.1) will

behave in a stable manner.
To achieve the stability estimate for ∥Cn

∥, we introduce the following:

H = diag{F1, F2, · · · , FN−1},

where the (m+1)-by-(m+1) matrix F j is given by

F j =



ψ1(λ̃ j) 0 . . . 0 ψm(λ̃ j) ψm+1(λ̃ j)
1 0 . . . 0 0 0

. . .
. . .

. . .
. . .

0 0 . . . 0 0 0
0 0 . . . 0 1 0


with λ̃ j = −4sin2( j∆x

2 ) ∈ σ(A), 1 ≤ j ≤ N−1.
We shall present a useful lemma from Reference [55].
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Lemma 3.3. For n,m ≥ 1 and N ≥ 2, it holds that

∥Cn
∥ ≤
√

min{N−1,m + 1} max
1≤ j≤N−1

∥Fn
j ∥∞. (3.3)

It is observed that ∥Fn
j ∥∞ plays a crucial role in the stability estimate. As Zubik-Kowal pointed out

in Reference [55], the value of ∥Fn
j ∥∞, and thus of ∥Cn

∥, might be excessively large, even under the
spectral radius condition. We wonder under what conditions the norm of the nth power of the iteration
matrix C could be bounded. The following analysis will give the answers.

We assume that (µ, ν) belongs to the stability region S θ in the compact θ-method. The stability
region S θ is given by Theorems 1 and 2 in Reference [50]:

S θ =


{(µ, ν) ∈ R2 : µ > ν > 0, 1

6 + (1 − 2θ)(µ + ν) < 1
1+cos(∆x) },

θ ∈ [0, 1
2 ),

{(µ, ν) ∈ R2 : µ > ν > 0}, θ ∈ [ 1
2 , 1].

(3.4)

Theorem 3.4. Assume that (µ, ν) ∈ S θ and θ = 0, 1. Then,

∥F j∥∞ = 1, 1 ≤ j ≤ N−1. (3.5)

Proof. Define

ψ
j
1 =

1 + [ 1
12 + µ(1 − θ)]λ̃ j

1 + ( 1
12 − µθ)λ̃ j

,

ψ j
m =

νθλ̃ j

1 + ( 1
12 − µθ)λ̃ j

,

ψ
j
m+1 =

ν(1 − θ)λ̃ j

1 + ( 1
12 − µθ)λ̃ j

.

Case 1. For θ = 0, we have

ψ
j
1 =

1 + ( 1
12 + µ)λ̃ j

1 + 1
12 λ̃ j

, ψ j
m = 0, ψ j

m+1 =
νλ̃ j

1 + 1
12 λ̃ j

.

It follows from

λ̃ j = −4sin2(
j∆x
2

) ∈ (−4, 0)

that

1 +
1
12
λ̃ j ∈ (

2
3
, 1).

Thus,
ψ

j
m+1 < 0.

Noticing that our goal is to show that |ψ j
1| + |ψ

j
m| + |ψ

j
m+1| ≤ 1, it follows that ∥F j∥∞ = 1 holds.

Now, we prove the following two cases.

Electronic Research Archive Volume 32, Issue 4, 2805–2823.
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• If 1 + ( 1
12 + µ)λ̃ j ≥ 0, then ψ j

1 ≥ 0. Noting that µ > ν > 0, we have

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| = 1 +

(µ − ν)λ̃ j

1 + 1
12 λ̃ j

< 1.

• If 1 + ( 1
12 + µ)λ̃ j < 0, then ψ j

1 < 0; thus,

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| = −1 +

(µ + ν)(−λ̃ j)

1 + 1
12 λ̃ j

.

For 1≤ j≤N−1, noting that
0<−λ̃ j ≤ 2[1 + cos(∆x)],

we find that

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1|

≤ −1 +
2(µ + ν)[1 + cos(∆x)]

1 − 1
6 [1 + cos(∆x)]

. (3.6)

For (µ, ν) ∈ S θ and θ = 0, we have

1
6
+ (µ + ν) <

1
1 + cos(∆x)

.

Thus,

2(µ + ν)[1 + cos(∆x)] < 2 −
1
3

[1 + cos(∆x)]. (3.7)

Incorporating (3.7) into (3.6), we get

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| < 1.

According to the two aforementioned cases, we derive that, for θ = 0, ∥F j∥∞ = 1 holds for
1 ≤ j ≤ N−1.

Case 2. For θ = 1, we have

ψ
j
1 =

1 + 1
12 λ̃ j

1 + ( 1
12 − µ)λ̃ j

, ψ j
m =

νλ̃ j

1 + ( 1
12 − µ)λ̃ j

, ψ
j
m+1 = 0.

Noting that 1 + 1
12 λ̃ j ∈ ( 2

3 , 1), λ̃ j < 0, and µ > ν > 0, we arrive at

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| =

1 + 1
12 λ̃ j − νλ̃ j

1 + ( 1
12 − µ)λ̃ j

<
1 + 1

12 λ̃ j − µλ̃ j

1 + ( 1
12 − µ)λ̃ j

= 1.

Hence, for θ = 1, ∥F j∥∞ = 1 holds for 1 ≤ j ≤ N−1.

Electronic Research Archive Volume 32, Issue 4, 2805–2823.
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Now, we derive the conditions such that (3.5) holds for θ ∈ (0, 1).
Theorem 3.5. Suppose that (µ, ν) ∈ S θ. Then, we can derive the following set of conclusions for

θ ∈ (0, 1).
(i) For θ ∈ [ ∆x2

12k∆t +
k+r
2k , 1), (3.5) holds for every N ≥ 2.

(ii) For θ ∈ [1
2 ,

∆x2

12k∆t +
k+r
2k ), and ∆t ≤

∆x2

(∆x2

6∆t + r)[1 + cos(∆x)]
, (3.5) holds for every N ≥ 2.

(iii) For θ ∈ (0, 1
2 ), and ∆t ≤

∆x2

[∆x2

6∆t + (1 − 2θ)k + r][1 + cos(∆x)]
, (3.5) holds for every N ≥ 2.

Proof. For fixed j (1≤ j≤N−1), noting the facts that λ̃ j < 0 and 1 + ( 1
12 − µθ)λ̃ j > 0, we have

ψ
j
1=1+

µλ̃ j

1+( 1
12−µθ)λ̃ j

<1,

ψ j
m=

νθλ̃ j

1+(1
12−µθ)λ̃ j

<0,

ψ
j
m+1=

ν(1−θ)λ̃ j

1+(1
12−µθ)λ̃ j

<0.

Therefore

|ψ j
m|+|ψ

j
m+1|=

−νλ̃ j

1+( 1
12− µθ)λ̃ j

<
−µλ̃ j

1+( 1
12− µθ)λ̃ j

=1 − ψ j
1.

Case I. If ψ j
1 ≥ 0, then

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| < 1.

Thus, (3.5) holds for every N ≥ 2.

Case II. If ψ j
1 < 0, then

|ψ
j
1| + |ψ

j
m| + |ψ

j
m+1| = −1 −

(µ + ν)λ̃ j

1 + ( 1
12 − µθ)λ̃ j

.

We recall our goal, i.e., |ψ j
1| + |ψ

j
m| + |ψ

j
m+1| ≤ 1, which yields

−1 −
(µ + ν)λ̃ j

1 + ( 1
12 − µθ)λ̃ j

≤ 1,

i.e.,

− λ̃ j

[1
6
+ (1 − 2θ)µ + ν

]
≤ 2. (3.8)
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• For θ ∈ [ ∆x2

12k∆t +
k+r
2k , 1), we have

1
6
+ (1 − 2θ)µ + ν ≤ 0.

Then,

−λ̃ j

[1
6
+ (1 − 2θ)µ + ν

]
≤ 0,

implying that inequality (3.8) holds; hence, Eq (3.5) holds for every N ≥ 2.
• For θ ∈ [ 1

2 ,
∆x2

12k∆t +
k+r
2k ), we have

1
6
+ (1 − 2θ)µ + ν > 0.

Then,

max
1≤ j≤N−1

−λ̃ j

[1
6
+ (1 − 2θ)µ + ν

]
=2
[
1 + cos(∆x)

](1
6
+ ν
)
.

It follows from

2
[
1 + cos(∆x)

](1
6
+ ν
)
≤ 2

that

∆t ≤
∆x2

(∆x2

6∆t + r)[1 + cos(∆x)]
.

Therefore, conclusion (ii) holds.
• For θ ∈ (0, 1

2 ), we have
1
6
+ (1 − 2θ)µ + ν > 0.

Then,

max
1≤ j≤N−1

−λ̃ j

[1
6
+ (1 − 2θ)µ + ν

]
= 2
[
1 + cos(∆x)

][1
6
+ (1 − 2θ)µ + ν

]
.

Following from

2
[
1 + cos(∆x)

][1
6
+ (1 − 2θ)µ + ν

]
≤ 2,

we have

∆t ≤
∆x2

[∆x2

6∆t + (1 − 2θ)k + r][1 + cos(∆x)]
.

Therefore, conclusion (iii) holds.

Electronic Research Archive Volume 32, Issue 4, 2805–2823.
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We have discussed the conditions such that the formula ∥F j∥∞ = 1 holds for 1 ≤ j ≤ N−1 so far.
Noticing Lemma 3.3, we arrive at the following corollary.

Corollary 3.6. Assume that (µ, ν) ∈ S θ. Then for n, m ≥ 1 and N ≥ 2, when
1) θ = 0, or

2) θ ∈ (0, 1
2 ), and ∆t ≤

∆x2

[∆x2

6∆t + (1 − 2θ)k + r][1 + cos(∆x)]
, or

3) θ ∈ [1
2 ,

∆x2

12k∆t +
k+r
2k ), and ∆t ≤

∆x2

(∆x2

6∆t + r)[1 + cos(∆x)]
, or

4) θ ∈ [ ∆x2

12k∆t +
k+r
2k , 1], it holds that

∥Cn
∥ ≤
√

min{N−1,m + 1}.

Remark 3.7. Scholars have illustrated that the spectral radius condition may give unreliable infor-
mation about the numerical stability estimates (see, e.g., [52–54]). Reference [55] pointed out that the
norm of the powers of the iteration matrix could be obsessively large in the case that the spectral radius
condition is satisfied. It is interesting to consider whether the numerical process will actually behave
in a stable way within its stability region [56]. To the best of our knowledge, the upper bounds for the
powers of the iteration matrix derived via the compact θ-method have not been studied. Here, we have
investigated the conditions for the norm of the nth power of the iteration matrix C to be bounded, and
such that the numerical process will actually behave in a stable manner.

3.3. Convergence

Theorem 3.8 (Lax equivalence theorem [64]). For the linear finite difference scheme, it is conver-
gent if it is consistent and stable with respect to the initial value.

In light of Subsection 3.1 (consistency) and Subsection 3.2 (stability), and with the help of Lax
equivalence Theorem 3.8, we have the following convergent result.

Theorem 3.9 [49]. Let {un
j |, j = 1, 2, · · · ,N − 1, n = −m,−m+1, · · · } be a numerical solution of

the fully discrete scheme (2.1). Denote Un
j = u(x j, tn) ( j = 0, 1, · · · ,N, n = −m,−m + 1, · · · ). Suppose

that the assumptions in Section 1 and Corollary 3.6 hold. Then, for n = 1, 2, · · · , we have

∥en∥∞ ≤

Ĉ(∆t2 + ∆x4), θ = 1
2 ,

Ĉ(∆t + ∆x4), 0 ≤ θ < 1
2 or 1

2 < θ ≤ 1,
(3.9)

where en = [un
1 − Un

1 , u
n
2 − Un

2 , · · · , u
n
N−1 − Un

N−1]T and Ĉ is a positive constant independent of ∆t and
∆x.

4. Numerical simulations

In this section, we present numerical simulations to validate the derived stability results and the
convergence results in the maximum norm.
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4.1. Stability test

Let k = 1, r = 0.5, τ = 0.1 and N = 4. To survey whether the norm of the nth power of the iteration
matrix C could be bounded, we define a function

E(m) =
∥Cn
∥

√
m + 1

,

where ∥Cn
∥ := |CnU0 |

|U0 |
with U0 = (1, 1, ..., 1)T ∈ R(m+1)(N−1). If Corollary 3.6 holds, then we have that

∥Cn
∥ ≤

√
min{N−1,m + 1}, implying that function E(m) could be bounded. We shall examine the

behavior of the function E(m) versus m under different values of θ in Corollary 3.6. Specifically, we
take θ1 = 0, θ2 =

1
4 , θ3 =

1
2 and θ4 = 1, corresponding to conclusions (1)–(4) of Corollary 3.6,

respectively.
Graphs of the function E(m) versus m, for θ1 = 0, θ2 =

1
4 , θ3 =

1
2 and θ4 = 1, are shown in Figures

1–4, with n = 50, 75, 100, respectively. For θ1, as expected, E(m) is bounded for various values of n in
Figure 1. For θ2, under the condition ∆t ≤ ∆x2

[ ∆x2
6∆t +(1−2θ2)k+r][1+cos(∆x)]

, it can be observed in Figure 2 that the

function E(m) is bounded for various values of n. For θ3, under the condition ∆t ≤ ∆x2

( ∆x2
6∆t +r)[1+cos(∆x)]

, as

shown in Figure 3, the function E(m) is also bounded for various values of n. Again, E(m) is bounded
for various values of n in Figure 4 for θ4. Each graph in Figures 1–4 indicates the function E(m) is
bounded for various values of n, thus the tendency of the function E(m) in each graph looks similar,
which is consistent with the results for the θ-method in Reference [51]. The graphs demonstrate that,
under the conditions of Corollary 3.6, the compact θ-method actually behaves in a stable manner within
its stability region.

Figure 1. The function E(m) versus m for θ = θ1.
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Figure 2. The function E(m) versus m for θ = θ2.

Figure 3. The function E(m) versus m for θ = θ3.
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Figure 4. The function E(m) versus m for θ = θ4.

4.2. Convergence test

We describe a convergence test for the following equation

∂

∂t
u(x, t) = k

∂2

∂x2 u(x, t) + r
∂2

∂x2 u(x, t − τ) + f (x, t),

where the initial condition and the added term f (x, t) are specified so that the exact solution is u(x, t) =
e−tsin(x).

We take the parameters k = 1, r = 0.5, τ = 0.5, θ = 0.5 and solve the problem on [0, π] × [0, t] with
different temporal and spatial step sizes. Let ∆t ≈ ∆x2 when the compact θ-method is employed to
solve the problem. Also, we choose to test the problem by using the linear θ-method. The numerical
errors and convergence orders in the maximum norm are listed in Tables 1 and 2, respectively. It is
shown that the convergence of the compact θ-method is second-order accurate in time and fourth-order
accurate in space, while the linear θ-method has second-order accuracy in time and space. Obviously,
the convergence result of the compact θ-method is superior to that of the linear θ-method in the spatial
direction.

Table 1. Errors and convergence orders at different times for the compact θ-method (θ = 0.5).

N L∞-error (t=1) Order L∞-error (t=3) Order L∞-error (t=5) Order
10 2.4436e − 04 − 4.6589e − 05 − 5.8577e − 06 −

20 1.5122e − 05 4.0143 2.7757e − 06 4.0691 3.7606e − 07 3.9613
40 9.5097e − 07 3.9911 1.7481e − 07 3.9890 2.3501e − 08 4.0002
80 5.9436e − 08 4.0000 1.0909e − 08 4.0022 1.4734e − 09 3.9955
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Table 2. Errors and convergence orders at different times for the linear θ-method (θ = 0.5).

N L∞-error (t=1) Order L∞-error (t=3) Order L∞-error (t=5) Order
10 2.7893e − 03 − 3.6354e − 04 − 5.4388e − 05 −

20 5.5310e − 04 2.3343 1.0387e − 04 1.8073 1.3537e − 05 2.0064
40 1.3382e − 04 2.0472 2.5860e − 05 2.0060 3.3756e − 06 2.0037
80 3.5689e − 05 1.9067 6.5318e − 06 1.9852 8.7722e − 07 1.9441

5. Conclusions

In this paper, we have discussed the numerical analysis of a fourth-order compact θ-method for
solving problem (1.1). We have presented the solvability, asymptotic stability, and convergence of the
method. In particular, we have derived the upper bounds for the norm of the nth power of the iteration
matrix C obtained by applying the method in the corresponding stability region, and we have drawn
conclusions about the stability properties, such that the propagated errors occurring in the numerical
process could be bounded. Numerical simulations have been conducted to illustrate the theoretical
results. There has been much concern regarding the fractional-order model recently since the model
could characterize complex nature phenomena more accurately [65–69]. We hope to apply the method
to solve the fractional generalized diffusion equation with delay in the future.
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